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Abstract— Vision-Language-Action (VLA) models have
shown great promise for generalist robotic manipulation in
the physical world. However, existing models are restricted
to robot observations and text-only instructions, lacking the
flexibility of interleaved multimodal instructions enabled by
recent advances in foundation models in the digital world. In
this paper, we present Interleave-VLA, the first framework
capable of comprehending interleaved image-text instructions
and directly generating continuous action sequences in the
physical world. It offers a flexible, model-agnostic paradigm
that extends state-of-the-art VLA models with minimal
modifications and strong zero-shot generalization. A key
challenge in realizing Interleave-VLA is the absence of
large-scale interleaved embodied datasets. To bridge this gap,
we develop an automatic pipeline that converts text-only
instructions from real-world datasets in Open X-Embodiment
into interleaved image-text instructions, resulting in the first
large-scale real-world interleaved embodied dataset with 210k
episodes. Through comprehensive evaluation on simulation
benchmarks and real-robot experiments, we demonstrate that
Interleave-VLA offers significant benefits: 1) it improves out-
of-domain generalization to unseen objects by 2-3× compared
to state-of-the-art baselines, 2) supports flexible task interfaces,
and 3) handles diverse user-provided image instructions
in a zero-shot manner, such as hand-drawn sketches. We
further analyze the factors behind Interleave-VLA’s strong
zero-shot performance, showing that the interleaved paradigm
effectively leverages heterogeneous datasets and diverse
instruction images, including those from the Internet, which
demonstrates strong potential for scaling up. More information
can be found at the link.

I. INTRODUCTION

The remarkable success of Large Language Models
(LLMs) [1], [2], [3], [4] and Vision-Language Models
(VLMs) [5], [6], [7], [8], [9] has established the paradigm
of foundation models in the digital world, which are capable
of generalizing across a wide range of tasks and domains.
Inspired by this progress, the robotic community is actively
developing robotic foundation models [10], [11], [12], [13],
[14], [15] to bring similar generalizability to unseen tasks
and scenarios into the physically embodied world. However,
despite the demonstrated effectiveness of interleaved mul-
timodal inputs in digital foundation models, most robotic
policies today still accept only observation images and text-
based instructions, falling behind VLMs that seamlessly han-
dle mixed-modality sequences and generalize across flexible
task interfaces. Relying solely on text instructions can lead
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to ambiguity or safety issues, as the robot may misinterpret
or fail to follow instructions precisely. Text-only interfaces
pose serious out-of-distribution (OOD) risks for robots: even
a single ambiguous phrase (e.g., “the blue screw on the
left”) or unfamiliar synonym can lead to critical manipulation
errors. This issue is especially severe in industrial settings,
where specialized parts are easy to photograph but difficult
to describe accurately.

The concept of interleaved instructions for robotic manip-
ulation was first explored in simulation by VIMA [16], which
introduced VIMA-Bench to study vision-language planning
for 2D object pose estimation. With a high-level 2D action
space, VIMA focuses mainly on interface unification without
exploring the broader benefits of interleaved instructions,
such as improved generalization or real-world applicability
with low-level robotic actions. As a result, the practical value
of this paradigm remains underexplored due to a lack of real-
world datasets and policies capable of handling such input,
as shown in Figure 1.

To develop a general and practical robot policy capable
of acting on interleaved image-text instructions in the real
world, a straightforward solution is to build upon VLA [11],
[12], [17], [10], [13], [18] models, which naturally extend
VLMs by incorporating action understanding and genera-
tion, making them well-suited for robotic tasks. However,
existing VLAs [10], [11], [13] are trained primarily with
text-only instructions. This limits their ability to benefit
from multimodal instruction signals, which have been shown
to enhance generalization in vision-language learning [1],
[18]. This restriction not only reduces instruction flexibility
but also prevents these models from leveraging the richer
semantics and improved grounding afforded by interleaved
multimodal signals. To address this limitation, we propose a
new paradigm called Interleave-VLA, a simple and model-
agnostic extension that enables VLA models to process and
reason over interleaved image-text instructions.

High-quality image-text interleaved datasets are crucial
for training Interleave-VLA. In order to bridge the gap
of the lack of image-text interleaved datasets in robotic
manipulation, we develop a pipeline to automatically con-
struct interleaved instructions from existing datasets. The
proposed pipeline enables automatic and accurate generation
of interleaved instructions from real-world dataset Open X-
Embodiment [12]. The resulting interleaved dataset contains
over 210k episodes and 13 million frames, making it the first
large-scale, real-world interleaved embodied dataset. This
enables training Interleave-VLA with real-world interaction
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Fig. 1: a) Our Interleaved X-Embodiment dataset features diverse, high-quality object-centric images automatically generated
from real-world robot demonstrations. b) Interleave-VLA achieves 2–3× stronger out-of-domain generalization compared to
text-only VLA models in both simulation and real-robot experiments. c) It enables flexible, zero-shot instruction following
with user-provided, web images, and hand-drawn sketches for practical and intuitive human-robot interaction.

data and diverse visual instruction types.
We demonstrate Interleave-VLA’s effectiveness by adapt-

ing two leading VLA models, OpenVLA [11] and π0 [13],
with minimal architectural changes, hence to be widely
applicable to future generations of VLAs. Experimental
results show that Interleave-VLA consistently outperforms its
text-only counterparts for both in-domain and out-of-domain
tasks. Notably, the interleaved format enables strong zero-
shot generalization to novel objects and even user-provided
sketches never seen in the training dataset, highlighting the
robustness and flexibility of our method, as in Fig. 1.

Our core contribution can be summarized as follows.

• We introduce a fully automated pipeline that con-
verts text-only instructions into image-text interleaved
instructions, creating the first large-scale, real-world
interleaved embodied dataset with 210k episodes and
13 million frames based on Open X-Embodiment.

• We propose Interleave-VLA, a simple, generalizable,
and model-agnostic adaptation that enables VLA models
to process interleaved image-text instructions with mini-
mal architectural changes. To the best of our knowledge,
it represents the first end-to-end robotic policy capable
of handling interleaved inputs, marking the first exten-
sion of this paradigm to physical VLA models.

• Through comprehensive evaluations of Interleave-VLA
on SIMPLER, VIMA-Bench, and real-robot settings, we
demonstrate consistent in-domain improvements and 2–
3× gains in out-of-domain generalization to novel
objects, along with emergent zero-shot capabilities for

interpreting diverse, user-provided visual instructions,
such as hand-drawn sketches.

