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ABSTRACT

Representing crystal structures for machine learning property prediction tradition-
ally relies on either composition-based methods or structure-based graph neural
networks (GNNs). While these methods have been successful in predicting cer-
tain properties, they fall short in accurately capturing the periodicity of crystal
structures, particularly long-range information. In this work, we show that topo-
logical features derived from labeled quotient graphs (LQGs)–finite graph rep-
resentations that encode bond topology without relying on real-space geometric
information–can effectively predict non-local properties, i.e., properties that are
not solely determined by individual local atomic environments. Using a dataset of
25,000 silica zeolite structures, we demonstrate that XGBoost models trained on
LQG-derived topological features (XGB-LQG) outperform conventional GNNs
(CGCNN, MEGNet) in predicting non-local properties. Furthermore, hybrid ar-
chitectures that combine GNN embeddings with LQG features achieve intermedi-
ate performance, highlighting the complementary nature of geometric and topo-
logical representations. Our results establish LQGs as a powerful representation
for incorporating bond topology into crystal property prediction.

1 INTRODUCTION

Crystal property prediction models generally fall into two distinct categories based on their input
information: composition-based models (Gupta et al., 2023; Li et al., 2021; Ward et al., 2016;
Venkatraman, 2021), which only take unit cell compositions (i.e., atom types and counts) as in-
put, and structure-based models, which incorporate atomic coordinates. Structure-based models,
particularly those based on graph neural networks (GNNs), have been extensively explored in re-
cent years for predicting crystal properties. Notable examples include Crystal Graph Convolutional
Neural Networks (CGCNN) (Xie & Grossman, 2018), MatErials Graph Network (MEGNet) (Chen
et al., 2019), and Atomistic Line Graph Neural Network (ALIGNN) (Choudhary & DeCost, 2021).
These models are designed to learn a representation of the crystal with real-space geometric features,
including bond lengths and/or bond angles that are derived from atomic coordinates.

In contrast, molecular property prediction models often use molecular graphs without incorporating
real-space geometric features, as the properties of interest are typically macroscopic responses of an
ensemble of conformers. Thus, for molecules, there are at least three levels of representation, rang-
ing from abstract to concrete: chemical formula (composition-level), molecular graph (graph-level),
and conformer (structure-level), as illustrated in Figure 1 (top). These three levels of representa-
tion can be applied similarly to categorize crystal representations. Interestingly, crystal property
prediction models tend to use either the most abstract or the most concrete representation (Figure 1,
bottom). The contrast in the choice of representation between molecular and crystal prediction mod-
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els motivated our investigation of graph-level representations for crystal property prediction without
real-space geometric features.
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Figure 1: Materials can be represented at multiple levels of abstraction, ranging from their chemical
compositions (most abstract), their chemical bond graphs, to their real-space structures (most con-
crete). These representations for both molecules and crystals are illustrated using acetaminophen
and gallium arsenide as examples. The graph-level representation (labeled quotient graph) for crys-
tals, which is the focus of this study, is highlighted in the red box.

We focus on a graph-level representation known as labeled quotient graphs (LQGs). LQGs were
first formally introduced in 1984 (Chung et al., 1984). LQGs are finite graphs that encode the con-
nectivity information of the infinite periodic bond network (underlying net) of a crystalline material.
The periodicity is encoded in the labels of the LQG. That is, the LQGs are independent from atomic
(or structure subunit) coordinates in real space and only depend on the presence of bonds between
atoms (subunits). It is possible to obtain the underlying net of a crystal structure from its LQG
but the atomic coordinates are not retrievable. The graph isomorphism type of an underlying net is
called the bond topology of the structure.

Given the crystal structure and its underlying net, an LQG can be constructed following the pro-
cedure in Section 2.1. LQG edges are labeled to encode periodicity, enabling the original net to
be reproduced by unfolding the LQG. As a finite graph representation, LQGs are used to digi-
tally store periodic nets in databases such as the Reticular Chemistry Structure Resource (O’keeffe
et al., 2008), EPINET (Ramsden et al., 2009), and the Topological Types Database (Blatov et al.,
2014). Similar to molecular conformation generation, theories and tools have been developed to
generate real-space crystal structures (net-embeddings) for a given LQG through barycentric place-
ment (Delgado-Friedrichs & O’Keeffe, 2003) or co-lattice methods (Eon, 2011; Xiao et al., 2023).
LQG-based string representations have also been proposed to represent the bond topologies of crys-
tal structures (Delgado-Friedrichs et al., 2017; Krenn et al., 2022; Xiao et al., 2023). Pertaining
to property predictions, previous studies have shown that some properties of crystal structures are
strongly correlated with or determined by features (topological invariants) of their LQGs. For ex-
ample, the dimensionality of a crystal structure can be derived from its quotient graph’s basic cycle
sums matrix (Gao et al., 2020). Additionally, the LQG determines both the minimal and maximal
possible symmetry of its net-embeddings (Thimm, 2009). These results make LQGs a promising
representation for predicting crystal properties, especially long-range properties or properties that
are dependent on different regions of the crystal, which are hard tasks for structure-based GNN
models (Gong et al., 2023).

