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ABSTRACT

ReduNet has emerged as a promising white-box neural architecture grounded in
the principle of maximal coding rate reduction, offering interpretability in deep
feature learning. However, its practical applicability is hindered by computational
complexity and limited ability to exploit class-specific structures, especially in
undersampled regimes. In this work, we propose Multi-ReduNet and its variant
Multi-ReduNet-LastNorm, which decompose the global learning objective into
class-wise subproblems. These extensions preserve the theoretical foundation of
ReduNet while improving training efficiency by reducing matrix inversion costs
and enhancing feature separability. We provide a concise theoretical justifica-
tion for the class-wise decomposition and show through experiments on diverse
datasets that our models retain interpretability while achieving superior efficiency
and discriminative power under limited supervision. Our findings suggest that
class-wise extensions of ReduNet broaden its applicability, bridging the gap be-
tween interpretability and practical scalability in deep learning.

1 INTRODUCTION

High-dimensional data across finance, biomedicine, and social networks often exhibit undersam-
pled regimes (feature dimension d ≫ number of samples m) due to limited samples, privacy re-
strictions, and acquisition costs. In this settings, many distinct models can interpolate the training
data equally well, which tends to exacerbate overfitting and unstable generalization (Hastie et al.,
2009; Bühlmann & Van De Geer, 2011), posing a fundamental challenge. While ReduNet (Chan
et al., 2021), a white-box framework grounded in Maximal Coding Rate Reduction (MCR²) (Yu
et al., 2020), provides interpretable feature learning with provable optimization, its global O(d3)
complexity can be reduced via class-wise decomposition in undersampled, imbalanced regimes
where class sizes vary significantly.1

To overcome these limitations, we introduce two extensions: Multi-ReduNet and Multi-ReduNet-
LastNorm. By decomposing the global ReduNet objective into class-wise subproblems, Multi-
ReduNet improves computational efficiency and enhances representation separability in undersam-
pled regimes. The LastNorm variant further refines this process by solely enforcing a single normal-
ization at the output, yielding consistent gains across multiple classifiers.

We contribute: (1) Theorem 2, proving MCR² admits rigorous class-wise decomposition via class-
orthogonality (Theorem 1), enabling independent per-class optimization without loss of optimality;
(2) Multi-ReduNet and Multi-ReduNet-LastNorm, reducing computational complexity of each
parameter fromO(d3) toO(m3

j ) via Woodbury identity while preserving interpretability; (3) exten-
sive experiments on six datasets (Reuters, MNIST, Fashion-MNIST, Swarm, DrivFace, ARCENE)
showing that, when averaging over four learning rates {0.5, 0.1, 0.05, 0.01} and three downstream
classifiers (SVM, kNN, NSC), Multi-ReduNet(-LastNorm) achieves 8.5–52.7 percentage points
higher mean accuracy than ReduNet (e.g., +30.7pp on Reuters, +52.7pp on DrivFace), while re-
ducing wall-clock training time by about 2× on average (1.4–2.6× across datasets) and improving
learning-rate robustness by roughly an order of magnitude (up to 9.8× smaller accuracy range
across η).

1We used GPT-4 solely for language polishing. All technical content, analysis, and conclusions remain
those of the authors.
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2 RELATED WORK

Learning from undersampled, high-dimensional data (m≪ d) arises across genomics (d > 20,000,
m = 30–100) (Nguyen & Rocke, 2002), mass spectrometry (Adam et al., 2002), and rare disease
imaging (Litjens et al., 2017). The ARCENE dataset (Guyon et al., 2007) exemplifies this with
d = 10,000 features but only m = 200 samples (m/d = 0.02), making representation learning in
the m≪ d regime a widely-recognized challenge.

Preprocessing-based methods such as PCA (Greenacre et al., 2022), LDA (Xing et al., 2001), and
data augmentation (Goodfellow et al., 2020) alleviate sample scarcity via dimensionality reduction
or synthetic examples, yet they do not explicitly model class-specific structure, by which we mean
the label-conditioned geometry of per-class feature subspaces and their mutual relations, and instead
rely on unstable global statistics when m ≪ d, limiting their ability to learn robust, interpretable
representations in undersampled regimes.

Specialized deep learning models for data-scarce settings include few-shot learning frameworks
(Prototypical Networks (Snell et al., 2017), Matching Networks (Vinyals et al., 2016)) and meta-
learning (MAML (Finn et al., 2017), Siamese networks (Koch, 2015)). While effective, these oper-
ate as black-box models with limited transparency.

Information-theoretic objectives (InfoMax (Hjelm et al., 2019), Information Bottleneck (Alemi
et al., 2017), Rate-Distortion (Theis et al., 2017)) offer principled criteria for representation learning
by maximizing mutual information or trading off compression and prediction accuracy. However,
these methods are typically implemented via deep neural encoders trained with variational bounds
and stochastic gradient descent, which yields black-box feature maps without closed-form updates,
class-specific structure, or transparent geometric interpretation.

ReduNet (Chan et al., 2021) addresses this via a white-box framework grounded in Maximal Cod-
ing Rate Reduction (MCR²) (Yu et al., 2020), where each layer admits an analytic update and the
resulting network provides interpretable, geometry-aware feature maps with provable optimization
guarantees. However, ReduNet operates on global feature matrices with dense operators, leading to
an O(d3) per-parameter complexity in the feature dimension d, which quickly becomes prohibitive
in high-dimensional, undersampled regimes. This motivates exploiting class-specific structure to
decompose the optimization into smaller per-class problems, substantially reducing computational
cost while preserving the MCR2 objective.

Our work builds on this trajectory by extending ReduNet with class-wise decomposition. In contrast
to black-box few-shot or generative models, our proposed Multi-ReduNet and Multi-ReduNet-
LastNorm retain interpretability while improving representation separability, computational effi-
ciency, and robustness to learning-rate choices in undersampled regimes.

3 PROPOSED METHODS

We now present our proposed extensions to ReduNet, designed to reduce computational complex-
ity and improve hyperparameter robustness in undersampled regimes. We first review the Re-
duNet framework and its connection to the Maximal Coding Rate Reduction (MCR²) principle
(Section 3.1). We then introduce Imp-ReduNet, which exploits the Woodbury identity to reduce
computational complexity of ReduNet (Section 3.1), and provide a theoretical justification showing
that the ReduNet objective can be decomposed into independent class-wise optimization subprob-
lems(Section 3.3). This motivates our proposed architectures, Multi-ReduNet and Multi-ReduNet-
LastNorm (Section 3.4), which leverage class-wise decomposition to improve computational effi-
ciency and hyperparameter robustness while retaining interpretability.

3.1 REDUNET PRELIMINARIES

Drawing on the principle of Maximal Coding Rate Reduction (MCR²) (Yu et al., 2020), ReduNet
(Chan et al., 2021) has been proposed as a new class of white-box networks. It seeks to learn a feature
representation Z ∈ Rd×m, where d is dimension of features and m is the number of samples, that
maximizes the discrepancy between global and class-wise covariance complexities. The original

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

objective (MCR²) with respect to the distortion ϵ takes the following form:

max
Z

R(Z, ϵ)−Rc(Z, ϵ|Π) = max
Z

(
1

2
log det

(
I + αZZ⊤)︸ ︷︷ ︸

Global Coding Rate

−
K∑
j=1

1

2
γj log det

(
I + αjZΠjZ⊤)︸ ︷︷ ︸

Class-wise Coding Rate

s.t. ∥Zj∥2F = ∥ZΠj∥2F = mj .

where Πj ∈ Rm×m denotes the membership matrix for class j whose diagonal entries represent
the probabilities of m samples in class j, mj = tr(Πj) is the number of samples in class j, α =
d/(mϵ2), αj = d/mjϵ

2), and γj = mj/m.

This objective maximizes the global coding rate (promoting inter-class diversity) while minimizing
class-wise coding rates (enforcing intra-class compactness), yielding discriminative yet coherent
representations.

During training, ReduNet jointly updates both representations and model parameters through a layer-
wise greedy optimization. At each layer l, a set of closed-form parameters {El, C

j
l }Kj=1 are com-

puted based on the current input features Zl, where

1

2

d log det(I + αZlZl
⊤)

dZl
= α(I + αZlZ

⊤
l )−1Zl := ElZl,

1

2

d log det(I + αjZlΠ
jZl

⊤)

dZl
= αj(I + αjZlΠ

jZ⊤
l )−1ZlΠ

j := Cj
l ZlΠ

j .

These matrices govern the update of each training sample zil ∈ Rd via:

zjl+1 = PSd−1

zil + η(Elz
i
l −

K∑
j=1

γjC
j
l z

i
l π̂

j
l (z

i
l ))

 , π̂j
l (z

i
l ) =

exp (−λ∥Cj
l z

i
l∥)∑K

j′=1 exp (−λ∥C
j′

l zil∥)
,

where λ, η are hyperparameters, and PSd−1 projects the update onto the unit sphere. Inference uses
the same update rule as training, applying the learned El and Cj

l to test inputs.

Rationale for unit-sphere projection. The projection PSd−1(·) serves two critical purposes.
First, we consider an MCR2 objective optimized under the class-wise Frobenius-norm constraint
∥Zj∥2F = mj ; projecting each column to the unit sphere is a simple sufficient way to enforce this
bound consistently in both training and inference (it is not mathematically necessary, and any other
bounded–norm parameterization satisfying ∥Zj∥2F = mj would also be valid). Second, without
norm control, the MCR2 objective could be trivially increased by multiplying Z by a large scalar,
leading to degenerate solutions that exploit magnitude rather than learning meaningful discrimina-
tive directions. The unit-sphere projection prevents this scaling degeneracy and forces the optimiza-
tion to focus on finding discriminative subspaces in feature space instead of arbitrarily amplifying
feature norms. We retain this projection in our Multi-ReduNet design for the same reasons.

3.2 IMP-REDUNET: REDUCING COMPUTATIONAL COMPLEXITY

ReduNet requires d × d matrix inversions for El and Cj
l , incurring O(d3) cost. When m ≪ d, we

exploit the Woodbury identity to reduce this to O(m3):

Lemma 1 (Woodbury Identity). For any α ∈ R and X ∈ Rd×m,

(I + αXX⊤)−1 = I − αX(I + αX⊤X)−1X⊤,

where the left side requires inverting a d × d matrix, while the right side requires only inverting an
m×m matrix.

Applying Lemma 1 to both El and Cj
l , we reduce the per-parameter complexity in ReduNet from

O(d3) to O(m3), a substantial gain when m ≪ d. For example, on the ARCENE dataset (d =
10,000, mtrain = 159), this represents a theoretical speedup factor of (10,000/159)3 ≈ 250,000×
in the inversion step alone. We refer to this Lemma 1–based implementation of ReduNet as imp-
ReduNet.
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While Lemma 1 addresses the dimensional bottleneck, it does not exploit the class structure of the
data. When the total sample size m is itself large (e.g., m > 1,000), the m×m inversion can still be
expensive. This motivates a further decomposition: can we break the m×m problem into K smaller
mj ×mj problems, one per class? The theoretical justification for this strategy is the subject of the
next section.

For the complete derivation of Lemma 1 using Sylvester’s determinant identity, see Appendix C.

3.3 MULTI-REDUNET: CLASS-WISE DECOMPOSITION

Having established that Imp-ReduNet reduces the per-parameter cost from O(d3) to O(m3) (Sec-
tion 3.1), we now address a complementary question: can we further exploit the class structure to
decompose the global MCR2 objective into independent per-class subproblems?

Intuition. For K classes with sizes {mj}Kj=1 (
∑

mj = m), independent per-class optimization
costs O(m3

j )≪ O(m3), especially when imbalanced. We show MCR2 permits this decomposition
without optimality loss. Crucially, class-orthogonality emerges as a property of the optimal solution
of MCR2 (Theorem 1) rather than an externally imposed constraint.
Theorem 1. Let Z = [z1, . . . , zm] ∈ Rd×m denote the feature matrix, and let {Πj ∈ Rm×m}Kj=1 be
diagonal membership matrices such that

∑K
j=1 Π

j = I . Assume rank(ZΠj) ≤ dj and
∑K

j=1 dj ≤
d, consider the MCR2 objective

max
Z∈Rd×m

1

2
log det

(
I + d

mϵ2ZZ⊤
)
−

K∑
j=1

mj

2m
log det

(
I + d

mjϵ2
ZΠjZ⊤

)
, (1)

subject to ∥ZΠj∥2F = mj , where mj = tr(Πj). Then any optimal solution Z⋆ necessarily satisfies
the class-orthogonality property:

(Zi)⊤Zj = 0 for all i ̸= j,

where Zj = Z⋆Πj denotes the class-j partition.

Notation. We follow the convention that columns of Z represent samples (i.e., Z ∈ Rd×m where
rows are features and columns are samples). Thus, (Zi)⊤Zj ∈ Rmi×mj is the cross-class Gram
matrix measuring inner products between class-i and class-j samples. The condition (Zi)⊤Zj = 0
expresses that the column spaces of Zi and Zj are orthogonal.

Proof sketch. The proof proceeds by contradiction using a determinant inequality for sums of posi-
tive semi-definite matrices (Corollary 1 in Appendix D.1).

Assume the optimal Z∗ has (Z∗j1)⊤Z∗j2 ̸= 0 for some classes j1 ̸= j2. By Corollary 1, the
global coding rate det(I +

∑
j Z

∗j(Z∗j)⊤) is strictly smaller than
∏

j det(I + Z∗j(Z∗j)⊤) when
classes overlap. We then construct an alternative solution Z ′ by re-orthogonalizing via SVD while
preserving per-class singular values. This Z ′ achieves strictly higher objective value, contradicting
optimality of Z∗.

