

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MULTI-REDUNET: INTERPRETABLE CLASS-WISE DE- COMPOSITION OF REDUNET

Anonymous authors

Paper under double-blind review

ABSTRACT

ReduNet has emerged as a promising white-box neural architecture grounded in the principle of maximal coding rate reduction, offering interpretability in deep feature learning. However, its practical applicability is hindered by computational complexity and limited ability to exploit class-specific structures, especially in undersampled regimes. In this work, we propose Multi-ReduNet and its variant Multi-ReduNet-LastNorm, which decompose the global learning objective into class-wise subproblems. These extensions preserve the theoretical foundation of ReduNet while improving training efficiency by reducing matrix inversion costs and enhancing feature separability. We provide a concise theoretical justification for the class-wise decomposition and show through experiments on diverse datasets that our models retain interpretability while achieving superior efficiency and discriminative power under limited supervision. Our findings suggest that class-wise extensions of ReduNet broaden its applicability, bridging the gap between interpretability and practical scalability in deep learning.

1 INTRODUCTION

High-dimensional data across finance, biomedicine, and social networks often exhibit **undersampled regimes** (feature dimension $d \gg$ number of samples m) due to limited samples, privacy restrictions, and acquisition costs. In this settings, many distinct models can interpolate the training data equally well, which tends to exacerbate overfitting and unstable generalization (Hastie et al., 2009; Bühlmann & Van De Geer, 2011), posing a fundamental challenge. While **ReduNet** (Chan et al., 2021), a white-box framework grounded in Maximal Coding Rate Reduction (MCR²) (Yu et al., 2020), provides interpretable feature learning with provable optimization, its global $\mathcal{O}(d^3)$ complexity can be reduced via class-wise decomposition in undersampled, imbalanced regimes where class sizes vary significantly.¹

To overcome these limitations, we introduce two extensions: **Multi-ReduNet** and **Multi-ReduNet-LastNorm**. By decomposing the global ReduNet objective into class-wise subproblems, Multi-ReduNet improves computational efficiency and enhances representation separability in undersampled regimes. The LastNorm variant further refines this process by solely enforcing a single normalization at the output, yielding consistent gains across multiple classifiers.

We contribute: (1) **Theorem 2**, proving MCR² admits rigorous class-wise decomposition via class-orthogonality (Theorem 1), enabling independent per-class optimization without loss of optimality; (2) **Multi-ReduNet** and **Multi-ReduNet-LastNorm**, reducing computational complexity of each parameter from $\mathcal{O}(d^3)$ to $\mathcal{O}(m_j^3)$ via Woodbury identity while preserving interpretability; (3) extensive experiments on six datasets (Reuters, MNIST, Fashion-MNIST, Swarm, DrivFace, ARCENE) showing that, when averaging over four learning rates $\{0.5, 0.1, 0.05, 0.01\}$ and three downstream classifiers (SVM, kNN, NSC), Multi-ReduNet(-LastNorm) achieves **8.5–52.7 percentage points higher mean accuracy** than ReduNet (e.g., +30.7pp on Reuters, +52.7pp on DrivFace), while reducing wall-clock training time by **about 2× on average** ($1.4\text{--}2.6\times$ across datasets) and improving learning-rate robustness by **roughly an order of magnitude** (up to $9.8\times$ smaller accuracy range across η).

¹We used GPT-4 solely for language polishing. All technical content, analysis, and conclusions remain those of the authors.

054 **2 RELATED WORK**
 055

056 Learning from undersampled, high-dimensional data ($m \ll d$) arises across **genomics** ($d > 20,000$,
 057 $m = 30\text{--}100$) (Nguyen & Rocke, 2002), **mass spectrometry** (Adam et al., 2002), and **rare disease**
 058 **imaging** (Litjens et al., 2017). The **ARCENE** dataset (Guyon et al., 2007) exemplifies this with
 059 $d = 10,000$ features but only $m = 200$ samples ($m/d = 0.02$), making representation learning in
 060 the $m \ll d$ regime a widely-recognized challenge.

061 **Preprocessing-based methods** such as PCA (Greenacre et al., 2022), LDA (Xing et al., 2001), and
 062 data augmentation (Goodfellow et al., 2020) alleviate sample scarcity via dimensionality reduction
 063 or synthetic examples, yet they do not explicitly model *class-specific structure*, by which we mean
 064 the **label-conditioned geometry** of per-class feature subspaces and their mutual relations, and instead
 065 rely on unstable global statistics when $m \ll d$, limiting their ability to learn robust, interpretable
 066 representations in undersampled regimes.

067 **Specialized deep learning models** for data-scarce settings include few-shot learning frameworks
 068 (Prototypical Networks (Snell et al., 2017), Matching Networks (Vinyals et al., 2016)) and meta-
 069 learning (MAML (Finn et al., 2017), Siamese networks (Koch, 2015)). While effective, these operate
 070 as **black-box models** with limited transparency.

071 **Information-theoretic objectives** (InfoMax (Hjelm et al., 2019), Information Bottleneck (Alemi
 072 et al., 2017), Rate-Distortion (Theis et al., 2017)) offer principled criteria for representation learning
 073 by maximizing mutual information or trading off compression and prediction accuracy. However,
 074 these methods are typically implemented via deep neural encoders trained with variational bounds
 075 and stochastic gradient descent, which yields black-box feature maps without closed-form updates,
 076 class-specific structure, or transparent geometric interpretation.

077 **ReduNet** (Chan et al., 2021) addresses this via a white-box framework grounded in Maximal Coding
 078 Rate Reduction (MCR²) (Yu et al., 2020), where each layer admits an analytic update and the
 079 resulting network provides interpretable, geometry-aware feature maps with provable optimization
 080 guarantees. However, ReduNet operates on global feature matrices with dense operators, leading to
 081 an $\mathcal{O}(d^3)$ per-parameter complexity in the feature dimension d , which quickly becomes prohibitive
 082 in high-dimensional, undersampled regimes. This motivates exploiting class-specific structure to
 083 decompose the optimization into smaller per-class problems, substantially reducing computational
 084 cost while preserving the MCR² objective.

