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Abstract

Dealing with discrete and continuous changes in real-world dy-
namic environments is of great importance for robots. Despite
the success of previous approaches, they impose severe restric-
tions, such as convex quadratic constraints on state variables,
which limits the expressivity of the problem, especially when
the problem is non-convex. In this paper, we propose a novel
algorithm framework based on recurrent neural networks. We
cast the mixed planning with discrete and continuous actions
in non-convex domains as a gradient descent search problem.
In the experiment, we exhibit that our algorithm framework
is both effective and efficient, especially when solving non-
convex planning problems.

Introduction
To control robots with many degrees of freedom and very
complicated dynamics, robotics community has made tremen-
dous success with trajectory optimization and other sophis-
ticated methods. The robotics community, however, often
neglects activity planning and resorts to chaining complex
behaviors computed with trajectory optimization manually.
Those approaches were restricted to limited horizons in which
fixed time discretization works well. They cannot handle
the problem over long horizons where activity planning is
required. Reasoning with both discrete and continuous be-
haviors is necessary for better performance. For example, in
an ocean mission described below, a ship navigates with an
ROV including discrete actions, such as deploying an ROV,
and continuous actions that involve the continuous dynamic
transition of the ship. Trajectory planning cannot handle
missions mixed with discrete actions and continuous actions.

Heuristic forward search approaches for planning have
shown immense progress. For example, Metric-FF (Hoff-
mann 2003) handles a mix of discrete and continuous effects
and preconditions by ignoring all effects that decrease the
value of affected variable. However, it is limited to fixed
continuous variables and simple numerical effects. As an
example, we demonstrate a valid plan in ocean mission sce-
nario in Figure 1, where the blue path is navigated by the
ship, the orange path is navigated by ROV and the green path
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is navigated by AUV. The squares denoted by A, B and C are
places to be visited and the black regions are obstacles. To
handle missions with a mix of discrete and continuous ac-
tions, many approaches have been proposed such as COLIN
(Coles et al. 2012). However, COLIN only supports continu-
ous time-dependent effects with constant rates of change and
linear state variable constraints, which makes it cannot scale
well to practical problems.

A complex realistic planning mission is combined with
trajectory planning and classical planning. In order to gen-
erate plans for realistic planning missions, many excellent
approaches have been proposed. Kongming (Li and Williams
2008) was one of the first approaches to generate a practical
plan for real robots with merged discrete classical planning
and continuous trajectory optimization. However, Kongming
is based on a fixed time discretization and it can not handle
missions with short and long-time activities coexist. To im-
prove on that, ScottyActivity (Fernández-González, Williams,
and Karpas 2018) and ScottyPath (Fernández-González 2018)
was proposed. ScottyActivity can handle a mix of discrete
and continuous action in a convex domain. To be able to
handle planning problems with obstacles, ScottyPath is based
on ScottyActivity with constructing convex safe regions to
avoid obstacles and informed search. Although safe regions
generation can consider obstacles, there could be a shorter
plan avoiding all obstacles and going through areas not cov-
ered by the safe regions. As shown in Figure 1(b), blue areas
are safe regions divided by ScottyPath and each step can not
include red strips areas, each movement should be involved
in safe regions (blue areas). But the plan can be much shorter
when crossing the red strips region R1 directly.

Here is an ocean mission scenario example, a ship equips
an AUV (autonomous underwater vehicle) and an ROV (re-
motely operated vehicle). The AUV needs to take images at
region A, and the ROV needs to take samples in regions B
and C. All three vehicles need to avoid obstacles (the black
areas) and reach destination regions (the yellow area) at the
end. Each movement needs three parameters, a x-velocity
vx, a y-velocity vy and a duration t. In particular, if the ship
deploys the ROV, which can move within a circle centered
at the ship with a radius R, the ship needs to remain at the
deployment location until the ROV is recovered again. Figure
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Figure 1: Valid plans based on Metric-FF, ScottyPath and our
approach in ocean mission scenario, blue areas in (b) are safe
regions, red strips areas are not safe.

1(a) shows a valid plan based on Metric-FF. In this example,
we assign all three parameters to values of 1 to owing to
fixed continuous effects of Metric-FF. Another plan based
on ScottyPath as illustrated in Figure 1(b). ScottyPath sepa-
rates the mission area into the safe regions (blue areas) and
the others (red strips areas). Each step must be in a same
safe region. However there may be a shorter valid plan not
covered by the safe regions just shown as Figure 1(c). Our
algorithm shows three advantages, first, unlike Metric-FF,
mxPlanner does not need human computation in advance.
Second, comparing with ScottyActivity, mxPlanner can
handle a domain with obstacles. Finally, mxPlanner does
not divide a area into pieces avoiding searching space loss
comparing with ScottyPath.

In this paper, we present an algorithm framework based
on recurrent neural networks (RNNs) and heuristic searching
to generate an obstacle-free plan with a mix of discrete and
continuous actions. In the remainder of the paper, we first in-
troduce related works and a formal definition of our problem.
After that, we present our approach in detail and evaluate our
approach by comparing it to previous approaches to exhibit
the effectiveness. Finally, we conclude the paper with future
work.