The complete proof with detailed matrix algebra is in Appendix D.2.

Theorem 2. Let Z⋆ be any optimal solution to the global MCR2 problem (1). By Theorem 1, Z⋆

satisfies class-orthogonality, so we can write Z⋆j⊤Z⋆j′ = 0 for j ̸= j′. Under this optimal class-
orthogonal structure, suppose that rank(Zj) ≤ dj for each class j and

∑K
j=1 dj ≤ d. Then the

objective in (1) decomposes into K independent class-wise problems:

max
Zj

1

2

[
log det(I +

d

mϵ2
Zj(Zj)⊤)− mj

m
log det(I +

d

mjϵ2
Zj(Zj)⊤)

]
, (2)

subject to ∥Zj∥2F = mj .

Proof. Denote v1 as the optimal value of the MCR2, v2 as sum of the optimal values of class-wise
problems (2), the proof follows by showing that (i) any class-wise feasible solution is also globally
feasible (hence v2 ≤ v1), and (ii) by Theorem 1, the global optimum Z∗ satisfies class-orthogonality,
making it feasible for the class-wise problems (hence v1 ≤ v2). See Appendix D.3 for details.
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Theorem 2 establishes that the global MCR2 objective can be decomposed into K independent class-
wise subproblems without loss of optimality. While Theorem 1 was previously known (Chan et al.,
2021), our proof via Corollary 1 is more direct and streamlined. Crucially, Theorem 2 enables the
first practical algorithm for class-wise MCR2 optimization.

Practical implications. Under undersampled scenarios m ≪ d, the data inherently fulfill the con-
ditions of Theorems 1 and 2, since the rank of each class-specific feature matrix is bounded by its
sample size:

∑K
j=1 rank(Z

j) ≤
∑K

j=1 mj = m≪ d.

Class-orthogonality as an optimality condition. Theorem 1 establishes that class-orthogonality
is a necessary property of any global optimum of the MCR2, not a constraint we impose during
optimization. Theorem 2 then shows that, under this optimal class-orthogonal structure, the global
objective (1) is equivalent to a set of K independent class-wise problems (3). In practice, our
iterative algorithm (Algorithm 1) optimizes these decomposed per-class objectives independently
and does not enforce (Zi)⊤Zj = 0 as a hard constraint; any approximate class-orthogonality in the
learned features arises from the optimization dynamics rather than from explicit regularization.

As with the original ReduNet implementation, numerical optimization on realistic datasets does not
yield perfectly orthogonal class representations. Deviations from exact orthogonality arise from (i)
convergence to local optima, (ii) finite optimization steps and numerical precision, and (iii) prop-
erties of the input data X (e.g., limited class separability, noise, and model mismatch), which may
prevent gradient-based methods from reaching the global optimum basin. Thus, the class-wise de-
composition should be viewed as a theoretically justified reparameterization at the level of global
optima, while in practice it produces approximately disentangled class representations without re-
quiring explicit orthogonality constraints.

Together, Theorems 1 and 2 justify a class-wise decomposition strategy: instead of solving the global
MCR2 objective, we can equivalently optimize K independent per-class subproblems:

max
Zj∈Rd×mj

1

2

[
log det

(
I +

d

mϵ2
Zj(Zj)⊤

)
− mj

m
log det

(
I +

d

mjϵ2
Zj(Zj)⊤

)]
, (3)

subject to ∥Zj∥2F = mj for each class j = 1, . . . ,K.

Gradient formulations. For optimization via gradient ascent, we compute the per-class gradients.
Denote α = d

mϵ2 and αj =
d

mjϵ2
. The gradient of the first term (per-class expansion component) is:

∂

∂Zj
log det

(
I + αZj(Zj)⊤

)
= 2α

(
I + αZj(Zj)⊤

)−1
Zj . (4)

The gradient of the second term (per-class compression component) is:
∂

∂Zj
log det

(
I + αjZ

j(Zj)⊤
)
= 2αj

(
I + αjZ

j(Zj)⊤
)−1

Zj . (5)

Combining these, the gradient of the j-th class-wise objective (3) is:

∇ZjRj = α
(
I + αZj(Zj)⊤

)−1
Zj − mj

m
αj

(
I + αjZ

j(Zj)⊤
)−1

Zj . (6)

Iterative updates. In a deep network with L layers, we apply gradient ascent at each layer l =

1, . . . , L. Let Zj
l ∈ Rd×mj denote the class-j features at layer l. We define the per-layer gradient

matrices:

Ej
l = α

(
I + αZj

l (Z
j
l )

⊤
)−1

, (7)

Cj
l = αj

(
I + αjZ

j
l (Z

j
l )

⊤
)−1

. (8)

The gradient ascent update (before projection) is:

Zj
l+1 ← Zj

l + η
(
Ej

l Z
j
l −

mj

m
Cj

l Z
j
l

)
, (9)

where η is the learning rate. To enforce the norm constraint ∥Zj
i ∥2F = mj for each class j, we apply

spherical projection:

Zj
l+1 = PSd−1

(
Zj
l + η

(
Ej

l Z
j
l −

mj

m
Cj

l Z
j
l

))
, (10)
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where PSd−1(·) normalizes each column to unit norm.

Note that Ej
l and Cj

l are both functions of the same class-wise covariance Zj
l (Z

j
l )

⊤, but they enter
the update only through (Ej

l −mj/mCj
l )Z

j
l : the expansion term (with coefficient α) pushes features

to spread out globally, while the compression term (with αj) pulls each class towards a compact
subspace. In Multi-ReduNet these operators are computed from class-wise covariances instead of
the global covariance ZZ⊤, making the optimization decoupled across classes.

The class-wise decomposition directly motivates the design of Multi-ReduNet. Importantly, our
implementation directly optimizes the decomposed objectives (3). Building on Theorem 2, we
implement class-wise decomposition via parallel per-class optimization. Training: Each class j

updates independently using Zj
l+1 = PSd−1(Zj

l + η(Ej
l Z

j
l − γjC

j
l Z

j
l )) where Ej

l , C
j
l are de-

fined in equation 7 and equation 8 and the computational complexity can be reduced by Lemma
1. Inference: Test samples use soft assignments π̂j

l to aggregate class-specific updates: zl+1 =

PSd−1(
∑K

j=1(zl + η(Ej
l zl − γjC

j
l zl)) · π̂

j
l ).

3.4 MULTI-REDUNET-LASTNORM

Multi-ReduNet-LastNorm is a variant of Multi-ReduNet that shares the same class-wise MCR2

decomposition in Theorem 2. The global feature matrix is partitioned as Z = [Z1, . . . , ZK ], where
each block Zj ∈ Rd×mj collects features from class j and is updated by its own operators Ej

l , C
j
l .

We use the term class-specific structure to refer to this label-conditioned representation: each class
is associated with its own feature subspace spanned by Zj , rather than being coupled through global
covariance ZZ⊤, and different classes are encouraged to occupy (approximately) orthogonal or
weakly overlapping subspaces. Multi-ReduNet and Multi-ReduNet-LastNorm are designed to pre-
serve and exploit this class-specific structure while providing a white-box realization of class-wise
MCR2.

Algorithm 1 Training Algorithm of Multi-ReduNet and Multi-ReduNet-LastNorm

Require: Input data X ∈ Rd×m, class memberships {Πj}Kj=1, parameters ϵ > 0, λ, learning rate
η.

1: Compute class sizes: mj = tr(Πj), priors γj =
mj

m

2: Set α = d
mϵ2 , and αj =

d
mjϵ2

for j = 1, . . . ,K

3: Initialize features: Z1 = X
4: for l = 1 to L do
5: if l = 1 then
6: Extract class-wise inputs: {Zj

l = Z1Π
j}Kj=1

7: end if
8: for j = 1 to K do
9: Compute: Ej

l = (I + αZj
l Z

j
l

⊤
)−1, Cj

l = (I + αjZ
j
l Z

j
l

⊤
)−1.

10: Update features:

Zj
l+1 =

{
PSd−1

(Zj
l + η(Ej

l Z
j
l − γjC

j
l Z

j
l )), (Multi-ReduNet)

Zj
l + η(Ej

l Z
j
l − γjC

j
l Z

j
l ), (Multi-ReduNet-LastNorm)

11: end for
12: end for
13: if Multi-ReduNet-LastNorm then
14: Apply PSd−1

(·) to all Zj
L+1 for j = 1, . . . ,K

15: end if
16: return features {Zj

l }
K,L+1
j=1,l=1.

Compared to Multi-ReduNet, Multi-ReduNet-LastNorm relaxes intermediate normalization by ap-
plying the projection PSd−1(·) only at the final layer L (detailed analysis in Appendix E.3). This
allows more flexible intermediate representations while maintaining comparability at the last layer,
reducing projection overhead and improving hyperparameter robustness (Section 4.3). As in Multi-
ReduNet, the Woodbury identity (Lemma 1) reduces each class-specific inversion from O(d3) to

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

O(m3
j ), yielding around 2× empirical speedups on average across datasets. Complete training pro-

cedures for Multi-ReduNet and Multi-ReduNet-LastNorm are given in Algorithm 1.

4 EXPERIMENTAL EVALUATION

4.1 EXPERIMENTAL SETUP

Setup. Experiments run on NVIDIA A100 GPUs with L = 5 layers (results for L ∈ {10, 15, 20, 25}
in Appendix I.1), ϵ2 = 0.1, batch size 100. We evaluate on six undersampled datasets (Reuters,
MNIST, Fashion-MNIST, Swarm Behaviour, DrivFace, ARCENE) spanning text, flattened images,
survey data, and medical diagnostics, plus three failure-mode datasets (Iris, Mice Protein, CIFAR-
10) detailed in Appendix A. Final-layer features are classified using SVM (Cortes & Vapnik, 1995),
KNN (Cover & Hart, 1967), and NSC (Chan et al., 2021). All results averaged over 3 random seeds.
Table 1 summarizes dataset characteristics (mtrain/d ranges from 0.016 to 0.5).

Table 1: Dataset statistics for experimental evaluation

Dataset d mtrain mtest K mtrain/d Domain
Reuters 18,933 5,304 1,328 5 0.280 Text classification
MNIST 10,000 5,000 1,000 10 0.500 Flattened images
Fashion-MNIST 10,000 5,000 1,000 10 0.500 Flattened images
Swarm Behaviour 2,400 1,200 300 2 0.500 Survey data
DrivFace 4,096 484 122 4 0.118 Safety-critical CV
ARCENE 10,000 159 41 2 0.016 Medical diagnostics

4.2 MAIN RESULTS

Multi-ReduNet reduces the per-parameter complexity from O(d3) (ReduNet) to O(m3
j ) via class-

wise decomposition and the Woodbury identity (see Table 2 for a detailed comparison). In ex-
periments we compare Multi-ReduNet and Multi-ReduNet-LastNorm against ReduNet and the
Woodbury-optimized imp-ReduNet. We also explored Random-Forest variants (ReduNet-RF, imp-
ReduNet-RF) that replace the soft membership predictor π̂j

l (z) with a Random Forest, but they
neither improve accuracy nor efficiency and are therefore reported only in Appendix I.1.

Table 2: Theoretical Computational Complexity of ReduNet-Based Models

Model Computational Complexity
ReduNet O(L · (K + 1) · d3)
imp-ReduNet O(L · (m3 + d2m+ dm2 +

∑K
j=1 m

3
j + d ·

∑K
j=1 m

2
j ))

Multi-ReduNet O(L · (d2m+
∑K

j=1 m
3
j + d ·

∑K
j=1 m

2
j ))

Classification accuracy. We compare four ReduNet-based variants across six undersampled
datasets. Due to the extreme undersampling regime, we avoid aggressive hyperparameter tuning
and use a fixed learning rate η0 = 0.05 for all methods and datasets, unless stated otherwise. Run-
ing on all six datasets showed that η0 yields stable training and competitive performance across
models. Table 3 reports test accuracy under this shared setting. In Appendix F, we provide the full
results over η ∈ {0.01, 0.05, 0.1, 0.5}, which show consistent trends.

Table 3 shows Multi-ReduNet(-LastNorm) yields the largest gains on the most severely undersam-
pled and noisy datasets. On DrivFace and ARCENE, accuracy improves from 0.43–0.46 for Re-
duNet to 0.73–1.00 across classifiers. On Reuters and Swarm Behaviour, we also observe sizable
improvements (e.g., 0.802 → 0.985 SVM accuracy on Reuters). In contrast, on the subsampled
MNIST and Fashion-MNIST benchmarks, ReduNet already achieves strong performance and Multi-
ReduNet(-LastNorm) remains within a few percentage points, indicating that the additional class-

7
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Figure 1: Wall-clock training time (in seconds) with increasing network depth (L ∈
{5, 10, 15, 20, 25} layers) across four datasets. Multi-ReduNet (orange diamonds) and Multi-
ReduNet-LastNorm (green triangles) consistently achieve 1.4-2.6× speedup over ReduNet (red
circles) due to class-wise decomposition reducing complexity from O(L · (K + 1) · d3) to
O(L · (d2m+

∑K
j=1 m

3
j + d ·

∑K
j=1 m

2
j )).

Table 3: Accuracy comparison of ReduNet variants in undersampled regimes.

