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ABSTRACT

Combining inputs from multiple sensor modalities effectively in reinforcement
learning (RL) is an open problem. Many self-supervised representation learning
approaches exist to improve performance and sample complexity for image-based
RL. However, they typically do not consider other available information, such as
robot proprioception, when learning the representation, but only concatenate it
to independently learned image representations. Here, we show how using this
proprioception for representation learning can help algorithms to focus on rele-
vant aspects and guide them toward finding better representations. Building on
Recurrent State Space Models, we systematically analyze representation learning
approaches for RL from multiple sensors. We propose a novel combination of
reconstruction-based and contrastive losses, which allows us to choose the most
appropriate method for each sensor modality, and demonstrate its benefits in a
wide range of settings. This evaluation includes model-free and model-based RL
on complex tasks where the images contain distractions or occlusions, a new lo-
comotion suite, and a visually realistic mobile manipulation task with both color
and depth images. We show that learning a joint representation by combining
contrastive and reconstruction-based losses significantly improves performance
compared to the common practice of concatenating image representations with
proprioception and allows solving more complex tasks that are beyond the reach
of current SOTA representation learning methods.

1 INTRODUCTION

Learning compact representations of high-dimensional images has led to considerable advances
in reinforcement learning (RL) from pixels. To date, most RL approaches that use representa-
tions (Hafner et al., 2019; 2020; Srinivas et al., 2020; Lee et al., 2020; Yarats et al., 2021b; Stooke
et al., 2021; Zhang et al., 2020), learn them in isolation for a single high-dimensional sensor, such
as a camera. However, while images are crucial to perceive an agent’s surroundings in unstructured
environments, they are often not the only available source of information. Most agents in realis-
tic scenarios can also directly observe their internal state using sensors in their actuators, inertial
measurement units, force and torque sensors, or other forms of proprioceptive sensing.

State Space Models (Murphy, 2012) naturally lend themselves to accumulating information across
multiple sensors and time to form a single compact representation of the entire system state. By
building on Recurrent State Space Models (RSSMs) (Hafner et al., 2019), this approach provides a
scalable basis for RL in tasks with complex observations and dynamics. Previous work suggests us-
ing either reconstruction (Hafner et al., 2019; 2021) or contrastive methods (Hafner et al., 2020; Ma
et al., 2020; Nguyen et al., 2021) to train RSSMs, both of which have their strengths and weaknesses.
While reconstruction is a powerful tool as it forces models to capture the entire signal, it may fail
to learn good representations if observations are noisy or contain distracting elements (Zhang et al.,
2020; Ma et al., 2020; Deng et al., 2022). In such cases, contrastive methods can ignore irrelevant
parts of the observation and still learn valuable representations. However, they are prone to rep-
resentation collapse and struggle to learn the accurate dynamics required for model-based RL (Ma
et al., 2020).

We propose combining contrastive and reconstruction-based approaches to leverage the benefits of
both worlds. For example, reconstruction-based loss functions can be used for noiseless propri-
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Figure 1: In this example, the agent has to jump over ”hurdles” to move forward. It has to perceive
the hurdles in its environment through egocentric vision but can directly observe its proprioceptive
state, i. e., the position and velocity of its joints. We propose learning joint representations of all
available sensors using a combination of reconstruction-based and contrastive objectives. This ap-
proach allows us to use reconstruction for clean low-dimensional sensors, e.g., proprioception, and
contrastive losses for high-dimensional noisy sensor signals such as images. We build on Recurrent
State Space Models to accumulate information across sensors and time and use our representations
for model-free and model-based RL.

oception and a contrastive loss for images with distractors, where reconstruction fails (Ma et al.,
2020; Nguyen et al., 2021). Fig. 1 shows an overview of this approach. The common approach
to training RSSMs is variational inference (VI), which provides a basis for both reconstruction and
contrastive objectives. In the original formulation (Hafner et al., 2019), RSSMs are trained with
VI using pure reconstruction. However, the reconstruction terms can be replaced with contrastive
losses based on mutual information estimation (Hafner et al., 2020; Ma et al., 2020). Contrastive
predictive coding (CPC) (Oord et al., 2018) offers an alternative to the variational approach of train-
ing RSSMs (Nguyen et al., 2021; Srivastava et al., 2021). These methods train the RSSMs’ system
dynamics by maximizing the agreement of predicted future latent states with future observations.
Since the recent literature is inconclusive about whether the variational or the predictive approach is
preferable, we evaluate our representation learning using both paradigms.

We build our representation learning method into model-free and model-based RL agents and sys-
tematically evaluate the effects of learning a joint representation on tasks from the DeepMind Con-
trol (DMC) Suite (Tassa et al., 2018). To further investigate the approaches’ capabilities, we use
modified DMC tasks with Video Background (Zhang et al., 2020; Nguyen et al., 2021) and Occlu-
sions. Additionally, we evaluate on a new Locomotion suite and a visually realistic mobile manip-
ulation task, where agents must combine proprioception and egocentric vision to move, navigate,
and interact with the environment. For the mobile manipulation tasks, we consider both color and
depth images to demonstrate that our methods apply to different visual modalities. Our experiments
show that joint representations improve performance over learning an image-only representation
and concatenating it with proprioception. In the task with Video Background, using a combina-
tion of contrastive and reconstruction losses enables us almost to match the performance of current
SOTA methods on standard images. The Occlusion task is out of reach for image-only approaches
and can only be solved by appropriately combining images and proprioception. Moreover, we show
that joint representations improve the performance of model-based agents with contrastive image
representations, which are known to perform worse than reconstruction-based approaches (Hafner
et al., 2020; Ma et al., 2020).

To summarize our contributions, we propose a general framework for training joint representations
based on RSSMs by combining contrastive and reconstruction losses based on the properties of the
individual sensor. This framework contains objectives motivated by a variational and a contrastive
predictive coding viewpoint. We conduct a large-scale evaluation using model-free and model-
based approaches and show that using joint representations significantly increases performance over
concatenating image representations and proprioception. Further, they help to learn better models
for model-based RL when a contrastive image loss is required. We introduce DMC tasks with
Occlusions and a Locomotion suite as new challenges for representation learning in RL. On these
tasks, as well as DMC tasks with Video Background and a mobile manipulation task our approach
outperforms several SOTA baselines and allows solving tasks where image-only approaches fail.
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2 RELATED WORK

Representations for Reinforcement Learning. Many recent approaches use ideas from genera-
tive (Wahlström et al., 2015; Watter et al., 2015; Banijamali et al., 2018; Lee et al., 2020; Yarats
et al., 2021b) and self-supervised representation learning (Zhang et al., 2020; Srinivas et al., 2020;
Yarats et al., 2021a; Stooke et al., 2021; You et al., 2022) to improve performance, sample efficiency,
and generalization of RL from images. Those based on Recurrent State Space Models (RSSMs) are
particularly relevant for this work. When proposing the RSSM, (Hafner et al., 2019) used a genera-
tive approach. They formulated their objective as auto-encoding variational inference, which trains
the representation by reconstructing observations. Such reconstruction-based approaches have lim-
itations with observations containing noise or many task-irrelevant details. As a remedy, Hafner
et al. (2020) proposed a contrastive alternative based on mutual information and the InfoNCE esti-
mator (Poole et al., 2019). Ma et al. (2020) refined this approach and improved results by modifying
the policy learning mechanism. Using a different motivation, namely contrastive predictive cod-
ing (Oord et al., 2018), Okada & Taniguchi (2021); Nguyen et al. (2021); Srivastava et al. (2021);
Okada & Taniguchi (2022) proposed alternative contrastive learning objectives for RSSMs. In this
work, we leverage the variational and predictive coding paradigms and show that joint representa-
tions improve performance for both. Fu et al. (2021); Wang et al. (2022) propose further factorizing
the RSSM’s latent variable to disentangle task-relevant and task-irrelevant information. However,
unlike contrastive approaches, they explicitly model the task-irrelevant parts instead of ignoring
them, which can impede performance if the distracting elements become too complex to model.
Other recent approaches for learning RSSMs include using prototypical representations (Deng et al.,
2022) or masked reconstruction (Seo et al., 2022). Out of these works, only Srivastava et al. (2021)
consider using additional proprioceptive information. Yet, they did so only in a single experiment
and did not investigate a combination of reconstruction and contrastive losses.