Related Work
As for realistic planning missions, generating trajectories
from an initial state to goals is a fundamental one in Auto-
mated Planning research. Many approaches have been used
extensively to real-world robot planning missions with com-
plex dynamics for purposes of time minimization, resource
usage minimization or obstacles avoidance, and we just illus-
trate a few examples. Moon et al. (Moon and Prasad 2011)
proposed a minimum time approach for obstacles avoidance
by Non-Linear Trajectory Generation. A tree-based algo-

rithm (Langelaan 2008) is used to find a feasible minimum
energy trajectory from a start position to a distant goal by
precomputing a set of branches from the space of allowable
inputs. And Gracia et al. (Gracia, Sala, and Garelli 2012)
developed a supervisory loop to fulfill workspace constraints
caused by robot mechanical limits, collision avoidance, and
industrial security in robotic systems with geometric invari-
ance and sliding mode related concepts. Evolutionary algo-
rithms have also been proposed to solve trajectory planning
problems (Li et al. 2016; Alvarez, Caiti, and Onken 2004;
Nikolos et al. 2003; Zheng et al. 2005; Guo and Gao 2009;
Fu, Ding, and Zhou 2011; Zhang et al. 2014; Liu, Yu, and Dai
2008). Despite the success of those approaches, they cannot
solve trajectory planning problems involving both continuous
and discrete actions.

There have been considerable advancements in the de-
velopment of classical planning to solve state-dependent
goals planning missions. Most of them succeed by discrete
heuristics searching function or backward chaining search.
FF (Hoffmann 2001) relies on forwarding search in the state
space, guided by goal distances estimated by ignoring delete
lists. A heuristic computation algorithm (Chatterjee et al.
2019) was proposed applying to real-world robotic missions
using conservative edges in the heuristic-space for reduc-
ing state expansions without considering continuous effects.
To handle continuous effects and preconditions, Metric-FF
(Hoffmann 2003) was built based on discretization and ig-
noring all effects that decrease the value of the affected vari-
able. Although COLIN (Coles et al. 2012) and OPTIC++
(Denenberg and Coles 2019) does not rely on discretization
and they can handle missions with a mix of discrete and
continuous actions, they can only support either continuous
time-dependent effects with “constant” rates of change, or
monotonic continuous change of variables. They cannot deal
with non-convex problems, e.g., with obstacles in trajectory
planning problems, as done by our mxPlanner approach.

Researchers have considered combining classical planning
with trajectory planning to solve realistic planning missions
mixed with discrete and continuous actions. Kongming (Li
and Williams 2008) introduced a novel approach to solve
planning problems with hybrid flow graph which is capable
of representing continuous trajectories in a discrete plan-
ning framework. However, Kongming is not able to handle
realistic planning missions for its fixed time discretization.
POPCORN (Savas et al. 2016) introduced continuous control
parameters in PDDL to allow infinite parameters in actions.
However, it can only be used in discrete numeric effects.
(Wu, Say, and Sanner 2017) proposed to handle non-linear
continuous effects with gradient descent. However, they did
not handle scenarios with a mix of discrete and continuous
preconditions.

Problem Definition
We define a planning problem as a tupleM = 〈S,A, s0, g〉.
S is a set of states, each of which is composed of a set of
propositions (e.g. (equip (ship AUV ))), including numeri-
cal equations (e.g. (= duration 0)). For a state s, we define
~s is the value vector of all the numeric variables.



plan:
“ship-navigate (3, 3.5, 2)”→”deploy-ROV()”→”ROV-navigate(-1, -2, 1)”→”ROV-take-sample(B)”→”ROV-navigate(1, 2, 1)” 
→”ROV-take-sample(C)”→”ROV-navigate(-1, 1, 1)”→”recover-ROV”→”ship-navigate(1, 3, 1)”→”ship-navigate(1, 1, 2)”
→”deploy-AUV”→”AUV-navigate(0, 2, 2)”→”ship-navigate(1, 1.2, 1.5)”→”AUV-take-images(A)”
→”ship-navigate(3, 1, 0.8)”→”AUV-navigate(4, -1, 1)”→”recover-AUV”→”ship-navigate(1, -1, 2)”

initial state:
(equip (ship AUV))
(equip (ship ROV))
(= location-xship 1)
(= location-yship 11)
(= location-xAUV 1)
(= location-yAUV 11)
(= location-xROV 1)
(= location-yROV 11)
(= O1                                               )
(= O2                                                           )
(= O3                                              )
(= A                                                                )
(= B                                                  )
(= C                                                             )
(= destination-region                                                            )

deploy-ROV(  )
pre: (equip(ship ROV))
eff: (not (equip (ship ROV)))
ROV-navigate(                            )
pre: (not (equip (ship ROV)))
eff: (increase location-xROV (*             ))
       (increase location-yROV (*             ))
       (increase total-time      ) 

...
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goal:
(image-taken A)
(sample-taken B)
(sample-taken C)
(mission-completed)

))7.8,4.6(),10,6.4(),3.9,2.4((
))5.5,5.9(),3.6,11(),8.7,5.10(),2.7,9((

))10,13(),11,15(),5.11,5.12((
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(b) Goal

Figure 2: An Ocean mission example, where (a), (b), (c) are input of our problem, (d) is an output of the mission.

A is a set of action models, including discrete and
continuous action models. Each action model is a tuple
〈a, pre(a), eff (a)〉, where a is an action name with zero
or more parameters, pre(a) is a set of preconditions that
should be satisfied when a is executed, and eff (a) is a set
of effects that update the state where a is executed. Consid-
ering preconditions of a can be either numeric or proposi-
tional, we denote pre(a) by pre(a) = pre↔(a) ∪ pre⊥(a),
where pre↔(a) is a set of numeric preconditions, e.g., “(≥ ?x
?lower)” indicating the x-axis of ship ?x is not less than the
lower bound ?lower, and pre⊥(a) is a set of propositional
preconditions, e.g., “(sample-taken ?region)” indicating ROV
has taken sample at region “?region”. Similarly, we denote
eff (a) by eff (a) = eff↔(a) ∪ eff⊥(a), where eff↔(a) is a
set of numeric effects, e.g., “(increase ?x (* ?v ?t))” indi-
cating that the x-axis of ship ?x increases by the product
of velocity ?v and time ?t, and eff⊥(a) is a set of proposi-
tional effects, e.g., “(image-taken ?region)” indicating that
an image is taken by AUV at region ?region after action
a is executed. An action model is discrete if and only if it
has only propositional effects, i.e., eff↔(a) = ∅. An action
model is continuous if and only if it has numeric effects,
i.e., eff↔(a) 6= ∅. We use ~v to denote the value vector of all
numeric parameters occurring in action models.