085 Our work builds on this trajectory by extending ReduNet with class-wise decomposition. In contrast
 086 to black-box few-shot or generative models, our proposed **Multi-ReduNet** and **Multi-ReduNet-**
 087 **LastNorm** retain interpretability while improving representation separability, computational effi-
 088 ciency, and robustness to learning-rate choices in undersampled regimes.

090 **3 PROPOSED METHODS**
 091

093 We now present our proposed extensions to ReduNet, designed to reduce computational complex-
 094 ity and improve hyperparameter robustness in undersampled regimes. We first review the Re-
 095 duNet framework and its connection to the Maximal Coding Rate Reduction (MCR²) principle
 096 (Section 3.1). We then introduce Imp-ReduNet, which exploits the Woodbury identity to reduce
 097 computational complexity of ReduNet (Section 3.1), and provide a theoretical justification showing
 098 that the ReduNet objective can be decomposed into independent class-wise optimization subprob-
 099 lems (Section 3.3). This motivates our proposed architectures, **Multi-ReduNet** and **Multi-ReduNet-**
 100 **LastNorm** (Section 3.4), which leverage class-wise decomposition to improve computational effi-
 101 ciency and hyperparameter robustness while retaining interpretability.

102 **3.1 REDUNET PRELIMINARIES**
 103

105 Drawing on the principle of Maximal Coding Rate Reduction (MCR²) (Yu et al., 2020), ReduNet
 106 (Chan et al., 2021) has been proposed as a new class of white-box networks. It seeks to learn a feature
 107 representation $Z \in \mathbb{R}^{d \times m}$, where d is dimension of features and m is the number of samples, that
 maximizes the discrepancy between global and class-wise covariance complexities. The original

108 objective (MCR²) with respect to the distortion ϵ takes the following form:
109

$$110 \max_Z R(Z, \epsilon) - R^c(Z, \epsilon | \Pi) = \max_Z \underbrace{\frac{1}{2} \log \det(I + \alpha ZZ^\top)}_{\text{Global Coding Rate}} - \sum_{j=1}^K \underbrace{\frac{1}{2} \gamma_j \log \det(I + \alpha_j Z \Pi^j Z^\top)}_{\text{Class-wise Coding Rate}} \\ 111 \text{s.t. } \|Z^j\|_F^2 = \|Z \Pi^j\|_F^2 = m_j. \\ 112 \\ 113 \\ 114$$

115 where $\Pi^j \in \mathbb{R}^{m \times m}$ denotes the membership matrix for class j whose diagonal entries represent
116 the probabilities of m samples in class j , $m_j = \text{tr}(\Pi^j)$ is the number of samples in class j , $\alpha = d/(m\epsilon^2)$,
117 $\alpha_j = d/m_j\epsilon^2$, and $\gamma_j = m_j/m$.

118 This objective maximizes the **global coding rate** (promoting inter-class diversity) while minimizing
119 **class-wise coding rates** (enforcing intra-class compactness), yielding discriminative yet coherent
120 representations.

121 During training, ReduNet jointly updates both representations and model parameters through a layer-
122 wise greedy optimization. At each layer l , a set of closed-form parameters $\{E_l, C_l^j\}_{j=1}^K$ are com-
123 puted based on the current input features Z_l , where

$$124 \frac{1}{2} \frac{d \log \det(I + \alpha Z_l Z_l^\top)}{dZ_l} = \alpha(I + \alpha Z_l Z_l^\top)^{-1} Z_l := E_l Z_l, \\ 125 \frac{1}{2} \frac{d \log \det(I + \alpha_j Z_l \Pi^j Z_l^\top)}{dZ_l} = \alpha_j(I + \alpha_j Z_l \Pi^j Z_l^\top)^{-1} Z_l \Pi^j := C_l^j Z_l \Pi^j. \\ 126 \\ 127 \\ 128 \\ 129$$

130 These matrices govern the update of each training sample $z_l^i \in \mathbb{R}^d$ via:
131

$$132 z_{l+1}^j = \mathcal{P}_{S^{d-1}} \left(z_l^i + \eta(E_l z_l^i - \sum_{j=1}^K \gamma_j C_l^j z_l^i \hat{\pi}_l^j(z_l^i)) \right), \quad \hat{\pi}_l^j(z_l^i) = \frac{\exp(-\lambda \|C_l^j z_l^i\|)}{\sum_{j'=1}^K \exp(-\lambda \|C_l^{j'} z_l^i\|)}, \\ 133 \\ 134$$

135 where λ, η are hyperparameters, and $\mathcal{P}_{S^{d-1}}$ projects the update onto the unit sphere. Inference uses
136 the same update rule as training, applying the learned E_l and C_l^j to test inputs.
137

138 **Rationale for unit-sphere projection.** The projection $\mathcal{P}_{S^{d-1}}(\cdot)$ serves two critical purposes.
139 First, we consider an MCR² objective optimized under the class-wise Frobenius-norm constraint
140 $\|Z^j\|_F^2 = m_j$; projecting each column to the unit sphere is a simple *sufficient* way to enforce this
141 bound consistently in both training and inference (it is not mathematically necessary, and any other
142 bounded-norm parameterization satisfying $\|Z^j\|_F^2 = m_j$ would also be valid). Second, without
143 norm control, the MCR² objective could be trivially increased by multiplying Z by a large scalar,
144 leading to degenerate solutions that exploit magnitude rather than learning meaningful discrimina-
145 tive directions. The unit-sphere projection prevents this scaling degeneracy and forces the optimiza-
146 tion to focus on finding discriminative subspaces in feature space instead of arbitrarily amplifying
147 feature norms. We retain this projection in our Multi-ReduNet design for the same reasons.

148 3.2 IMP-REDUNET: REDUCING COMPUTATIONAL COMPLEXITY

149 ReduNet requires $d \times d$ matrix inversions for E_l and C_l^j , incurring $\mathcal{O}(d^3)$ cost. When $m \ll d$, we
150 exploit the Woodbury identity to reduce this to $\mathcal{O}(m^3)$:

151 **Lemma 1** (Woodbury Identity). *For any $\alpha \in \mathbb{R}$ and $X \in \mathbb{R}^{d \times m}$,*

$$152 (I + \alpha X X^\top)^{-1} = I - \alpha X (I + \alpha X^\top X)^{-1} X^\top, \\ 153$$

154 where the left side requires inverting a $d \times d$ matrix, while the right side requires only inverting an
155 $m \times m$ matrix.