II. RELATED WORK

Interleaved Vision-Language Models. In the digital
domain, recent advances in vision-language models have
evolved from handling simple image-text pairs [7], [19],
[20], [21] to processing arbitrarily interleaved sequences of
images and text [22], [5], [6], [23], [8], [24], [9], [25].
This interleaved format allows models to leverage large-
scale multimodal web corpora—such as news articles and
blogs—where images and text naturally appear in mixed
sequences. Such models have demonstrated improved flex-
ibility and generalization, enabling transfer across diverse
tasks and modalities [23]. Despite these successes in the
digital world, robotic foundation models in the physical
world have yet to fully exploit the benefits of interleaved
image-text instructions. Motivated by the progress of in-
terleaved VLMs, we extend this paradigm to the action
modality, enabling vision-language-action models to process
interleaved instructions. Our results show that multimodal
learning with interleaved inputs greatly boosts generalization
and displays emergent capabilities in robotic manipulation
tasks.

Vision Language Action Models. Vision-language-action
(VLA) models have advanced robotic manipulation by en-
abling policies conditioned on both visual observations and
language instructions [11], [12], [17], [10], [13], [18], [26],
[27]. Most prior VLA models process single [11] or multi-



ple [10], [13] observation images with text-only instructions,
with some exploring additional modalities such as 3D [28]
and audio [29]. VIMA [16] pioneers the use of interleaved
image-text prompts as a unified interface for robotic ma-
nipulation, primarily in simulation. However, its focus is
limited to interface design, without systematically exploring
the broader advantages of interleaved instructions—such as
enhanced generalization and real-world applicability. As a
result, most VLA models to date have continued to rely on
text-only instructions. In this work, we make the first step
to bridge this gap by proposing Interleave-VLA: a simple,
model-agnostic paradigm that extends existing VLA models
to support interleaved image-text instructions with minimal
modifications. Our comprehensive experiments demonstrate
that interleaved instructions substantially improve generaliza-
tion to unseen objects and environments, and unlock strong
zero-shot capabilities for diverse user-provided inputs. This
highlights the practical value and scalability of interleaved
image-text instructions for real-world robotic manipulation.

III. INTERLEAVE-VLA AND OPEN INTERLEAVED
X-EMBODIMENT DATASET

A. Problem Formulation

Digital foundation models [22], [30] can process mul-
timodal prompts with arbitrarily interleaved images, video
frames, and text as input, producing text as output. For
robotic foundation models, this paradigm extends naturally:
the model receives a multimodal prompt and outputs an
action in the robot’s action space. For example:
Regular: <obs> Place [the blue spoon near
microwave] into [silver pot on towel].

Interleaved: <obs> Place [image1 ] into
[image2 ].

where <obs> is the observation image(s), and
[image1 ] and [image2 ] are images representing
the target object and the destination, respectively.

B. Interleave-VLA

Our Interleave-VLA framework models the action distribu-
tion P(At |ot) based on the observation ot = (It ,I ,q). Here,
It is the observation image(s), q is the robot’s proprioceptive
state, and I is an image-text interleaved instruction. The
instruction I is a sequence mixing text segments li and
images Ii, i.e., I = (l1,I1, l2,I2, . . .). Existing VLA using
text instruction is a special case where I = (l) just contains
a single text segment.

Interleave-VLA is a straightforward yet effective adapta-
tion of existing VLA models. It modifies the input format to
accept interleaved image and text tokens, without changing
the core model architecture. We demonstrate this approach by
adapting two state-of-the-art Vision-Language-Action (VLA)
models. For OpenVLA [11], we replace the original Pris-
matic [31] VLM backbone with InternVL2.5 [24], which
natively supports image-text interleaved inputs. For π0 [13],
we retain the original architecture and only adjust the input
pipeline to handle interleaved tokens. Notably, even though
the underlying Paligemma [32] VLM is not trained on

interleaved data, Interleave-π0 can still be trained to effec-
tively process interleaved instructions. This model-agnostic
adaptation requires minimal changes in architecture and sig-
nificantly enhances the zero-shot generalization capabilities
of base models, as shown in our experiments.

C. Construction of Open Interleaved X-Embodiment Dataset

A large-scale pretraining dataset is essential for Vision-
Language-Action (VLA) Models to learn actions and gen-
eralize, as reported in OpenVLA [11] and π0 [13], this is
also the case with Interleave-VLA. However, most current
real-world datasets provide only text-based instructions and
thus do not support training interleave-VLA models directly.
We consequently design a unified pipeline to automatically
relabel and generate interleaved data across diverse datasets.

Our overall dataset generation pipeline consists of three
main steps: instruction parsing, open-vocabulary detection,
and data quality verification, as illustrated in Figure 2. First,
for instruction parsing, we use Qwen2.5 [33] to extract key
objects from language instructions. Compared to rule-based
NLP tools like SPaCy [34], LLM prompting is more robust
and adaptable to diverse instruction formats. It also enables
concise summarization of complex or lengthy instructions,
as in datasets such as [35]. Second, for open-vocabulary de-
tection, we use the state-of-the-art open-vocabulary detector
OWLv2 [36] to locate and crop target objects from trajectory
frames based on the parsed instruction keywords, achieving
over 99% accuracy in most cases. Finally, we introduce
data quality verification for harder cases where OWLv2 fails:
Qwen2.5-VL [5] verifies the detected objects, and if needed,
provides keypoints for more precise segmentation using
Segment Anything [37]. This combined approach boosts
cropping accuracy for challenging objects (e.g., eggplant)
from less than 50% to 95%, ensuring high-quality interleaved
data for downstream tasks.

We apply the dataset generation pipeline to 11 datasets
from Open X-Embodiment [12]: RT-1 [17], Berkeley Autolab
UR5 [38], IAMLab CMU Pickup Insert [39], Stanford Hy-
dra [40], UTAustin Sirius [41], Bridge [42], Jaco Play [43],
UCSD Kitchen [44], BC-Z [45], Langugae Table [46], and
UTAustin Mutex [35] to form the first large-scale interleaved
cross-embodiment dataset in real world. The curated dataset
contains 210k episodes and 13 million frames, covering
3,500 unique objects and a wide range of task types.

IV. EXPERIMENTS

In the experiments, we aim to discuss the following
questions: (1) How is the in-domain and out-of-domain per-
formance of Interleave-VLA compared to vanilla VLA? How
well does it generalize to unseen objects and environments?
(2) What additional emergent generalization capabilities do
Interleave-VLA demonstrate? (3) Does Interleave-VLA have
the potential for scaling?