We denote the cost of action a by ψ(a), which can be
defined based on the resource consumption of the action. In
this paper, if a is a continuous action we define ψ(a) as the
moving distance of an object (e.g., ship); if a is a discrete
action, we define ψ(a) as 1.
s0 ∈ S is an initial state. g ⊆ S is a goal to be achieved.

Considering different sizes of obstacles in our planning prob-
lem, we denote an obstacle O by ϕ(L) which is an area
surrounded by a set of vertexes L.

Our problem can be formulated by, given as input a plan-
ning problem M, our approach outputs a solution plan
p = 〈a1, a2, . . . , an〉 with a minimal cost C =

∑
i ψ(ai),

which achieves g starting from s0. An example of our prob-
lem can be found from Figure 2, where Figure 2(a) is a set of
action models, where deploy-ROV is a discrete action and
the other one is a continuous one. Figure 2(b) is a goal to be
achieved, and Figure 2(c) is an initial state. Note that there
are propositions and assignments of variables, e.g., “(equip
(ship AUV))” is a proposition indicating AUV is equipped
on the ship, and “(= location-xship 1)” is an assignment in-
dicating the value of variable “location-xship” is 1, “(= O1

ϕ((4.2, 9.3)(4.6, 10)(6.4, 8.7)(4.2, 9.3)))” is another assign-
ment indicating the value of obstacle variable O1 is the area
defined by ϕ((4.2, 9.3)(4.6, 10)(6.4, 8.7)(4.2, 9.3)), which
is a triangle (denoted by “O1“) as shown in Figure 1. Figure
2(d) is a solution plan to the problem, which is a sequence of
discrete or continuous actions.

Our mxPlanner Approach
Overview of mxPlanner
The overview framework of mxPlanner is shown in Figure
3, which includes a heuristic module, a transition module,
and a loss module. We use ai, ~vi and si to denote the action
executed, the value vector of ~v and the state in the step i.
The target is to find a solution plan 〈a0, a1, . . . , aN−1〉 with
parameters V = 〈~v0, . . . , ~vN−1〉 which makes the total cost
minimal. Given s0 and g, the heuristic module predicts an
action sequence p0. s1 can be updated by the transition mod-
ule with a state s0, an action a0 whose numeric parameters
are assigned by ~v0. After that, the loss L0 is calculated by
Equation (2) with taking as input s1, a0 and ~v0. In every step
i, we compute the loss Li caused by selecting an action ai.
We accumulate the loss of every step as Lall. Then we mini-
mize Lall by updating parameters V = 〈~v0, . . . , ~vN−1〉 vis
gradient descent. When an obstacle-free plan is executable in
s0 with achieving the goal, we find a solution plan with the
total cost minimized.

The algorithm of mxPlanner is shown in Algorithm 1,



we first initialize parameters V randomly (line 1). A predicted
action sequence σi is computed by the heuristic module
H(si, g, A) (line 5). The next state si+1 is updated by transi-
tion module (line 7). The accumulated loss Lall is computed
by Equation (6) for a plan ξ with length N (line 10). Param-
eters V is updated by minimizing loss Lall until Lstop = 0
(line 11).

Algorithm 1 mxPlanner
input:M = 〈S,A, s0, g〉.
output: ξ.

1: initialize numeric parameters of actions V =
〈~v0, . . . , ~vN−1〉 randomly;

2: while Lstop 6= 0 (Equation (8)) do
3: ξ = 〈〉;
4: while i = 0, . . . , N-1 do
5: predict an action sequence σi = H(si, g, A);
6: āi is the first action of σi and ai is the origin action

of āi before discretization;
7: update si+1 with ai, vi and si (Equation (1));
8: ξ = [ξ|ai];
9: end while

10: calculate accumulated loss Lall (Equation (6));
11: update V by minimizing Lall (Equation (7));
12: end while
13: return ξ;

Heuristic Module
Given a state si and goal g, the heuristic module aims to
estimate an action sequence σi by “discretizing” continuous
actions, where āi is either a discrete or discretized action. An
overview of the heuristic module is as shown in Algorithm 2.

Algorithm 2 The heuristic module σi = H(si, g,A)

input: si, g, A
output: σi

1: Ā = ∅, B = ∅;
2: for each numeric variable x do
3: Compute bounds: B′ = ComputeBounds(x,A);
4: B = B ∪ B′;
5: end for
6: for each action a ∈ A do
7: if a is a discrete action then
8: Ā = Ā ∪ {a+};
9: else if a is a continuous action then

10: Discretize a: ā = DiscretizeAction(a,B)
11: Ā = Ā ∪ {ā+};
12: end if
13: end for
14: Compute a plan: σi = Solve(s̄i, g, Ā);

In previous approaches, heuristics are computed based on
their fixed continuous effects or a maximum and minimum of
continuous effects, such as Metric-FF (Hoffmann 2003) and
ScottyActivity (Fernández-González, Williams, and Karpas
2018). These approaches cannot handle our missions where

action effects are a mix of logical operations and indefinite
numeric updating. To predict a relaxed plan, we invoke FF
planner (Hoffmann 2001) to delete-free relaxed plans by
discretizing the numeric effects into intervals.

1. To ensure our plans will stop as long as the goal is achieved,
we add an extra end action 〈end, preg, ∅〉 into action setA
where preg = g and ∅ indicates action end has no effect.