While LQGs have been used for crystal structure enumeration/generation, their application to prop-
erty prediction remains underexplored. Zeolites, with their well-defined bond topologies, various
pore geometries, and diverse connectivity patterns, make an interesting test case for evaluating the
predictive power of LQG-based models. In this study, we explore predicting zeolite properties using
only the crystal’s LQG without incorporating real-space coordinate or lattice information. We found
that XGBoost models trained using LQG features outperform structured-based GNN models in pre-
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dicting non-local properties including pore geometry and accessible surface area. GNN models
can be improved by including LQG features for all properties considered in this study. Our find-
ings establish LQGs as a viable approach to include bond topology information in crystal property
prediction.

2 METHODS

2.1 LABELED QUOTIENT GRAPHS
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Figure 2: Construction of the LQG for the (100) surface of the primitive cell of gallium arsenide
({111} of the conventional cell). Dashed boxes denote unit cells of the surface. The 2-tuple at the
bottom of a unit cell denotes the cell index of this unit cell. The resulting LQG of two nodes and
three labeled edges is shown at the bottom right of the figure.

Figure 2 shows the construction of the LQG for the (100) surface of the primitive cell of gallium
arsenide ({111} of the conventional cell) using the procedure introduced by Chung et al. Given the
coordinate system defined by surface lattice vectors and a selected unit cell as initial cell with an
index of (0, 0), other unit cells can be assigned indices based on their relative positions to the origin
unit cell in the lattice, e.g. (-1, 0) for the cell next to the initial cell on the left. Using an ionic
radii-based distance cutoff, Ga-As bonds can be identified in the surface structure. An LQG can
then be constructed as follows:

1. For each atom inside the (0, 0) cell add a node to the LQG. In the GaAs example there are
two atoms and therefore two nodes in its LQG;

2. Find all pairs of atoms containing at least one atom in the (0, 0) cell between which bonds
are formed. Group them into translationally equivalent bond sets. In the GaAs example
there are three bond sets, colored by purple, blue, and orange, respectively.

3. From each bond set, arbitrarily select one bond. Add a directed edge to the LQG, con-
necting the nodes that correspond to the atoms forming the chosen bond, starting from a
node that corresponds to an atom in the (0,0) cell. Label the edge with (0,0) if the bond is
contained in the initial cell. If one of the bond-forming atoms lies outside the (0,0) cell in
the (n,m) cell, label the edge with (n,m).

In practice, dedicated coordination determination packages are recommended for more complicated
bonding situations (Pan et al., 2021). The periodicity of the crystal structure’s net is represented
by edge labels from the LQG construction. For example, an LQG cycle with a nonzero cycle sum
(sum of edge labels in that cycle) determines a crystallographic translation as a path between two
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translationally equivalent atoms from neighboring cells. Note that edges are only present between
nodes corresponding to atoms that are close enough to interact chemically. This is different from the
construction of graphs in some previous GNN models. For example, CGCNN graphs could connect
atoms that are very far away compared to the average chemical bond lengths (Xie & Grossman,
2018). Additionally, no geometric information (e.g., atomic positions/distances in real-space) is
explicitly present in an LQG: The only node feature is the atomic type, and the only edge feature is
the LQG edge label.

Following the procedure in Section A.1, a set of 25,000 all-silica zeolite structures is produced to
benchmark models in this study. Because the pure silica zeolites in this study only consist of in-
terconnected SiO4 tetrahedra, the LQGs are simplified by contracting SiO4 tetrahedra to individual
nodes, and the corner- or edge-sharing relations between two tetrahedra are mapped to edges. This
procedure of contracting primary building units (PBUs) is used to create a more compact PBU-
contracted graph from the bond-based LQG for each zeolite structure. Graph features (topologi-
cal invariants) of the PBU-contracted graphs are used to train regression models to predict zeolite
properties. A list of 203 graph features, including centrality measures, spectral properties, degree
distributions, community measures, cycle properties, can be found in the Supplementary Materials.