156 Applying Lemma 1 to both E_l and C_l^j , we reduce the per-parameter complexity in ReduNet from
157 $\mathcal{O}(d^3)$ to $\mathcal{O}(m^3)$, a substantial gain when $m \ll d$. For example, on the ARCENE dataset ($d = 10,000$, $m_{\text{train}} = 159$), this represents a theoretical speedup factor of $(10,000/159)^3 \approx 250,000 \times$
158 in the inversion step alone. We refer to this Lemma 1-based implementation of ReduNet as **imp-**
159 **ReduNet**.

162 While Lemma 1 addresses the dimensional bottleneck, it does not exploit the class structure of the
 163 data. When the total sample size m is itself large (e.g., $m > 1,000$), the $m \times m$ inversion can still be
 164 expensive. This motivates a further decomposition: *can we break the $m \times m$ problem into K smaller*

165 $m_j \times m_j$ problems, one per class? The theoretical justification for this strategy is the subject of the
 166 next section.

167 For the complete derivation of Lemma 1 using Sylvester’s determinant identity, see Appendix C.

169 3.3 MULTI-REDUNET: CLASS-WISE DECOMPOSITION

171 Having established that Imp-ReduNet reduces the per-parameter cost from $\mathcal{O}(d^3)$ to $\mathcal{O}(m^3)$ (Sec-
 172 tion 3.1), we now address a complementary question: *can we further exploit the class structure to*
 173 *decompose the global MCR² objective into independent per-class subproblems?*

174 **Intuition.** For K classes with sizes $\{m_j\}_{j=1}^K$ ($\sum m_j = m$), independent per-class optimization
 175 costs $\mathcal{O}(m_j^3) \ll \mathcal{O}(m^3)$, especially when imbalanced. We show MCR² permits this decomposition
 176 without optimality loss. Crucially, class-orthogonality emerges as a *property of the optimal solution*
 177 of MCR² (Theorem 1) rather than an externally imposed constraint.

178 **Theorem 1.** *Let $Z = [z^1, \dots, z^m] \in \mathbb{R}^{d \times m}$ denote the feature matrix, and let $\{\Pi^j \in \mathbb{R}^{m \times m}\}_{j=1}^K$ be*
 179 *diagonal membership matrices such that $\sum_{j=1}^K \Pi^j = I$. Assume $\text{rank}(Z\Pi^j) \leq d_j$ and $\sum_{j=1}^K d_j \leq$*
 180 *d , consider the MCR² objective*

$$182 \max_{Z \in \mathbb{R}^{d \times m}} \frac{1}{2} \log \det \left(I + \frac{d}{m\epsilon^2} ZZ^\top \right) - \sum_{j=1}^K \frac{m_j}{2m} \log \det \left(I + \frac{d}{m_j\epsilon^2} Z\Pi^j Z^\top \right), \quad (1)$$

185 subject to $\|Z\Pi^j\|_F^2 = m_j$, where $m_j = \text{tr}(\Pi^j)$. Then any optimal solution Z^* necessarily satisfies
 186 the class-orthogonality property:

$$187 \quad (Z^i)^\top Z^j = 0 \quad \text{for all } i \neq j,$$

189 where $Z^j = Z^* \Pi^j$ denotes the class- j partition.

190 **Notation.** We follow the convention that columns of Z represent samples (i.e., $Z \in \mathbb{R}^{d \times m}$ where
 191 rows are features and columns are samples). Thus, $(Z^i)^\top Z^j \in \mathbb{R}^{m_i \times m_j}$ is the cross-class Gram
 192 matrix measuring inner products between class- i and class- j samples. The condition $(Z^i)^\top Z^j = 0$
 193 expresses that the column spaces of Z^i and Z^j are orthogonal.

194 **Proof sketch.** The proof proceeds by contradiction using a determinant inequality for sums of positive
 195 semi-definite matrices (Corollary 1 in Appendix D.1).

196 Assume the optimal Z^* has $(Z^{*j_1})^\top Z^{*j_2} \neq 0$ for some classes $j_1 \neq j_2$. By Corollary 1, the
 197 global coding rate $\det(I + \sum_j Z^{*j}(Z^{*j})^\top)$ is strictly smaller than $\prod_j \det(I + Z^{*j}(Z^{*j})^\top)$ when
 198 classes overlap. We then construct an alternative solution Z' by re-orthogonalizing via SVD while
 199 preserving per-class singular values. This Z' achieves strictly higher objective value, contradicting
 200 optimality of Z^* .

202 The complete proof with detailed matrix algebra is in Appendix D.2. \square

204 **Theorem 2.** *Let Z^* be any optimal solution to the global MCR² problem (1). By Theorem 1, Z^*
 205 satisfies class-orthogonality, so we can write $Z^{*j^\top} Z^{*j'} = 0$ for $j \neq j'$. Under this optimal class-
 206 orthogonal structure, suppose that $\text{rank}(Z^j) \leq d_j$ for each class j and $\sum_{j=1}^K d_j \leq d$. Then the
 207 objective in (1) decomposes into K independent class-wise problems:*

$$208 \max_{Z^j} \frac{1}{2} \left[\log \det \left(I + \frac{d}{m\epsilon^2} Z^j (Z^j)^\top \right) - \frac{m_j}{m} \log \det \left(I + \frac{d}{m_j\epsilon^2} Z^j (Z^j)^\top \right) \right], \quad (2)$$

211 subject to $\|Z^j\|_F^2 = m_j$.