2. Given a set A of action models, for a numeric variable x,
we define the set of action models as Ax, each of which
has at least one precondition involving x. Then each action
model a ∈ Ax includes an upper bound ux and/or a lower
bound lx for x. We collect these bounds and order them
accendingly Bx = b0 < b1 < · · · < bh. For each bound
bk we construct a proposition “(≥ ?x bk)”, implemented
by “ComputeIntervals” (line 2 to 5).

3. Because classical planner cannot handle continuous ac-
tions, we discretize every continuous action model a by
replacing its effect with a numeric effect for building con-
ditions to satisfy preconditions of succeeding actions in a
plan, implemented by “DiscretizeAction”. Formally, “(in-
crease ?x ε)” or “(decrease ?x ε)”, where ε is any expres-
sion, is replaced with “{(≥ ?x b0), . . . , (≥ ?x bh)}” and
the resulting action is denoted by ā. Intuitively, as we do
not know the value of ε, we relax the action effect to satisfy
all numeric preconditions about x.

4. For every discrete or discretized action model a, we re-
move its negative effect and use a+ to denote the resulting
action model. We use Ā denote the set of all these action
models (line 6 to 13). The behind idea is to quickly find
an action sequence to the goal without considering the
negative effects, which is possibly executable.

5. To remove numeric variables, we use propositions “(≥
?x bk)” to replace the value of ?x. Specifically, for the
current state si, we add the corresponding propositions
“(≥ ?x bk)” according to the value of ?x in si, and remove
all numeric variables. We use s̄i to denote the resulting
state.

6. We invoke FF planner to compute a delete relaxed plan σi
for the planning problem with the current state s̄i, goal g
and the expanded action set Ā, by “Solve” (line 14).
In the example of the AUV domain, “ROV-take-sample(B)”

and “ROV-take-sample(C)” are two action models in A
whose precondition include numeric variable “location-x”.
“ROV-take-sample(B)” requires 5 ≤ location-x ≤ 7.2 while
“ROV-take-sample(C)” requires 9.5 ≤ location-x ≤ 11. Then
we construct a delete-free copy of “ROV-take-sample(B)+”
by requiring only 5 ≤ location-x. Next, we construct its or-
dered bound list Blocation-x = 5 < 7.2 < 9.5 < 11. Consider
in Figure 2, the continuous action model “ROV-navigate(?vx,
?vy ,?t)” with an effect ‘(increase location-x (∗ ?vx ?t))”, now
we discretize it into a discrete action model “ROV-navigate”
with positive effects “{(≥ location-x 5), (≥ location-x 7.2),
(≥ location-x 9.5), (≥ location-x 11)}”.

Transition Module
The transition module aims to obtain the next state si+1 given
an action a, parameters vi and a state si. When the heuristic
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Figure 3: An overview of our model.

module predicts an action sequence σi = 〈ā0, . . . , ām〉, we
select the original action a0 of the first action ā0 on the state
si. The state si is updated to si+1:

si+1 = γ(vi, si; eff (a0 )) (1)

In the ocean mission example in Figure 2, a ship nav-
igates by the guidance of x-velocity, y-velocity, and time.
An effect of “ROV-navigate(?vx-R, ?vy-R,?t-R)” is “(in-
crease location-x (∗ ?vx ?t))” indicating that the next x-axis
of the robot is the product of ?vx and ?t plus currently x-axis.
Assuming that the axis of robot location-x = 0, the x-axis
of ROV is updated to 2 after action “ROV-navigate(2, -2,
1)”. Also, “(equip (ship ROV))” is updated to “(not (equip
(ship ROV)))” after action “deploy-ROV” with an effect “(not
(equip (ship ROV)))”.

Planning through Gradient Descent
Next, we aim to inversely optimize the input of our RNN
framework, i.e., parameters V , assuming the model of RNN
is provided (i.e., the heuristic and transition modules), which
is different from previous RNN approaches to time se-
ries predictions (Rumelhart, Hinton, and Williams 1986;
Pascanu, Mikolov, and Bengio 2013) via learning model
parameters given input data. Our work is similar to previous
work done by (Wu, Say, and Sanner 2017), which aims to cal-
culate continuous action sequences via optimizing the input
of a given RNN. We extend the work to computing plans by
considering logical relations.

In every step, we design a novel loss function by three
losses, as shown in Equation (2):

Li = w1Lbi + w2Loi + w3ψ(ai) (2)

where w1, w2 and w3 are weights for the three losses as
hyperparameters.

First, Lbi is a loss to satisfy numeric bounds of action se-
quence to be executed which is predicted by heuristic module.
This loss is defined by Equation (3),

Lbi = ||ReLU(~si+1 − ~u)||2 + ||ReLU(~l − ~si+1)||2 (3)

where ReLU(x) = max(0, x). For numeric variable x, let
āk be the first action in the action sequence σi predicted by
H(si, g,A), whose precondition includes x. It requires x to

fall within the interval [lx, ux]. We use ~l and ~u to denote all
bounds for all numeric variables. Once a numeric variable x
in the state si+1 exceeds its upper bound ux, i.e., x−ux > 0,
a loss is generated. The case for lower bounds is similar.