A. Experiment Setup and Tasks

Environments. We conduct comprehensive experiments
of interleave VLAs against their text-only counterparts in
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Fig. 3: Illustration of generalization settings in SIMPLER. (a)
Visual generalization: unseen environments, tablecloths, and
lighting conditions. (b) Semantic generalization with novel
objects from known categories. (c) Semantic generalization
with objects from entirely new categories not seen during
training.

both simulator-based evaluation and real robot evaluation.
We use SIMPLER [47] and VIMA-Bench [16] as our simu-
lation environments. SIMPLER is designed to closely match
real-world tasks and bridge the real-to-sim gap. We adapted
SIMPLER to support interleaved image-text instructions,
allowing us to evaluate the performance of Interleave-VLA
models in a realistic setting. The interleaved instruction is
generated automatically by our pipeline in Section III-C.
VIMA-Bench is designed to experiment with interleaved
instruction following abilities that natively focus on eval-
uation of planner-based tasks, where models are evaluated
on object recognition and multi-task understanding. We
also conduct real robot experiments on FANUC LRMate
200iD/7L robotic arm outfitted with an SMC gripper.

Tasks. For SIMPLER, we evaluate on the Visual Match-
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Fig. 4: Real-world generalization experiments. In-Domain
and Out-of-Domain settings in the real world on a FANUC
LRMate 200iD/7L robotic arm.

ing setup on the WidowX robot. This setup is designed to
test the model’s in-domain capability by closely matching
the real-world training and simulated evaluation distributions.
To comprehensively evaluate generalization, we design two
main categories of tasks following [48]: visual general-
ization and semantic generalization. Visual generalization
assesses robustness to novel tablecloth, lighting, and en-
vironments. Semantic generalization assesses the model’s
ability to correctly identify and manipulate target objects
in the presence of diverse distractors. This evaluation is
further divided into two categories: (1) novel objects from
previously seen categories, and (2) objects from entirely
new, unseen categories. See Figure 3 for an overview. For
VIMA-Bench, in addition to the original tasks, we introduce
three new tasks to demonstrate that the Interleave model
can effectively interpret sketch-based instructions—a user-
friendly approach for human-robot interaction [49]. For real
robot experiments, we evaluate two different manipulation
tasks: (1) “Pick up pepper/corn/cup” with generalization to
“bean/lemon/cup”, and (2) “Put pasta server/spoon/knife into
pot” with generalization to “spatula/black spatula”. Refer to
Figure 4 for the experimental setup.



B. Simulation Performance

For SIMPLER, we adapt the state-of-the-art VLA model
π0 into Interleave-VLA to support interleaved instructions.
Interleave-VLA and other baselines are trained on the full
Bridge Data V2 [42] for fair comparison, with Interleave-
VLA using the interleaved version. Our results demonstrate
that interleaved instructions not only enhance performance on
standard in-domain tasks, but more importantly, enable 2-3×
stronger generalization to semantically out-of-domain tasks.
To explore the benefits of interleaved cross-embodiment
dataset, we present a co-trained version of Interleave-VLA
using our Open Interleaved X-Embodiment Dataset. Al-
though Bridge Dataset V2 is already large and diverse, mak-
ing significant improvements challenging, additional gains
are observed in semantic generalization, confirming that
cross-embodiment skill transfer emerges with interleaved
training. Detailed results are provided in Table I.

In VIMA-Bench, we adapt another SOTA VLA model
OpenVLA into Interleave-VLA to support interleaved in-
structions, demonstrating the broad applicability of our ap-
proach. We benchmark Interleave-VLA against end-to-end
VLA models (Gato, Flamingo, GPT) adapted for interleaved
instruction inputs. Our results show that Interleave-VLA
consistently outperforms the original OpenVLA across all
levels of generalization, achieving over 2× higher perfor-
mance on average. Beyond the standard VIMA-Bench tasks,
we introduce three new tasks utilizing sketches for both
training and evaluation, further highlighting the flexibility of
Interleave-VLA in handling diverse instruction modalities.
Note that VIMA is not included in comparison, as it relies
on a separately trained detector to provide bounding boxes,
which are unavailable to end-to-end VLA models.

C. Real robot Performance

For real robot experiments, we evaluate two object sets,
collecting 20 teleoperated demonstrations per object using a
space mouse. As shown in Table II, our adapted Interleave-
VLA from π0 achieves 2-3× higher out-of-domain perfor-
mance compared to the text-only π0. Unlike the SIMPLER
experiments, where training on large-scale Bridge Data
V2 enables strong performance out-of-the-box, the FANUC
robot experiments are limited to a much smaller dataset.
In this low-data regime, directly training π0 yields poor
results. However, pretraining on our Open Interleaved X-
Embodiment Dataset enables strong cross-embodiment trans-
fer, significantly boosting performance. This emergent trans-
fer ability with interleaved image-text instructions is consis-
tent with previous findings for text-only instructions [12].
Such strong cross-embodiment transfer is important, as it
reduces the need for costly and time-consuming large-scale
demonstration collection.

D. Analysis of Interleave-VLA’s Generalization and Emer-
gent Capabilities

1) Task Flexibility and Emergent Generalization of
Interleave-VLA: In diverse manipulation tasks, interleaved

format introduced by VIMA [16] offers a unified sequence-
based interface. As shown in Figure 5, our Interleave-VLA
effectively handles VIMA-Bench tasks including goal image
matching and multi-step instruction following (e.g., Task 4
and Task 11), where multiple goal images must be processed
in order. These results confirm the flexibility and effective-
ness of image-text interleaved instructions for general robotic
manipulation.

Next, we evaluate the generalization capabilities of the
interleaved format in real-world scenarios, moving beyond
the clean simulation environment and high-level SE(2) action
space of VIMA-Bench to SIMPLER and real-robot exper-
iments. Our results (Table I and II) consistently show that
Interleave-VLA delivers substantially stronger generalization
than text-only baselines in diverse tasks, especially in chal-
lenging out-of-domain scenarios with unseen objects and
distractors.

Notably, Interleave-VLA exhibits a remarkable emergent
capability: it enables users to flexibly specify instructions
in a completely zero-shot manner, without requiring any
additional finetuning on unseen input modalities. Table III
demonstrates the examples of image instruction types and
their corresponding high performance. Instructions can be
in diverse formats, including: (1) Cropped Image Instruc-
tions: Users can directly crop a region from the screen to
indicate the target object. (2) Internet Image Instructions:
Users may supply any image—such as a photo retrieved
from the Internet—to represent the desired object. (3) Hand-
Drawn Sketch Instructions: Users can draw sketches or
cartoons about the objects.