Sensor Fusion in Reinforcement Learning. Many application-driven approaches to visual RL
for robots use proprioception to solve their specific tasks (Finn et al., 2016; Levine et al., 2016;
Kalashnikov et al., 2018; Xiao et al., 2022; Fu et al., 2022). Yet, they usually do not use dedicated
representation learning or concatenate image representations and proprioception. Several notable
exceptions use RSSMs with images and proprioception and thus learn joint representations (Wu
et al., 2022; Hafner et al., 2022; Becker & Neumann, 2022; Hafner et al., 2023). Seo et al. (2023)
learn world models using multiple images from different viewpoints. However, all of them focus
on a purely model-based setting and do not investigate joint-representation learning with RSSMs as
an alternative to concatenation for model-free RL. Additionally, they only consider reconstruction-
based objectives, while we emphasize contrastive and especially combined methods.

Multimodal Representation Learning. Representation learning from multiple modalities has
widespread applications in general machine learning, where methods such as CLIP (Radford et al.,
2021) combine language concepts with the semantic knowledge of images and allow language-based
image generation (Ramesh et al., 2022). For robotics, Brohan et al. (2022); Mees et al. (2022); Driess
et al. (2023); Shridhar et al. (2022; 2023) combine language models with the robot’s perception for
natural language-guided manipulation tasks using imitation learning. In contrast, we work in an
online RL setting and mainly consider different modalities, namely images and proprioception.

3 STATE SPACE MODELS FOR JOINT REPRESENTATION LEARNING

Given trajectories of observations o1:T = {ot}t=1:T and actions a1:T = {at}t=1:T we aim to learn
a state representation that is well suited for RL. We assume the observations stem from K different
sensors, ot = {o(k)

t }k=1:K , where the individual o(k)
t only contain partial information about the

system state. Further, even ot may not contain all necessary information for optimal acting, i. e., the
environment is partially observable, and the representation has to accumulate information over time.

Our goal is to learn a concise, low dimensional representation ϕ(o1:t,a1:t−1) that accumu-
lates all relevant information until time step t. We provide this representation to a policy
π(at|ϕ(o1:t,a1:t−1)) which aims to maximize the expected return in a given RL problem. Here,
we have a cyclic dependency, as the policy collects the trajectories to learn the representation by
acting in the environment. In this setting, the policy’s final return and the sample complexity of the
entire system determine what constitutes a good representation.
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State Space Models (SSMs) (Murphy, 2012) naturally lend themselves to sensor fusion and infor-
mation accumulation problems. We assume a latent state variable, zt, which evolves according to a
Markovian dynamics p(zt+1|zt,at) given an action at. At each time step t, each of the K obser-
vations is generated from the latent state by an observation model p(k)(o(k)

t |zt). The initial state is
distributed according to p(z0). Here, the belief over the latent state, taking into account all previous
actions as well as previous and current observations p(zt|a1:t−1,o1:t) can be used as the representa-
tion. Yet, computing p(zt|a1:t−1,o1:t) analytically is intractable for models of relevant complexity
and we use variational approximation ϕ(o1:t,a1:t−1)=̂q(zt|a1:t−1,o1:t). This variational approxi-
mation also plays an integral part during training and is thus readily available as input for the policy.

We instantiate the generative SSM and the variational distribution using a Recurrent State Space
Model (RSSM) (Hafner et al., 2019), which splits the latent state zt into a stochastic and a deter-
ministic part. Following (Hafner et al., 2019; 2020), we assume the stochastic part of the RSSM’s
latent state to be Gaussian. While the original RSSM only has a single observation model p(ot|zt),
we extend it to K models, one for each observation modality. The variational distribution takes the
deterministic part of the state together with the K observations ot = {o(k)

t }k=1:K and factorizes
as q(z1:t|o1:t,a1:t−1) =

∏T
t=1 q(zt|zt−1,at−1,ot). To account for multiple observations instead of

one, we first encode each observation individually using a set of K encoders, concatenate their out-
puts, and provide the result to the RSSM. Finally, we also learn a reward model p(rt|zt) to predict
the reward from the representation. Following the findings of Srivastava et al. (2021) and Tomar
et al. (2023) we also include reward prediction to learn the representations for model-free agents.

3.1 LEARNING THE STATE SPACE REPRESENTATION

We combine reconstruction-based and contrastive approaches to train our representations. Training
RSSMs can be based on either a variational viewpoint (Hafner et al., 2020; Ma et al., 2020) or a
contrastive predictive coding (Oord et al., 2018) viewpoint (Nguyen et al., 2021; Srivastava et al.,
2021). We investigate both approaches, as neither decisively outperforms the other.

Variational Learning. Originally, (Hafner et al., 2019) proposed leveraging a fully generative ap-
proach for RSSMs. Building on the stochastic variational autoencoding Bayes framework (Kingma
& Welling, 2013; Sohn et al., 2015), they derive a variational lower bound objective. After inserting
our assumption that each observation factorizes into K independent observations and adding a term
for reward prediction, this objective is given as

T∑
t=1

E

[
K∑

k=1

log p(k)(o
(k)
t |zt) + log p(rt|zt)− KL [q(zt|zt−1,at−1,ot) ∥ p(zt|zt−1,at−1)]

]
, (1)

where the expectation is formed over the distribution p(o1:t,a1:t−1)q(zt|o1:t,a1:t−1), i. e., sub-
trajectories from a replay buffer and the variational distribution. Optimizing this bound using the
reparametrization trick (Kingma & Welling, 2013; Rezende et al., 2014) and stochastic gradient de-
scent simultaneously trains the variational distribution and all parts of the generative model. While
this approach can be highly effective, reconstructing high-dimensional, noisy observations can also
cause issues. First, it requires introducing large observation models. These observation models are
unessential for the downstream task and are usually discarded after training. Second, the reconstruc-
tion forces the model to capture all details of the observations, which can lead to highly suboptimal
representations if images are noisy or contain task-irrelevant distractions.