213 **Proof.** Denote v_1 as the optimal value of the MCR², v_2 as sum of the optimal values of class-wise
 214 problems (2), the proof follows by showing that (i) any class-wise feasible solution is also globally
 215 feasible (hence $v_2 \leq v_1$), and (ii) by Theorem 1, the global optimum Z^* satisfies class-orthogonality,
 making it feasible for the class-wise problems (hence $v_1 \leq v_2$). See Appendix D.3 for details. \square

Theorem 2 establishes that the global MCR^2 objective can be decomposed into K independent class-wise subproblems without loss of optimality. While Theorem 1 was previously known (Chan et al., 2021), our proof via Corollary 1 is more direct and streamlined. Crucially, Theorem 2 enables the first practical algorithm for class-wise MCR^2 optimization.

Practical implications. Under undersampled scenarios $m \ll d$, the data inherently fulfill the conditions of Theorems 1 and 2, since the rank of each class-specific feature matrix is bounded by its sample size: $\sum_{j=1}^K \text{rank}(Z^j) \leq \sum_{j=1}^K m_j = m \ll d$.

Class-orthogonality as an optimality condition. Theorem 1 establishes that class-orthogonality is a necessary property of any global optimum of the MCR^2 , not a constraint we impose during optimization. Theorem 2 then shows that, under this optimal class-orthogonal structure, the global objective (1) is equivalent to a set of K independent class-wise problems (3). In practice, our iterative algorithm (Algorithm 1) optimizes these decomposed per-class objectives independently and does not enforce $(Z^i)^\top Z^j = 0$ as a hard constraint; any approximate class-orthogonality in the learned features arises from the optimization dynamics rather than from explicit regularization.

As with the original ReduNet implementation, numerical optimization on realistic datasets does not yield perfectly orthogonal class representations. Deviations from exact orthogonality arise from (i) convergence to local optima, (ii) finite optimization steps and numerical precision, and (iii) properties of the input data X (e.g., limited class separability, noise, and model mismatch), which may prevent gradient-based methods from reaching the global optimum basin. Thus, the class-wise decomposition should be viewed as a theoretically justified reparameterization at the level of global optima, while in practice it produces approximately disentangled class representations without requiring explicit orthogonality constraints.

Together, Theorems 1 and 2 justify a *class-wise decomposition strategy*: instead of solving the global MCR^2 objective, we can equivalently optimize K independent per-class subproblems:

$$\max_{Z^j \in \mathbb{R}^{d \times m_j}} \frac{1}{2} \left[\log \det \left(I + \frac{d}{m_j \epsilon^2} Z^j (Z^j)^\top \right) - \frac{m_j}{m} \log \det \left(I + \frac{d}{m_j \epsilon^2} Z^j (Z^j)^\top \right) \right], \quad (3)$$

subject to $\|Z^j\|_F^2 = m_j$ for each class $j = 1, \dots, K$.

Gradient formulations. For optimization via gradient ascent, we compute the per-class gradients. Denote $\alpha = \frac{d}{m \epsilon^2}$ and $\alpha_j = \frac{d}{m_j \epsilon^2}$. The gradient of the first term (per-class expansion component) is:

$$\frac{\partial}{\partial Z^j} \log \det \left(I + \alpha Z^j (Z^j)^\top \right) = 2\alpha \left(I + \alpha Z^j (Z^j)^\top \right)^{-1} Z^j. \quad (4)$$

The gradient of the second term (per-class compression component) is:

$$\frac{\partial}{\partial Z^j} \log \det \left(I + \alpha_j Z^j (Z^j)^\top \right) = 2\alpha_j \left(I + \alpha_j Z^j (Z^j)^\top \right)^{-1} Z^j. \quad (5)$$

Combining these, the gradient of the j -th class-wise objective (3) is:

$$\nabla_{Z^j} \mathcal{R}^j = \alpha \left(I + \alpha Z^j (Z^j)^\top \right)^{-1} Z^j - \frac{m_j}{m} \alpha_j \left(I + \alpha_j Z^j (Z^j)^\top \right)^{-1} Z^j. \quad (6)$$

Iterative updates. In a deep network with L layers, we apply gradient ascent at each layer $l = 1, \dots, L$. Let $Z_l^j \in \mathbb{R}^{d \times m_j}$ denote the class- j features at layer l . We define the per-layer gradient matrices:

$$E_l^j = \alpha \left(I + \alpha Z_l^j (Z_l^j)^\top \right)^{-1}, \quad (7)$$

$$C_l^j = \alpha_j \left(I + \alpha_j Z_l^j (Z_l^j)^\top \right)^{-1}. \quad (8)$$

The gradient ascent update (before projection) is:

$$Z_{l+1}^j \leftarrow Z_l^j + \eta \left(E_l^j Z_l^j - \frac{m_j}{m} C_l^j Z_l^j \right), \quad (9)$$

where η is the learning rate. To enforce the norm constraint $\|Z_l^j\|_F^2 = m_j$ for each class j , we apply spherical projection:

$$Z_{l+1}^j = \mathcal{P}_{S^{d-1}} \left(Z_l^j + \eta \left(E_l^j Z_l^j - \frac{m_j}{m} C_l^j Z_l^j \right) \right), \quad (10)$$

270 where $\mathcal{P}_{S^{d-1}}(\cdot)$ normalizes each column to unit norm.
 271

272 Note that E_l^j and C_l^j are both functions of the same class-wise covariance $Z_l^j(Z_l^j)^\top$, but they enter
 273 the update only through $(E_l^j - m_j/m C_l^j)Z_l^j$: the expansion term (with coefficient α) pushes features
 274 to spread out globally, while the compression term (with α_j) pulls each class towards a compact
 275 subspace. In Multi-ReduNet these operators are computed from class-wise covariances instead of
 276 the global covariance ZZ^\top , making the optimization decoupled across classes.