The interleaved instruction format naturally accommodates
these diverse inputs, thereby enhancing the intuitiveness of
human-robot interaction and removing the need to explicitly
name, categorize or describe objects with precise texts.
The strong performance gains in both in-domain and out-
of-domain tasks underscore the importance of interleaved
image-text instructions for building more adaptable and
practical robotic systems.

2) Interleave-VLA Training: Importance of Interleave Di-
versity: Interleave-VLA achieves stronger generalization
than standard VLA models thanks to multimodal learning
from image-text interleaved format. This is directly reflected
by our experimental results in both simulation (Section IV-B)
and real world (Section IV-C). We identify two key factors
driving this zero-shot generalization: (1) training dataset
scale and diversity (2) prompt image diversity.

Our experiments demonstrate that both the scale and diver-
sity of the training dataset are critical for strong Interleave-
VLA performance, particularly in out-of-domain general-
ization. When the in-domain dataset is limited (e.g., real-
robot experiments; see Table II), pretraining on a large-scale
dataset is essential—models without such pretraining exhibit
significantly worse performance. When the in-domain dataset
is large and diverse (e.g., SIMPLER; see Table I) where
further improvement is expected to be more challenging,
incorporating cross-embodiment data can still further im-
prove semantic generalization and enhance out-of-domain



TABLE I: Benchmark results on SimplerEnv. Tasks T1–T4 are In-Domain Visual Matching setup. We add 3 Out-of-
Domain evaluation suites, namely: Visual, Semantic L1, and Semantic L2 corresponding to (a), (b), and (c) respectively in
Figure 3. Interleave-VLA performs better than its text counterpart by over 2.5x in Out-of-Domain tasks. Co-training with
other datasets in our Open Interleaved X-Embodiment Dataset further boosts performance in semantic generalization tasks.
We use bold and underline to represent the 1st and 2nd highest numbers.

Model Name In Domain Out-of-Domain

T1: Carrot T2: Eggplant T3: Spoon T4: Stack Visual Semantic L1 Semantic L2 AVG

RT-1-X [12] 4.2 0.0 0.0 0.0 0.0 4.0 6.1 3.4
Octo [50] 12.5 41.7 15.8 0.0 12.6 10.8 8.4 10.6
π0 [51] 52.5 87.9 83.8 52.5 71.4 26.7 21.0 39.7
Interleave-VLA 57.5 94.2 80.8 51.6 73.4 63.7 53.0 63.4
Interleave-VLA co-trained 57.1 95.8 80.5 42.1 71.5 70.7 57.3 66.5
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Fig. 5: VIMA-Bench results across three levels of task generalization: L1 (placement), L2 (combinatorial), and L3 (novel
object). Interleave-VLA consistently outperforms OpenVLA at all levels, demonstrating stronger generalization. We also
introduce sketch-based tasks to highlight the flexibility of image-text interleaved instructions.

TABLE II: Comparison of success rates (Succ) and correct object picking rates (Acc) in real-robot experiments. Interleave-
VLA adapted from π0 achieves 2-3× higher out-of-domain performance compared to π0. “PT” indicates pretraining on
our interleaved dataset built in Section III-C. Notably, although the pretraining dataset does not include FANUC robot arm
data, it still enables strong cross-embodiment transfer to FANUC.

Model Name
In-Domain Out-of-Domain

pepper corn cup bean lemon spoon
Succ. Acc. Succ. Acc. Succ. Acc. Succ. Acc. Succ. Acc. Succ. Acc.

Interleave-VLA w/o PT 17 33 0 33 0 33 0 40 0 33 0 17
π0 w/ PT 58 83 33 100 25 100 8 8 17 42 75 92
Interleave-VLA w/ PT 58 100 75 100 67 100 75 100 67 100 75 92

Model Name pasta server spoon knife spatula black spatula

Succ. Acc. Succ. Acc. Succ. Acc. Succ. Acc. Succ. Acc.
Interleave-VLA w/o PT 33 67 8 58 17 58 0 67 0 50
π0 w/ PT 58 83 58 75 33 58 8 8 33 42
Interleave-VLA w/ PT 50 67 58 83 33 58 25 100 50 67

robustness. It suggests that cross-embodiment co-training
benefits Interleave-VLA, aligning with results from Open X-
Embodiment. Overall, our findings highlight the critical role
of our large-scale Open Interleaved X-Embodiment Dataset
in enabling robust and generalizable Interleave-VLA models
across varying scale in-domain data regimes.

For prompt image diversity, Table IV demonstrates that

combining Internet images with task-specific images cropped
from robot observations yields the best overall performance.
Using only Internet images leads to lower in-domain ac-
curacy due to limited task relevance, while relying solely
on cropped images improves in-domain results but lacks
diversity. Mixing both sources provides complementary ad-
vantages, resulting in enhanced accuracy and stronger gen-



TABLE III: Interleave-VLA unlocks powerful zero-shot generalization to diverse instruction modalities, including hand-
drawn sketches, user-cropped images, and Internet photos, without ever seeing them in training dataset. The consistently
high accuracy demonstrates that Interleave-VLA can robustly interpret and execute visually grounded instructions, showing
strong potential for flexible and practical human-robot interaction.

Task Prompt A A Succ. (%) A Acc. (%) Prompt B B Succ. (%) B Acc. (%)

58.3 90.0 48.8 86.0
75.8 100 58.8 100
71.7 100 80.8 100
70.0 96.0 73.3 100
69.6 100 76.3 100
75.5 100 71.7 100

TABLE IV: Ablation study on prompt image diversity for
Interleave-VLA on SIMPLER. “In-Domain” reports the av-
erage performance on SIMPLER Visual Matching; “Out-of-
Domain” averages results on one unseen instruction from
Table III and one unseen object from Figure 3. Combining
both task-specific and Internet images as prompts achieves
the best overall performance.

Prompt Type In-Domain Out-of-Domain

Internet Only 59.2 69.1
Task-specific Only 67.5 67.1
Mixed 71.0 71.7

eralization.
V. CONCLUSION

We present Interleave-VLA, a simple and effective
paradigm for adapting existing VLA models to handle image-
text interleaved instructions. To overcome the lack of real-
world interleaved datasets, we develop an automatic pipeline
that generates a large-scale dataset with 210k episodes and
13 million frames from Open X-Embodiment. With mini-
mal modifications to current VLA models, Interleave-VLA
achieves 2–3x improvement in generalization across both
simulation and real-world experiments, substantially reduc-
ing the OOD safety risks of purely textual commands. Fur-
thermore, our approach demonstrates strong emergent zero-
shot generalization to diverse user instructions never seen
during training—including hand-drawn sketches, cropped
images, and Internet photos—making it both practical and
flexible for real-world robotic applications.