Second, Loi is a loss to avoid obstacles, defined by:

Loi =

M∑
α=1

mα||y′α − pi+1||2 (4)

where mα is defined by:

mα =


1, if the line between pi and pi+1

intersects with Oα
0, otherwise

(5)

pi is the position of the robot in the state si, x′α is a selected
aim position which guides the robot to avoid the obstacle Oα,
α = 1, . . . ,M . First, We use Yα to denote the set of vertexes
y of obstacle Oα such that the line between y and pi avoids
Oα. Then we define yα as the closest vertex to pi+1 in Yα,
i.e., yα = argminy∈Yα ||pi+1− xα||2. Next, to lead avoiding
the obstacle Oα, we define x′α as a position which satisfies
||x′α− xα||2 = ε where ε is a small positive real number and
the line between x′α and pi avoids Oα. An example is shown
in Figure 4. Intuitively, when the robot tries to go through the
obstacle, Loi aims to guide its destination pi+1 getting close
to y′α for getting rid of Oα.

ip

1ip

A

D

B C

E

D

Figure 4: The black pentagon ABCDE is an obstacle Oα, pi
is the current position and pi+1 is the expected next position.
Yα = {A,D,E} and yα = D. D′ is a position outside Oα
that is ε from D and is a candidate y′α.



Third,ψ(ai) is the cost of ai. For example, we can consider
action costs as the navigating distance: the effects of “ROV-
navigate(?vx, ?vy ,?t)” are “(increase location-x (∗ ?vx ?t))”,
“(increase location-y (∗ ?vy ?t))” and “(increase total-time
?t)”, so its cost is

√
(tvx)2 + (tvy)2.

We define the accumulated loss Lall as the sum of instan-
taneous losses until the goal is achieved, i.e.,

Lall =

µ−1∑
i=0

Li, s.t. aµ = end (6)

Then we compute the partial derivatives of the accumulated
loss as gradients. Formally, vi is a numeric parameter of ai
at the i-th step.

∂Lall
∂vi

=

µ−1∑
λ=i

∂Lλ
∂vi

=

µ−1∑
λ=i

(∂Lbλ
∂vi

+
∂Loλ
∂vi

+
∂ψ(aλ)

∂vi

)
(7)

=

µ−1∑
λ=i

( ∂Lbλ
∂~sλ+1

∂~sλ+1

∂vi
+
∂Loλ
∂~sλ+1

∂~sλ+1

∂vi

)
+
∂ψ(ai)

∂vi

Intuitively, the gradient of vi is determined by the states
from si+1 to sµ and the cost of action ai. The gradient of
the numeric parameters irrelated to ai is zero. By gradient
descent, the total cost as a loss is minimized.

To guarantee that the action sequence ξ is executable,
achieve the goal, avoid all obstacles, we define Lstop in Equa-
tion (8). When Lstop = 0, a solution plan is found.

Lstop =


∑µ
i=0 Loi , if g ⊆ sµ+1 and

ξ is executable
∞, otherwise

(8)

Properties
Our mxPlanner approach has the following soundness and
completeness properties.

Soundness: The action sequence computed by
mxPlanner is a solution plan for the planning prob-
lem.

Sketch of proof: When mxPlanner outputs a plan, ac-
cording to line 2 in Algorithm 1, the loss Lstop = 0. In other
words, all obstacles are avoided when reaching the goal, and
the plan is executable, i.e., preconditions of actions are satis-
fied at the states where they are executed. Thus, the output
action sequence is a solution plan for the problem.

Completeness: Our mxPlanner approach is complete
if the following conditions are satisfied: (1) the planning
problem is solvable; (2) the length N in Algorithm 1 is finite
but large enough for solving the planning problem; (3) the off-
the-shelf planner that we utilize in mxPlanner is complete.

Sketch of proof: If the off-the-shelf planner is complete,
i.e., Step 14 of Algorithm 2 will output a plan σi and the

original action ai of the first action ā0 of σi should be ex-
ecutable in state si, the resulting plan ξ computed by line
4-9 in Algorithm 1 is possibly executable starting from s0
and eventually reaches g since N is large enough for solv-
ing the problem. With line 10-11 in Algorithm 1, Lall, as
well as Lstop, will be reduced with gradient descent at each
repetition (line 2-12) until the stop condition is satisfied and
Algorithm 1 outputs the solution plan ξ, which indicates our
mxPlanner is complete.

Experiments
To evaluate the performance of our approach, we demonstrate
our results in the AUV domain and the Taxi domain with com-
parison with Metric-FF (Hoffmann 2003) and ScottyActivity
(Fernández-González, Williams, and Karpas 2018).

The AUV Domain
In this domain, an AUV (automated underwater vehicle)
needs to reach goal regions and take samples under the con-
dition of avoiding obstacles. We modified the AUV domain
used in ScottyActivity (Fernández-González, Williams, and
Karpas 2018) with two main changes. Firstly, effects of the
glide action are computed by three variables, x-velocity vx,
y-velocity vy and execution time of action t, such as “in-
crease x-location (* vx t)”. Owing to neither Metric-FF nor
ScottyActivity can handle variable flexible continuous effects
with numeric parameters, we randomly set several groups of
parameters. For space limitation, we only show some of them.
Secondly, obstacles are also added to the domain randomly.

The optimization objective for this domain is navigat-
ing distance. In this domain, only moving actions such as
“glide(?t, ?vx, ?vy)” generates costs. Considering its effects:
“increase x-location (* ?vx ?t)” and “increase y-location (*
?vy ?t)”. Its cost is

√
(tvx)2 + (tvy)2. We set the weights

w1 = w2 = w3 = 1 and the distance threshold ε = 0.1.
To show defects of fixed continuous effects, Table 1

shows navigating distance of obstacle-free plans between
mxPlanner and Metric-FF with two groups of parameters,
and performance of mxPlanner compared with ScottyAc-
tivity in handling no obstacle problems. Comparing with
column “Metric-FF (t = 1, vx = 20, vy = 20)” and column
“Metric-FF (t = 1.5, vx = 20, vy = 20)”, most of problems
could not be solved when t = 1.5, vx = 20, vy = 20 which is
denoted by “\” which means the problem could not be solved
in 1 hour. The reason of no solution is Metric-FF under this
parameter setting could not find a plan arriving the bounds of
some regions need to be taken samples. However, Metric-FF
with t = 1.5, vx = 20, vy = 20 performs better in problem
11 and 12. It shows that it is not easy to choose a fit continuous
effect manually. Unfit fixed continuous effects set in advance
result in more consumption or no solution. mxPlanner per-
forms better because mxPlanner optimize parameters by
gradient descent instead of assignment manually. In brief,
fixed continuous effect is inefficient and fallible compared
with variable parameters.