Contrastive Variational Learning (CV) can provide a remedy to these problems. To introduce
such contrastive terms, we can replace the individual log-likelihood terms with mutual information
(MI) terms I(o(k)

t , zt) by adding and subtracting log p(o(k)) (Hafner et al., 2020; Ma et al., 2020)

E
[
log p(k)(o

(k)
t |zt)

]
= E

[
log

p(k)(o
(k)
t |zt)

p(o
(k)
t )

+ log p(o
(k)
t )

]
= E

[
I(o

(k)
t , zt)

]
+ c. (2)

Intuitively, the MI measures how informative a given latent state is about the corresponding ob-
servations. Thus, maximizing it leads to similar latent states for similar sequences of observa-
tions and actions. While we cannot analytically compute the MI, we can estimate it using the
InfoNCE bound (Oord et al., 2018; Poole et al., 2019). Doing so eliminates the need for gener-
ative reconstruction and instead only requires a discriminative approach based on a score function
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f
(k)
v (o

(k)
t , zt) 7→ R+. This score function measures the compatibility of pairs of observations and

latent states. It shares large parts of its parameters with the RSSM. For details on the exact param-
eterization, we refer to Appendix B. This methodology allows the mixing of reconstruction and
mutual information terms for the individual sensors, resulting in a generalization of Equation 1,

T∑
t=1

K∑
k=1

L(k)
v (o

(k)
t , zt) + E [log p(rt|zt)− KL [q(zt|zt−1,at−1,ot) ∥ p(zt|zt−1,at−1])] . (3)

Here L(k)
v is either the log-likelihood or the MI term. As we show in Section 4 choosing the terms

corresponding to the properties of the corresponding modality can often improve performance.

Contrastive Predictive Coding (CPC) (Oord et al., 2018) provides an alternative to the variational
approach. The idea is to maximize the MI between the latent variable zt and the next observation
o
(k)
t+1, i. e., I(o(k)

t+1, zt). While this approach seems similar to contrastive variational learning, there
is a crucial difference. We estimate the MI between the current latent state and the next observation,
not the current observation. Thus, we explicitly predict ahead to compute the loss. As we use the
RSSM’s dynamics model for the prediction, this formalism provides a training signal to the dynamics
model. However, Levine et al. (2019); Shu et al. (2020); Nguyen et al. (2021) discuss how this signal
alone is insufficient for model-based RL. Srivastava et al. (2021) show that similar ideas also benefit
model-free RL and we follow their approach by regularizing the objective using KL-term from
Equation 1 weighted with a small factor β. Additionally, we can turn individual contrastive MI terms
into reconstruction terms for suitable sensor modalities by reversing the principle of Equation 2.
Including reward prediction, this results in the following maximization objective

T∑
t=1

K∑
k=1

L(k)
p (o

(k)
t+1, zt) + E [log p(rt|zt)− βKL [q(zt|zt−1,at−1,ot) ∥ p(zt|zt−1,at−1)]] , (4)

where L(k)
p is either the one-step ahead likelihood log p(o

(k)
t+1|zt) or an InfoNCE estimate of

I(o
(k)
t+1, zt) using a score function f (k)p (o

(k)
t+1, zt) 7→ R+. From an implementation viewpoint, the re-

sulting approach differs only slightly from the variational contrastive one. For CPC approaches, we
use a sample from the RSSM’s dynamics p(zt+1|zt,at) and for contrastive variational approaches
we use a sample from the variational distribution q(zt|zt−1,at−1,ot).

Estimating Mutual Information with InfoNCE. We estimate the mutual information (MI) using
b mini-batches of sub-sequences of length l. After computing the latent estimates, we get I = b · l
pairs (oi, zi), i. e., we use both samples from the elements of the batch as well as all the other time
steps within the sequence as negative samples. Using those, the symmetry of MI, the InfoNCE
bound (Poole et al., 2019), and either f = f

(k)
v or f = f

(k)
p , we can estimate the MI as

0.5

(
I∑

i=1

log
f(oi, zi)∑I
j=1 f(oi, zj)

+ log
f(oi, zi)∑I
j=1 f(oj , zi)

)
.

3.2 LEARNING TO ACT BASED ON THE REPRESENTATION

We consider both model-free and model-based reinforcement learning. For the former, we use Soft
Actor-Critic (SAC) (Haarnoja et al., 2018) on top of the representation by providing the deterministic
part of the latent state and the mean of the stochastic part as input to both the actor and the critic.
For the latter, we use latent imagination (Hafner et al., 2020), which propagates gradients through
the learned dynamics model to optimize the actor. In both cases, we alternatingly update the RSSM,
actor, and critic for several steps before collecting a new sequence in the environment. The RSSM
uses only the representation learning loss and gets neither gradients from the actor nor the critic.

4 EXPERIMENTS

We evaluate our representation learning approaches on 4 task suites and a mobile manipulation task,
introduced below. For each suite, we present the final aggregated performance using Interquartile
Means (IQM) and 95% Stratified Bootstrapped Confidence Intervals (CIs) (Agarwal et al., 2021).
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Appendix A provides details about all considered tasks. Appendix B lists all hyperparameters. Ap-
pendix C shows learning curves for all representation learning paradigms on all tasks, performance
profiles, and per-environment results. Code is available1. Following prior work (Srivastava et al.,
2021; Deng et al., 2022), we include cropping-based image augmentation for contrastive approaches.

Representation Learning Methods. We name our approaches for joint representation learning
by combining a contrastive image loss with reconstruction for the proprioception Joint(CV+R) and
Joint(CPC+R). Those build on the contrastive variational (Equation 3) and the contrastive predic-
tive coding (Equation 4) objectives respectively. Additionally, we consider Joint(R+R), a purely
reconstructive approach based on Equation 1.

We include several SOTA visual RL approaches to show the competitiveness of our approach and
how including proprioception allows us to solve problems that challenge more tailored approaches.
First, we consider the model-free DrQ-v2 (Yarats et al., 2022) and extend it to also use propriocep-
tion (DrQ-v2(I+P)). Both learn no explicit representations. Further, we include the reconstruction-
based Dreamer-v3 (Hafner et al., 2023) (model-based), the self-supervised DreamerPro (Deng et al.,
2022) (model-based), and DenoisedMDP (Wang et al., 2022) (model-free and model-based). We
also consider DBC (Zhang et al., 2020)(model-free) and TIA (Fu et al., 2021)(model-based). Except
DrQ-v2(I+P) these baselines work solely on images.

To show the benefits of combining contrastive and reconstruction-based objectives, we compare with
variants that use contrastive losses for both modalities, named Joint(CV+CV) and Joint(CPC+CPC).
We also compare to the naive approach of concatenating proprioception to image representations
and use either reconstruction (Concat(R)) or a contrastive method (Concat(CV) or Concat(CPC)) to
train the image representation. These are not applicable in the model-based setting, as they cannot
predict future proprioception. We also include single-sensor approaches. For images, we again
use all three representation learning approaches, resulting in Img-Only(R), Img-Only(CV), and Img-
Only(CPC). For the proprioception-only agents, we use SAC (Haarnoja et al., 2018) directly on
the proprioception (ProprioSAC). From these approaches, model-based Img-Only(R) corresponds
largely to Dreamer-v1 (Hafner et al., 2020) and model-free Img-Only(CPC) and Joint(CPC+CPC)
resemble the approach introduced in (Srivastava et al., 2021). See Appendix B.5 for details.

Tasks. We use seven tasks from the DeepMind Control Suite (DMC) (Tassa et al., 2018) that cover
a wide range of challenges, namely Ball-in-Cup Catch, Cartpole Swingup, Cheetah
Run, Reacher Easy, Walker Walk, Walker Run, and Quadruped Walk. We split their
states into proprioceptive entries and non-proprioceptive entries such that the proprioception only
contains partial information of the full environment state. The remaining information has to be
inferred from images. For example, in Ball-in-Cup Catch the cup’s state is proprioceptive
while the ball’s state is not. Besides using the Standard Images, we add Video Backgrounds or
Occlusions for all seven tasks, creating a total of 3 different task suites. For Video Backgrounds,
we follow (Nguyen et al., 2021; Deng et al., 2022) and render videos from the Kinetics400 dataset
(Kay et al., 2017) behind the agent. For Occlusions, we add slowly moving disks in front of the
agent. The upper row of Fig. 6 shows examples. In these tasks, the challenge lies in learning
representations that filter out irrelevant visual details while focusing on relevant aspects. Further,
Occlusions tests the approaches’ capabilities to maintain a consistent representation across time
under partial observability, which increases the task’s difficulty considerably.