Limitations. While Interleave-VLA achieves strong gen-
eralization, training with interleaved inputs is more compu-
tationally demanding due to the increased length of image
tokens and often requires more training steps to converge.
Future work could focus on compressing image tokens
to improve efficiency. Additionally, building a true robotic
foundation model may require supporting interleaved outputs
as well as inputs. Recent studies [14], [52] indicate that
generating text or future images alongside actions can further
enhance VLA performance. Therefore, developing unified
VLA models with interleaved input and output is a promising
direction.
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APPENDIX

A. Interleave-VLA Implementation Details

We extend two state-of-the-art VLA models, π0 [13] and
OpenVLA [11], to develop Interleave-VLA. While VLA
models encompass a wide range of architectures [14], [18],
[53], [54], [55], [17], [10], [50], [15], we focus on those
based on VLM backbones due to their inherent ability to
process image-text pairs. However, our approach is not re-
stricted to VLM-based methods and can be extended to other
sequence modeling approaches for action prediction [15],
[50], [54], [17]. The key modification involves interleav-
ing image and text embeddings within the input sequence.
Investigating the feasibility of this modification for other
sequence modeling VLAs is an exciting direction for future
research. In this work, we focus on and provide adaptations
of Interleave-VLA from π0 and OpenVLA in the following
sections in more detail.

1) Interleave-VLA from π0: We make minimal architec-
tural changes to the π0 [13] model: only the input processor.
Specifically, to enable interleaved image-text instructions, we
extend its tokenizer vocabulary by introducing special tokens
<BOI> (beginning of image) and <EOI> (end of image).
These newly added tokens are used to delineate image
embeddings within the instruction sequence. Specifically, the
input tokens are constructed as follows:
<BOI> <image>1 ...<image>256 <EOI> <text> <BOI>
<image>257 ...<image>512 <EOI> <text> <BOI>
<image>513 ...<image>768 <EOI> <text> ...

Here, each <image> token represents a patch embedding
from the visual encoder, and the <BOI> and <EOI> tokens
mark the boundaries of each interleaved image segment.
This design allows the model to flexibly process multimodal
instructions by alternating between image and text tokens
within a unified sequence.

Our Interleave-VLA approach is both effective and model-
agnostic, requiring only minimal modifications. Its effec-
tiveness is evidenced by substantial improvements in gen-
eralization performance over π0, achieving 2–3× gains as
shown in Table I and Table II. Interleave-VLA is model-
agnostic, seamlessly integrating into existing VLA models
without requiring assumptions about the VLM. In Interleave-
VLA based on π0, the VLM backbone Paligemma [32]
demonstrates compatibility despite not being pre-trained on
Internet-scale interleaved image-text data. Moreover, our ap-
proach introduces only minimal modifications, with no archi-
tectural changes needed for the underlying VLM backbone.
These facts highlight the practicality and broad applicability
of Interleave-VLA for advancing multimodal robot learning.

2) Interleave-VLA from OpenVLA: While architectural
changes are not required to the VLM backbone—as demon-
strated in our adaptation from π0—we further investigate
whether modifying the backbone architecture affects its
effectiveness. Specifically, we replace OpenVLA’s original
Prismatic VLM [31] backbone with InternVL2.5 [24], which
inherently supports the interleaved image-text format. As
shown in Figure 5, our Interleave-VLA adaptation based

on OpenVLA continues to function effectively, achieving
more than double the performance of the original OpenVLA.
This result further highlights the model-agnostic nature of
Interleave-VLA and its compatibility with diverse VLA
architectures.

B. Evaluation Details

1) Evaluation on SIMPLER:
a) SIMPLER Evaluation Tasks: Our evaluation on

SIMPLER [47] includes both In-Domain and Out-of-Domain
tasks. The In-Domain tasks follow the original SIMPLER
WidowX BridgeData V2 Visual Matching setup. Since SIM-
PLER tasks use text-based instructions, we adapt them
into interleaved image-text instructions using the method
described in Section III-C, based on the first frame of the
rollout before the robot arm begins moving.

In the WidowX BridgeData V2 setup, SIMPLER does not
support generalization tasks (referred to as the Variant Ag-
gregation setup). To overcome this limitation, we introduce
a set of challenging Out-of-Domain tasks inspired by the
Open Vocabulary manipulation evaluations [48]. Unlike prior
methods that rely on separate VLMs to detect target objects
in the scene and inject this information into the robot policy,
our Interleave-VLA directly leverages interleaved image-text
instruction to perform these tasks without requiring addi-
tional modules. These tasks are deliberately designed to be
more challenging than the original SIMPLER tasks, requiring
the robot to generalize to novel objects and environments
unseen during training on BridgeData V2 [42].

We describe the 13 tasks (4 In-Domain and 9 Out-of-
Domain, as illustrated on the left of Figure 4) used in
the SIMPLER evaluation. The Out-of-Domain tasks are
introduced in the order they appear from top left to bottom
right, in Figure 4.

1) widowx spoon on towel (In-Domain): This task is part
of the original SIMPLER Visual Matching setting and
is included in the BridgeData V2.

2) widowx carrot on plate (In-Domain): Also from
the original SIMPLER Visual Matching setting, this
scenario is present in the training data.

3) widowx stack cube (In-Domain): This stacking task
is included in the original SIMPLER Visual Matching
setting and present in the training data.

4) widowx put eggplant in basket (In-Domain): This
task is part of the original SIMPLER Visual Matching
setting and is present in the training data.

5) widowx spoon on towel, unseen environment (Out-
of-Domain, Visual Generalization): The environment
overlay is sourced from the RT-1 Dataset [17] and is
not seen during Bridge V2 training. The robot must
generalize to a novel environment.

6) widowx spoon on towel, unseen tablecloth (Out-of-
Domain, Visual Generalization): The tablecloth overlay
is a random image from the internet, unseen in Bridge
V2 training data, requiring the robot to generalize to
new visual backgrounds.
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Fig. 6: Comparison of Interleave-VLA and Vanilla VLA architectures. Interleave-VLA is model-agnostic and requires minimal
modifications to existing VLA architectures. The only change is the input format, which allows for interleaved image-text
instructions.