2.2 MODELS

The “Dummy” model in Table 1 is a dummy regressor that takes the mean of the training labels and
makes the assumption that all of the data points in the test set are equal to the mean of the training
set. For more interesting comparisons, GNNs such as a crystal graph convolutional neural network
(CGCNN) (Xie & Grossman, 2018) and MatErials Graph Network (MEGNet) (Chen et al., 2019)
were chosen. The CGCNN aims to represent the crystal structure by capturing the pairwise inter-
actions between atoms and declaring the node and bond features with atomistic properties (group
number, period number, electronegativity, covalent radius, valence electrons, first ionization energy,
electron affinity, block, atomic volume) and bond-relevant properties (bond distance) respectively.
MEGNet follows a similar approach but includes global state information about the crystal, such as
temperature. The hyperparameters chosen for these models are given in the appendix (Table 3 and
Table 4).

Given the computed LQG features described previously as input, for every zeolite property, an
XGBoost model (XGB-LQG) was trained and evaluated. Extensive hyperparameter tuning was
done by performing a stepwise Bayesian Optimization while performing cross-validation across
different folds for combinations of hyperparameters. The final hyperparameters for this model are
given in the appendix (Table 2). Furthermore, a CGCNN and a neural network accepting LQG
descriptors were concatenated to perform property predictions (CGCNN-LQG). This was done by
concatenating the learned representation from CGCNN and the latent representation of LQG from
a neural network, before passing to the final prediction layer. Similar approaches have been applied
to include additional features in GNNs for both molecular (Yang et al., 2019) and crystal (Gong
et al., 2023) property predictions. While LQGs can be used directly as input to GNN models, we
intentionally avoid using GNNs for LQGs of zeolites investigated in this study since many of the
PBU-contracted LQGs are regular graphs, and common GNN architectures are expected to fail in
distinguishing them (Xu et al., 2018). Additionally, zeolites’ LQGs are almost identical locally
– nearly all nodes correspond to SiO4 tetrahedra connected to other four tetrahedra, which would
likely lead to immediate oversmoothing in message-passing.

3 RESULTS

To evaluate LQG features as a crystal representation, we predicted six zeolite properties: diameter
of the largest included sphere (Di), diameter of the largest free sphere (Df ), diameter of the largest
included sphere along free path (Dif ), primitive cell volume, density, and accessible surface area
(ASA). Figure 3 and Table 1 present the comparative prediction results across models and represen-
tations.

The selected properties represent non-local structural characteristics that depend on the extended
crystal frameworks – a class of predictions where GNNs have demonstrated limitations (Gong et al.,
2023; Khan & Moosavi, 2024). Our results confirm this pattern: both CGCNN and MEGNet exhib-
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Figure 3: Regression results on zeolites. Comparison between GNNs (CGCNN and MEGNet) and
XGBoost models using LQG features (XGB-LQG). The figure also includes results from a hybrid
architecture combining CGCNN’s embeddings with LQG feature encodings (CGCNN-LQG). The
values reported in this figure are spearman rank correlation coefficients, and corresponding mean
absolute errors (MAE) are shown in Table 1.

ited limited predictive power for pore geometry (Di, Df , Dif ), primitive cell volume, and accessible
surface area, though they achieved reasonable performance on density predictions.

Notably, the XGBoost model using only LQG features (XGB-LQG) outperformed both GNNs
across all properties with the only exception of density, despite operating without any real-space
geometric information, which clearly establishes the capability of LQG features in predicting prop-
erties that are not determined by local surroundings. This performance gap was particularly notable
for primitive cell volume predictions, highlighting GNNs’ challenges in capturing long-range struc-
tural information in framework materials like zeolites. The results demonstrate how appropriate
representation selection enables simple models (XGB-LQG) to surpass complex models that use
more concrete representations (GNNs).

We further developed a hybrid architecture combining CGCNN’s embeddings with LQG feature
encodings before the final regression layer. This concatenated model consistently outperformed the
base CGCNN across all properties, confirming that LQG features provide complementary topolog-
ical information missing in conventional GNN representations. However, the hybrid model did not
surpass XGB-LQG’s performance on any property prediction except for density and accessible sur-
face area. This architecture-dependent discrepancy may suggest XGBoost’s tree-based architecture
exploits these discrete topological features better than neural networks.

