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ABSTRACT

Content watermarking is an important tool for the authentication and copyright
protection of digital media. However, it is unclear whether existing watermarks are
robust against adversarial attacks. We present the winning solution to the NeurIPS
2024 Erasing the Invisible challenge, which stress-tests watermark robustness
under varying degrees of adversary knowledge. The challenge consisted of two
tracks: a black-box and beige-box track, depending on whether the adversary knows
which watermarking method was used by the provider. For the beige-box track, we
leverage an adaptive VAE-based evasion attack, with a test-time optimization and
color-contrast restoration in CIELAB space to preserve the image’s quality. For
the black-box track, we first cluster images based on their artifacts in the spatial
or frequency-domain. Then, we apply image-to-image diffusion models with
controlled noise injection and semantic priors from ChatGPT-generated captions to
each cluster with optimized parameter settings. Empirical evaluations demonstrate
that our method successfully achieves near-perfect watermark removal (95.7%)
with negligible impact on the residual image’s quality. We hope that our attacks
inspire the development of more robust image watermarking methods.

1 INTRODUCTION

Content watermarking is a widely used technique for embedding imperceptible information into
digital media to ensure content authenticity, copyright protection, and traceability (Liu et al., 2024;
Zhao et al., 2024). Given that generative AI services can produce unsafe or harmful content at
scale, watermarking has become an essential tool for content owners and organizations to combat
unauthorized distribution and forgery. The goal of a watermarking method is to hide a signal in
generated content that can only be detected with a secret watermarking key, while remaining detectable
under normal usage conditions. A robust watermarking scheme must ensure that evading detection
requires significantly degrading content quality, making removal infeasible without introducing
noticeable artifacts (Zhao et al., 2024; Lukas & Kerschbaum, 2023). However, despite its widespread
deployment, watermarking systems remain vulnerable to both unintentional distortions and targeted
adversarial attacks aimed at erasing embedded signals while preserving perceptual fidelity (An et al.,
2024).

This paper presents our approach to the recent NeurIPS 2024 competition, Erasing the Invisible: A
Stress-Test Challenge for Image Watermarks (Ding et al., 2024), which assessed the robustness of
watermarking methods under two threat models: beige-box, where the watermarking methodology
was known, and black-box, where no prior knowledge was available. Our team developed novel
attacks for both settings, securing first place in both tracks. The proposed methods combine
generative models, frequency-domain manipulations, and fine-tuned variational autoencoders to erase
watermarks while preserving image quality. By exposing vulnerabilities in existing watermarking
schemes, we aim to inspire the development of more robust defenses against such attacks.
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Table 1: Black-box Track Final Leaderboard

Black-box Track
Rank Participant Detection Quality Total

1 Team-MBZUAI 0.043 0.136 0.143
2 Team-SHARIF 0.063 0.158 0.170
3 Team-UFL 0.087 0.177 0.197

Table 2: Beige-box Track Final Leaderboard

Beige-box Track
Rank Participant Detection Quality Total

1 Team-MBZUAI 0.037 0.153 0.157
2 Team-SONY 0.050 0.176 0.183
3 Team-SHARIF 0.127 0.222 0.256
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Figure 1: Top row: Original watermarked images. Bottom row: Images after our attack, with minimal
perceptual difference from the originals, showcasing the effectiveness of our method in preserving
visual fidelity. Best viewed zoomed in.

2 RELATED WORK

Watermarking. Content watermarking embeds imperceptible information into images for authentica-
tion, copyright protection, and forensic tracking (Qi et al., 2022). Traditional methods rely on spatial
or frequency domain manipulations, embedding data into pixel values or transformed coefficients
such as DCT, DWT, or DFT (Kang et al., 2003), aiming to balance imperceptibility and robustness.
Recent deep learning-based approaches leverage CNNs and generative models to embed watermarks
via learned feature representations. Notable methods like StegaStamp (Tancik et al., 2020) and
TreeRing (Wen et al., 2024) improve robustness against common distortions and are widely used to
protect AI-generated content. However, these methods remain susceptible to adversarial and targeted
removal attacks, highlighting the need for more secure watermarking techniques (An et al., 2024).