In addition, we propose a novel Locomotion suite consisting of six tasks. All tasks include obstacles
that have to be localized through egocentric vision in order to be avoided. As the agents cannot
observe themselves from the egocentric perspective, they additionally need proprioception. sFig. 1
shows examples for the modified Cheetah Run. These tasks test the representations’ ability to
combine information from both sources to enable successful navigation and movement.

Further, we build on the OpenCabinetDrawer task from ManiSkill2 (Gu et al., 2023) where a mo-
bile robot navigates to a cabinet and opens a drawer using egocentric vision and proprioception. The
robot and a randomly sampled drawer are placed in a realistic apartment setting. We evaluate two
separate scenarios, one with constant and one with changing lighting and surroundings. Addition-
ally, we evaluate two visual modalities, i.e., standard RGB images and Depth images. Both types
ofimages are from the same egocentric perspective. The task’s complexity stems from the large
action space and visual realism. Fig. 5 provides examples of the changing conditions setting.

1<supplement, GitHub link will be added here>
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Figure 2: Aggregated performance after 106 environment steps on the Video Background suite (IQM
and 95% CIs). Even with Video Backgrounds, model-free Joint(CV+R) reaches the performance of
SOTA approaches on Standard Images (Fig. 8, Fig. 9) and outperforms all model-free and model-
based baselines. Model-based Joint(CV+R) improves performance over its fully contrastive coun-
terpart and DreamerPro. It almost matches the model-free performance. While CPC approaches
perform similarly to CV approaches for model-free RL, they are worse for model-based RL.

Jo
in

t(
R

+R
)

C
on

ca
t(

R
)

Im
g

O
nl

y(
R

)

Jo
in

t(
C

V
+R

)
Jo

in
t(

C
V

+C
V

)
C

on
ca

t(
C

V
)

Im
g

O
nl

y(
C

V
)

Jo
in

t(
C

PC
+R

)
Jo

in
t(

C
PC

+C
PC

)
C

on
ca

t(
C

PC
)

Im
g

O
nl

y(
C

PC
)

Pr
op

ri
oS

A
C

D
R

Q
v2

D
R

Q
v2

(I
+P

)

D
en

oi
se

dM
D

P
D

B
C

Jo
in

t(
R

+R
)

Im
g

O
nl

y(
R

)

Jo
in

t(
C

V
+R

)
Jo

in
t(

C
V

+C
V

)
Im

g
O

nl
y(

C
V

)

Jo
in

t(
C

PC
+R

)
Jo

in
t(

C
PC

+C
PC

)
Im

g
O

nl
y(

C
PC

)

D
re

am
er

Pr
o

D
en

oi
se

dM
D

P
T

IA

0

200

400

600

800

1,000 Model-Free Reinforcement Learning Model-Based Reinforcement Learning

E
xp

ec
te

d
R

et
ur

n

Figure 3: Aggregated performance after 106 environment steps on the Occlusion suite (IQM and
95% CIs). Model-free Joint(CPC+R) performs best among all considered approaches, significantly
outperforming all concatenation-based approaches. For model-based Joint(CPC+R) more than dou-
bles the score than its fully contrastive counterpart, showing how using reconstruction for low di-
mensional sensors can remedy issues with contrastive learning in model-based RL. No approach
using image reconstruction or only a single modality achieves reasonable performance.

Discussion. Our analysis builds on the full results presented in Appendix C. Our experiments
show how joint representations outperform the concatenation of image representations with propri-
oception, single-senor baselines, and a large selection of model-free and model-based baselines.
These effects are pronounced for the more difficult settings, i.e., Occlusions (Fig. 3), Locomo-
tion (Fig. 4), and OpenCabinetDrawer (Fig. 5) Furthermore, our combination of contrastive and
reconstruction-based losses (Joint(CV+R) and Joint(CPC+R)) outperforms using purely contrastive
objectives (Joint(CV+CV) and Joint(CPC+CPC)), in particular for model-based RL and the harder
tasks.. In both Occlusions (Fig. 3) and OpenCabinetDrawer (Fig. 5), no image-only approach learns
reasonable behavior or manages to outperform ProprioSAC. While the Concat approaches already
improve performance using joint representation gives further significant gains in both sample com-
plexity (Fig. 8, Fig. 9, Fig. 13, Fig. 14) and final performance. Our experiments on OpenCabinet-
Drawer (Fig. 5), show these effects also hold when using depth images instead of color images.

While model-free and model-based agents perform similarly well for approaches that reconstruct
images, model-based agents perform worse than their model-free counterparts for contrastive image
losses (Fig. 2, Fig. 3, Fig. 8, Fig. 9). This is in line with previous findings (Ma et al., 2020), indicat-
ing that contrastive approaches struggle to learn suitable long-term dynamics that enable successful
model-based RL. Notably, for the image-only representations, this performance gap is significantly
larger than for joint representations. Using a joint representation almost closes the gap between
model-free and model-based for Joint(CV+R) and allows the Joint(CPC+R) to significantly outper-
form the proprioception-only baseline (Fig. 2, Fig. 3). This result demonstrates how joint represen-
tations allow learning of stable long-term dynamics that enable more successful model-based RL.
However, we still find that model-free methods perform better for contrastive representations and
thus only consider those for the Locomotion suite and OpenCabinetDrawer.

When the images contain no irrelevant aspects, such as the Standard Images, reconstruction-based
approaches perform on par with their contrastive counterparts in the model-free setting (Fig. 8) and
outperform them in the model-based setting (Fig. 9). Yet, as expected, approaches that reconstruct
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Figure 5: Left: Example color and depth images from OpenCabinetDrawer with changing back-
ground. Right: Performance of model-free agents after 1.5 × 106 environment steps on Open-
CabinetDrawer (IQM and 95% CIs) with constant and changing background. These results further
show the benefits of learning joint representations with appropriate losses for each modality. The
fully contrastive approaches ( Joint(CV+CV) and Joint(CPC+CPC) fail on both tasks and, for color
images Joint(R+R) only works with constant background. Joint(CV+R) and Joint(CPC+R) on the
other hand perform well in both settings, outperforming concatenation-based approaches and main-
taining their performance when switching to the more challenging changing background setting.
When using depth images, we get generally similar results. Yet, the performance decreases less
for Joint(R+R), the contrastive concatenation baselines, and DrQv2(I+P) when adding the changing
backgrounds as using depth images removes some sources of noise, such as the changing lighting.

images fail in the Video Background (Fig. 2) and Occlusion (Fig. 3) tasks as well as the chang-
ing background variant of OpenCabinetDrawer (Fig. 5). Here, only joint representations with a
contrastive image loss and reconstruction for proprioception perform well, as they can ignore the
irrelevant aspects of the images. In the Locomotion experiments, the CPC approaches (Fig. 4) have
a significant edge over reconstruction. While highly relevant to the task, the obstacles still appear
at random and have random colors for some tasks, which makes reconstruction harder. The con-
trastive methods’ advantage is pronounced in those tasks with random colored obstacles. When
comparing the contrastive learning paradigms, the contrastive variational approach has an edge over
CPC on Video Backgrounds (Fig. 2) and OpenCabinetDrawer (Fig. 5) with color and depth images.
Yet, CPC performs better in Occlusion (Fig. 3) and Locomotion (Fig. 4). In particular, the better
performance in Occlusions indicates CPC approaches are better suited for propagating information
over multiple time steps. However, our method of learning a joint representation using a contrastive
image loss and reconstruction for proprioception performs best in both paradigms across all tasks.