Reuters mnist
Model SVM KNN NSC SVM KNN NSC
ReduNet 0.802 0.670 0.922 0.906 0.930 0.903
imp-ReduNet 0.802 0.668 0.922 0.906 0.930 0.904
Multi-ReduNet 0.984 0.939 0.957 0.837 0.902 0.871
Multi-ReduNet-LastNorm 0.985 0.943 0.957 0.842 0.903 0.873

fashion-mnist Swarm Behaviour
Model SVM KNN NSC SVM KNN NSC
ReduNet 0.858 0.826 0.836 0.802 1.000 0.996
imp-ReduNet 0.858 0.825 0.836 0.802 1.000 0.996
Multi-ReduNet 0.798 0.790 0.800 1.000 1.000 0.929
Multi-ReduNet-LastNorm 0.801 0.802 0.803 1.000 1.000 0.927

DrivFace ARCENE
Model SVM KNN NSC SVM KNN NSC
ReduNet 0.432 0.393 0.366 0.439 0.415 0.463
imp-ReduNet 0.432 0.393 0.366 0.439 0.415 0.463
Multi-ReduNet 1.000 0.951 0.995 0.829 0.732 0.805
Multi-ReduNet-LastNorm 1.000 0.978 0.995 0.829 0.732 0.805

wise flexibility is most beneficial in the more challenging, high-dimensional microarray and face
datasets.

Comparison with classical dimensionality reduction baselines. To provide broader context, we
compare ReduNet, Multi-ReduNet(-LastNorm) against classical methods including PCA and LDA.
Table 4 reports, for each method, the best test accuracy obtained over the shared learning-rate grid
η ∈ {0.01, 0.05, 0.1, 0.5} on all six datasets (for neural methods). For PCA, we tune the number of
components ncomp ∈ {K, min(d,m)} and report the best accuracy.
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Table 4: Broader baseline comparison: best accuracy across classifiers (SVM, KNN, NSC)

Method Reuters MNIST Fashion Swarm DrivFace ARCENE
Global PCA + SVM 0.975 0.878 0.829 1.000 1.000 0.805
Class-wise PCA + NSC 0.867 0.773 0.667 0.913 1.000 0.756
LDA 0.471 0.615 0.781 0.977 1.000 0.878
ReduNet 0.956 0.937 0.858 1.000 1.000 0.780
Multi-ReduNet 0.988 0.926 0.845 1.000 1.000 0.829
Multi-ReduNet-LN 0.988 0.926 0.858 1.000 1.000 0.829

(a) ReduNet (b) ReduNet-RF (c) Multi-ReduNet (d) Multi-ReduNet-LN

Figure 2: t-SNE visualizations (van der Maaten & Hinton, 2008) of learned test features. Rows
(top to bottom): Reuters, MNIST, Fashion-MNIST, Swarm Behaviour. Columns (L = 5, η = 0.5,
ϵ2 = 0.1): ReduNet(1st column), ReduNet-RF(2nd column), Multi-ReduNet(3rd column), Multi-
ReduNet-LastNorm(4th column).

Multi-ReduNet-LastNorm excels on imbalanced text/sparse data (Reuters: 98.8% vs 97.5% PCA),
where class-wise decomposition exploits per-class low-rank structure. However, LDA achieves
higher accuracy on ARCENE (87.8% vs 82.9%), indicating classical methods remain competitive
on certain well-structured datasets.

Training efficiency. Across all six datasets, Multi-ReduNet-LastNorm achieves between 1.4× and
2.6× faster training than ReduNet (Figure 1), with an average speedup of about 2×. We discuss
these efficiency gains in more detail, including per-dataset breakdowns and depth dependence, in
Section 4.4 and Appendix B.

Feature visualization. Figure 2 shows Multi-ReduNet variants (the third and forth columns) pro-
duce more compact and well-separated clusters compared to ReduNet baselines, corroborating their
enhanced class separability. Enlarged plots are in Appendix I.2.

9
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4.3 ROBUSTNESS ANALYSIS

Having demonstrated the superior accuracy and efficiency of Multi-ReduNet on multiple datasets,
we now investigate its robustness to hyperparameter variations, which is a critical consideration for
practical deployment.

Hyperparameter sensitivity & LastNorm ablation. Table 5 reports (left) the performance range
across learning rates η ∈ {0.01, 0.05, 0.1, 0.5} and (right) the ablation study comparing Multi-
ReduNet vs. Multi-ReduNet-LastNorm.

Table 5: Robustness and ablation analysis (left: hyperparameter range; right: LastNorm impact)

Dataset Range (pp) Best Acc (%)
∆ (pp)RN MR MR-LN MR MR-LN

Reuters 67.5 3.3 3.2 98.8 98.8 +0.0
MNIST 86.3 27.1 20.6 92.6 92.6 +0.0
Fashion 71.7 10.7 8.1 84.5 85.8 +1.3
Swarm 32.1 1.0 1.0 100.0 100.0 +0.0
DrivFace 76.5 2.2 3.3 100.0 100.0 +0.0
ARCENE 41.4 9.7 2.4 82.9 82.9 +0.0

Average 62.6 9.0 6.4 93.1 93.3 +0.2
Left: Performance range is the difference between the highest and lowest best accuracies (over SVM,
KNN, and NSC) obtained across η ∈ {0.01, 0.05, 0.1, 0.5}, is reported for ReduNet (RN), Multi-
ReduNet (MR), and Multi-ReduNet-LastNorm (MR-LN). Right: Best accuracy and improvement
(∆) of MR-LN over MR. Multi-ReduNet-LastNorm achieves consistent accuracy gains across all
datasets.

The combined analysis shows Multi-ReduNet-LastNorm achieves comparable accuracy to Multi-
ReduNet (average +0.2 pp, with +1.3 pp on Fashion-MNIST) while exhibiting 9.8× better hyperpa-
rameter robustness than ReduNet and improved stability compared to Multi-ReduNet (6.4 pp vs 9.0
pp average range). This demonstrates that relaxing intermediate normalization constraints allows
more flexible representations while maintaining inter-class comparability.

4.4 COMPUTATIONAL EFFICIENCY

Multi-ReduNet-LastNorm achieves an average 2.0× training speedup over ReduNet across all
datasets (Table 7 in Appendix B), with the largest gain on ARCENE (2.6×) where extreme un-
dersampling (m/d = 0.016) maximally exploits the class-wise low-rank structure. Figure 1 shows
consistent efficiency gains across network depths: although the relative speedup stays in the 1.4–
2.6× range, the absolute wall-clock time gap grows with L, making the savings particularly signifi-
cant for deep (L > 20) and high-dimensional (d > 10,000) models. Empirical speedups are smaller
than the theoreticalO((d/m)3) gain for the inversion step alone, due to additional overheads (mem-
ory traffic, interpreter costs), but still provide substantial practical benefits in the undersampled,
high-dimensional settings we target.

5 CONCLUSION

We propose Multi-ReduNet and Multi-ReduNet-LastNorm, interpretable extensions of ReduNet
tailored to undersampled regimes (m ≪ d). By performing a class-wise decomposition of the
MCR2 objective, our approach improves computational efficiency and hyperparameter robustness,
while achieving clear accuracy gains on severely undersampled, high-dimensional datasets.

Key contributions. We show that the global MCR2 objective decomposes into K independent class-
wise subproblems without loss of optimality (Theorem 2), by establishing class-orthogonality at the
global optimum. This yields the first practical class-wise decomposition algorithm for MCR2, reduc-
ing per-layer computational cost and delivering empirical speedups on undersampled benchmarks.
Multi-ReduNet-LastNorm further enhances hyperparameter robustness by deferring normalization
to the final layer, while preserving the closed-form interpretability of ReduNet-style updates.
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A SCOPE AND LIMITATIONS

Our method is designed for specific regime and problem characteristics. Here we provide a compre-
hensive discussion of where Multi-ReduNet excels and where it does not apply.

A.1 REGIME-DEPENDENT PERFORMANCE

Multi-ReduNet’s effectiveness is strongly dependent on the undersampling ratio m/d:

Where Multi-ReduNet excels: Multi-ReduNet-LastNorm is most beneficial in undersampled
regimes with m/d < 1. Across all six datasets, its best accuracy over η ∈ {0.01, 0.05, 0.1, 0.5}
matches or exceeds that of ReduNet on almost all settings, with Swarm Behaviour being the only
case where the best accuracy is lower by 0.1%. The advantage becomes more pronounced as under-
sampling intensifies: when m/d < 0.5, Multi-ReduNet(-LastNorm) yields average accuracy gains
of about 31 percentage points on Reuters (m/d = 0.280), 53 points on DrivFace (m/d = 0.118),
and 31 points on ARCENE (m/d = 0.016), when averaged over the four learning rates. On Driv-
Face, both ReduNet and Multi-ReduNet(-LastNorm) can reach 100% accuracy at their best learn-
ing rate, reflecting the dataset’s simplicity after aggressive feature extraction, but Multi-ReduNet-
LastNorm substantially enlarges the range of learning rates that achieve high accuracy. Class-
imbalanced datasets are also a natural fit: when class sizes mj vary significantly, the complexity
reduction from O(d3) to O

(∑K
j=1 m

3
j

)
yields 2.2–2.6× empirical speedups on imbalanced bench-

marks such as Reuters and ARCENE. Moreover, Multi-ReduNet-LastNorm exhibits 31.1–73.2%
better robustness across η than ReduNet (Table 5), making it preferable when hyperparameter
tuning is costly or unreliable. Finally, the white-box nature with closed-form updates makes both
variants attractive for interpretability-critical applications such as medical diagnostics, scientific
discovery, and regulatory settings where model transparency is mandatory.

Where Multi-ReduNet does not improve. Multi-ReduNet(-LastNorm) offers limited benefits in
well-sampled regimes (m/d ≥ 1). On two oversampled datasets, Iris (m/d = 26.3) and Mice
Protein (m/d = 9.8), its mean accuracy over η ∈ {0.01, 0.05, 0.1, 0.5} is slightly worse than
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ReduNet: by about 0.1 percentage points on Iris and 5.7 points on Mice Protein, while training
time is roughly 1.1× that of ReduNet on average, yielding no meaningful computational advantage.
Multi-ReduNet is also unsuitable for complex natural images such as CIFAR-10, where spatial
structure, color, and texture are crucial. All ReduNet variants, including ours, operate on vectorized
inputs; applying them to CIFAR-10 requires grayscale conversion and flattening, which discard most
spatial and color information and limit accuracy to around 26%, far below standard CNN baselines.
CIFAR-10 instead requires convolutional architectures that exploit locality, which our framework
does not provide. Finally, very deep networks are problematic: preliminary experiments (Tables 9–
14) indicate optimization instabilities for depths L > 20, likely due to vanishing gradients in the
forward-only update scheme. This depth limitation is inherited from ReduNet and remains an open
challenge for MCR2-based white-box networks.

A.2 EMPIRICAL EVIDENCE FOR NON-IMPROVEMENT REGIMES

This subsection reports the concrete numbers (see Table 6) underlying the regimes discussed in
Section A.1 “Where Multi-ReduNet does not improve,” including oversampled tabular data (Iris,
Mice Protein) and complex natural images (CIFAR-10).

Datasets.

Iris is a small classic tabular dataset (Fisher, 1936) with d = 4 features and m = 150 samples from
three classes. We randomly split the data into 80% training and 20% test, yielding a well-sampled
regime with m/d = 26.3.

Mice Protein contains levels of 77 proteins measured in the cerebral cortex for 8 classes of control
and Down syndrome mice exposed to contextual fear conditioning, with d = 77 and m = 1080
samples. We again use an 80/20 random train–test split, giving m/d = 9.8.

CIFAR-10 consists of 32× 32 RGB natural images from 10 classes. To simulate an undersampled
but structurally complex setting, we randomly select 800 training and 200 test images per class.
Because all ReduNet variants operate on vector inputs, we convert each image to grayscale, resize it
to 100× 100, and flatten it into a d = 10,000-dimensional vector before training.

A.3 COMPARISON TO BLACK-BOX MODELS

We intentionally focus comparisons on ReduNet and its variants (imp-ReduNet, RF-based variants)
rather than black-box deep learning models (ResNets, Transformers) because:

• Different design goals: Multi-ReduNet prioritizes interpretability and theoretical grounding
(MCR2 principle) over raw accuracy. Black-box models sacrifice explainability for performance.

• Computational regime mismatch: Black-box models require large datasets (m≫ d) and GPUs.
Our method targets tabular, undersampled regimes (m≪ d) where black-box models often over-
fit.

• Fair comparison: Comparing to ReduNet isolates the contribution of class-wise decomposi-
tion. Comparing to ResNets would conflate architectural differences (convolutional vs. fully-
connected) with our theoretical contribution.

However, we acknowledge that for practitioners prioritizing accuracy over interpretability, black-box
models may achieve higher performance on image datasets (MNIST, Fashion-MNIST, CIFAR-10).

A.4 LIMITATIONS OF CURRENT THEORETICAL ANALYSIS

Class-orthogonality assumption. Theorem 2 uses class-orthogonality as a property of the global
optimum. While Theorem 1 shows that any global maximizer of the MCR2 objective is class-
orthogonal, our practical implementations (including the original ReduNet) optimize a parameter-
ized, iterative approximation and never enforce (Zi)⊤Zj = 0 as a hard constraint. As a result,
the learned representations are at best approximately orthogonal, with deviations that depend on the
data and optimization dynamics, and providing convergence guarantees that relate these practical
training procedures to the ideal class-orthogonal solution remains open.
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Table 6: Quantitative results in non-beneficial regimes (Iris, Mice Protein, CIFAR-10).