7) widowx spoon on towel, unseen lighting (Out-of-
Domain, Visual Generalization): The scene lighting
changes dynamically with different colors (RGB) at
5Hz. The robot must generalize to novel and rapidly
changing lighting conditions.

8) widowx redbull on plate (Out-of-Domain, Semantic
Generalization): This is an unseen object from a known
category. While similar cans (e.g., tomato can) appear
in training, the Redbull can is new. The robot must
use language grounding to identify and manipulate
the correct object among distractors (e.g., a Coca-Cola
can).

9) widowx tennis ball in basket (Out-of-Domain, Se-
mantic Generalization): This is an unseen object from
a known category. While similar balls (e.g., white ball,
blue ball) appear in training, the tennis ball is new.
The robot must use language grounding to select and
manipulate the correct object among distractors (an
orange and a ping pong ball).

10) widowx zucchini on plate (Out-of-Domain, Semantic
Generalization): This task involves an unseen object
from a known category. While a similar zucchini
appears only once among 40,000 training episodes,
this specific zucchini is entirely novel. The robot must
leverage language grounding to accurately identify and
manipulate the correct object, distinguishing it from
distractors such as a carrot.

11) widowx toy dinosaur on towel (Out-of-Domain, Se-
mantic Generalization): This is a completely unseen
category. The robot must use language grounding to
identify and manipulate the correct object among dis-
tractors (a toy elephant).

12) widowx tape measure in basket (Out-of-Domain,
Semantic Generalization): This is a completely unseen
category. The robot must use language grounding to
identify and manipulate the correct object among dis-
tractors (a purple eggplant).

13) widowx stapler on paper pile (Out-of-Domain, Se-
mantic Generalization): This task involves a com-
pletely unseen category for both the object and the
destination. The robot must leverage language ground-
ing to accurately identify and manipulate the correct
object (a stapler) among distractors (e.g., a spatula) and

place it onto the unseen destination, the paper pile.
b) SIMPLER Baselines: Our experiment in Table I

compares Interleave-VLA (adapted from π0) with π0 [13],
RT-1-X [17], and Octo-Base [50]. RT-1-X and Octo models
are evaluated using their official checkpoints and code,
following the evaluation protocol in the SIMPLER [47]
repository. For π0, we use the reimplementation from the
GitHub repository [51], which is specifically trained on
BridgeData V2 [42] and supports direct evaluation on SIM-
PLER. Interleave-VLA is built upon this reimplemented π0
codebase, with modifications to the input tokens and training
on the interleaved BridgeData V2, using the interleaved
dataset construction pipeline described in Section III-C. To
further highlight the benefits of large-scale, diverse, cross-
embodiment data, we also co-train Interleave-VLA with our
curated Open Interleaved X-Embodiment Dataset, as detailed
in Section III-C.

Both Interleave-VLA (including the co-trained variant)
and π0 models were trained with a learning rate of 5e-5,
a global batch size of 1024, for approximately 30 epochs.
The model input consists of a single observation image
(no history), interleaved image-text instruction tokens, one
proprioceptive token (no history), and four action tokens.
Training takes roughly 2 days on 4×H100 GPUs with a per
device batch size of 16. Actions and proprioception across
the diverse datasets are normalized to the 7D format: xyz
position, Euler orientation, and gripper state, with all values
scaled to the range [−1,1].

The results presented in Table I reflect the best perfor-
mance across checkpoints. Notably, performance can vary
significantly between checkpoints, even among those that
appear mostly converged. This variability is particularly
pronounced for challenging tasks requiring precise manipula-
tion, such as ”widowx stack cube”. These observations align
with findings reported in the π0 reimplementation GitHub
repository [51].

c) SIMPLER Evaluation Results: Table V provides
detailed generalization results for the top-performing models:
π0, Interleave-VLA (adapted from π0), and Interleave-VLA
co-trained, as reported in Table I. Interleave-VLA consis-
tently surpasses π0 across all Out-of-Domain generalization
tasks, demonstrating the effectiveness of multimodal learning
from interleaved image-text data for both visual and se-



mantic generalization. The co-trained Interleave-VLA model
achieves further improvements, especially on semantic gen-
eralization tasks such as “RedBull on Plate,” where similar
RedBull cans are present in the RT-1 dataset for the Google
robot. This highlights positive cross-embodiment task trans-
fer to the WidowX robot. Overall, these results show that
training with large-scale, diverse robot data enhances model
generalization to novel tasks and robot embodiments, sup-
porting our approach of curating the Open Interleaved X-
Embodiment Dataset.

Note that the Unseen Environment setting is omitted for
the Interleave-VLA co-trained model because the scene over-
lay is sourced from the RT-1 Google Robot dataset, which
is included in the co-train data. As a result, the model tends
to generate actions intended for the Google Robot. During
evaluation, however, the robot used is WidowX, leading to a
mismatch in embodiment and causing the model to produce
incorrect actions.

2) Evaluation on VIMA-Bench:
a) VIMA-Bench Evaluation Tasks: We evaluate perfor-

mance on the majority of VIMA-Bench tasks, but excluding
those requiring historical memory. Memory-dependent tasks
are omitted because Interleave-VLA, like common VLA
models [11], [12], [17], [10], [13], [18], [26], [27], is de-
signed for memory-independent, first-order Markov settings.
In general, common VLA models characterize the condi-
tional distribution p(At |ot), where At = [at ,at+1, . . . ,at+H−1]
represents a sequence of future actions, and ot denotes the
current observation (comprising multiple RGB images, a
language command, and the robot’s proprioceptive state).
Extending VLAs to handle historical memory in interleaved
instruction scenarios remains an interesting direction for
future work.

VIMA-Bench employs interleaved image-text instructions
for task specification. To evaluate text-instructed VLA mod-
els, we transform these interleaved instructions into text-
only instructions by utilizing the shape and texture names
provided in the VIMA-Bench codebase. For example:
VIMA-Bench Instruction: Put the into the

.
Transformed Instruction: Put the rainbow
triangle into the blue square.

b) VIMA-Bench Baselines: We evaluate Interleave-
VLA (adapted from OpenVLA) against several baselines:
OpenVLA [11], VIMA-Gato [16], VIMA-Flamingo [16], and
VIMA-GPT [16]. All models are trained on the same dataset
generated using an oracle model, which has access to the
exact 2D poses of all objects in the scene. This dataset
generation process is provided by VIMA. For OpenVLA,
the training data consists of text-instructed samples. Both
Interleave-VLA and OpenVLA are trained on an equivalent
amount of the generated VIMA dataset using the following
training hyperparameters: a constant learning rate of 2e-5 and
a global batch size of 128. This comparison demonstrates the
effectiveness of Interleave-VLA in improving generalization
performance over existing VLA models. The results for
VIMA-Gato, VIMA-Flamingo, and VIMA-GPT are taken

from the original VIMA paper [16] and serve as additional
benchmarks. These models, adapted by the VIMA team,
serve as benchmarks to assess the progression of VLA
models from earlier architectures like Gato, Flamingo, and
GPT to the more advanced OpenVLA.

c) VIMA-Bench Evaluation Results: The detailed re-
sults for the memory-independent VIMA-Bench tasks
are presented in Table VI. The results demonstrate
that Interleave-VLA benefits significantly from interleaved
image-text instructions, which enhance its ability to identify
and manipulate the correct object by 2×. This approach
proves more effective than relying solely on text descriptions
to distinguish objects with the desired texture and shape
among distractors.