Using depth instead of color for OpenCabinetDrawer (Fig. 5) leads to similar conclusions with con-
stant backgrounds. With the more challenging changing backgrounds, using depth images removes
some noise sources, e.g., the changing lighting. This allows several approaches to achieve higher
performance but has only minor effects on the ranking, with Joint(CV+R) performing best for both
image types, which shows how joint representations are beneficial across different visual modalities.

When comparing to SOTA image-only methods, model-based Img-Only(R), which strongly resem-
bles Dreamer-v1, cannot quite match the performance of Dreamer-v3 and DreamerPro on Standard
Images (Fig. 9). Yet, the contrastive Img-Only approaches outperform all other image-only baselines
on Video Backgrounds (Fig. 2) and Occlusions (Fig. 3). DreamerPro retains some performance on
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Figure 6: Left: Saliency Maps showing on which pixels the respective representation learning
approaches focus. Joint(CV+R) clearly focuses better on the task-relevant cheetah, while Img-
Only(CV) is more distracted by the video background. Right: In the occlusion tasks, we train a
separate decoder to reconstruct the occlusion-free ground truth from the (detached) latent repre-
sentation. For Cartpole Swingup only the cart position is part of the proprioception. Still,
Joint(CPC+R) can capture both cart position and pole angle, while Img-Only(CPC) fails to do so.

Video Backgrounds, yet, like all other image-only approaches, it fails on Occlusions. Similar to the
results of (Stone et al., 2021), we find that DrQ-v2’s performance deteriorates when adding Video
Backgrounds or the changing backgrounds for OpenCabinetDrawer. Including proprioception helps
for DrQ-v2, in particular in Locomotion (Fig. 4) and OpenCabinetDrawer (Fig. 5), yet it still per-
forms worse than that of our approach and even the Concat baselines. DBC, TIA, and DenoisedMDP
fail in both Video Backgrounds and Occlusions. The discrepancy in performance to similar video
background tasks is due to a more difficult experimental setup, detailed in Appendix B.5. These
results clearly show that including readily available proprioception allows solving visually more
challenging tasks and that doing so naively (DRQ-v2(I+P) and Concat) is suboptimal.

The performance profiles (Fig. 10, Fig. 11, Fig. 12) show that the aggregated performance under-
lying our analysis is representative of the per-task performance, i.e., if an approach outperforms
another when considering the aggregated performance, it also does so on a large majority of the
individual tasks. Furthermore, performance is consistent across the different observation types for
the DMC tasks, i.e., Occlusions are more difficult than Video Background, which are more diffi-
cult than Standard Images. Finally, we qualitatively investigate some of the learned representations
in Fig. 6, which illustrates how joint representation learning can help the approaches to focus on
relevant aspects and extract all necessary information from an image.

5 CONCLUSION

We consider the problem of Reinforcement Learning (RL) from multiple sensors, in particular im-
ages and proprioception. Building on Recurrent State Space Models, we learn joint representations
of all available sensors instead of considering them in isolation. We propose combining contrastive
and reconstruction approaches and consider variational and predictive coding paradigms for training.
Our large-scale evaluation on modified versions of the DeepMind Control Suite, a novel Locomo-
tion suite, and a visually realistic mobile manipulation task with both color and depth images, shows
the benefits of this approach. We distill the results of this evaluation into the following takeaways:
(i) Joint representations outperform the concatenation of image representations and proprioception.
(ii) Combining contrastive approaches for images with reconstruction for low-dimensional, concise
signals can significantly improve performance, especially in harder tasks. Yet, both the contrastive
variational and contrastive predictive paradigms deserve consideration, as they perform differently
well in different settings. (iii) In model-based RL, joint representations offer an easy and highly
effective way to improve performance in tasks that require contrastive image objectives.

Limitations. While we showed the benefits of joint representations in both cases, our evaluation is
inconclusive about whether contrastive variational or contrastive predictive coding approaches are
generally preferable. Here, further investigation is required to deepen the understanding of their ad-
vantages and disadvantages. Additionally, even with a combination of contrastive and reconstruction
losses, model-free agents perform better than their model-based counterparts. This suggests there is
still room for improvement in contrastive RSSM training, especially w.r.t. dynamics learning.
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Reproducibility Statement. We follow the suggestions from Agarwal et al. (2021) to provide
information about the statistical significance of our results. Appendix A provides details about all
newly created and modified environments and tasks. Appendix B lists all hyperparameters and
architectural details of our model and further information on the used baselines. Appendix C lists
the full results underlying the analysis in this paper and further information on the result aggregation
and numbers of seeds. Code to reproduce all our results is available in the supplement and will be
published after de-anonymization.
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Table 1: Splits of the entire system state into proprioceptive and non-proprioceptive parts for the
DeepMind Control Suite environments.

Environment Proprioceptive Non-Proprioceptive

Ball In Cup cup position and velocity ball position and velocity
Cartpole cart position and velocity pole angle and velocity
Cheetah joint positions and velocities global pose and velocity
Reacher reacher position and velocity distance to target
Quadruped joint positions and velocities global pose + velocity, forces
Walker orientations and velocities of links global pose and velocity, height above ground

Table 2: Splits of the entire system state into proprioceptive and non-proprioceptive parts for the
Locomotion Suite. Some of the agents (Cheetah, Walker, Quadruped) require more proprioceptive
information for the locomotion tasks with an egocentric vision than for the standard tasks with
images from an external perspective.

Environment Proprioceptive Non-Proprioceptive

Ant joint position and velocity wall positions
global velocities global position

Hurdle Cheetah joint positions and velocities hurdle positions and heights
global velocity global position

Hurdle Walker orientations and velocities of links hurdle positions and height
global position and velocity

Quadruped (Escape) joint positions and velocities, Information about terrain
torso orientation and velocity,

imu, forces, and torques at joints

A ENVIRONMENTS

A.1 DEEPMIND CONTROL SUITE TASKS

Table 1 states how we split the states of the original DeepMind Control Suite (DMC) (Tassa et al.,
2018) tasks into proprioceptive and non-proprioceptive parts. For the model-based agents, we fol-
lowed common practice (Hafner et al., 2020; Fu et al., 2021; Wang et al., 2022; Deng et al., 2022)
and use an action repeat of 2 for all environments. We do the same for the model-free agents except
for: Ball In Cup Catch (4), Cartpole Swingup (8), Cheetah Run (4) and Reacher
Easy (4). All environments in the locomotion suite also use an action repeat of 2, this includes
Hurdle Cheetah Run which requires more fine-grained control than the normal version to
avoid the hurdles.

Natural Background. Following (Nguyen et al., 2021; Deng et al., 2022; Zhang et al., 2020; Fu
et al., 2021; Wang et al., 2022) we render videos from the driving car class of the Kinetics400
dataset (Kay et al., 2017) behind the agents to add a natural video background. However, the pre-
viously mentioned works implement this idea in two distinct ways. Nguyen et al. (2021) and Deng
et al. (2022) use color images as background and pick a random sub-sequence of a random video
for each environment rollout. They adhere to the train-validation split of the Kinetcs400 dataset,
using training videos for representation and policy learning and validation videos during evaluation.
Zhang et al. (2020); Fu et al. (2021); Wang et al. (2022), according to the official implementations,
instead work with gray-scale images and sample a single background video for the train set once
during initialization of the environment. They do not sample a new video during the environment
reset, thus all training sequences have the same background video. We follow the first approach, as
we believe it mimics a more realistic scenario of always changing and colored natural background.