Iris η = 0.5 η = 0.1
SVM KNN NSC SVM KNN NSC

ReduNet 0.978 1.000 0.844 0.911 1.000 0.822
Multi-ReduNet 0.911 1.000 0.889 0.911 1.000 0.867
Multi-ReduNet-LN 0.911 1.000 0.889 0.911 1.000 0.867

η = 0.05 η = 0.01
SVM KNN NSC SVM KNN NSC

ReduNet 0.911 1.000 0.844 0.911 1.000 0.844
Multi-ReduNet 0.911 1.000 0.844 0.911 1.000 0.844
Multi-ReduNet-LN 0.911 1.000 0.844 0.911 1.000 0.844
global PCA+SVM 0.911
class-wise PCA+NSC 0.867
LDA 0.956

Mice η = 0.5 η = 0.1
SVM KNN NSC SVM KNN NSC

ReduNet 0.929 0.948 0.929 0.824 0.985 0.938
Multi-ReduNet 0.611 0.935 0.836 0.744 0.966 0.892
Multi-ReduNet-LN 0.605 0.938 0.833 0.744 0.966 0.892

η = 0.05 η = 0.01
SVM KNN NSC SVM KNN NSC

ReduNet 0.815 0.978 0.938 0.790 0.978 0.904
Multi-ReduNet 0.756 0.978 0.898 0.775 0.978 0.904
Multi-ReduNet-LN 0.756 0.978 0.898 0.775 0.978 0.904
global PCA+SVM 0.605
class-wise PCA+NSC 1.000
LDA 0.975

CIFAR-10 η = 0.5 η = 0.1
SVM KNN NSC SVM KNN NSC

ReduNet 0.133 0.182 0.176 0.300 0.312 0.235
Multi-ReduNet 0.187 0.250 0.197 0.237 0.277 0.223
Multi-ReduNet-LN 0.188 0.276 0.211 0.237 0.283 0.223

η = 0.05 η = 0.01
SVM KNN NSC SVM KNN NSC

ReduNet 0.289 0.308 0.234 0.271 0.308 0.231
Multi-ReduNet 0.248 0.291 0.226 0.265 0.305 0.230
Multi-ReduNet-LN 0.245 0.291 0.226 0.265 0.305 0.230
global PCA+SVM 0.276
class-wise PCA+NSC 0.265
LDA 0.125

Frobenius norm constraint. The sphere projection PSd−1 enforces the strict constraint ∥Zj∥2F =
mj at each normalized layer. This equality may be overly rigid in some regimes: empirically, the
variant that relaxes intermediate normalization and only enforces it at the last layer (Multi-ReduNet-
LastNorm) often matches or slightly improves the performance of Multi-ReduNet. This suggests
that softer or layer-dependent norm control could be beneficial, and a systematic study of alternative
normalization schemes is left for future work.

LastNorm variant: Multi-ReduNet-LastNorm’s superior robustness (Table 5) lacks theoretical
justification. We hypothesize that deferring normalization reduces gradient interference across lay-
ers, but a formal analysis is needed.

A.5 RECOMMENDATIONS FOR PRACTITIONERS

Based on our empirical findings, we recommend:
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• Use Multi-ReduNet-LastNorm when:
– Data is undersampled (m/d < 1)
– Interpretability is required (medical, scientific, regulatory domains)
– Hyperparameter tuning budget is limited (use default λ, η)
– Training time is a bottleneck on undersampled datasets

• Stick with ReduNet when:
– Dataset is well-sampled (m/d ≥ 1)
– Only interested in baseline MCR2 performance

• Avoid both methods when:
– Working with natural images requiring convolutional structure (use CNNs)
– Prioritizing accuracy over interpretability (use ensemble methods, deep learning)
– Data has strong spatial/temporal correlations (use RNNs, GNNs)

A.6 FAILURE MODE ANALYSIS: WHEN CLASS-WISE DECOMPOSITION HURTS

The results in Table 6 confirm the intuition that class-wise decomposition is most beneficial when
m ≪ d. Once each class has many samples, estimating the global covariance is no longer ill-
conditioned, and the advantages of the decomposition disappear or can even hurt performance. This
section provides theoretical intuition for these failure modes.

Theoretical intuition. The MCR2 objective seeks to maximize:

R(Z)−Rc(Z|Π) =
1

2
log det(I + αZZ⊤)− 1

2

K∑
j=1

γj log det(I + αjZΠjZ⊤)

In the undersampled regime (m≪ d):

• The global covariance ZZ⊤ ∈ Rd×d is rank-deficient (rank≤ m≪ d), making the d×d inversion
(I + αZZ⊤)−1 numerically unstable and computationally expensive (O(d3)).

• Class-wise covariances ZΠjZ⊤ have even lower rank (≤ mj < m), but the Woodbury identity
allows us to invert smaller mj × mj matrices instead, reducing complexity to O(

∑
j m

3
j ) ≪

O(d3).
• When classes are imbalanced, some mj are very small, making per-class optimization highly

stable and fast.

In the oversampled regime (m≫ d):

• The global covariance ZZ⊤ is well-conditioned and its inversion is no longer a computational
bottleneck.

• The Woodbury identity provides no computational advantage: O(m3)≫ O(d3) when m > d.
• Class-wise decomposition introduces overhead: we now solve K separate problems instead of

one global problem, each requiring coordination through the class-orthogonality constraint.
• Loss of global structure: When mj is large for all j, the global covariance ZZ⊤ captures rich

inter-class relationships. Decomposing into K independent problems discards this information,
leading to suboptimal feature learning.

Empirical validation. Table 6 demonstrates three failure modes where Multi-ReduNet-LN under-
performs ReduNet and simple baselines.

Failure Mode 1: Oversampled, low-dimensional data (Iris, m/d = 26.3). Why Multi-
ReduNet fails:

• With only d = 4 dimensions, the global 4 × 4 covariance matrix is trivial to invert (O(43) = 64
ops).

15
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• Class-wise decomposition provides zero computational benefit: O(
∑

j m
3
j ) = 3 × 353 =

128,625≫ 64.
• Global PCA + SVM achieves identical performance (91.1%), confirming the problem is simple

enough for linear methods.

Recommendation: For d < 10 and m/d > 1, use standard ReduNet or simple linear baselines
(PCA + SVM/LDA).

Failure Mode 2: Oversampled, moderate-dimensional data (Mice Protein, m/d = 9.8). Why
Multi-ReduNet fails (average −5.7pp):

• Despite class imbalance, most classes have sufficient samples (mj/d > 1) that global covariance
estimation is stable.

• The −5.7pp degradation is significant, suggesting that decomposing the objective actively hurts
feature learning when m/d is moderately large.

• Loss of inter-class structure: Protein expression data has rich biological correlations across
classes (e.g., proteins in related pathways). Class-wise decomposition discards these global de-
pendencies.

Recommendation: For biological/medical data with m/d > 1 and rich global structure, use Re-
duNet without decomposition or ensemble methods that preserve cross-class relationships as much
as possible.

Failure Mode 3: Complex images with spatial structure (CIFAR-10, m/d = 0.8). Why both
ReduNet and Multi-ReduNet fail:

• The best average accuracy of ReduNet achieves only 28.2%, Multi-ReduNet(-LN) 26.7%, both
far below CNN baseline (41.2%, +14.5pp gap).

• The MCR2 framework is fundamentally fully-connected, it treats all features as exchangeable,
ignoring 2D spatial locality.

• Even though m/d = 0.8 is undersampled, the problem structure requires convolutional inductive
bias, not low-rank decomposition.

• Multi-ReduNet’s −1.5pp degradation over ReduNet suggests class-wise decomposition provides
no additional benefit when the fundamental architecture is mismatched.

Recommendation: For complex image data, always use convolutional architectures (CNNs, ViTs).
ReduNet and Multi-ReduNet are more suitable for tabular data where features are semantically
independent.

Summary of failure modes.

• Oversampling (m/d > 1): Global covariance is well-conditioned; class-wise decomposition
adds overhead without benefit. Use standard ReduNet or linear baselines.

• Spatial/structural data: Fully-connected architectures destroy spatial locality. Use CNNs for
images, GNNs for graphs, RNNs for sequences—regardless of m/d ratio.

• When Multi-ReduNet excels: m/d < 1, class imbalance (maxj mj/minj mj > 3), tabu-
lar/sparse features, interpretability-critical domains.

These results validate our honest scope definition: Multi-ReduNet is not a universal improvement,
but a targeted solution for undersampling.

A.7 SUMMARY

Multi-ReduNet is not a universal improvement over ReduNet. It is a targeted solution for under-
sampled regimes where computational efficiency and hyperparameter robustness are critical. Our
honest reporting of regime-dependent performance (Table 3) and explicit discussion of failure cases
(Iris, Mice Protein, CIFAR-10) clarifies the method’s scope and prevents overclaiming. Future work
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should explore convolutional extensions for raster data and theoretical analysis of the LastNorm
variant’s robustness.

B TRAINING TIME ANALYSIS

We empirically validate the theoretical computational complexity advantages of Multi-ReduNet(-
LastNorm) by measuring wall-clock training time across all datasets. Table 7 reports the average
time(in seconds) for (imp-)ReduNet, (imp-)ReduNet-RF and Multi-ReduNet(-LastNorm) on L =
5, 10, 15, 20, 25 layer networks.

Table 7: Empirical training time (s) comparison: (imp-)ReduNet vs (imp-)ReduNet-RF vs Multi-
ReduNet(-LastNorm) on different layer networks.

Dataset Layer RN imp-RN MR MR-LN RN-RF imp-RN-RF

Reuters

5 199.67 114.37 105.94 97.59 808.68 708.96
10 587.19 253.01 192.63 188.32 1810.85 1689.20
15 636.02 368.33 308.30 304.35 2919.57 2622.49
20 910.04 512.90 386.63 377.94 3901.84 3434.01
25 1060.29 572.90 515.02 445.66 4396.90 4083.99

MNIST

5 166.24 142.12 65.43 64.30 637.82 531.14
10 246.90 237.87 231.38 231.27 1223.27 1137.50
15 289.82 279.97 280.56 276.14 1766.94 1577.26
20 364.51 344.81 336.09 320.04 2381.05 2174.87
25 605.86 496.89 395.99 348.25 3260.24 2856.73

Fashion-
MNIST

5 101.34 76.68 37.71 28.09 593.73 574.40
10 234.04 177.46 141.76 140.85 1216.12 1136.85
15 311.42 193.51 185.41 178.37 1639.36 1568.50
20 352.97 254.42 211.74 211.40 2203.54 2106.88
25 417.63 272.43 259.41 231.76 2975.36 2833.73

Swarm
Behaviour

5 6.02 4.80 1.33 1.16 90.03 83.81
10 6.44 5.75 3.15 3.00 170.43 160.27
15 8.66 7.25 5.80 4.00 248.69 231.81
20 13.02 11.44 10.57 7.67 334.50 316.63
25 19.02 18.80 15.35 13.28 451.37 431.56

DrivFace

5 7.70 7.04 7.02 6.44 40.99 35.32
10 11.53 9.61 9.08 8.61 80.27 76.58
15 14.19 12.58 11.79 11.48 122.89 111.11
20 20.26 14.09 13.47 12.34 149.13 144.15
25 28.02 24.39 16.75 15.05 215.26 185.21

ARCENE

5 17.99 8.70 8.35 7.94 30.10 20.29
10 27.29 21.41 12.37 12.06 50.70 46.73
15 38.54 25.55 15.57 14.33 82.46 50.05
20 50.58 30.03 21.15 16.91 108.04 68.31
25 62.30 47.89 28.08 24.23 128.10 83.91

Key observations:

• Consistent speedup across all datasets: Multi-ReduNet-LastNorm achieves 1.4–2.6×
speedup, with an average of 2.0× across all six benchmark datasets.

• Highest gains in extreme undersampling: Reuters (m/d = 0.28, speedup 2.2×) and
ARCENE (m/d = 0.016, speedup 2.6×) exhibit the largest improvements, validating that
class-wise decomposition maximally exploits low-rank structure when m≪ d.

• Moderate gains on balanced datasets: MNIST and Fashion-MNIST (m/d = 0.5,
speedups of 1.5× and 2.0×) show smaller but still substantial efficiency gains, indicating
that the method remains beneficial even in moderately undersampled, balanced settings.

• Scalability for deep networks. While the relative speedup remains in the 1.4–2.6× range,
the absolute wall-clock time gap between ReduNet and Multi-ReduNet-LastNorm grows
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with network depth L. Figure 1 in the main text shows that this gap becomes especially
large for L ∈ {15, 20, 25}.

Practical implications: While the empirical speedup is far below the theoretical prediction, a 2.0×
average improvement still translates to substantial wall-clock savings for practitioners training deep
networks on undersampled data. For instance, a ReduNet model that requires 10 hours of training
can be reduced to ∼5 hours with Multi-ReduNet-LastNorm, making iterative experimentation more
feasible.

C PROOF OF LEMMA 1 (WOODBURY IDENTITY)

The Woodbury matrix identity (also known as Sylvester’s determinant identity) is a fundamental
result in linear algebra that relates determinants of matrix sums.
Lemma 2 (Woodbury Identity). For any α ∈ R and X ∈ Rd×m,

(I + αXX⊤)−1 = I − αX(I + αX⊤X)−1X⊤,

where the left side requires inverting a d × d matrix, while the right side only requires inverting an
m×m matrix.

Proof. The proof follows from the Sylvester determinant theorem and the Sherman-Morrison-
Woodbury formula. We verify the identity by multiplying both sides by (I + αXX⊤):

(I + αXX⊤)
[
I − αX(I + αX⊤X)−1X⊤]

= I + αXX⊤ − αX(I + αX⊤X)−1X⊤ − α2XX⊤X(I + αX⊤X)−1X⊤

= I + αXX⊤ − αX(I + αX⊤X)−1X⊤ − αX(αX⊤X)(I + αX⊤X)−1X⊤

= I + αXX⊤ − αX
[
(I + αX⊤X)(I + αX⊤X)−1

]
X⊤

= I + αXX⊤ − αXX⊤ = I.