4 CONCLUSION

This study explores the application of labeled quotient graphs (LQGs) in crystal property predic-
tion. We demonstrate that XGBoost models trained on LQG features without real-space geometric
information tend to outperform geometry-aware GNNs in predicting non-local zeolite properties.
GNNs can also be improved by including LQG features that capture bond topology information that
GNNs often struggle to learn. Encouraged by these results, we speculate that further improvements
could be achieved by exploring additional LQG features, as well as LQGs in other formats, e.g., as
strings (Delgado-Friedrichs et al., 2017; Krenn et al., 2022; Xiao et al., 2023). Other mathematical
representations of periodic graphs, such as 2D hyperbolic tilings placed on triply periodic minimal
surfaces (Ramsden et al., 2009), could also be valuable tools in crystal property predictions. Finally,
while LQG could be a suitable representation in predicting non-local properties for materials of high
bond topology diversity, this representation is expected to fall short for other situations where ge-
ometric information is crucial, e.g., layered materials with identical intra-layer bond topology but
different inter-layer distances.
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A APPENDIX

A.1 DATA DISTRIBUTIONS
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Figure 4: Distributions of dataset This figure shows the kernel density estimates (KDE) of each
property predicted - including largest included sphere (Di), largest free sphere (Df ), largest included
sphere along free path (Dif ), density, volume and ASA. The blue curve is obtained using the full
zeolite database (DB) with 137k entries, and the red curve the 25k entries that are used for property
predictions across all models.

We use a collection of 137,948 all-silica zeolite crystal structures, extracted from the International
Zeolite Association (IZA) database (Baerlocher et al.) and computationally generated using a sys-
tematic Monte Carlo search (Deem et al., 2009). 25,000 zeolite structures were sampled randomly
from the full zeolite dataset, and were randomly divided in an 80/10/10 split to form the train, vali-
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dation and test sets, respectively, giving the zeolite IDs for each set and avoiding data leakage from
the training sets into the validation or test sets. Crystal properties including the largest included
sphere (Di), largest free sphere (Df ), largest included sphere along free path (Dif ), unit cell volume,
density, and accessible surface area (ASA) were calculated using Zeo++ version 0.3 (Willems et al.,
2012). These properties are non-local structural features defined beyond local atomic environments
and are empirically challenging for GNN models to predict (Gong et al., 2023). For example, Di

can be as large as 10 Å, Df and Dif are defined based on the extended channels in zeolite structures
(Figure 5). Property distributions can be found in Figure 4.

A.2 TYPES OF DIAMETER IN ZEOLITES

channel Dif Df

Dipore

Figure 5: Different types of diameter in zeolites Illustration of diameters defined by the largest
free sphere (Df ), the largest included sphere along free path (Dif ), and the largest included sphere
(Di).

A.3 OTHER METRICS FOR REGRESSION RESULTS

Table 1: Comparison between GNNs (CGCNN and MEGNet), CGCNN-LQG, and XGB-LQG
across various zeolite properties. The “dummy” results are obtained from a model taking the av-
erage of the training set labels. The values reported are mean absolute errors (MAE). Di stands for
the diameter of the largest included sphere in Å, Df the diameter of the largest free sphere in Å, and
Dif the diameter of the largest included sphere along free path in Å. Values for primitive cell volume,
density, and accessible surface area (ASA) are reported in Å3/cell, g/cm3, m2/cm3, respectively.

Model Di Df Dif Volume Density ASA
Dummy 1.39 1.35 1.40 1309 0.13 206.94
CGCNN 1.17 1.16 1.08 1250 0.08 166.74
MEGNet 1.18 1.19 1.17 1236 0.07 171.18
XGB-LQG 0.88 0.81 0.88 176 0.08 97.81
CGCNN-LQG 0.93 0.93 1.04 186 0.06 79.70

A.4 MODEL HYPERPARAMETERS

Table 2 shows the hyperparameters of the XGBoost model across the different geometric proper-
ties. They were obtained by performing a Bayesian Optimization-driven search across the optimal
possible combinations of hyperparameters to minimize the negative MAE. When evaluating a set of
hyperparameters, the training set was split into 5 folds, with one left for scoring the model with that
hyperparameter set. The search space was defined as:

1. Learning rate, ranging from 0.0001 to 1.0 (step-wise being log-uniform);
2. Max depth ranging from 3 to 10 (accepting only integers);
3. Subsample ranging from 0.1 to 1.0 (uniformly increasing);
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4. Subsample ratio of columns at each level when constructing a tree, ranging from 0.1 to 1.0
(uniformly increasing);