277 The class-wise decomposition directly motivates the design of **Multi-ReduNet**. Importantly, our
 278 implementation directly optimizes the decomposed objectives (3). Building on Theorem 2, we
 279 implement class-wise decomposition via parallel per-class optimization. **Training:** Each class j
 280 updates independently using $Z_{l+1}^j = \mathcal{P}_{S^{d-1}}(Z_l^j + \eta(E_l^j Z_l^j - \gamma_j C_l^j Z_l^j))$ where E_l^j, C_l^j are de-
 281 fined in equation 7 and equation 8 and the computational complexity can be reduced by Lemma
 282 1. **Inference:** Test samples use soft assignments $\hat{\pi}_l^j$ to aggregate class-specific updates: $z_{l+1} =$
 283 $\mathcal{P}_{S^{d-1}}(\sum_{j=1}^K (z_l + \eta(E_l^j z_l - \gamma_j C_l^j z_l)) \cdot \hat{\pi}_l^j)$.
 284

285 **3.4 MULTI-REDUNET-LASTNORM**
 286

287 **Multi-ReduNet-LastNorm** is a variant of Multi-ReduNet that shares the same class-wise MCR²
 288 decomposition in Theorem 2. The global feature matrix is partitioned as $Z = [Z^1, \dots, Z^K]$, where
 289 each block $Z^j \in \mathbb{R}^{d \times m_j}$ collects features from class j and is updated by its own operators E_l^j, C_l^j .
 290 We use the term *class-specific structure* to refer to this label-conditioned representation: each class
 291 is associated with its own feature subspace spanned by Z^j , rather than being coupled through global
 292 covariance ZZ^\top , and different classes are encouraged to occupy (approximately) orthogonal or
 293 weakly overlapping subspaces. Multi-ReduNet and Multi-ReduNet-LastNorm are designed to pre-
 294 serve and exploit this class-specific structure while providing a white-box realization of class-wise
 295 MCR².
 296

Algorithm 1 Training Algorithm of Multi-ReduNet and Multi-ReduNet-LastNorm

297 **Require:** Input data $X \in \mathbb{R}^{d \times m}$, class memberships $\{\Pi^j\}_{j=1}^K$, parameters $\epsilon > 0$, λ , learning rate
 298 η .
 299 1: Compute class sizes: $m_j = \text{tr}(\Pi^j)$, priors $\gamma_j = \frac{m_j}{m}$
 300 2: Set $\alpha = \frac{d}{m\epsilon^2}$, and $\alpha_j = \frac{d}{m_j\epsilon^2}$ for $j = 1, \dots, K$
 301 3: Initialize features: $Z_1 = X$
 302 4: **for** $l = 1$ to L **do**
 303 5: **if** $l = 1$ **then**
 304 6: Extract class-wise inputs: $\{Z_l^j = Z_1 \Pi^j\}_{j=1}^K$
 305 7: **end if**
 306 8: **for** $j = 1$ to K **do**
 307 9: Compute: $E_l^j = (I + \alpha Z_l^j Z_l^{j\top})^{-1}$, $C_l^j = (I + \alpha_j Z_l^j Z_l^{j\top})^{-1}$.
 308 10: Update features:
 309
 310 $Z_{l+1}^j = \begin{cases} \mathcal{P}_{S^{d-1}}(Z_l^j + \eta(E_l^j Z_l^j - \gamma_j C_l^j Z_l^j)), & \text{(Multi-ReduNet)} \\ Z_l^j + \eta(E_l^j Z_l^j - \gamma_j C_l^j Z_l^j), & \text{(Multi-ReduNet-LastNorm)} \end{cases}$
 311
 312 11: **end for**
 313 12: **end for**
 314 13: **if** Multi-ReduNet-LastNorm **then**
 315 14: Apply $\mathcal{P}_{S^{d-1}}(\cdot)$ to all Z_{L+1}^j for $j = 1, \dots, K$
 316 15: **end if**
 317 16: **return** features $\{Z_l^j\}_{j=1, l=1}^{K, L+1}$.
 318

320 Compared to Multi-ReduNet, Multi-ReduNet-LastNorm relaxes intermediate normalization by ap-
 321 plying the projection $\mathcal{P}_{S^{d-1}}(\cdot)$ only at the final layer L (detailed analysis in Appendix E.3). This
 322 allows more flexible intermediate representations while maintaining comparability at the last layer,
 323 reducing projection overhead and improving hyperparameter robustness (Section 4.3). As in Multi-
 ReduNet, the Woodbury identity (Lemma 1) reduces each class-specific inversion from $\mathcal{O}(d^3)$ to

324 $\mathcal{O}(m_j^3)$, yielding around $2\times$ empirical speedups on average across datasets. Complete training pro-
 325 cedures for Multi-ReduNet and Multi-ReduNet-LastNorm are given in Algorithm 1.
 326

327 4 EXPERIMENTAL EVALUATION

328 4.1 EXPERIMENTAL SETUP

329 **Setup.** Experiments run on NVIDIA A100 GPUs with $L = 5$ layers (results for $L \in \{10, 15, 20, 25\}$
 330 in Appendix I.1), $\epsilon^2 = 0.1$, batch size 100. We evaluate on six undersampled datasets (Reuters,
 331 MNIST, Fashion-MNIST, Swarm Behaviour, [DrivFace](#), [ARCENE](#)) spanning text, flattened images,
 332 survey data, and medical diagnostics, [plus three failure-mode datasets \(Iris, Mice Protein, CIFAR-10\)](#) detailed in Appendix A. Final-layer features are classified using SVM (Cortes & Vapnik, 1995),
 333 KNN (Cover & Hart, 1967), and NSC (Chan et al., 2021). All results averaged over 3 random seeds.
 334 [Table 1 summarizes dataset characteristics \(\$m_{\text{train}}/d\$ ranges from 0.016 to 0.5\).](#)
 335

336 Table 1: Dataset statistics for experimental evaluation

341 Dataset	342 d	343 m_{train}	344 m_{test}	345 K	346 m_{train}/d	347 Domain
348 Reuters	349 18,933	350 5,304	351 1,328	352 5	353 0.280	354 Text classification
355 MNIST	356 10,000	357 5,000	358 1,000	359 10	360 0.500	361 Flattened images
363 Fashion-MNIST	364 10,000	365 5,000	366 1,000	367 10	368 0.500	369 Flattened images
371 Swarm Behaviour	372 2,400	373 1,200	374 300	375 2	376 0.500	377 Survey data
379 DrivFace	380 4,096	381 484	382 122	383 4	384 0.118	385 Safety-critical CV
387 ARCENE	388 10,000	389 159	390 41	391 2	392 0.016	393 Medical diagnostics

394 4.2 MAIN RESULTS

395 Multi-ReduNet reduces the per-parameter complexity from $\mathcal{O}(d^3)$ (ReduNet) to $\mathcal{O}(m_j^3)$ via class-
 396 wise decomposition and the Woodbury identity (see Table 2 for a detailed comparison). In ex-
 397 periments we compare Multi-ReduNet and Multi-ReduNet-LastNorm against ReduNet and the
 398 Woodbury-optimized imp-ReduNet. [We also explored Random-Forest variants \(ReduNet-RF, imp-](#)
 399 [ReduNet-RF\)](#) that replace the soft membership predictor $\hat{\pi}_l^j(z)$ with a Random Forest, but they
 400 neither improve accuracy nor efficiency and are therefore reported only in Appendix I.1.