The comparison on navigating distance between Scotty-
Activity and mxPlanner in 20 problems without obstacles
is shown in the last two columns of Table 1. mxPlanner



Table 1: Comparison among mxPlanner, Metric-ff and ScottyActivity with different fixed parameters t, vx, vy in 20 problems.
Each problem has at most five target sample regions need to be arrived.

mxPlanner Metric-FF Metric-FF mxPlanner

(0 ≤ t ≤ 1

|vx|, |vy| ≤ 10)

ScottyActivity
(0 ≤ t ≤ 1

|vx|, |vy| ≤ 10)
(t ≥ 0,vx, vy ∈ R) (t = 1,vx = 20, vy = 20) (t = 1.5,vx = 20, vy = 20)

0 1 2 4 0 1 2 4 0 1 2 4
1 106.31 106.79 108.19 108.92 113.14 124.85 124.85 124.85 \ \ \ \ 106.68 106.46
2 123.27 123.79 127.29 127.29 144.85 156.57 156.57 156.57 \ \ \ \ 123.14 125.76
3 109.58 111.71 118.93 118.93 136.57 148.28 148.28 148.28 \ \ \ \ 109.30 114.99
4 186.07 187.36 187.53 187.53 236.57 236.57 236.57 442.84 \ \ \ \ 184.60 249.94
5 195.82 200.96 204.99 218.36 241.42 281.42 281.42 377.99 \ \ \ \ 200.50 284.94
6 126.52 126.56 126.53 129.19 136.57 136.57 136.57 136.57 \ \ \ \ 128.01 158.47
7 94.35 95.44 95.77 95.97 104.85 104.85 116.57 116.57 114.85 132.43 132.43 132.43 94.35 96.34
8 171.52 172.86 177.08 174.27 193.14 193.14 193.14 216.57 \ \ \ \ 169.94 229.94
9 166.77 167.95 170.71 170.87 181.42 204.85 204.85 216.57 199.71 217.28 217.28 234.85 167.30 166.95
10 141.74 142.83 143.54 155.74 \ \ \ \ \ \ \ \ 141.73 175.00
11 149.30 149.30 149.30 152.98 322.84 277.99 329.71 477.99 169.71 187.28 187.28 \ 149.93 152.04
12 213.52 216.02 217.12 220.15 334.56 399.41 442.84 477.99 247.28 247.28 247.28 \ 215.16 325.65
13 223.70 223.87 241.95 265.53 249.71 249.71 249.71 281.42 \ \ \ \ 226.66 221.86
14 265.61 265.90 280.18 286.48 306.27 306.27 306.27 434.56 \ \ \ \ 318.15 372.25
15 195.70 254.18 254.24 288.22 431.13 602.84 640.83 642.84 \ \ \ \ 195.70 314.00
16 77.04 77.04 77.04 84.6 96.57 96.57 96.57 108.28 102.43 102.43 102.43 \ 77.12 79.30
17 96.43 96.44 96.44 99.46 136.57 136.57 136.57 148.28 \ \ \ \ 97.10 96.60
18 138.57 138.89 138.89 147.24 184.85 184.85 184.85 228.28 \ \ \ \ 145.52 201.38
19 201.49 202.00 227.58 267.54 241.42 241.42 273.14 308.28 \ \ \ \ 202.52 322.83
20 216.01 224.74 235.73 243.39 487 515.98 557.98 671.13 \ \ \ \ 236.11 387.26
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(a) Metric-FF
(t = 1, vx = vy = 10)
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(b) mxPlanner
(t ≥ 0, vx, vy ∈ R)
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(c) ScottyActivity
(0≤t≤1, |vx|, |vy|≤10)
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(d) mxPlanner
(0≤t≤1, |vx|, |vy|≤10)

Figure 5: Plans of Metric-FF, ScottyActivity and
mxPlanner. Red dots are locations of robots which
make a trajectory. Blue areas are target sample regions and
black areas are obstacles.

performs better than ScottyActivity except for Problem
1,9,13,16. An example is shown in Figure 5(c)(d), the for-
mer is based on ScottyActivity and the latter is computed by

mxPlanner. Each movement of Figure 5(c) is also uneven
owing to that ScottyActivity make use of convex optimiza-
tion to optimize an ordered action sequence calculated in
advance.To compute an action sequence, ScottyActivity’s
continuous updatings also need fixed parameters, or maxi-
mum and minimum for heuristic searching. The effectivity
of mxPlanner is due to that mxPlanner is computed at
each step based on current state instead of computing a whole
plan in advance and mxPlanner has no need for manually
assignments for heuristic searching. However, solution of
mxPlanner may be not optimal. Compared with Scotty-
Activity, mxPlanner is not limited to convex problems.
To handle problems with obstacles, ScottyPath is based on
ScottyActivity with generating safe regions in advance by
giving up parts of areas. mxPlanner makes no use of delet-
ing searching areas, hence mxPlanner avoids situations
which may discard solutions in the beginning.