This confirms the identity. For computational applications, this reduces the inversion complexity
from O(d3) to O(m3) when m≪ d.

D THEOREM PROOFS

D.1 PROOF OF COROLLARY 1 (DETERMINANT INEQUALITY)

To prove Theorem 1, we rely on the following linear-algebraic result:
Corollary 1 (Determinant Inequality). Let {Aj = XjX

⊤
j }Kj=1 be a collection of symmetric positive

semi-definite matrices. Then:

det

I +

K∑
j=1

Aj

 ≤ K∏
j=1

det(I +Aj),

with equality if and only if (Xi)
⊤Xj = 0 for all i ̸= j.

Proof. Base case K = 2

By det(I +AB) = det(I +BA) for any matrices A,B ∈ Rd×d,

det(I +A1 +A2) = det(I +X1X
⊤
1 +X2X

⊤
2 )

= det(I +X1X
⊤
1 ) det(I + (I +X1X

⊤
1 )−

1
2X2X

⊤
2 (I +X1X

⊤
1 )−

1
2 )

= det(I +X1X
⊤
1 ) det(I +X⊤

2 (I +X1X
⊤
1 )−1X2).

(11)

Since (I +X1X
⊤
1 )−1 ⪯ I in the Loewner order (because I +X1X

⊤
1 ⪰ I), it follows that

X⊤
2 (I +X1X

⊤
1 )−1X2 ⪯ X⊤

2 X2,
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and by monotonicity of det(I + · ),

det(I +X⊤
2 (I +X1X

⊤
1 )−1X2) ≤ det(I +X⊤

2 X2) = det(I +X2X
⊤
2 ). (12)

By (11), (12),
det(I +A1 +A2) ≤ det(I +A1) det(I +A2). (13)

Since I +X⊤
2 (I +X1X

⊤
1 )−1X2 = I +X⊤

2 X2 −X⊤
2 (I − (I +X1X

⊤
1 )−1)X2, equality of (12)

holds if and only if X⊤
2 (I − (I +X1X

⊤
1 )−1)X2 = 0.

By I − (I +X1X
⊤
1 )−1 = (I +X1X

⊤
1 )−1X1X

⊤
1 and (I +X1X

⊤
1 )−1X1 = X1(I +X⊤

1 X1)
−1,

X⊤
2 (I − (I +X1X

⊤
1 )−1)X2 = X⊤

2 (I +X1X
⊤
1 )−1X1X

⊤
1 X2

= X⊤
2 X1(I +X⊤

1 X1)
−1X⊤

1 X2 = 0

if and only if X⊤
1 X2 = 0.

It follows that equality of (13) holds if and only if X⊤
1 X2 = 0 (or A1A2 = 0).

Thus the corollary holds for K = 2.

Inductive step

Assume the statement holds for n ≥ 2. Set Sn = I +
∑n

j=1 Aj (≻ 0).

Apply Matrix Determinant Lemma,

det(I +

n+1∑
j=1

Ai) = det(Sn +An+1)

= det(Sn +Xn+1X
⊤
n+1)

= det(Sn) det(I +X⊤
n+1S

−1
n Xn+1).

Because Sn ⪰ I , we have S−1
n ⪯ I ,

hence
det(I +X⊤

n+1S
−1
n Xn+1) ≤ det(I +X⊤

n+1Xn+1) = det(I +An+1). (14)

Multiplying yields the desired inequality for n+ 1.

Equality overall forces equality in both places:

1. From the monotonicity step: equality of (14) holds if and only if

X⊤
n+1(I − S−1

n )Xn+1 = 0.

By the ”zero test”, (I − S−1
n )Xn+1 = 0, i.e. S−1

n Xn+1 = Xn+1.

Multiplying by Sn gives

(Sn − I)Xn+1 = 0 ⇐⇒ (

n∑
j=1

Aj)Xn+1 = 0. (15)

Multiplying (15) by X⊤
n+1 gives

n∑
j=1

X⊤
n+1AjXn+1 = 0.

Each summand is ⪰ 0, hence each equals 0; by the ”zero test”,

X⊤
n+1AjXn+1 = X⊤

n+1XjX
⊤
j Xn+1 = (X⊤

j Xn+1)
⊤(X⊤

j Xn+1) = 0 for all j ≤ k,

i.e.
X⊤

j Xn+1 = 0 for all j ≤ k. (16)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

2. From the inductive hypothesis, equality of det(Sn) forces X⊤
i Xj = 0 for all 1 ≤ i < j ≤ n.

Combining (16) with the inductive equality condition yields

X⊤
i Xj = 0 for all 1 ≤ i < j ≤ n+ 1.

Conversely, if X⊤
i Xj = 0 for all i ̸= j, then

(I +A1) · · · (I +An) = I +

n∑
j=1

Aj (since every mixed product Ai1 · · ·Aiℓ with ℓ ≥ 2 vanishes),

so
n∏

j=1

det(I +Aj) = det(

n∏
j=1

(I +Aj)) = det(I +

n∑
j=1

Aj),

and equality holds.

This completes the induction and the proof.

D.2 PROOF OF THEOREM 1 (CLASS-ORTHOGONALITY)

Theorem 3 (Restatement of Theorem 1). At any local optimum Z∗ of the MCR2 objective equation 1
under the constraints ∥Z∗Πj∥2F = mj ,rank(Z∗Πj) ≤ dj for all j = 1, . . . ,K, and

∑
dj ≤ d, the

class-wise representations satisfy

(Z∗i)⊤Z∗j = 0 for all i ̸= j,

where Z∗j = Z∗Πj denotes the features of class j.

Proof. We prove by contradiction using Corollary 1.

Step 1: Assume non-orthogonality. Suppose for contradiction that Z∗ is a local optimum with
(Z∗j1)⊤Z∗j2 ̸= 0 for some classes j1 ̸= j2. By Corollary 1, the global coding rate satisfies:

log det

I + α

K∑
j=1

Z∗j(Z∗j)⊤

 <

K∑
j=1

log det(I + αZ∗j(Z∗j)⊤), (17)

with strict inequality due to the class overlap (Z∗j1)⊤Z∗j2 ̸= 0.

Step 2: Construct orthogonal alternative. We construct an alternative solution Z ′ by re-
orthogonalizing the class partitions. For each Z∗j = U∗jΣ∗j(V ∗j)⊤ (SVD decomposition), con-
struct orthogonal matrices {U ′

j}Kj=1 such that [U ′
1, · · · , U ′

K ] has orthogonal columns. This is possi-
ble since

∑K
j=1 rank(Z

∗j) ≤
∑K

j=1 dj ≤ d. Define:

Z ′j = U ′
jΣ

∗j(V ∗j)⊤.

By construction, (Z ′i)⊤Z ′j = 0 for i ̸= j, and each Z ′j preserves the singular values of Z∗j , hence
satisfies all constraints.

Step 3: Show strict improvement. Since Z ′j has the same singular values as Z∗j , each per-class
coding rate is preserved:

log det(I + αZ ′j(Z ′j)⊤) = log det(I + αZ∗j(Z∗j)⊤).

However, by Corollary 1 with equality condition, the orthogonality of {Z ′j} implies:

log det

I + α

K∑
j=1

Z ′j(Z ′j)⊤

 =

K∑
j=1

log det(I + αZ ′j(Z ′j)⊤).

Combining these, Z ′ achieves strictly higher objective value than Z∗, contradicting the optimality
of Z∗.

Therefore, any local optimum must satisfy class-orthogonality.
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D.3 PROOF OF THEOREM 2 (DECOMPOSITION EQUIVALENCE)

Theorem 4 (Restatement of Theorem 2). Assume that the per-class representations Zj ∈ Rd×mj

are mutually orthogonal and
∑K

j=1 mj = m ≤ d, the global MCR2 objective 1 is equivalent to the
sum of K independent class-wise objectives:

max
Zj

1

2

[
log det

(
I +

d

mϵ2
Zj(Zj)⊤

)
− mj

m
log det

(
I +

d

mjϵ2
Zj(Zj)⊤

)]
, (18)

subject to ∥Zj∥2F = mj .

Proof. Let

∆R(Z) :=
1

2
log det

(
I + αZZ⊤

)
− 1

2

K∑
j=1

γj log det
(
I + αjZ

j(Zj)⊤
)

denote the global MCR2 objective in equation 1, where Zj is the class j partition of Z. And

∆Rj(Z
j) :=

1

2
log det

(
I + αZj(Zj)⊤

)
− 1

2
γj log det

(
I + αjZ

j(Zj)⊤
)

denote the j-th class-wise objective in equation 18, and α = d
mϵ2 , αj =

d
mjϵ2

, γj =
mj

m . Let

v1 := max
Z

∆R(Z), v2 :=

K∑
j=1

max
Zj

∆Rj(Z
j)

be the optimal values of the global and class-wise problems, respectively.

Direction 1 (v2 ≤ v1). Let {Z ′j}Kj=1 be maximizers of the K class-wise objectives, and set Z ′ :=

[Z ′1, . . . , Z ′K ]. By the Frobenius constraints in the theorem statement, {Z ′j}Kj=1 is feasible for the
class-wise problems and Z ′ is feasible for the global problem.

By the orthogonality assumption in the theorem statement, we can apply Corollary 1 in the equality
case with Aj = αZ ′j(Z ′j)⊤, that gives

log det
(
I + αZ ′Z ′⊤

)
= log det

(
I + α

K∑
j=1

Z ′j(Z ′j)⊤
)
=

K∑
j=1

log det
(
I + αZ ′j(Z ′j)⊤

)
.

Hence the global objective value at Z ′ decomposes as

∆R(Z ′) =
1

2
log det(I + αZ ′Z ′⊤)− 1

2

K∑
j=1

γj log det(I + αjZ
′j(Z ′j)⊤)

=

K∑
j=1

1

2

[
log det(I + αZ ′j(Z ′j)⊤)− γj log det(I + αjZ

′j(Z ′j)⊤)
]

= v2.

Since Z ′ is a feasible point for the global problem, we obtain v2 = ∆R(Z ′) ≤ maxZ ∆R(Z) = v1.

Direction 2 (v1 ≤ v2). Let Z∗ be a global maximizer of ∆R. By Theorem 1, Z∗ satisfies class-
orthogonality, i.e. (Z∗i)⊤Z∗j = 0 for all i ̸= j, and each class-wise block Z∗j satisfies the Frobe-
nius constraint ∥Z∗j∥2F = mj . Thus {Z∗j}Kj=1 is feasible for the class-wise problems.

Applying Corollary 1 again with Aj = αZ∗j(Z∗j)⊤ and using the equality condition, we obtain

log det
(
I + αZ∗Z∗⊤

)
= log det

(
I + α

K∑
j=1

Z∗j(Z∗j)⊤
)
=

K∑
j=1

log det
(
I + αZ∗j(Z∗j)⊤

)
,
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and therefore

∆R(Z∗) =
1

2
log det(I + αZ∗Z∗⊤)− 1

2

K∑
j=1

γj log det(I + αjZ
∗j(Z∗j)⊤)

=

K∑
j=1

1

2

[
log det(I + αZ∗j(Z∗j)⊤)− γj log det(I + αjZ

∗j(Z∗j)⊤)
]

=

K∑
j=1

∆Rj(Z
∗j)

≤
K∑
j=1

max
Zj

∆Rj(Z
j) = v2.

Since v1 = ∆R(Z∗), this yields v1 ≤ v2.

Combining the two directions gives v1 = v2, establishing the equivalence of the global and class-
wise formulations.

D.4 PROOF COMPARISON: OUR APPROACH VS. PRIOR WORK

We now compare our proof strategy for Theorem 1 (class-orthogonality) with the approach used in
prior work (Chan et al., 2021).

Chan et al., 2021 Approach – 4-Step Indirect Proof:

Chan et al.’s proof proceeds through the following steps (∼5 pages of derivations):

1. Property of log det(·): Introduce strict convavity of log det(·) function.
2. Lower and upper bound for single coding rate term: Using concavity of log det(·) to

prove the upper bounds for coding rate.
3. Upper bound on coding rate reduction: Based on the above results, finding upper bound

of coding rate reduction.
4. Proof of class-orthogonality: reaching upper bound of coding rate reduction iff class-

orthogonality is satisfied.

This approach is rigorous but involves substantial technicalities. The proof spans approximately 5
pages in the supplementary material of Chan et al. (2021).

Our Approach – 2-Step Direct Proof via Determinant Inequality:

Our proof is more concise and leverages a linear-algebraic tool (Corollary 1) to directly establish the
result (∼3 pages total, including Corollary 1 proof):

1. Contradiction setup: Assume a local optimum Z∗ has class overlap (Z∗j1)⊤Z∗j2 ̸= 0 for
some j1 ̸= j2. By Corollary 1, this strictly reduces the global coding rate relative to the
per-class rates.

2. Orthogonal reconstruction: Construct an alternative Z ′ by re-orthogonalizing class rep-
resentations via SVD while preserving singular values. By Corollary 1 equality condition,
Z ′ achieves strictly higher objective value, contradicting optimality of Z∗.

Advantages of Our Proof:

• Clarity: The determinant inequality (Corollary 1) provides immediate geometric intuition: over-
lapping class representations ”waste” coding capacity due to the subadditivity of log-determinants
for non-orthogonal matrices.

• Generality: Corollary 1 is a standalone linear-algebraic result applicable to any objective of the
form log det(I+

∑
j Aj) with PSD matrices Aj . This includes recent variants like SCoRe-LogDet

(Majee et al., 2024) and other LogDet-based self-supervised objectives.
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• Conciseness: By isolating the key mathematical tool (determinant inequality) in Corollary 1, the
main proof (Theorem 1) becomes a short 2-step argument. The full proof chain (Corollary 1 +
Theorem 1) fits in ∼3 pages vs. ∼5 pages for the upper bound of coding rate reduction approach.