5. Alpha (L1 regularization term), ranging from 1e-6 to 1.0 (increasing by log-uniform order)

6. Lambda (L2 regularization term), ranging from 1e-6 to 1000 (increasing by log-uniform
order)

Table 2: Optimized hyperparameter values for XGB-LQG model on 25,000 zeolites for different
geometric properties. This was achieved through a Bayesian Optimization-driven search to minimize
the negative MAE based on the parameters presented in the table.
Property colsample bytree Learning rate Max depth Alpha Lambda Subsample

Di (Å) 1.00 0.097 10 1.00 2.73 0.98
Df (Å) 0.84 0.119 10 1.00 0.0047 1.00
Dif (Å) 0.81 0.096 10 9.2× 10−5 2.02 1.00
Vcell (Å3) 0.46 0.096 10 1.0× 10−6 0.27 1.00
Density (g/cm3) 1.00 0.122 10 1.00 3.04 1.00
ASA (m2/cm3) 0.46 0.097 10 1.0× 10−6 0.27 1.00

Table 3 and Table 4 show the hyperparameters for the CGCNN and MEGNet respectively. Both
models were trained on a batch size of 64 over 100 epochs. Throughout the 100 epochs, the best
model was saved based on the iteration with the lowest average mean absolute error on the validation
set.

Some notes regarding the CGCNN:

1. Number of maximum neighbours per atom while constructing the graph is set as 12

2. Cutoff radius for searching neighbours is set as 8 Å

3. The minimum distance required for the expanded distance matrix is set as 0

Some notes regarding MEGNet:

1. The embedding layer for the node attributes had a dimension of (N, 16);

2. The cutoff radius for graph representation was arbitrarily set at 4.0 Å;

Table 3: Optimizer settings and model hyperparameters for CGCNN (batch size of 64 used).

Parameter Value

Optimizer Settings

Optimizer Adam
Learning Rate (lr) 0.01
Momentum 0.9
Weight Decay 1× 10−6

Model Hyperparameters

Atom Feature Length (atom fea len) 64
Hidden Feature Length (h fea len) 512
Number of Convolution Layers (n conv) 3
Number of Hidden Layers (n h) 1

The concatenated model (CGCNN–LQG) concatenates the embeddings of the CGCNN and a neural
network accepting LQG descriptors, giving a final embedding shape of (N, 640), where N is the

10
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Table 4: Bond expansion and MEGNet model hyperparameters.

Parameter Value

Bond Expansion Settings

RBF Type Gaussian
Initial Value 0.0
Final Value 5.0
Number of Centers 100
Width 0.5

MEGNet Model Hyperparameters

Node Embedding Dimension (dim node embedding) 16
Edge Embedding Dimension (dim edge embedding) 100
State Embedding Dimension (dim state embedding) 2
Number of Blocks (nblocks) 3
Hidden Layer Sizes (Input) (64, 32)
Hidden Layer Sizes (Conv) (64, 64, 32)
Number of Set2Set Layers (nlayers set2set) 1
Number of Set2Set Iterations (niters set2set) 2
Hidden Layer Sizes (Output) (32, 16)
Activation Function (activation type) softplus2
Gaussian Width (gauss width) 0.5

specified batch size. The hyperparameters of the LQG neural network model up until the concate-
nation step are given in Table 5. Upon getting the concatenated tensor, a sequential regression head
is used, in which it:

1. Accepts a 640 size tensor and passes it through a linear layer to shape it down to 128;
2. Performs batch normalization and then a ReLU transformation is performed;
3. Reshapes the 128 shape tensor down to 64; batch normalization and ReLU are performed

in series again;
4. The final step is a linear layer that transforms the 64 shape tensor down to a tensor contain-

ing one element (the output). Softplus is used to ensure positive values in the output.

11
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Table 5: Model architecture and hyperparameters for the neural network concatenated with a
CGCNN (with the same parameters prior to the regression head in Table 3). The learning rate
configuration was for the concatenated model - not the neural network isolated by itself.

Parameter Value

Model Architecture

Input Features 203
Number of Layers (n layers) 10
Neurons per Layer 128
Dropout Rate 0.0

Training Configuration

Optimizer Adam
Initial Learning Rate (lr) 0.001
Learning Rate Decay Cosine scheduler
Decay Steps 50
Minimum Learning Rate 0.00001
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