Robustness of Watermarks. Watermarks can be degraded by common distortions such as Gaus-
sian noise, blurring, and compression, while adversarial attacks aim to deliberately exploit model
vulnerabilities to remove or distort the watermark with minimal perceptual change (Hwang et al.,
2024; Yang et al., 2024; Głuch et al., 2024). To counter these threats, recent work has explored
adversarial training, where watermarking models are trained against a range of perturbations to
enhance robustness (Huang et al., 2024; Thakkar et al., 2023). In addition, generative models such
as autoencoders and diffusion models have been utilized to embed robust watermarks that preserve
visual fidelity even under adversarial conditions. Despite recent advances, balancing robustness and
imperceptibility remains challenging, particularly when attackers have partial or full knowledge of
the watermarking method (Ma et al., 2025; Fairoze et al., 2025). The NeurIPS 2024 challenge (Ding
et al., 2024) offers a benchmark to assess the resilience of state-of-the-art approaches.

3 PROPOSED ATTACK

Our approach to the NeurIPS 2024 Erasing the Invisible challenge employs a multi-stage attack
strategy to effectively remove invisible watermarks while preserving high image quality. The
effectiveness of our method is evaluated using two metrics: (i) an attack metric that quantifies
the success of watermark removal and (ii) a set of qualitative metrics that assess the perceptual
quality of the modified images. The attack metric A is the True Positive Rate (TPR) at 0.1%
False Positive Rate (FPR), where watermark detection is determined based on the decoded message
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Figure 2: Overview of our dataset generation and VAE-based watermark removal pipeline for
StegaStamp watermarks. We generate 1,000 images from Stable Diffusion 2-1 using publicly
available prompts, embedding each with a random binary message and its inverse via a StegaStamp
encoder to create paired watermarked images. A fine-tuned Variational Autoencoder (VAE) minimizes
Mean Squared Error (MSE) loss between pairs, effectively suppressing watermark artifacts while
preserving perceptual quality.

distance d(m,m′) falling below a threshold set by the 0.001st percentile of distances from 10,000
unwatermarked images. The quality of watermark-removed images is assessed using a combination
of perceptual and fidelity metrics, including PSNR, SSIM, NMI, FID, CLIPFID (Kynkäänniemi et al.,
2022), LPIPS (Zhang et al., 2018), Delta Aesthetics, and Delta Artifacts (Xu et al., 2024). We can
query the competition leaderboard up to five times per day to evaluate our submission performance.
Below, we provide details of our proposed attack for both the beige-box and black-box tracks.

3.1 BEIGE-BOX TRACK

Table 3: Performance comparison of our water-
mark removal pipeline. Det. refers to the detection
metric (lower is better), Qual. measures image
quality. Progressive enhancements through test-
time optimization and color/contrast adjustment
improve quality.

Method Det. Qual. Overall

VAE Finetune 0.023 0.192 0.193
+ Test-Time Opt. 0.033 0.161 0.165
+ Color/Contrast 0.037 0.153 0.157

In the beige-box track, we had access to the algo-
rithmic description of the watermarking method used
to embed invisible watermarks in the provided im-
ages, but not to its hyper-parameters or the generating
model. This prior knowledge allowed us to design an
adaptive attack strategy designed against the specific
watermarking method, similar to (Lukas et al., 2024;
Diaa et al., 2024). The organizers released 300 wa-
termarked images, divided into two categories: Half
of the images are watermarked using a modified Ste-
gaStamp algorithm, while the remaining images are
watermarked using a variant of the TreeRing (Wen
et al., 2024) watermarking method.

3.1.1 STEGASTAMP WATERMARK

For the StegaStamp-based watermark removal, we employed a three-step approach consisting of
dataset generation, VAE-based watermark removal, and post-processing for quality enhancement
(see Fig. 2). This structured methodology enabled effective suppression of the embedded watermark
while preserving the perceptual quality of the images.