3) Evaluation on real robot:
a) Real robot Evaluation Tasks: We evaluate on two

distinct manipulation tasks: Lift and Pick&Place, corre-
sponding to the first and second rows of results shown in
Table II. Visual illustrations of these tasks are shown on
the right side of Figure 4. The tasks are designed to be
challenging, requiring the robot to generalize to novel objects
not seen during training. We describe these tasks in more
detail.

The Lift task includes:

1) Lift pepper (In-Domain): 20 demonstrations collected
with varied object arrangements and positions.

2) Lift cup (In-Domain): 20 demonstrations collected
with varied object arrangements and positions.

3) Lift corn (In-Domain): 20 demonstrations collected
with varied object arrangements and positions.

4) Lift lemon (Out-of-Domain, Semantic Generaliza-
tion): The target is an unseen object, as lemons are
not included in the collected demonstrations. Although
the lemon category appears in the pretraining data, it
appears with different textures, robots, and environ-
ments. VLA models must utilize language grounding
to accurately identify and lift the target lemon among
two distractor items.

5) Lift bean (Out-of-Domain, Semantic Generalization):
The target belongs to a completely unseen category, as
beans are absent from both the collected demonstra-
tions and the pretraining dataset. VLA models must
rely on language grounding to correctly identify and
lift the target bean among two distractor items.

6) Lift spoon (Out-of-Domain, Semantic Generalization):
The target is an unseen object from a known category,
as the demonstrations do not include this specific
spoon. While the spoon category appears in the pre-
training data, it is represented with different textures,
robots, and environments. VLA models must leverage
language grounding to accurately identify and lift the
target spoon among two distractor items.

The Pick&Place task includes:

1) Pick up kitchen cutter and place into the pot
(In-Domain): 20 demonstrations collected with varied
object arrangements and positions.



TABLE V: Detailed evaluation results on 9 Out-of-Domain generalization tasks based on SIMPLER. Success rates (%) are
reported for π0, Interleave-VLA (adapted from π0), and Interleave-VLA co-trained with our Open Interleaved X-Embodiment
Dataset, covering both visual and semantic generalization. Generalization results confirm that Interleave-VLA outperforms
π0 across all tasks, with further cross-embodiment improvements from co-training.

Visual Generalization Semantic Generalization

Model Unseen
Tablecloth

Unseen
Environment

Unseen
Lighting

Redbull
on Plate

Tennis Ball
in Basket

Zucchini
on Plate

Toy Dinosaur
on Towel

Tape Measure
in Basket

Stapler on
Paper Pile Average

π0 78.0 77.0 59.2 0.0 30.0 50.0 24.0 1.0 38.0 39.7
Interleave-VLA 80.0 79.0 61.3 35.0 73.0 83.0 39.0 53.0 70.0 63.4
Interleave-VLA co-trained 74.6 – 63.3 82.5 48.0 82.1 38.3 64.0 70.0 66.5

TABLE VI: Detailed VIMA-Bench results for L1, L2, and L3 level generalization evaluations. Interleave-VLA generally
outperforms other VLA models and improves the generalization capacity of OpenVLA [11] by over 2×.

VIMA-Bench L1
Model Name task1 task2 task3 task4 task7 task11 task15 AVG

OpenVLA [11] 83 70 78 4 92 0 49 53.71
Interleave-VLA 87 82 81 54 82 100 96 83.14

VIMA-Gato 79 68 91 57 74 61 83 73.29
VIMA-Flamingo 56 58 63 48 62 66 40 56.14
VIMA-GPT 62 57 41 55 54 77 41 55.29

VIMA-Bench L2

OpenVLA [11] 18 20 68 2 31 0 22 23.00
Interleave-VLA 36 32 75 44 26 100 94 58.14

VIMA-Gato 56.5 53.5 88 55.5 53 63 81.5 64.43
VIMA-Flamingo 51 52.5 61.5 49.5 55.5 82 42 56.29
VIMA-GPT 52 52 49.5 54.5 51 76.5 43 54.07

VIMA-Bench L3

OpenVLA [11] 27 36 61 3 26 0 14 23.86
Interleave-VLA 52 55 81 53 46 98 63 64.00

VIMA-Gato [16] 51 58 84.5 56.5 49 65 52 59.43
VIMA-Flamingo [16] 49 50 66.5 47 50 66 30.5 51.29
VIMA-GPT [16] 52 51 55 49.5 50.5 82 37 53.86

2) Pick up ladle and place into the pot (In-Domain):
20 demonstrations collected with varied object arrange-
ments and positions.

3) Pick up pasta server and place into the pot (In-
Domain): 20 demonstrations collected with varied ob-
ject arrangements and positions.

4) Pick up the white and blue spatula and place it into
the pot (Out-of-Domain, Semantic Generalization):
The target is an unseen object from a known category.
The demonstrations do not include any spatula. While
the spatula category appears in the pretraining data, it
is shown with different textures, robots, and environ-
ments. VLA models must utilize language grounding
to accurately identify and manipulate the target spatula
among two distractor kitchenware items.