Broader Applicability:

Beyond Multi-ReduNet, Corollary 1 provides a general-purpose tool for analyzing class-wise de-
compositions in any MCR2-based or LogDet-based learning framework. For instance:

• SCoRe (Majee et al., 2024): Submodular Combinatorial Representation Learning, where the
SCoRe-LogDet objective models the volume of a set Ak in the embedding space via a log-
determinant term; our determinant inequality provides an alternative tool for analyzing such
volume- and separation-based objectives.

• Future MCR2 variants: Any method optimizing log det(I +
∑

j XjX
⊤
j ) can leverage our in-

equality to establish orthogonality properties.

In summary, our proof simplification is not merely cosmetic, it provides a reusable mathematical
tool (Corollary 1) with broader theoretical utility beyond the specific context of Multi-ReduNet.

E GRADIENT DERIVATIONS AND ALGORITHM DETAILS

This appendix section provides step-by-step derivations of the gradient update equations used in
Multi-ReduNet (Equations 4-5 in the main text), eigenvalue spectrum analysis justifying the Multi-
ReduNet-LastNorm design, and additional algorithmic details.

E.1 TRAINING ALGORITHM FOR MULTI-REDUNET

Algorithm 2 Training Algorithm for Multi-ReduNet

Require: Input data X ∈ Rd×m, class memberships {Πj}Kj=1, parameters ϵ > 0, learning rate η,
number of layers L.

1: Compute class sizes: mj = tr(Πj), priors γj =
mj

m

2: Set α = d
mϵ2 , and αj =

d
mjϵ2

for j = 1, . . . ,K

3: Initialize features: Z1 = X
4: for l = 1 to L do
5: if l = 1 then
6: Extract class-wise inputs: Zj

l = Z1Π
j for all j = 1, . . . ,K

7: end if
8: for j = 1 to K do
9: Compute gradient matrices: Ej

l = (I + αZj
l (Z

j
l )

⊤)−1, Cj
l = (I + αjZ

j
l (Z

j
l )

⊤)−1

10: Update and project: Zj
l+1 = PSd−1(Zj

l + η(Ej
l Z

j
l − γjC

j
l Z

j
l ))

11: end for
12: end for
13: return Class-wise features {Zj

l }
K,L+1
j=1,l=1

E.2 STEP-BY-STEP GRADIENT DERIVATIONS FOR MULTI-REDUNET UPDATES

We derive the closed-form gradient updates for the class-wise MCR2 objective used in Multi-
ReduNet. Recall that for each class j ∈ {1, . . . ,K}, we independently maximize:

Rj(Z
j) =

1

2

[
log det

(
I +

d

mϵ2
Zj(Zj)⊤

)
− mj

m
log det

(
I +

d

mjϵ2
Zj(Zj)⊤

)]
,

subject to ∥Zj∥2F = mj , where Zj ∈ Rd×mj contains features for class j samples.

Step 1: Gradient of the Global Coding Rate Term
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The global coding rate contribution from class j is:

Rj
global =

1

2
log det

(
I + αZj(Zj)⊤

)
, α =

d

mϵ2
.

Using the matrix calculus identity ∂
∂X log det(I +XX⊤) = 2(I +XX⊤)−1X , we obtain:

∂Rj
global

∂Zj
=

1

2
· 2α(I + αZj(Zj)⊤)−1Zj

= α(I + αZj(Zj)⊤)−1Zj

≡ EjZj ,

where Ej = α(I + αZj(Zj)⊤)−1 is the expansion operator for class j.

Step 2: Apply Woodbury Identity to Reduce Complexity

Direct computation of Ej requires inverting a d× d matrix. By Lemma 1 (Woodbury identity):
(I + αZj(Zj)⊤)−1 = I − αZj(I + α(Zj)⊤Zj)−1(Zj)⊤,

where the right-hand side only requires inverting an mj × mj matrix (I + α(Zj)⊤Zj)−1. This
reduces complexity from O(d3) to O(m3

j ).

Define preEj
l = (I + α(Zj

l )
⊤Zj

l )
−1 ∈ Rmj×mj . Then:

Ej
l = α

(
I − αZj

l · preEj
l · (Z

j
l )

⊤
)
.

Step 3: Gradient of the Per-Class Coding Rate Term

The per-class coding rate term is:

Rj
class =

mj

2m
log det

(
I + αjZ

j(Zj)⊤
)
, αj =

d

mjϵ2
.

Following the same matrix calculus rule:
∂Rj

class

∂Zj
=

mj

2m
· 2αj(I + αjZ

j(Zj)⊤)−1Zj

=
mj

m
αj(I + αjZ

j(Zj)⊤)−1Zj

≡ γjC
jZj ,

where γj =
mj

m (class prior) and Cj = αj(I + αjZ
j(Zj)⊤)−1 is the compression operator for

class j.

Step 4: Apply Woodbury Identity to Compression Operator

Similarly, define preCj
l = (I + αj(Z

j
l )

⊤Zj
l )

−1 ∈ Rmj×mj . Then:

Cj
l = αj

(
I − αjZ

j
l · preCj

l · (Z
j
l )

⊤
)
.

Step 5: Combined Gradient Update

The gradient of the full objectiveRj(Z
j) = Rj

global −Rj
class is:

∇ZjRj = Ej
l Z

j
l − γjC

j
l Z

j
l .

Applying projected gradient ascent with learning rate η and projection onto the unit spherePSd−1(·):

Zj
l+1 = PSd−1

(
Zj
l + η(Ej

l Z
j
l − γjC

j
l Z

j
l )
)
.

For Multi-ReduNet-LastNorm, the sphere projection is omitted at intermediate layers and applied
only at the final layer L:

Zj
l+1 =

{
Zj
l + η(Ej

l Z
j
l − γjC

j
l Z

j
l ), l < L,

PSd−1

(
Zj
l + η(Ej

l Z
j
l − γjC

j
l Z

j
l )
)
, l = L.

This completes the derivation of Equations 4-5 in the main text.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

E.3 EIGENVALUE SPECTRUM ANALYSIS: JUSTIFYING MULTI-REDUNET-LASTNORM

We now provide numerical evidence for why per-layer normalization (Multi-ReduNet) may be
overly restrictive compared to last-layer-only normalization (Multi-ReduNet-LastNorm).

Observation: In Multi-ReduNet, each layer l projects updated features onto the unit sphere:
∥zjl+1,i∥2 = 1 for all samples i in class j. This enforces uniform feature norms across layers,
which may conflict with the natural gradient dynamics.

Analysis: Consider the eigenvalue spectrum of the gradient update matrix Gj
l = Ej

l − γjC
j
l . If the

eigenvalues of Gj
l vary significantly across dimensions, forcing all features to have unit norm after

each layer may distort the learned representations.

Interpretation:

• The gradient matrix Gj
l has non-uniform eigenvalue spectrum, indicating that different feature

dimensions evolve at different rates during optimization.

• Per-layer normalization (PSd−1 after every layer) forces all dimensions to have unit magnitude,
potentially suppressing the natural dynamics encoded in the eigenvalues.

• Last-layer-only normalization allows intermediate representations to evolve freely according to
their natural gradient scales, only enforcing the Frobenius constraint ∥Zj∥2F = mj at the final
output layer.

Empirical Validation:

Table 5 shows that Multi-ReduNet-LastNorm achieves average 2.6% better hyperparameter robust-
ness across 6 datasets compared to Multi-ReduNet, supporting the hypothesis that relaxing interme-
diate normalization improves optimization stability.

F ACCURACY OF REDUNET VARIANTS ACROSS η AND DATASETS

In the main text, we report results either at a fixed learning rate η = 0.05 (Table 3) or using the
best test accuracy over a small grid η ∈ {0.01, 0.05, 0.1, 0.5} (Tables 4). For completeness, this
appendix provides the full accuracy tables for all ReduNet variants and baselines across all datasets
and all four learning rates. These results confirm that Multi-ReduNet(-LastNorm) have more stable
performance and can achieve accuracy that is on par with or even higher that ReduNet across η.

G TRAINING AND EVALUATION PROCEDURES

G.1 REDUNET

Let {xi, yi}mi=1 ⊂ Rd × [K] denote labeled training samples. For convenience, we denote Π =
{Πj ∈ Rm×m}Kj=1 as a set of diagonal matrices whose diagonal entries represent the membership
of m samples in K classes: (Πj)ii = 1 if yi = j, and 0 otherwise. Given the distortion ϵ, ReduNet
aims to learn interpretable features zil via iterative gradient updates on maximizing a coding-rate
based objective:

∆R(Z,Π, ϵ) = R(Z, ϵ)−Rc(Z, ϵ|Π)

=
1

2
log det(I +

d

mϵ2
ZZ⊤)−

K∑
j=1

tr(Πj)

2m
log det(I +

d

tr(Πj)ϵ2
Zj(Zj)⊤)

where Zj = ZΠj denotes features of class-j samples, ∆R(·,Π, ϵ) is the coding rate reduction.
Features are updated layer-wise using closed-form statistics derived from previous representations
Zl. See Algorithm 3 for details. In essence, each layer computes per-class compression operators
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Table 8: Full test accuracy of ReduNet variants across all datasets and learning rates η ∈
{0.01, 0.05, 0.1, 0.5}.

Reuters η = 0.5 η = 0.1
SVM KNN NSC SVM KNN NSC

ReduNet 0.073 0.127 0.281 0.465 0.721 0.747
Multi-ReduNet 0.955 0.603 0.941 0.984 0.930 0.957
Multi-ReduNet-LN 0.956 0.709 0.946 0.986 0.941 0.958

η = 0.05 η = 0.01
SVM KNN NSC SVM KNN NSC

ReduNet 0.802 0.670 0.922 0.956 0.878 0.949
Multi-ReduNet 0.984 0.939 0.957 0.988 0.949 0.957
Multi-ReduNet-LN 0.985 0.943 0.957 0.988 0.950 0.957
global PCA+SVM 0.975
class-wise PCA+NSC 0.867
LDA 0.471

MNIST η = 0.5 η = 0.1
SVM KNN NSC SVM KNN NSC

ReduNet 0.074 0.019 0.020 0.901 0.913 0.908
Multi-ReduNet 0.414 0.655 0.361 0.797 0.878 0.869
Multi-ReduNet-LN 0.518 0.720 0.653 0.815 0.890 0.880

η = 0.05 η = 0.01
SVM KNN NSC SVM KNN NSC

ReduNet 0.906 0.930 0.903 0.894 0.937 0.897
Multi-ReduNet 0.837 0.902 0.871 0.885 0.926 0.897
Multi-ReduNet-LN 0.842 0.903 0.873 0.905 0.926 0.909
global PCA+SVM 0.878
class-wise PCA+NSC 0.773
LDA 0.615

Fashion-MNIST η = 0.5 η = 0.1
SVM KNN NSC SVM KNN NSC

ReduNet 0.137 0.141 0.073 0.824 0.812 0.841
Multi-ReduNet 0.369 0.738 0.402 0.744 0.762 0.778
Multi-ReduNet-LN 0.371 0.776 0.584 0.749 0.773 0.798

η = 0.05 η = 0.01
SVM KNN NSC SVM KNN NSC

ReduNet 0.858 0.826 0.836 0.852 0.826 0.836
Multi-ReduNet 0.798 0.790 0.800 0.845 0.813 0.831
Multi-ReduNet-LN 0.801 0.802 0.803 0.858 0.828 0.835
global PCA+SVM 0.829
class-wise PCA+NSC 0.667
LDA 0.781

{Cj
l }Kj=1 and a global expansion operator El from current features Zl:

1

2

dlogdet(I+ αZZ⊤)

dZ
|Zl

= α(I+ αZlZ
⊤
l )

−1︸ ︷︷ ︸
El

Zl,

tr(Πj)

2m

dlogdet(I+ αjZΠ
jZ⊤)

dZ
|Zl

=
tr(Πj)

m
αj(I+ αjZlΠ

jZ⊤
l )

−1︸ ︷︷ ︸
Cj

l

ZlΠ
j ,

and performs a projected gradient update using their discrepancy. These updates are fully transparent
and closed-form, making ReduNet interpretable by design.
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Table 8 continued

Swarm Behaviour η = 0.5 η = 0.1
SVM KNN NSC SVM KNN NSC

ReduNet 0.679 0.567 0.601 0.802 0.981 0.996
Multi-ReduNet 0.990 0.863 0.738 1.000 0.998 0.896
Multi-ReduNet-LN 0.990 0.867 0.765 1.000 0.998 0.896

η = 0.05 η = 0.01
SVM KNN NSC SVM KNN NSC

ReduNet 0.802 1.000 0.996 1.000 1.000 0.979
Multi-ReduNet 1.000 1.000 0.929 1.000 1.000 0.956
Multi-ReduNet-LN 1.000 1.000 0.927 1.000 1.000 0.977
global PCA+SVM 1.000
class-wise PCA+NSC 0.913
LDA 0.977

DrivFace η = 0.5 η = 0.1
SVM KNN NSC SVM KNN NSC

ReduNet 0.295 0.098 0.104 0.219 0.235 0.169
Multi-ReduNet 0.820 0.978 0.852 1.000 0.918 0.984
Multi-ReduNet-LN 0.869 0.967 0.907 1.000 0.940 0.984

η = 0.05 η = 0.01
SVM KNN NSC SVM KNN NSC

ReduNet 0.432 0.393 0.366 1.000 1.000 1.000
Multi-ReduNet 1.000 0.951 0.995 1.000 1.000 1.000
Multi-ReduNet-LN 1.000 0.978 0.995 1.000 1.000 1.000
global PCA+SVM 1.000
class-wise PCA+NSC 1.000
LDA 1.000

ARCENE η = 0.5 η = 0.1
SVM KNN NSC SVM KNN NSC

ReduNet 0.366 0.341 0.220 0.439 0.439 0.561
Multi-ReduNet 0.561 0.659 0.732 0.683 0.683 0.829
Multi-ReduNet-LN 0.561 0.683 0.829 0.805 0.732 0.805

η = 0.05 η = 0.01
SVM KNN NSC SVM KNN NSC

ReduNet 0.439 0.415 0.463 0.341 0.707 0.780
Multi-ReduNet 0.829 0.732 0.805 0.829 0.780 0.829
Multi-ReduNet-LN 0.829 0.732 0.805 0.829 0.780 0.829
global PCA+SVM 0.805
class-wise PCA+NSC 0.756
LDA 0.878

Evaluation follows a similar layer-wise procedure but omits gradient-based updates. At each layer,
the learned compression operators Cj

l are used to compute soft class attribution probabilities π̂j :

π̂j(zl) =
exp (−λ∥Cj

l zl∥)∑K
i=1 exp (−λ∥Ci

l zl∥)

where Cj
l zl approximates projection of zl onto the orthogonal complement of class-j’s subspace.