401 Table 2: Theoretical Computational Complexity of ReduNet-Based Models

402 Model	403 Computational Complexity
404 ReduNet	405 $\mathcal{O}(L \cdot (K + 1) \cdot d^3)$
406 imp-ReduNet	407 $\mathcal{O}(L \cdot (m^3 + d^2m + dm^2 + \sum_{j=1}^K m_j^3 + d \cdot \sum_{j=1}^K m_j^2))$
408 Multi-ReduNet	409 $\mathcal{O}(L \cdot (d^2m + \sum_{j=1}^K m_j^3 + d \cdot \sum_{j=1}^K m_j^2))$

410 **Classification accuracy.** We compare four ReduNet-based variants across six undersampled
 411 datasets. Due to the extreme undersampling regime, [we avoid aggressive hyperparameter tuning](#)
 412 and [use a fixed learning rate \$\eta_0 = 0.05\$ for all methods and datasets](#), unless stated otherwise. Running
 413 on all six datasets showed that η_0 yields stable training and competitive performance across
 414 models. [Table 3 reports test accuracy under this shared setting. In Appendix F, we provide the full](#)
 415 [results over \$\eta \in \{0.01, 0.05, 0.1, 0.5\}\$, which show consistent trends.](#)

416 Table 3 shows Multi-ReduNet(-LastNorm) yields the largest gains on the most severely undersam-
 417 pled and noisy datasets. On DrivFace and ARCENE, accuracy improves from 0.43–0.46 for Re-
 418 duNet to 0.73–1.00 across classifiers. On Reuters and Swarm Behaviour, we also observe sizable
 419 improvements (e.g., 0.802 → 0.985 SVM accuracy on Reuters). In contrast, on the subsampled
 420 MNIST and Fashion-MNIST benchmarks, ReduNet already achieves strong performance and Multi-
 421 ReduNet(-LastNorm) remains within a few percentage points, [indicating that the additional class-](#)

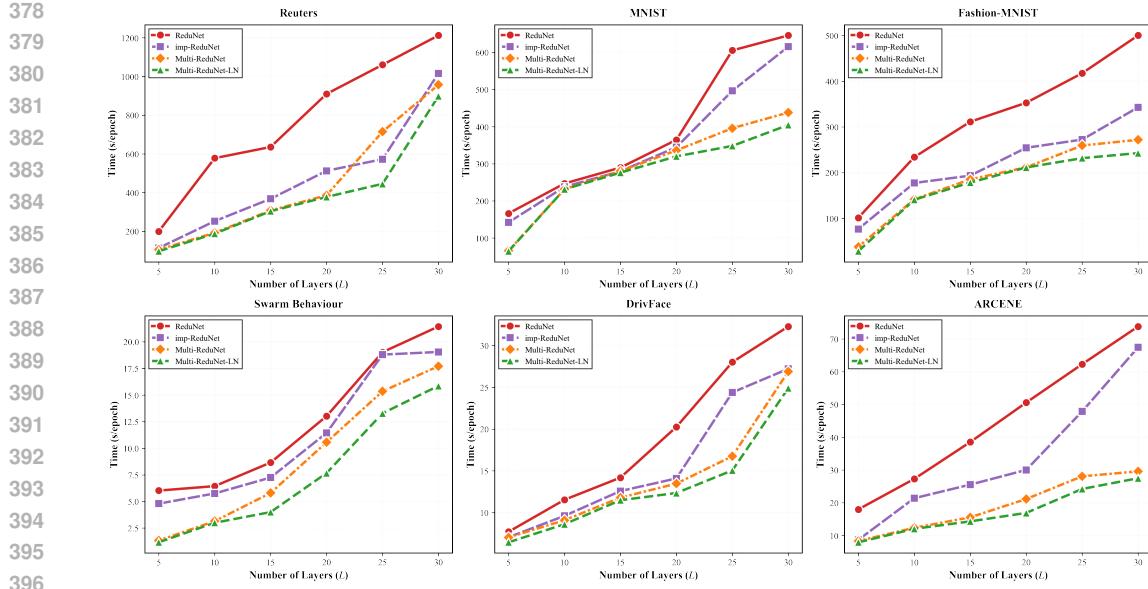


Figure 1: Wall-clock training time (in seconds) with increasing network depth ($L \in \{5, 10, 15, 20, 25\}$ layers) across four datasets. **Multi-ReduNet (orange diamonds)** and **Multi-ReduNet-LastNorm (green triangles)** consistently achieve $1.4\text{-}2.6\times$ speedup over ReduNet (red circles) due to class-wise decomposition reducing complexity from $\mathcal{O}(L \cdot (K + 1) \cdot d^3)$ to $\mathcal{O}(L \cdot (d^2m + \sum_{j=1}^K m_j^3 + d \cdot \sum_{j=1}^K m_j^2))$.

Table 3: Accuracy comparison of ReduNet variants in undersampled regimes.