The Taxi domain

In this section, we evaluate our approaches on a domain –
Taxi domain. In this domain, an agent needs to drive a car to
pick up passengers who may move and then to carry them
to their destination. Movement of the car is still computed
by three parameters, x-velocity vx, y-velocity vy and action
execution time t. A passenger can be picked up when the
car nears him. Movement of a passenger is captured by a
predefined function w.r.t. time t and velocity of passengers vp.
An example is shown in Figure 6, the car needs to pick up two
passengers and carry them to region A. Initially, passenger
locations are in the gray human forms (P1 when t = 0 and
P2 when t = 0) and they move along with the trajectoryy of



Table 2: Navigating distance of 10 plans in simple taxi domain without passenger movements

mxPlanner mxPlanner mxPlanner ScottyActivity ScottyActivity ScottyActivity Metric-FF Metric-FF Metric-FF Metric-FF
(0 ≤ t ≤ 1, (0 ≤ t ≤ 1, (0 ≤ t ≤ 1, (0 ≤ t ≤ 1, (0 ≤ t ≤ 1, (0 ≤ t ≤ 1, (t = 1, (t = 1, (t = 1, (t = 1,
|vx| ≤ 10, |vx| ≤ 20, |vx| ≤ 30, |vx| ≤ 10, |vx| ≤ 20, |vx| ≤ 30, vx = 5, vx = 10, vx = 20, vx = 30,
|vy| ≤ 10, |vy| ≤ 20, |vy| ≤ 30, |vy| ≤ 10, |vy| ≤ 20, |vy| ≤ 30, vy = 5, vy = 10, vy = 20, vy = 30,

1 143.24 141.59 141.58 198.71 199.18 199.82 203.64 141.42 141.42 \
2 109.37 114.17 114.17 137.07 139.65 134.11 139.50 120.71 156.57 \
3 113.14 113.14 113.14 157.07 159.77 159.82 194.85 176.57 113.14 127.28
4 128.02 127.73 127.73 168.42 169.18 168.21 276.07 214.85 237.99 264.85
5 128.06 127.66 127.65 178.48 179.06 177.86 127.28 257.28 141.42 \
6 128.77 127.83 127.83 178.48 179.06 177.86 127.28 200.71 141.42 \
7 166.82 166.83 167.24 220.90 223.48 221.96 264.35 243.14 584.26 \
8 127.58 127.65 127.70 159.24 179.06 177.82 127.28 285.56 346.27 \
9 162.20 162.49 162.37 218.71 217.30 217.72 641.13 633.55 707.70 \
10 200.50 206.67 204.00 256.76 245. 72 256.06 301.42 305.56 353.14 \
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t=7

t=0

t=0

t=12

P1

P'1
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Figure 6: An example of taxi domain, the car needs to pick
up two passengers in green areas and take them to region A.
The initial location of passengers are the gray human forms
and passengers move along with the trajectory of red squares
with the total time t growing, then they reach new locations
(the black human forms) and board the car.

red squares. The car picks up the first passenger when t = 7
at P ′1 and picks up the second passenger when t = 12 at P ′2.

However, Metric-FF cannot handle this domain and we
provide a simple version without passengers’ movement, i.e.,
assume every passenger is located in the initial state. As for
ScottyActivity, passenger movement trajectories are not con-
vex, which leads it difficult to apply directly ScottyActivity.
To do so, we first assume every passenger keep standing
and compute an action sequence. Then parameter t for ev-
ery action is fixed. It determines the location of passengers,
which allows us to construct a convex problem to optimize
the navigation distance via varying vx and vy .

In this domain, optimization objective is navigating dis-
tance which is defined as

√
(tvx)2 + (tvy)2 in AUV domain.

It is also generated by action “glide(t, vx, vy)” whose effects
are “increase x-location (* ?vx ?t)” and “increase y-location
(* ?vy ?t)”. Similarily, We set the weights w1 = w2 = w3 =
1 and velocity of passengers vp = 1.25.

Table 3: Navigating distance of 10 plans in taxi domain

mxPlanner ScottyActivity mxPlanner ScottyActivity
(0 ≤ t ≤ 1, (0 ≤ t ≤ 1, (0 ≤ t ≤ 1, (0 ≤ t ≤ 1,
|vx| ≤ 10, |vx| ≤ 10, |vx| ≤ 20, |vx| ≤ 20,
|vy| ≤ 10) |vy| ≤ 10) |vy| ≤ 20) |vy| ≤ 20)

1 141.63 198.71 141.51 \
2 117.83 \ 126.85 \
3 113.20 \ 113.14 \
4 140.79 168.42 152.11 \
5 127.68 178.48 128.44 \
6 128.29 178.48 130.03 179.06
7 173.82 220.90 178.594 \
8 128.33 178.48 129.25 179.06
9 163.84 \ 171.33 \
10 213.30 \ 220.01 \

Table 2 shows the navigating distances of 10 problems
where passenger locations are assumed to be fixed for three
approaches. Similarly, we set four groups of parameters for
Metric-FF and three groups of parameters for ScottyActiv-
ity. Compared with column “Metric-FF” with four groups of
parameters, where “\” means that Metric-FF could not find
a solution in 1 hour, Metric-FF with t = 1, vx = vy = 5
compute plans with the least cost in problem 5,6,8 and 10
in serval cases. And Metric-FF with t = 1, vx = vy = 10
performs better than the others in problem 1,2,4,7 and 9. But
Metric-FF with t = 1, vx = vy = 30 could only solve prob-
lem 3 and problem 4. As for ScottyActivity, compared with
column “ScottyActivity” with three groups of parameters,
ScottyActivity with 0 ≤ t ≤ 1, |vx|, |vy| ≤ 30 generates
plans with less cost in problem 2,4,5 and 6, and ScottyAc-
tivity with 0 ≤ t ≤ 1, |vx|, |vy| ≤ 10 performs better in
problem 3,7 and 8. The results also shows that it is hard and
inefficient to set suitable fixed parameters in advance. And
mxPlanner computes a plan by gradient descent instead
of parameters assignment manually. All the results confirm
our viewpoints, i.e., fixed continuous effect and manual as-
signment are inefficient and fallible compared with variable
parameters.