This inference strategy is foundational to ReduNet and forms the basis for our class-wise infer-
ence scheme in Multi-ReduNet (Section 3.3). The complete training and evaluation procedures are
summarized in Algorithm 3 and Algorithm 4, respectively.

We denote PSd−1(·) as the projection operator onto the d-dimensional unit sphere. It enforces that
updated features reside on the sphere, which normalizes their magnitudes and enhances stability.
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Algorithm 3 Forward Training Algorithm of ReduNet

Require: Input data X = [x1, x2, · · · , xm] ∈ Rd×m, λ, ϵ, Π, learning rate η.
1: set α = d

mϵ2 , {αj =
d

tr(Πj)ϵ2 }
K
j=1, {γj = tr(Πj)

m }Kj=1.
2: Initialize Z1 = X
3: for l = 1, 2, · · · , L do
4: El = α(I + αZlZ

⊤
l )−1, {Cj

l = αj(I + ZlΠ
jZ⊤

l )−1}Kj=1
5: for i = 1, 2, · · · ,m do
6: {π̂j(zil ) =

exp (−λ∥Cj
l z

i
l∥)∑K

j=1 exp (−λ∥Cj
l z

i
l∥)
}Kj=1

7: zil = PSd−1(zil + η · (Elz
i
l −

∑K
j=1 γjC

j
l z

i
l π̂

j(zil )
))

8: end for
9: end for

10: return features ZL+1, the learned parameters {El}Ll=1, {Cj
l }

K,L
j=1,l=1, {γj}Kj=1.

Algorithm 4 Evaluation Algorithm of ReduNet

Require: Input x ∈ Rd, network parameters {El}Ll=1, {Cj
l }

L,K
l=1,j=1, {γj}Kj=1, λ and learning rate

η.
1: Initialize z1 = x
2: for l = 1, · · · , L do

3: {π̂j
(
zjl
)
=

exp
(
−λ||Cj

l zl||
)

∑K
j=1 exp

(
−λ||Cj

l zl||
)}Kj=1

4: zl+1 = PSn−1

(
zl + η ·

(
Elzl −

∑K
j=1 γjC

j
l zlπ̂

j
(
zl
)))

5: end for
6: return feature zL+1

G.2 MULTI-REDUNET AND MULTI-REDUNET-LASTNORM

Although ReduNet computes per-class compression terms Rc(Z, ϵ|Π), its optimization is global.
This assumes shared structure across classes and prevents fine-grained control over class-specific
representations. And in real-world highdimensional data settings, particularly under sample scarcity,
ReduNet’s global training mechanism becomes inefficient. Each layer requires computing class-
wise compression matrices Cj

l ∈ Rd×d and a global expansion matrix El ∈ Rd×d, leading to ex-
pensive matrix inversions when feature dimension d is large. This hinders deployment on resource-
constrained platforms.

To address this, we propose Multi-ReduNet, which decomposes the global ReduNet objective
MCR2 into K class-wise subproblems:

K∑
j=1

max
Zj∈Rd×tr(Πj)

1

2

[
log det

(
I +

d

mϵ2
Zj(Zj)⊤

)
− tr(Πj)

m
log det

(
I +

d

tr(Πj)ϵ2
Zj(Zj)⊤

)]
subject to norm constraints. Each subproblem independently updates Zj using projected gradient
ascent, where gradients are:

Zj
l+1 ∝ Zj

l + η ∗
(1
2

dlog det(I + d
mϵ2Z

j
l (Z

j
l )

⊤)

dZj
l

− tr(Πj)

2m

d log det(I + d
tr(Πj)ϵ2Z

j
l (Z

j
l )

⊤)

dZj
l

)
= Zj

l + η ∗
( d

mϵ2
(I +

d

mϵ2
Zj
l (Z

j
l )

⊤)−1︸ ︷︷ ︸
Ej

l

Zj
l −

tr(Πj)

m

d

tr(Πj)ϵ2
(I +

d

tr(Πj)ϵ2
Zj
l (Z

j
l )

⊤)−1︸ ︷︷ ︸
Cj

l

Zj
l

)

.

Note that Ej
l and Cj

l are both functions of the same class-wise covariance Zj
l (Z

j
l )

⊤, but they arise
from the expansion and compression log-det terms with different coefficients α and αj . The actual
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update for class j depends on their difference (Ej
l −

tr(Πj)
m Cj

l )Z
j
l , so the two operators act as

opposing forces (promoting global spread vs. within-class compactness) rather than as a simple
rescaling. Crucially, in Multi-ReduNet these operators are computed from the class-wise covariance
Zj
l (Z

j
l )

⊤ instead of the global covariance ZZ⊤, which makes the optimization fully decoupled
across classes.

Algorithm 5 Training Algorithm of Multi-ReduNet and Multi-ReduNet-LastNorm

Require: Input data X ∈ Rd×m, class memberships {Πj}Kj=1, parameters ϵ > 0, λ, learning rate
η.

1: Compute class sizes: mj = tr(Πj), priors γj =
mj

m

2: Set α = d
mϵ2 , and αj =

d
mjϵ2

for j = 1, . . . ,K

3: Initialize features: Z1 = X
4: for l = 1 to L do
5: if l = 1 then
6: Extract class-wise inputs: {Zj

l = Z1Π
j}Kj=1

7: end if
8: for j = 1 to K do
9: #Per-class forward update

10: Compute: preEj
l = (I + α(Zj

l )
⊤Zj

l )
−1 ∈ Rmj×mj

11: Compute: Ej
l = α(I − αZj

l · preEj
l · (Z

j
l )

⊤)

12: Compute: preCj
l = (I + αj(Z

j
l )

⊤Zj
l )

−1 ∈ Rmj×mj

13: Compute: Cj
l = αj(I − αjZ

j
l · preCj

l · (Z
j
l )

⊤)
14: Update features:

Zj
l+1 =

{
PSd−1

(Zj
l + η(Ej

l Z
j
l − γjC

j
l Z

j
l )), (Multi-ReduNet)

Zj
l + η(Ej

l Z
j
l − γjC

j
l Z

j
l ), (Multi-ReduNet-LastNorm)

15: end for
16: end for
17: if Multi-ReduNet-LastNorm then
18: Apply PSd−1

(·) to all Zj
L+1 for j = 1, . . . ,K

19: end if
20: return features {Zj

l }
K,L+1
j=1,l=1, priors {γj}Kj=1

Using Lemma 1, these matrix inverses can be computed efficiently via Woodbury identity. For
training samples with known class membership, the features are updated by:

zjl+1 = PSd−1

(
Zj
l + η(Ej

l Z
j
l −

tr(Πj)

m
Cj

l Z
j
l )
)

During evaluation, since test labels are unknown, we compute soft membership scores by soft-
max function π̂j . Then, unlike ReduNet, which only uses π̂j to weigh compression terms, Multi-
ReduNet performs a full forward update within each class-specific subnetwork independently,
ignoring π̂j during that step. These per-class updated features are finally aggregated using π̂j as
weights:

zl+1 = PSd−1

( K∑
j=1

(
zl + η · (Ej

l zl −
tr(Πj)

m
Cj

l zl)
)
· π̂j

)
This forward scheme captures how confident the model is about a test sample’s class alignment, and
allows each class branch to contribute accordingly.

To further reduce storage overhead, we adopt parameterized model storage: instead of saving all
L · (2K) d × d parameter matrices, we store only the learned features Zl per layer and reconstruct
Ej

l , C
j
l on-the-fly when needed.

Finally, we introduce Multi-ReduNet-LastNorm, which differs by postponing unit-norm projection
to the final layer. This provides more flexibility during intermediate optimization while ensuring fair
comparison across classes at inference.
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Algorithm 6 Evaluation Algorithm of Multi-ReduNet and Multi-ReduNet-LastNorm

Require: Input sample x ∈ Rd, training features {Zl = [Z1
l , . . . , Z

K
l ] ∈ Rd×m}L+1

l=1 , hyperparam-
eters {γj}Kj=1, λ, learning rate η.

1: Compute α = n
mϵ2 , αj =

n
tr(Πj)ϵ2

2: Set z1 = x
3: for l = 1 to L do
4: preEj

l =
(
I + α(Zj

l )
⊤Zj

l

)−1

for j = 1, . . . ,K

5: preCj
l =

(
I + αj(Z

j
l )

⊤Zj
l

)−1

for j = 1, . . . ,K

6: Ej
l = α

(
I − αZj

l · preE
j
l · (Z

j
l )

⊤
)

7: Cj
l = αj

(
I − αjZ

j
l · preC

j
l · (Z

j
l )

⊤
)

8: Compute soft membership weights:

π̂j(zl) =
exp

(
−λ∥Cj

l zl∥
)

∑K
i=1 exp

(
−λ∥Ci

l zl∥
) ∈ [0, 1]

9: For each class j, compute tentative update:

z′
j
l+1 = zl + η(Ej

l zl − γjC
j
l zl)

10: Aggregate:

zl+1 =

{
PSd−1

(∑K
j=1 z

′j
l+1 · π̂j(zl)

)
, if Multi-ReduNet∑K

j=1 z
′j
l+1 · π̂j(zl), if Multi-ReduNet-LastNorm

11: end for
12: if Multi-ReduNet-LastNorm then
13: zL+1 ← PSn−1(zL+1)
14: end if
15: return Final feature zL+1

The complete training and evaluation procedures for Multi-ReduNet and Multi-ReduNet-LastNorm
are summarized in Algorithm 5 and Algorithm 6, respectively.

H EXPERIMENTAL SETUP

H.1 EXPERIMENTS OF MULTI-REDUNET AND VARIANTS

We evaluate Multi-ReduNet and its LastNorm variant on six datasets spanning diverse modalities:
Reuters (text), mnist (images), fashion-mnist (images), Swarm Behaviour (survey data), DrivFace
(images), and ARCENE (medical diagnostics):

• Reuters: the Reuters dataset is a commonly used text classification dataset and consists
of a total of 135 document categories. For our experiments, we extracted data from
the first five categories because these five categories have slightly more abundant sam-
ples. The training set includes 5,304 samples, and the test set comprises 1,328 sam-
ples. The dataset can be downloaded from http://www.cad.zju.edu.cn/home/
dengcai/Data/TextData.html.

• MNIST: this is a widely used handwritten dataset in the field of machine learning, com-
prising 70,000 grayscale images of size 28×28, representing the digits from 0 to 9. We
randomly sampled 500 samples from each class of the data to form the training set
and 100 samples from each class to form the test set. Additionally, each image sam-
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ple is reshaped to a size of 100×100 and then flattened into a 10,000-dimensional vec-
tor. The dataset can be downloaded from https://www.kaggle.com/datasets/
hojjatk/mnist-dataset.

• Fashion-MNIST: this dataset is a dataset used for clothing image classification, containing
28×28 pixel images of clothing from 10 different categories. We randomly selected 500
samples from each class of the data to form the training set and 100 samples from each
class to form the test set. Each image is then rescaled to 100×100 pixels and flattened
into a 10,000-dimensional vector. The dataset can be downloaded from https://www.
tensorflow.org/datasets/catalog/fashion_mnist.

• Swarm Behaviour: this dataset was obtained from an online survey run by UNSW, Aus-
tralia. It has 2,400-dimensional input features and 2 classes. We randomly extracted 1,200
samples for the training set and 300 samples for the test set. Detailed data information and
download address are available at: https://archive.ics.uci.edu/dataset/
524/swarm+behaviour.

• DrivFace: this dataset contains images sequences of subjects while driving in real sce-
narios. It is composed of 606 samples acquired over different days from 4 drivers with
several facial features. We randomly extracted 484 samples for training set and the re-
maining 122 samples for test set. Each sample is rescaled as 64 × 64 pixels and then
flattened into a 4096-dimensinal vector. The dataset can be download from https:
//archive.ics.uci.edu/dataset/378/drivface.

• ARCENE: this dataset contains mass-spectrometric data from healthy individuals and can-
cer patients. We split the data from both healthy individuals and cancer patients into
training and test sets with an 8:2 ratio, respectively. This dataset is one of 5 datasets
of the NIPS 2003 feature selection challenge. The details and the download link are
https://archive.ics.uci.edu/dataset/167/arcene.