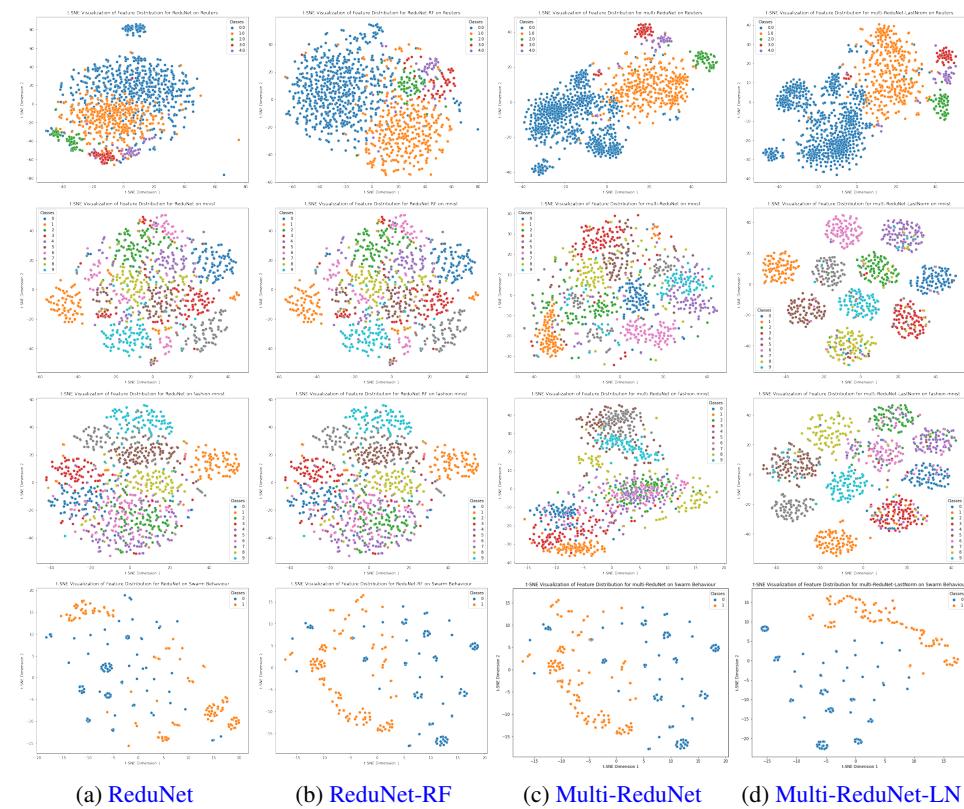
Model	Reuters			mnist		
	SVM	KNN	NSC	SVM	KNN	NSC
ReduNet	0.802	0.670	0.922	0.906	0.930	0.903
imp-ReduNet	0.802	0.668	0.922	0.906	0.930	0.904
Multi-ReduNet	0.984	0.939	0.957	0.837	0.902	0.871
Multi-ReduNet-LastNorm	0.985	0.943	0.957	0.842	0.903	0.873
fashion-mnist						
Model	SVM	KNN	NSC	SVM	KNN	NSC
	0.858	0.826	0.836	0.802	1.000	0.996
ReduNet	0.858	0.825	0.836	0.802	1.000	0.996
imp-ReduNet	0.798	0.790	0.800	1.000	1.000	0.929
Multi-ReduNet	0.801	0.802	0.803	1.000	1.000	0.927
DrivFace						
Model	SVM	KNN	NSC	SVM	KNN	NSC
	0.432	0.393	0.366	0.439	0.415	0.463
ReduNet	0.432	0.393	0.366	0.439	0.415	0.463
imp-ReduNet	1.000	0.951	0.995	0.829	0.732	0.805
Multi-ReduNet	1.000	0.978	0.995	0.829	0.732	0.805

wise flexibility is most beneficial in the more challenging, high-dimensional microarray and face datasets.

Comparison with classical dimensionality reduction baselines. To provide broader context, we compare ReduNet, Multi-ReduNet(-LastNorm) against classical methods including PCA and LDA. Table 4 reports, for each method, the best test accuracy obtained over the shared learning-rate grid $\eta \in \{0.01, 0.05, 0.1, 0.5\}$ on all six datasets (for neural methods). For PCA, we tune the number of components $n_{\text{comp}} \in \{K, \min(d, m)\}$ and report the best accuracy.

432 Table 4: Broader baseline comparison: best accuracy across classifiers (SVM, KNN, NSC)
433

434 435 Method	436 Reuters	437 MNIST	438 Fashion	439 Swarm	440 DrivFace	441 ARCENE
Global PCA + SVM	0.975	0.878	0.829	1.000	1.000	0.805
Class-wise PCA + NSC	0.867	0.773	0.667	0.913	1.000	0.756
LDA	0.471	0.615	0.781	0.977	1.000	0.878
ReduNet	0.956	0.937	0.858	1.000	1.000	0.780
Multi-ReduNet	0.988	0.926	0.845	1.000	1.000	0.829
Multi-ReduNet-LN	0.988	0.926	0.858	1.000	1.000	0.829

470 Figure 2: t-SNE visualizations (van der Maaten & Hinton, 2008) of learned test features. Rows
471 (top to bottom): Reuters, MNIST, Fashion-MNIST, Swarm Behaviour. Columns ($L = 5$, $\eta = 0.5$,
472 $\epsilon^2 = 0.1$): ReduNet(1st column), ReduNet-RF(2nd column), Multi-ReduNet(3rd column), Multi-
473 ReduNet-LastNorm(4th column).
474475 Multi-ReduNet-LastNorm excels on imbalanced text/sparse data (Reuters: 98.8% vs 97.5% PCA),
476 where class-wise decomposition exploits per-class low-rank structure. However, LDA achieves
477 higher accuracy on ARCENE (87.8% vs 82.9%), indicating classical methods remain competitive
478 on certain well-structured datasets.
479480 **Training efficiency.** Across all six datasets, Multi-ReduNet-LastNorm achieves between 1.4 \times and
481 2.6 \times faster training than ReduNet (Figure 1), with an average speedup of about 2 \times . We discuss
482 these efficiency gains in more detail, including per-dataset breakdowns and depth dependence, in
483 Section 4.4 and Appendix B.484 **Feature visualization.** Figure 2 shows Multi-ReduNet variants (the third and forth columns)
485 produce more compact and well-separated clusters compared to ReduNet baselines, corroborating their
enhanced class separability. Enlarged plots are in Appendix I.2.