Dataset Generation: We first curated a comprehensive training dataset leveraging 1 000 text prompts
from the Hugging Face Stable-Diffusion-Prompts dataset (Gustavosta, 2024). Using these prompts,
we generated corresponding images via Stable Diffusion 2-1 with a guidance scale of 7.5 and 50
inference steps. Each generated 5122 image was resized to 4002 pixels using bilinear interpolation
before being processed through a pretrained StegaStamp model from the WAVES repository. The
key aspect of our dataset preparation involved creating image pairs where each original image was
encoded with both a 100-bit binary message m sampled uniformly at random and its inverse 1−m,
resulting in a dataset of 1,000 paired examples that captured watermarking artifacts.
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VAE Finetuning: The core of our attack framework centers on a Variational Autoencoder (VAE) that
was adaptively tuned against a specific watermarking method. Let xw denote a watermarked image
containing the original binary message and xi represent the corresponding image with the inverted
message. The VAE consists of an encoder Eθ and decoder Dϕ, where we leverage the pretrained
architecture from the SDXL diffusion model. During fine-tuning, we optimize both components to
minimize the mean squared error loss:

L(θ, ϕ) = ∥Dϕ(Eθ(xw))− xi∥22, (1)

where Dϕ(Eθ(xw)) represents the reconstructed image from the watermarked input, and xi is the
target image containing the inverted message. We optimize this objective using Adam optimizer with
learning rate α = 1× 10−5 for 10 epochs with a batch size of 16. To stabilize training, we employ
gradient clipping with a maximum norm of 1.0. Model training was performed on an NVIDIA A6000
GPU (48GB VRAM) and completed in under two GPU hours.

Post-Processing: To address the slight quality degradation in the VAE outputs in the VAE Finetuning
stage, we implemented a two-stage post-processing pipeline with the aim to enhance the image
quality without re-introducing the removed watermark. The first stage involved test-time VAE
optimization using a pretrained VAE from the Stable Diffusion Refiner model. Let xr denote the
output from the VAE Finetuning stage and xw represent the original watermarked image. During
test-time optimization, we fine-tune a Refiner VAE parameters {θ, ϕ} for each image to minimize:

Ltotal = ∥Dϕ(Eθ(xr))− xw∥2︸ ︷︷ ︸
MSE Loss

+LLPIPS(Dϕ(Eθ(xr)), xw)︸ ︷︷ ︸
Perceptual Loss

+0.5(1− SSIM(Dϕ(Eθ(xr)), xw))︸ ︷︷ ︸
Structural Similarity Loss

(2)

The second stage performs color and contrast transfer in CIELAB space. Let xopt denote the
output from test-time optimization, and {Lopt, aopt, bopt} and {Lw, aw, bw} represent the CIELAB
components of xopt and the watermarked image xw respectively. For color transfer, we preserve the
luminance channel from the optimized image while adopting the chrominance components from the
watermarked image as xc = FRGB(Lopt, aw, bw) where FRGB denotes conversion from CIELAB
to RGB space. Subsequently, we perform contrast transfer by matching the statistical moments of
the luminance channel as Lfinal =

σw

σc
(Lc − µc) + µw, where {µc, σc} and {µw, σw} are the mean

and standard deviation of the luminance channels of xc and xw respectively. The final image is
constructed as xfinal = FRGB(Lfinal, aw, bw), ensuring high perceptual quality without reintroducing
the watermark. For impact of different components in our pipeline, see Table 3.