Occlusions. Following (Becker & Neumann, 2022), we render slow-moving disks over the origi-
nal observations to occlude parts of the observation. The speed of the disks makes memory neces-
sary, as they can occlude relevant aspects for multiple consecutive timesteps.
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Figure 7: The environments in the Locomotion Suite are (from left to right) Hurdle Cheetah Run,
Hurdle Walker Walk / Run, Ant Empty, Ant Walls, and Quadruped Escape. Upper Row: Egocentric
vision provided to the agent. Lower Row: External image for visualization.

A.2 LOCOMOTION SUITE

The 6 tasks in the locomotion suite are Ant Empty, Ant Walls, Hurdle Cheetah Run,
Hurdle Walker Walk, Hurdle Walker Run, and Quadruped Escape. Table 2 shows
the splits into proprioceptive and non-proprioceptive parts. Fig. 7 displays all environments in the
suite.

Ant. The Ant tasks build on the locomotion functionality introduced into the DeepMind Control
suite by (Tassa et al., 2020). For Ant Empty, we only use an empty corridor, which makes this the
easiest task in our locomotion suite. For Ant Walls, we randomly generate walls inside the corridor,
and the agent has to avoid those in order to achieve its goal, i.e., running through the corridor as fast
as possible.

Hurdle Cheetah & Walker. We modified the standard Cheetah Run, Walker Walk, and
Walker Run tasks by introducing ”hurdles” over which the agent has to step in order to move
forward. The hurdles’ positions, heights, and colors are reset randomly for each episode, and the
agent has to perceive them using egocentric vision. For this vision, we added a camera in the head of
the Cheetah and Walker. Note that the hurdle color is not relevant to avoid them and thus introduces
irrelevant information that needs to be captured by reconstruction-based approaches.

Quadruped Escape. The Quadruped Escape task is readily available in the DeepMind Control
Suite. For the egocentric vision, we removed the range-finding sensors from the original observation
and added an egocentric camera.

A.3 OpenCarbinetDrawer ENVIRONMENT BASED ON MANISKILL2

Both the static and changing background versions of the OpenCarbinetDrawer task are based on
the mobile manipulation OpenCabinetDrawer-task from Maniskill2 (Gu et al., 2023). Both
versions use the normalized dense reward provided by the original environment. We disable the
rotation of the robot base, as we found this significantly speeds up learning for all considered ap-
proaches. This results in a 10 dimensional action space, consisting of the x and y velocities of the
base, desired changes for the 7 robot joints, and the gripper. Images are egocentric from the top of
the robot base and the proprioception includes the entries from the ManiSkill2 ”state dict”.

For the constant background variant, we use the ”minimal bedroom” scene provided by ManiSkill2.
For the changing background variant, we work with the scenes from the Replica Dataset Straub
et al. (2019) (specifically: ReplicaCAD baked lighting2). We pick 80 scenes and create hand-picked
offsets to ensure realistic drawer placement. Additionally, we randomly sample RGB values for the
ambient lighting, changing the overall appearance of the scenes.

For the depth images we use the depth camera functionality provided by ManiSkill2 and clip to
values between 0 and 4 meters.

2https://huggingface.co/datasets/ai-habitat/ReplicaCAD_baked_lighting/
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B ARCHITECTURE DETAILS, TRAINING, AND BASELINES

We used the same hyperparameters for all experiments based on the DeepMind Control Suite
(DMC), i.e., the standard tasks with the different observation types, as well as, the locomotion
tasks. For the Maniskill2 (Gu et al., 2023) based OpenCarbinetDrawer tasks, we used a slightly
larger model and a more conservative update scheme for actor and critic.

B.1 Recurrent State Space Model

We denote the deterministic part of the RSSM’s state by ht and the stochastic part by st. The base-
RSSM model without parts specific to one of the objectives consists of:

• Encoders: ψ
(k)
obs (ot), where ψobs is the convolutional architecture proposed by (Ha &

Schmidhuber, 2018) and used by (Hafner et al., 2019; 2020) for image observations. For
the low-dimensional proprioception, we used 3× 400 Units fully connected NN with ELU
activation for the DMC tasks and a 4× 512 Units fully connected NN with ELU activation
for OpenCarbinetDrawer.

• Deterministic Path: ht = g(zt−1,at−1,ht−1) = GRU(ψdet(zt−1,at−1),ht−1) (Cho
et al., 2014), where ψdet is 2 × 400 units fully connected NN with ELU activation and
the GRU has a memory size of 200 for the DMC tasks. For OpenCarbinetDrawer the has
2× 512 units and the GRU a memory size of 400

• Dynamics Model: p(zt+1|zt,at) = ψdyn(ht), where ψdyn is a 2 × 400 units fully con-
nected NN with ELU activation for the DMC tasks and a 2× 512 units fully connected NN
with ELU activation for OpenCarbinetDrawer. The network learns the mean and standard
deviation of the distribution.

• Variational Distribution q(zt|zt−1,at−1,ot) = ψvar

(
ht,Concat

(
{ψ(k)

obs (o
(k)
t )}

k=1:K

))
,

where ψvar is a 2 × 400 units fully connected NN with ELU activation for the DMC tasks
and a 2 × 512 units fully connected NN with ELU activation for OpenCarbinetDrawer.
The network learns the mean and standard deviation of the distribution.

• Reward Predictor p(rt|zt): 2 × 128 units fully connected NN with ELU activation for
model-free agents. 3× 300 units fully connected NN with ELU activation for model-based
agents. The network only learns the mean of the distribution. The standard deviation is
fixed at 1. The model-based agents use a larger reward predictor as they rely on it for
learning the policy and the value function. Model-free agents use the reward predictor only
for representation learning and work with the ground truth rewards from the replay buffer
to learn the critic.

B.2 OBJECTIVES

Image Inputs and Augmentation. For the reconstruction objective, we used images of size 64×64
pixels as input to the model. For the contrastive objectives, the images are of size 76 × 76 pixel
image and we used 64× 64 pixel random crops. Cropping is temporally consistent, i.e., we used the
same crop for all time steps in a sub-sequence. For evaluation, we took the crop from the center.

Reconstruction Objectives. Whenever we reconstructed images we used the up-convolutional ar-
chitecture proposed by (Ha & Schmidhuber, 2018) and used by (Hafner et al., 2019; 2020). For
low-dimensional observations, we used 3 × 400 units fully connected NN with ELU activation for
the DMC tasks and a 4 × 512 Units fully connected NN with ELU activation for OpenCarbinet-
Drawer. In all cases, only the mean is learned. We use a fixed variance of 1 for all image losses
and the proprioception for the DMC tasks. For OpenCarbinetDrawer we set the variance for the
proprioception to 0.04.