5) Pick up the black and white spatula and place it into
the pot (Out-of-Domain, Semantic Generalization):
Similar to the previous task, but the target spatula is
black and white. The robot must leverage language
grounding to correctly identify and manipulate the
target spatula among two distractor kitchenware items.

b) Real robot Baselines: We compare Interleave-VLA
(adapted from π0) with pretraining against the following
baselines: π0 with pretraining and Interleave-VLA without

pretraining. The pretraining dataset is a subset of our curated
Open Interleaved X-Embodiment Dataset, as described in
Section III-C. Interleave-VLA w/ PT is pretrained on this
dataset and subsequently fine-tuned on the collected demon-
strations from the FANUC robot arm before evaluation. For
π0 w/ PT, the same pretraining and fine-tuning protocol is ap-
plied, except the dataset is not interleaved. This setup allows
for a direct comparison to evaluate the benefits of interleaved
image-text instructions for generalization. The Interleave-
VLA w/o PT is trained exclusively on the collected FANUC
demonstrations, without exposure to the Open Interleaved
X-Embodiment Dataset, enabling us to assess the impact of
large-scale, diverse pretraining on performance. All models
are fine-tuned with a learning rate of 5e-5, a global batch size
of 128, and evaluated across several checkpoints to mitigate
the performance variability noted in Appendix B.1.b.

c) Real robot Evaluation Results: Tables VII and
VIII present the detailed evaluation results for the Lift
and Pick&Place tasks, respectively. Interleave-VLA, adapted
from π0, is compared against π0 and Interleave-VLA without
pretraining (w/o PT). In generalization tasks, Interleave-
VLA consistently outperforms π0 in semantic generaliza-
tion by 2×, highlighting the effectiveness of multimodal
learning from interleaved image-text data. The results fur-



ther demonstrate that pretraining on the Open Interleaved
X-Embodiment Dataset significantly enhances performance
across all tasks. For small-scale datasets (60 demonstrations
in total per task), pretraining on the Open Interleaved X-
Embodiment Dataset proves essential for achieving strong
performance, as cross-embodiment pretraining enables the
model to learn more robust representations and generalize
effectively, even to the FANUC robot, which is not included
in the pretraining data.

C. Task Flexibility and Emergent Generalization Details

To highlight the task flexibility and emergent generaliza-
tion capabilities of Interleave-VLA when faced with unseen
instructions, we leverage the interleaved image-text interface
to evaluate its performance across diverse user input styles
during deployment. The Interleave-VLA model used in this
evaluation is directly taken from the SIMPLER evaluation
suite (Table I and Table V) without any additional fine-
tuning. A summary of Interleave-VLA’s performance statis-
tics is presented in Table III.

Below, we describe the three tasks and their corresponding
prompts in the order they appear in Table III:

1) Place {eggplant, carrot} on the plate. Two types
of instructions are provided. The first row includes a
hand-drawn sketch of an eggplant and a carrot, created
by a human on-the-fly. The second row features a
sketch-style image of an eggplant and a carrot sourced
from the Internet.

2) Place {green, yellow} block on the towel. Two types
of instructions are included. The first row contains
a hand-drawn sketch of a green and yellow block,
created by a human on-the-fly. The second row features
random images representing a green and yellow block,
sourced from the Internet.

3) Place {block, spoon} on the towel. Two types of
instructions are used. The first row includes a hand-
drawn sketch of a block and a spoon, created by a
human on-the-fly. The second row features cropped
images of the desired target objects, captured from a
screen by a human on-the-fly.

Interleave-VLA demonstrates remarkable emergent gener-
alization capabilities, even when faced with diverse instruc-
tion styles such as Internet images, object crops (from a
familiar input style but with unseen images), and sketches
(a completely novel input style not encountered during
training). These emergent capabilities go beyond the typical
generalization to novel objects and environments evaluated
in prior VLA models [13], [11]. They highlight Interleave-
VLA’s adaptability to new tasks and instruction formats,
showcasing its practical flexibility in processing diverse
multimodal inputs.

D. Open Interleaved X-Embodiment Dataset Details

The Open Interleaved X-Embodiment Dataset, curated as
described in Section III-C for training Interleave-VLA, inte-
grates data from 11 sources within the Open X-Embodiment

Dataset. To ensure coherent training and facilitate cross-
embodiment transfer, the action space across all datasets is
standardized to a unified 7D pose format: xyz position, Euler
orientation, and gripper state. This normalization adheres
to practices established in recent VLA research [11], [13],
[50]. Our dataset features an extensive variety of over 3500
diverse object categories, as depicted on the left of Figure 2.
Additionally, Figure 7 highlights the wide range of skills
encompassed within the dataset and Figure 8 provides a
detailed breakdown of its composition and partitioning.
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(d) Common Dataset Skills

Fig. 7: Our Open Interleaved X-Embodiment Dataset is
diverse in skills.

Interleaved X-Embodiment Dataset Composition

RT-1 [17] 41.01%
Bridge [42] 28.25%
BC-Z [45] 20.34%
Language Table [46] 7.81%
UTAustin Mutex [35] 0.71%
Jaco Play [43] 0.51%
Berkeley Autolab UR5 [38] 0.47%
IAMLab CMU Pickup Insert [39] 0.30%
Stanford Hydra [40] 0.27%
UTAustin Sirius [41] 0.26%
UCSD Kitchen [44] 0.07%

Fig. 8: Composition of open data sources in our curated Open
Interleaved X-Embodiment Dataset.



TABLE VII: Detailed evaluation of the ”Lift task”. We conduct 12 trials for each object and report both the number of
successful trials (# Succ) and the number of trials where the correct object is manipulated (# Acc).

Category Task # Trials Interleave-VLA w/ PT
# Succ / # Acc

Interleave-VLA w/o PT
# Succ / # Acc

π0 w/ PT
# Succ / # Acc

In-Domain pepper 12 7/12 2/4 7/10
In-Domain corn 12 9/12 0/4 4/12
In-Domain cup 12 8/12 0/4 3/12
Out-of-Domain spoon 12 9/11 0/2 9/11
Out-of-Domain bean 12 9/12 0/4 1/1
Out-of-Domain lemon 12 8/12 0/4 2/5

Mean Success / Accuracy Rate 69.4 % / 98.6 % 2.8 % / 30.6 % 36.1 % / 70.8 %

TABLE VIII: Detailed evaluation on ”Pick&Place task”. We conduct 12 trials for each object and report both the number
of successful trials (# Succ) and the number of trials where the correct object is manipulated (# Acc).

Category Task # Trials Interleave-VLA w/ PT
# Succ / # Acc

Interleave-VLA w/o PT
# Succ / # Acc

π0 w/ PT
# Succ / # Acc

In-Domain pasta server 12 6/8 4/8 7/10
In-Domain spoon 12 7/10 1/7 7/9
In-Domain knife 12 4/7 2/7 4/12
Out-of-Domain spatula 12 3/8 0/8 1/1
Out-of-Domain black spatula 12 6/8 0/6 4/5

Mean Success / Accuracy Rate 43.3 % / 68.3 % 11.7 % / 60 % 38.3 % / 61.7 %
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