3.1.2 TREERING WATERMARK

For images embedded with TreeRing watermarks, we identified a significant vulnerability to phase
attacks in the frequency domain. Notably, modifying the Fourier phase spectrum corresponds to
simple translation in the image spatial domain. Leveraging this insight, our approach implements a
straightforward yet effective spatial domain transformation as xshifted = T (xw,∆x) where xw is the
watermarked image, T denotes a horizontal translation operator, and ∆x = 7 pixels is the empirically
determined optimal shift distance that balances watermark removal effectiveness with image quality
preservation. To further mitigate translation-induced artifacts, we selectively restore the leftmost ∆x
pixels from the original image:

xfinal(i, j) =

{
xw(i, j) if j < ∆x

xshifted(i, j) otherwise,
(3)

where the leftmost ∆x pixels are restored from the original watermarked image. This approach
effectively removes TreeRing watermarks while preserving visual quality.

3.2 BLACK-BOX TRACK

For the black-box track, where no prior knowledge of the specific watermarking method was
available, we adopted a data-driven approach to identify the most likely watermarking method
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based on their spatial and frequency domain characteristics. We partitioned the 300 watermarked
images into four distinct clusters (see Fig. 3): (1) images without noticeable artifacts, (2) im-
ages exhibiting border-like artifacts in the spatial domain, (3) images with circular patterns in
the Fourier magnitude spectrum, and (4) images containing square patterns in the Fourier magni-
tude spectrum. This clustering enabled us to develop targeted removal strategies for each group.
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Figure 3: Spatial and frequency-based
clustering for blackbox track.

Image-to-Image Diffusion Model: To remove the water-
marks, we leveraged the image-to-image capabilities of
the Stable Diffusion Refiner model (Meng et al., 2021) as
a core component of our strategy. The diffusion process
consists of two stages: (i) forward diffusion, which grad-
ually corrupts an image by adding noise, and (ii) reverse
diffusion, where a denoising network reconstructs the clean
image by iteratively removing noise. Given a watermarked
image xw, the forward process perturbs it using a pre-
defined noise schedule αt, where the strength parameter
s ∈ [0, 1] determines the starting point of the noise injection
as xt =

√
αtxw +

√
1− αtϵt, where ϵt ∼ N (0, I). Here, s

controls the initial noise level via α1 = 1− s, determining
how much of the original image is retained (see Fig. 4).
A smaller s preserves more of the original structure, enabling
subtle artifact suppression, while a larger s introduces
greater noise, allowing for aggressive watermark removal at
the cost of potential content modification. The reverse diffu-
sion process iteratively removes noise through a learned de-
noising function ϵθ, reconstructing the final refined image as xt−1 = 1√

αt

(
xt −

√
1− αtϵθ(xt, t)

)
.
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Figure 4: Proposed image-to-image diffusion-based pipeline for
watermark removal, ensuring effective watermark suppression
while preserving perceptual quality.

We configured the diffusion pro-
cess with T = 500 inference
steps, using image captions gen-
erated by ChatGPT as text
prompts and setting the guid-
ance scale to 1. This allowed
the model to incorporate seman-
tic priors alongside the origi-
nal image structure, facilitating
more effective watermark sup-
pression while preserving con-
tent fidelity. By optimizing s
across clusters, we achieved a ro-
bust trade-off between artifact re-
moval and content preservation,
ensuring that the refined images
maintained their perceptual qual-
ity while successfully evading
watermark detection.

Cluster-Specific Solutions: Based on empirical analysis, we developed adaptive attacks for each
cluster. For Cluster 1 (no noticeable artifacts, we employed the image-to-image diffusion model
with a relatively high strength parameter (s = 0.16) to enable more aggressive watermark removal.
For clusters 2 and 3, exhibiting structured patterns, we developed a three-stage pipeline as detailed
in Sec. 3.1.1: (i) dataset generation with synthetic watermarks, (ii) VAE fine-tuning minimizing
reconstruction loss between watermarked inputs and clean targets, and (iii) post-processing enhance-
ment through color and contrast transfer. For cluster 4 (square patterns), we implemented a hybrid
approach combining image-to-image diffusion with lower strength (s = 0.04) followed by a 7-pixel
horizontal translation and boundary pixel restoration. We found this cluster-specific strategy achieved
good results, with significant improvements in the qualitative metrics compared to uniform parameter
settings across clusters.
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