KL. For the KL terms in Equation 1 and Equation 3 we follow Hafner et al. (2023) and combine the
KL-Balancing technique introduced in Hafner et al. (2021) with the free-nats regularization used
in Hafner et al. (2019; 2020). Following Hafner et al. (2021) we use a balancing factor of 0.8. We
give the algorithm 1 free nat for the DeepMind Control Suite and the Locomotion Suite tasks and 3
for OpenCarbinetDrawer.
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Table 3: Hyperparameters used for policy learning with the Soft Actor-Critic.
Hyperparameter DMC and Locomotion OpenCarbinetDrawer

Actor Hidden Layers 3× 1, 024 Units 3× 1, 024 Units
Actor Activation ELU ELU
Critic Hidden Layers 3× 1, 024 Units 3× 1, 024 Units
Critic Activation ELU ELU

Discount 0.99 0.85

Actor Learning Rate 0.001 0.0003
Actor Gradient Clip Norm 10 10
Critic Learning Rate 0.001 0.0003
Critic Gradient Clip Norm 100 100

Target Critic Decay 0.995 0.995
Target Critic Update Interval 1 1

α learning rate 0.001 0.0003
initial α 0.1 1.0
target entropy - action dim - action dim

Contrastive Variational Objective. The score function for the contrastive variational objective is
given as

f (k)v (o
(k)
t , zt) = exp

(
1

λ
ρo

(
ψ
(k)
obs (ot)

)T
ρz(zt)

)
,

where ψ(k)
obs is the RSSM’s encoder and λ is a learnable inverse temperature parameter. ρo and ρz are

projections that project the embedded observation and latent state to the same dimension, i.e., 50.
ρo is only a single linear layer while ρz is a 2× 256 fully connected NN with ELU activation. Both
use LayerNorm (Ba et al., 2016) at the output.

Contrastive Predictive Objective. The score function of the contrastive predictive objective looks
similar to the one of the contrastive variational objective. The only difference is that the latent state
is forwarded in time using the RSSMs transition model to account for the predictive nature of the
objective,

f (k)p (o
(k)
t+1, zt) = exp

(
1

λ
ρo

(
ψ
(k)
obs (ot+1)

)T
ρz(ϕdyn(g(zt, ·))

)
.

We use the same projections as in the contrastive variational case.

Following Srivastava et al. (2021) we scale the KL term using a factor of β = 0.001 and parameterize
the inverse dynamics predictor as a 2× 128 unit fully connected NN with ELU activations.

Optimizer. We used Adam Kingma & Ba (2015) with α = 3 × 10−4, β1 = 0.99, β2 = 0.9 and
ε = 10−8 for all losses. We clip gradients if the norm exceeds 10.

B.3 SOFT ACTOR CRITIC

Table 3 lists the hyperparameters used for model-free RL with SAC Haarnoja et al. (2018).

We collected 5 initial sequences at random. During training, we update the RSSM, critic, and actor
in an alternating fashion for d steps before collecting a new sequence by directly sampling from the
maximum entropy policy. Here, d is set to be half of the environment steps collected per sequence
(after accounting for potential action repeats) for DMC tasks and 50 for OpenCarbinetDrawer. Each
step uses 32 subsequences of length 32, uniformly sampled from all prior experience.

B.4 LATENT IMAGINATION

Table 4 lists the hyperparameters used for model-based RL with latent imagination. They follow to
a large extent those used in Hafner et al. (2020; 2021).
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Table 4: Hyperparameters used for policy learning with Latent Imagination.
Hyperparameter Value

Actor Hidden Layers 3× 300 Units
Actor Activation ELU
Critic Hidden Layers 3× 300 Units
Critic Activation ELU

Discount 0.99

Actor Learning Rate 8× 10−5

Actor Gradient Clip Norm 100

Value Function Learning Rate 8× 10−5

Value Gradient Clip Norm 100
Slow Value Decay 0.98
Slow Value Update Interval 1
Slow Value Regularizer 1

Imagination Horizon 15

Return lambda 0.95

We collected 5 initial sequences at random. During training, we update the RSSM, value function,
and actor in an alternating fashion for 100 steps before collecting a new sequence. Each step uses 50
subsequences of length 50, uniformly sampled from all prior experience. For collecting new data,
we use constant Gaussian exploration noise with σ = 0.3.

B.5 BASELINES.

For Dreamer-v3 (Hafner et al., 2023) we use the raw reward curve data provided with the official
implementation3. For DreamerPro (Deng et al., 2022)4, Task Informed Abstractions (Fu et al.,
2021)5, Deep Bisumlation for Control Zhang et al. (2020)6, DenoisedMDP (Wang et al., 2022)7 and
DrQ-v2 (Yarats et al., 2022)8 we use the official implementations provided by the respective authors.

DrQ-(I+P) builds on the official implementation and uses a separate encoder for the proprioception
whose output is concatenated to the image encoders’ output and trained using the critics’ gradients.

Differences between Model-Based Img-Only(R) and Dreamer-v1(Hafner et al., 2020). Img-
Only(R) differs from the original Dreamer (Dreamer-v1) (Hafner et al., 2020) in using the KL-
balancing introduced in (Hafner et al., 2021) and in regularizing the value function towards its own
exponential moving average, as introduced in (Hafner et al., 2023). See Appendix B for all our
training details and hyperparameters.

There are considerable differences between the contrastive version of Dreamer-v1(Hafner et al.,
2020) and Img-Only(CV), in particular regarding the exact form of the mutual information estimation
and the use of image augmentations.

Differences between Model-Free Img-Only(CPC), Joint(CPC+CPC) and the approach of Sri-
vastava et al. (2021). The main difference is that (Srivastava et al., 2021) includes the critic’s
gradients when updating the representation while in our setting no gradients flow from the actor or
the critic to the representation. Furthermore, we did not include the inverse dynamics objective used
by Srivastava et al. (2021) as we did not find it to be helpful. Additionally, we adapted some hyper-

3https://github.com/danijar/dreamerv3/blob/main/scores/data/dmcvision_
dreamerv3.json.gz

4https://github.com/fdeng18/dreamer-pro
5https://github.com/kyonofx/tia/
6https://github.com/facebookresearch/deep_bisim4control/
7https://github.com/facebookresearch/denoised_mdp
8https://github.com/facebookresearch/drqv2
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parameters to match those of our other approaches. The results are based on our implementation,
not the official implementation of (Srivastava et al., 2021).

Why DBC, TIA, and DenoisedMDP Fail in Our Setting. Deep Bisimulation for Control
(DBC) (Zhang et al., 2020), Task Informed Abstractions (TIA) (Fu et al., 2021), and DenoisedMDP
(Wang et al., 2022) fail to perform well in the more challenging natural video background setting
introduced by Nguyen et al. (2021) and Deng et al. (2022). As described in Section A.1, there are
differences in video selection and sampling.

The failure of DBC in this setting is in line with the findings of Nguyen et al. (2021).

TIA and DenoisedMDP factorize the latent variable into 2 distinct parts and formulate loss func-
tions that force one part to focus on task-relevant aspects and the other on task-irrelevant aspects.
However, the part responsible for the task-irrelevant aspects still has to model those explicitly. In
the more complicated setting with randomly sampled, colored background videos, the TIA and De-
noisedMDP world models underfit and thus fail to learn a good representation or policy. Contrastive
approaches, such as our approach and DreamerPro (Deng et al., 2022), do not struggle with this
issue, as they do not have to model task-irrelevant aspects but can learn to ignore them.