We also test their performance for the case of mov-
ing passengers. Table 3 shows the navigating distances
of 10 problems with passenger movements compared
with mxPlanner and ScottyActivity, we only show two
groups of parameters for space limitations. By constraining
|vx|, |vy| ≤ 10 and |vx|, |vy| ≤ 20, mxPlanner obtains
the top performance in the ten problems while ScottyActiv-
ity fails to solve four problems within the cut off time. The
failure results from the fact that the passengers are not in
the initial location and it is impossible to get close to the
new passenger location. It also shows that mxPlanner is
effective to solve non-convex planning problems.

Conclusion
In this paper, we approach mxPlanner which is based on
RNNs combined with heuristic searching to handle a mix of
discrete and continuous actions with purpose of goal arriving,
obstacle avoidance and objectives minimization. Compared
with planner Metric-FF and ScottyActivity, mxPlanner can
handle non-linear continuous effects and obstacles avoidance
without fixed continuous effects assigned manually. All the
results show that our approach can generate high-quality
plans efficiently. In future work, we plan to find more effi-
cient approaches to improve heuristic searching and obstacle
avoidance to reduce time-consumption and cost to fulfill real-
world applications.

References
Alvarez, A.; Caiti, A.; and Onken, R. 2004. Evolutionary path
planning for autonomous underwater vehicles in a variable
ocean. IEEE Journal of Oceanic Engineering 29(2):418–429.
Chatterjee, I.; Likhachev, M.; Khadke, A.; and Veloso, M.
2019. Speeding up search-based motion planning via conser-
vative heuristics. In ICAPS, 674–679.
Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2012. COLIN:
planning with continuous linear numeric change. J. Artif.
Intell. Res. 44:1–96.
Denenberg, E., and Coles, A. J. 2019. Mixed discrete contin-
uous non-linear planning through piecewise linear approxi-
mation. In ICAPS, 137–145.
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Fernández-González, E. 2018. Generative Multi-Robot Task
and Motion Planning Over Long Horizons. Ph.D. Disserta-
tion, Massachusetts Institute of Technology.
Fu, Y.; Ding, M.; and Zhou, C. 2011. Phase angle-encoded
and quantum-behaved particle swarm optimization applied
to three-dimensional route planning for uav. IEEE Transac-
tions on Systems, Man, and Cybernetics-Part A: Systems and
Humans 42(2):511–526.
Gracia, L.; Sala, A.; and Garelli, F. 2012. A supervisory loop
approach to fulfill workspace constraints in redundant robots.
Robotics and Autonomous Systems 60(1):1 – 15.
Guo, S., and Gao, B. 2009. Path-planning optimization
of underwater microrobots in 3-d space by pso approach.

In 2009 IEEE International Conference on Robotics and
Biomimetics (ROBIO), 1655–1620. IEEE.
Hoffmann, J. 2001. FF: the fast-forward planning system. AI
Magazine 22(3):57–62.
Hoffmann, J. 2003. The metric-ff planning system: Translat-
ing ”ignoring delete lists” to numeric state variables. J. Artif.
Intell. Res. 20:291–341.
Langelaan, J. W. 2008. Tree-based trajectory planning to
exploit atmospheric energy. In 2008 American Control Con-
ference, 2328–2333.
Li, H. X., and Williams, B. C. 2008. Generative planning for
hybrid systems based on flow tubes. In Rintanen, J.; Nebel,
B.; Beck, J. C.; and Hansen, E. A., eds., Proceedings of the
Eighteenth International Conference on Automated Planning
and Scheduling, ICAPS 2008, Sydney, Australia, September
14-18, 2008, 206–213. AAAI.
Li, J.; Deng, G.; Luo, C.; Lin, Q.; Yan, Q.; and Ming, Z. 2016.
A hybrid path planning method in unmanned air/ground ve-
hicle (uav/ugv) cooperative systems. IEEE Transactions on
Vehicular Technology 65(12):9585–9596.
Liu, L.-Q.; Yu, F.; and Dai, Y.-T. 2008. Path planning of
underwater vehicle in 3d space based on ant colony algorithm.
Journal of System Simulation 20(14):3712–3716.
Moon, J., and Prasad, J. 2011. Minimum-time approach to
obstacle avoidance constrained by envelope protection for
autonomous uavs. Mechatronics 21:861–875.
Nikolos, I. K.; Valavanis, K. P.; Tsourveloudis, N. C.; and
Kostaras, A. N. 2003. Evolutionary algorithm based of-
fline/online path planner for uav navigation. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B (Cybernetics)
33(6):898–912.
Pascanu, R.; Mikolov, T.; and Bengio, Y. 2013. On the
difficulty of training recurrent neural networks. In ICML,
1310–1318.
Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J. 1986.
Learning representations by back-propagating errors. nature
323:533—-536.
Savas, E.; Fox, M.; Long, D.; and Magazzeni, D. 2016.
Planning using actions with control parameters. In ECAI,
1185–1193.
Wu, G.; Say, B.; and Sanner, S. 2017. Scalable planning
with tensorflow for hybrid nonlinear domains. In NIPS, 6273–
6283.
Zhang, C.-B.; Gong, Y.-J.; Li, J.-J.; and Lin, Y. 2014. Au-
tomatic path planning for autonomous underwater vehicles
based on an adaptive differential evolution. In Proceedings
of the 2014 Annual Conference on Genetic and Evolutionary
Computation, 89–96. ACM.
Zheng, C.; Li, L.; Xu, F.; Sun, F.; and Ding, M. 2005. Evo-
lutionary route planner for unmanned air vehicles. IEEE
Transactions on robotics 21(4):609–620.