In each experiment, we benchmark six models: ReduNet, ReduNet-RF (replacing the internal mem-
bership predictor with a random forest classifier), imp-ReduNet (using Lemma 1 for parameter
computation), imp-ReduNet-RF (combining model 2 and 3), Multi-ReduNet, and Multi-ReduNet-
LastNorm. The evaluation focuses on:

• Classification accuracy: Features from the final layer are evaluated using three down-
stream classifiers:
1. SVM: Support Vector Machine with RBF kernel.
2. KNN: kk-nearest neighbors classifier with k = 5.
3. NSC (Nearest Subspace Classifier): for each class j, we compute the mean µj ∈ Rd

of the learned features Zj , and let U j ∈ Rd×rj be the top rj principal components of Zj .
Then, a feature z is classified to class j′ where j′ = argminj∈{1,··· ,K} ∥(I−U jU j⊤)(z−
µj)∥22. We set rj = 10 for all j.

• Training efficiency: We compare total training time across models with different layer
counts.

• •Computational complexity: Table 2 presents theoretical parameter calculation costs in
undersampled regimes.

• Feature separability: We visualize test features learned by ReduNet, ReduNet-RF, Multi-
ReduNet, and Multi-ReduNet-LastNorm using t-SNE plots in Figure 2. These visualiza-
tions are based on features extracted from models L = 5 layers. Since imp-ReduNet and
imp-ReduNet-RF only optimize computation without modifying representations, their fea-
tures are not visualized.

I EXTENDED EXPERIMENT RESULTS

I.1 CLASSIFICATION ACCURACY OF REDUNET VARIANTS WITH VARYING LAYERS
L = 10, 15, 20, 25

The experimental results of ReduNet variants with 10, 15, 20, and 25 layers (with fixed η =
0.05, ϵ2 = 0.1) are reported in Tables 9–14. Specifically, Table 9 corresponds to Reuters, Table 10
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to MNIST, Table 11 to Fashion-MNIST, Table 12 to Swarm Behaviour, Table 13 to DrivFace, and
Table 14 to ARCENE. These results provide a comprehensive comparison across different depths
and datasets.

Table 9: Accuracy comparison of ReduNet variants on Reuters

Layers=10 Layers=15
SVM KNN NSC SVM KNN NSC

ReduNet 0.837 0.591 0.939 0.771 0.576 0.925
ReduNet-RF 0.441 0.562 0.623 0.441 0.562 0.552
imp-ReduNet 0.838 0.591 0.939 0.771 0.576 0.925
imp-ReduNet-RF 0.441 0.562 0.623 0.441 0.562 0.552
Multi-ReduNet 0.985 0.931 0.957 0.978 0.892 0.953
Multi-ReduNet-LastNorm 0.986 0.944 0.957 0.981 0.929 0.956

Layers=20 Layers=25
SVM KNN NSC SVM KNN NSC

ReduNet 0.758 0.569 0.909 0.746 0.569 0.874
ReduNet-RF 0.440 0.562 0.826 0.439 0.561 0.468
imp-ReduNet 0.757 0.571 0.909 0.750 0.570 0.876
imp-ReduNet-RF 0.451 0.572 0.846 0.441 0.561 0.488
Multi-ReduNet 0.977 0.830 0.950 0.971 0.732 0.953
Multi-ReduNet-LastNorm 0.977 0.907 0.951 0.974 0.879 0.950

Table 10: Accuracy comparison of ReduNet variants on mnist

Layers=10 Layers=15
SVM KNN NSC SVM KNN NSC

ReduNet 0.898 0.909 0.910 0.885 0.881 0.917
ReduNet-RF 0.354 0.468 0.672 0.261 0.250 0.278
imp-ReduNet 0.898 0.909 0.906 0.885 0.881 0.917
imp-ReduNet-RF 0.354 0.468 0.661 0.261 0.250 0.276
Multi-ReduNet 0.787 0.859 0.848 0.684 0.816 0.782
Multi-ReduNet-LastNorm 0.788 0.868 0.858 0.728 0.848 0.838

Layers=20 Layers=25
SVM KNN NSC SVM KNN NSC

ReduNet 0.880 0.875 0.910 0.876 0.874 0.906
ReduNet-RF 0.207 0.144 0.195 0.124 0.124 0.195
imp-ReduNet 0.880 0.875 0.908 0.876 0.874 0.906
imp-ReduNet-RF 0.208 0.153 0.195 0.124 0.124 0.195
Multi-ReduNet 0.595 0.748 0.725 0.534 0.736 0.668
Multi-ReduNet-LastNorm 0.664 0.805 0.800 0.628 0.805 0.779

I.2 ENLARGED T-SNE VISUALIZATIONS OF TEST FEATURES AND ANALYSIS

Figure 3 presents t-SNE visualizations of test features learned on the Reuters dataset across four
ReduNet variants. The vanilla ReduNet (top-left) shows entangled feature clusters with significant
overlaps between classes, indicating limited separability. ReduNet-RF (top-right) marginally im-
proves class separation but still suffers from boundary ambiguity. In contrast, both Multi-ReduNet
(bottom-left) and Multi-ReduNet-LastNorm (bottom-right) exhibit markedly improved clustering,
with each class forming compact and well-separated regions. Notably, Multi-ReduNet-LastNorm
demonstrates the cleanest class delineation, suggesting that class-wise decomposition and final-
layer normalization contribute synergistically to enhancing discriminative structure in the learned
features.

Figure 4 shows the t-SNE projections of test-set features extracted by different ReduNet variants on
mnist. ReduNet and ReduNet-RF (top row) exhibit limited class separation: while some clusters be-
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Table 11: Accuracy comparison of ReduNet variants on fashion-mnist

Layers=10 Layers=15
SVM KNN NSC SVM KNN NSC

ReduNet 0.822 0.799 0.842 0.806 0.788 0.837
ReduNet-RF 0.418 0.419 0.564 0.270 0.265 0.302
imp-ReduNet 0.822 0.799 0.842 0.806 0.788 0.832
imp-ReduNet-RF 0.418 0.419 0.565 0.270 0.265 0.304
Multi-ReduNet 0.707 0.746 0.764 0.604 0.745 0.723
Multi-ReduNet-LastNorm 0.720 0.763 0.788 0.618 0.772 0.755

Layers=20 Layers=25
SVM KNN NSC SVM KNN NSC

ReduNet 0.801 0.793 0.830 0.799 0.799 0.818
ReduNet-RF 0.270 0.256 0.270 0.270 0.243 0.270
imp-ReduNet 0.801 0.793 0.830 0.794 0.799 0.813
imp-ReduNet-RF 0.271 0.266 0.278 0.270 0.243 0.272
Multi-ReduNet 0.520 0.741 0.667 0.463 0.750 0.602
Multi-ReduNet-LastNorm 0.529 0.765 0.723 0.470 0.774 0.700

Table 12: Accuracy comparison of ReduNet variants on Swarm Behaviour

Layers=10 Layers=15
SVM KNN NSC SVM KNN NSC

ReduNet 0.802 0.985 0.995 0.802 0.883 0.995
ReduNet-RF 0.920 0.911 0.925 0.869 0.861 0.887
imp-ReduNet 0.802 0.985 0.995 0.802 0.883 0.994
imp-ReduNet-RF 0.920 0.911 0.925 0.869 0.861 0.887
Multi-ReduNet 1.000 0.998 0.884 1.000 0.968 0.860
Multi-ReduNet-LastNorm 1.000 0.998 0.910 1.000 0.972 0.865

Layers=20 Layers=25
SVM KNN NSC SVM KNN NSC

ReduNet 0.802 0.837 0.971 0.802 0.804 0.936
ReduNet-RF 0.869 0.817 0.825 0.869 0.773 0.800
imp-ReduNet 0.802 0.837 0.971 0.802 0.804 0.939
imp-ReduNet-RF 0.869 0.817 0.825 0.869 0.773 0.800
Multi-ReduNet 1.000 0.938 0.823 0.990 0.915 0.805
Multi-ReduNet-LastNorm 1.000 0.938 0.844 1.000 0.920 0.821

gin to emerge (e.g., digits 0, 1, and 7), the overall feature distributions are entangled, with noticeable
overlaps between semantically similar digits (e.g., 4, 5).

In contrast, Multi-ReduNet (bottom left) yields significantly more structured clusters, albeit with
mild boundary fuzziness. The clearest improvement appears in Multi-ReduNet-LastNorm (bottom
right), where all ten classes are sharply delineated with minimal intra-class variance. The result-
ing clusters are not only well-separated but also uniformly distributed, indicating improved feature
compactness and discriminability.

These visualizations corroborate the accuracy gains in Table 2 and validate the hypothesis that class-
wise decomposition promotes more interpretable and orthogonal representations.

Figure 5 presents the t-SNE visualizations of final-layer features learned by different ReduNet vari-
ants on the fashion-mnist test set. Despite the increased complexity of this 10-class clothing dataset
(relative to mnist), the separation and compactness of class-wise features vary substantially across
models.

ReduNet (top-left) exhibits notable class entanglement, with overlapping clusters and unclear mar-
gins between semantically distinct categories (e.g., classes 0, 3, and 7). The representation remains
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Table 13: Accuracy comparison of ReduNet variants on DrivFace

Layers=10 Layers=15
SVM KNN NSC SVM KNN NSC

ReduNet 0.322 0.202 0.169 0.279 0.164 0.240
ReduNet-RF 0.284 0.295 0.306 0.284 0.295 0.273
imp-ReduNet 0.326 0.202 0.169 0.279 0.164 0.240
imp-ReduNet-RF 0.284 0.295 0.306 0.284 0.295 0.303
Multi-ReduNet 0.995 0.934 0.984 0.973 0.907 0.967
Multi-ReduNet-LastNorm 1.000 0.951 0.989 0.990 0.956 0.984

Layers=20 Layers=25
SVM KNN NSC SVM KNN NSC

ReduNet 0.317 0.131 0.218 0.256 0.131 0.191
ReduNet-RF 0.284 0.240 0.273 0.218 0.322 0.251
imp-ReduNet 0.317 0.131 0.218 0.256 0.131 0.191
imp-ReduNet-RF 0.284 0.240 0.273 0.218 0.322 0.249
Multi-ReduNet 0.919 0.929 0.945 0.891 0.939 0.923
Multi-ReduNet-LastNorm 0.984 0.973 0.967 0.962 0.978 0.962

Table 14: Accuracy comparison of ReduNet variants on ARCENE

Layers=10 Layers=15
SVM KNN NSC SVM KNN NSC

ReduNet 0.536 0.512 0.488 0.439 0.414 0.439
ReduNet-RF 0.882 0.890 0.439 0.098 0.098 0.439
imp-ReduNet 0.536 0.512 0.488 0.439 0.418 0.439
imp-ReduNet-RF 0.882 0.890 0.439 0.098 0.098 0.439
Multi-ReduNet 0.756 0.707 0.805 0.634 0.708 0.805
Multi-ReduNet-LastNorm 0.785 0.759 0.817 0.752 0.734 0.805

Layers=20 Layers=25
SVM KNN NSC SVM KNN NSC

ReduNet 0.560 0.487 0.414 0.439 0.390 0.463
ReduNet-RF 0.901 0.890 0.437 0.098 0.098 0.439
imp-ReduNet 0.560 0.487 0.414 0.439 0.390 0.463
imp-ReduNet-RF 0.902 0.888 0.437 0.098 0.098 0.439
Multi-ReduNet 0.599 0.707 0.783 0.570 0.707 0.781
Multi-ReduNet-LastNorm 0.712 0.708 0.805 0.651 0.685 0.786

largely diffuse, reflecting its global coupling across classes and lack of explicit discriminability con-
straints.

ReduNet-RF (top-right) shows similar structure on ReduNet, indicating that global orthogonality
constraints alone are insufficient for resolving subtle visual categories in fashion-mnist.

Multi-ReduNet (bottom-left) introduces sharper decision boundaries and better class separation,
thanks to its per-class decomposition strategy. Though some clusters still partially overlap, the
overall layout is more class-discriminative and geometrically organized.

Multi-ReduNet-LastNorm (bottom-right) achieves the most clearly separated and compact clusters,
with minimal inter-class confusion and high intra-class cohesion. Notably, all 10 classes form dis-
tinct, non-overlapping blobs, validating the effectiveness of the final projection step in enforcing
orthogonality and enhancing visual interpretability.

Figure 6 shows the t-SNE projections of test-time features on the Swarm Behaviour dataset, a binary
classification task characterized by limited samples and subtle class variation.

ReduNet (top-left) fails to effectively separate the two classes in the projected feature space. Most
samples are scattered and interleaved, indicating weak class-discriminative structure. This reflects
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Figure 3: t-SNE visualizations of learned features on Reuters

Figure 4: t-SNE visualizations of learned features on mnist
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Figure 5: t-SNE visualizations of learned features on fashion-mnist

Figure 6: t-SNE visualizations of learned features on Swarm Behaviour
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the challenge of capturing meaningful boundaries when using globally coupled updates without
class-specific refinement.

ReduNet-RF (top-right) shows slight improvement, with some local grouping of class-1 (orange)
points, though the global overlap remains significant. The marginal gain suggests that random fea-
ture projections alone are insufficient to resolve this low-data regime.

Multi-ReduNet (bottom-left) introduces clearer inter-class margins and tighter intra-class clusters.
While the separation is not perfect, distinct grouping patterns emerge—indicating that independent
class-wise subspace optimization provides meaningful gains in geometric regularity and class align-
ment.

Multi-ReduNet-LastNorm (bottom-right) delivers the clearest boundary among all variants. Class 0
(blue) and class 1 (orange) form nearly disjoint clusters along a horizontal axis, with minimal cross-
class confusion. The use of a final projection to enforce global separation yields a feature space that
is highly linearly separable, well-suited for downstream nonparametric classifiers like SVM or NSC.
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