B.6 COMPUTE RESOURCES

Training a single agent for any of the DMC tasks takes between 8 and 12 hours on a single GPU
(Nvidia V100 or A100), depending on which representation learning approach and RL paradigm we
use. For OpenCabinetDrawer one run takes about 30 hours due to the more complex simulation.
Approaches using a contrastive loss for the image are slightly faster than those that reconstruct the
image as they do not have to run the relatively large up-convolutional image decoder. The model-
free agents train slightly faster than the model-based ones, as the model-based ones have to predict
several steps into the future for latent imagination. Especially propagating gradient back through
this unrolling is relatively costly compared to a SAC update. Including all baselines, we trained
about 4, 000 agents for the final evaluation. Also including preliminary experiments, we estimate
the total compute resources invested in this work to be about 70, 000 GPU hours.

C COMPLETE RESULTS

The following pages list the aggregated results and performance profiles for all tasks, representation-
learning approaches, and both model-free and model-based RL. We compute inter-quartile means
and stratified bootstrapped confidence intervals, as well as the performance profiles according to the
recommendations of Agarwal et al. (2021) using the provided library9. For each task in the suites we
ran 5 seeds per method, i.e., the results for Standard Images, Video Backgrounds, and Occlusions are
aggregated over 35 runs and those for Locomotion over 30 runs. For OpenCabinetDrawer we run
20 seeds per method. Fig. 8 lists the aggregated results for all model-free agents on the DeepMind
Control (DMC) Suite tasks and Fig. 10 lists the corresponding performance profiles. Fig. 9 lists the
aggregated results for all model-based agents on the DeepMind Control Suite tasks and Fig. 11 lists
the corresponding performance profiles. Fig. 12 shows aggregated results and performance profiles
for the Locomotion suite. Fig. 13 shows the results for the OpenCarbinetDrawer with color images
and Fig. 14 shows the results for the OpenCarbinetDrawer with depth images. We also list the
per-environment results for the remaining environments:

• Fig. 15: Model-free agents on DMC tasks with Standard Images

• Fig. 16: Model-free agents on DMC tasks with Video Background.
• Fig. 17: Model-free agents on DMC tasks with Occlusions.
• Fig. 18: Model-based agents on DMC tasks with Standard Images.
• Fig. 19: Model-based agents on DMC tasks with Video Background.
• Fig. 20: Model-based agents on DMC tasks with Occlusions.
• Fig. 21: Model-free agents on Locomotion tasks.

9https://github.com/google-research/rliable
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Figure 8: Aggregated results for all model-free agents on the DeepMind Control Suite environments
with Standard Images, Video Background, and Occlusions. As expected, reconstruction-based ap-
proaches do not work on Video Background and Occlusions. Out of all approaches considered in
this work Joint(CV+R) achieves the highest performance on Video Background and Joint(CPC+R)
achieves the highest performance on Occlusions.
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Figure 9: Aggregated results for all model-based agents on the DeepMind Control Suite environ-
ments with Standard Images, Video Background, and Occlusions. Compared to their model-free
counterparts (Fig. 8), model-based agents perform worse, except if a reconstruction-based represen-
tation is used. Yet, the performance gap is larger for image-only and fully contrastive approaches.
Especially Joint(CV+R) still achieves high performance on Video Background, almost matching the
performance of Dreamer-v3 on Standard Images. This further highlights the benefits of using joint
representations with a mixed objective, which can significantly improve over tailored approaches
such as DreamerPro.
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Figure 10: Performance profiles for all model-free agents on the DeepMind Control Suite environ-
ments with Standard Images, Video Background, and Occlusions. They indicate that performance is
largely consistent across the environments. The sole exception is Joint(CV+R) and Joint(CV+CV)
on Occlusions. Here, the former fails for Ball-in-Cup Catch and Cartpole Swingup, while the
latter underperforms for Cheetah Run (c.f. Fig. 17).
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Figure 11: Performance profiles for all model-based agents on the DeepMind Control Suite environ-
ments with Standard Images, Video Background, and Occlusions. They indicate that performance is
largely consistent across the environments.
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Figure 12: Aggregated results and performance profiles for all model-free agents on Locomotion
environments. Both contrastive approaches outperform reconstruction. Fig. 21 shows that the perfor-
mance difference is larger in environments with randomly colored obstacles (Hurdle Cheetah
Run, Hurdle Walker Walk, Hurdle Walker Run. The color is not relevant to avoid the
obstacles but seems to hinder reconstruction.
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Figure 13: Results for model-free agents on both OpenCabientDrawer tasks with color images..
Joint(CV+R) achieves the highest performance among all considered methods on both tasks. If the
background remains constant, Joint(R+R) performs similarly but its performance significantly de-
teriorates for changing backgrounds. No Img-Only approach, Joint(CV+CV), or Joint(CPC+CPC)
learns a policy that achieves any success and Concat performs on par with the Proprio-Only. Con-
catenating a reconstruction-based representation to the proprioception Concat(R) even breaks the
approach on changing backgrounds. Likely, from the policy’s viewpoint, the representation appears
to be noise and hinders decision-making.
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Figure 14: Results for model-free agents on both OpenCabientDrawer tasks with depth images.
For constant background, the results are similar to the environments with color images (Fig. 13).
Joint(R+R) and several baselines suffer less from adding the changing background than in the color
image setting but are still outperformed by Joint(CV+R) and Joint(CPC+R), which retain their per-
formance. These results show how joint representations can help not only with standard color images
but also in combination with depth information.
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Figure 15: Per environment results for model-free agents on the DeepMind Control Suite with
Standard Images.
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Figure 16: Per environment results for model-free agents on the DeepMind Control Suite with Video
Background.
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Figure 17: Per environment results for model-free agents on the DeepMind Control Suite with
Occlusions.

29



Under review as a conference paper at ICLR 2024

Reconstruction-Based Representation
Joint(R) Img-Only(R) Dreamer-v3 DreamerPro

0

200

400

600

800

1,000

E
xp

ec
te

d
R

et
ur

n

Ball in Cup Catch Cartpole Swingup Cheetah Run

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

Reacher Easy

0.0 0.2 0.4 0.6 0.8 1.0

0

200

400

600

800

1,000

Environment Steps (×106)

E
xp

ec
te

d
R

et
ur

n

Quadruped Walk

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

Walker Walk

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

Walker Run

Contrastive Variational Representations
Joint(CV+R) Joint(CV+CV) Img-Only(CV)
Dreamer-v3 DreamerPro

0

200

400

600

800

1,000

E
xp

ec
te

d
R

et
ur

n

Ball in Cup Catch Cartpole Swingup Cheetah Run

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

Reacher Easy

0.0 0.2 0.4 0.6 0.8 1.0

0

200

400

600

800

1,000

Environment Steps (×106)

E
xp

ec
te

d
R

et
ur

n

Quadruped Walk

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

Walker Walk

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

Walker Run

Contrastive Predictive Coding Representations
Joint(CPC+R) Joint(CPC+CPC) Img-Only(CPC)
Dreamer-v3 DreamerPro

0

200

400

600

800

1,000

E
xp

ec
te

d
R

et
ur

n

Ball in Cup Catch Cartpole Swingup Cheetah Run

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

Reacher Easy

0.0 0.2 0.4 0.6 0.8 1.0

0

200

400

600

800

1,000

Environment Steps (×106)

E
xp

ec
te

d
R

et
ur

n

Quadruped Walk

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

Walker Walk

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×106)

Walker Run

Figure 18: Per environment results for model-based agents on the DeepMind Control Suite with
Standard Images.
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Figure 19: Per environment results for model-based agents on the DeepMind Control Suite with
Video Background.
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Figure 20: Per environment results for model-based agents on the DeepMind Control Suite with
Occlusions.
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Figure 21: Per environment results for model-free agents on Locomotion.
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