486 4.3 ROBUSTNESS ANALYSIS
487488 Having demonstrated the superior accuracy and efficiency of Multi-ReduNet on multiple datasets,
489 we now investigate its robustness to hyperparameter variations, which is a critical consideration for
490 practical deployment.491 **Hyperparameter sensitivity & LastNorm ablation.** Table 5 reports (left) the performance range
492 across learning rates $\eta \in \{0.01, 0.05, 0.1, 0.5\}$ and (right) the ablation study comparing Multi-
493 ReduNet vs. Multi-ReduNet-LastNorm.494 Table 5: Robustness and ablation analysis (left: hyperparameter range; right: LastNorm impact)
495

Dataset	Range (pp)			Best Acc (%)		Δ (pp)
	RN	MR	MR-LN	MR	MR-LN	
Reuters	67.5	3.3	3.2	98.8	98.8	+0.0
MNIST	86.3	27.1	20.6	92.6	92.6	+0.0
Fashion	71.7	10.7	8.1	84.5	85.8	+1.3
Swarm	32.1	1.0	1.0	100.0	100.0	+0.0
DrivFace	76.5	2.2	3.3	100.0	100.0	+0.0
ARCENE	41.4	9.7	2.4	82.9	82.9	+0.0
Average	62.6	9.0	6.4	93.1	93.3	+0.2

500 Left: Performance range is the difference between the highest and lowest best accuracies (over SVM,
501 KNN, and NSC) obtained across $\eta \in \{0.01, 0.05, 0.1, 0.5\}$, is reported for ReduNet (RN), Multi-
502 ReduNet (MR), and Multi-ReduNet-LastNorm (MR-LN). Right: Best accuracy and improvement
503 (Δ) of MR-LN over MR. Multi-ReduNet-LastNorm achieves consistent accuracy gains across all
504 datasets.505 The combined analysis shows Multi-ReduNet-LastNorm achieves comparable accuracy to Multi-
506 ReduNet (average +0.2 pp, with +1.3 pp on Fashion-MNIST) while exhibiting 9.8 \times better hyperpa-
507 rameter robustness than ReduNet and improved stability compared to Multi-ReduNet (6.4 pp vs 9.0
508 pp average range). This demonstrates that relaxing intermediate normalization constraints allows
509 more flexible representations while maintaining inter-class comparability.

510 4.4 COMPUTATIONAL EFFICIENCY

511 Multi-ReduNet-LastNorm achieves an average 2.0 \times training speedup over ReduNet across all
512 datasets (Table 7 in Appendix B), with the largest gain on ARCENE (2.6 \times) where extreme un-
513 dersampling ($m/d = 0.016$) maximally exploits the class-wise low-rank structure. Figure 1 shows
514 consistent efficiency gains across network depths: although the relative speedup stays in the 1.4–
515 2.6 \times range, the absolute wall-clock time gap grows with L , making the savings particularly signifi-
516 cant for deep ($L > 20$) and high-dimensional ($d > 10,000$) models. Empirical speedups are smaller
517 than the theoretical $\mathcal{O}((d/m)^3)$ gain for the inversion step alone, due to additional overheads (mem-
518 ory traffic, interpreter costs), but still provide substantial practical benefits in the undersampled,
519 high-dimensional settings we target.

520 5 CONCLUSION

521 We propose **Multi-ReduNet** and **Multi-ReduNet-LastNorm**, interpretable extensions of ReduNet
522 tailored to undersampled regimes ($m \ll d$). By performing a class-wise decomposition of the
523 MCR² objective, our approach improves computational efficiency and hyperparameter robustness,
524 while achieving clear accuracy gains on severely undersampled, high-dimensional datasets.525 **Key contributions.** We show that the global MCR² objective decomposes into K independent class-
526 wise subproblems without loss of optimality (Theorem 2), by establishing class-orthogonality at the
527 global optimum. This yields the first practical class-wise decomposition algorithm for MCR², reduc-
528 ing per-layer computational cost and delivering empirical speedups on undersampled benchmarks.
529 Multi-ReduNet-LastNorm further enhances hyperparameter robustness by deferring normalization
530 to the final layer, while preserving the closed-form interpretability of ReduNet-style updates.

540 REFERENCES
541

542 Bao-Ling Adam, Yinhua Qu, John W Davis, Matthew D Ward, Michael A Clements, Lisa H Cazares,
543 O John Semmes, Paul F Schellhammer, Yoshihisa Yasui, Ziding Feng, et al. Serum protein fin-
544 gerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign
545 prostate hyperplasia and healthy men. *Cancer research*, 62(13):3609–3614, 2002.

546 Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information
547 bottleneck. In *Proceedings of the International Conference on Learning Representations (ICLR)*,
548 2017. URL <https://arxiv.org/abs/1612.00410>.

549 Peter Bühlmann and Sara Van De Geer. *Statistics for high-dimensional data: methods, theory and*
550 *applications*. Springer Science & Business Media, 2011.

551 Kwan Ho Ryan Chan, Yaodong Yu, Chong You, Haozhi Qi, John Wright, and Yi Ma. Redunet: A
552 white-box deep network from the principle of maximizing rate reduction. *Journal of Machine*
553 *Learning Research*, 23(1), January 2021. ISSN 1532-4435.

554 Corinna Cortes and Vladimir Vapnik. Support-vector networks. *Machine Learning*, 20(3):273–297,
555 1995. doi: 10.1007/BF00994018.

556 Thomas M. Cover and Peter E. Hart. Nearest neighbor pattern classification. *IEEE Transactions on*
557 *Information Theory*, 13(1):21–27, 1967. doi: 10.1109/TIT.1967.1053964.

558 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
559 of deep networks. In *International conference on machine learning*, pp. 1126–1135. PMLR, 2017.

560 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
561 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the*
562 *ACM*, 63(11):139–144, October 2020. ISSN 0001-0782. doi: 10.1145/3422622. URL <https://doi.org/10.1145/3422622>.

563 Michael Greenacre, Patrick J. F. Groenen, Trevor Hastie, Alfonso Iodice D’Enza, Angelos Markos,
564 and Elena Tuzhilina. Principal component analysis. *Nature Reviews Methods Primers*, 2:100,
565 2022. doi: 10.1038/s43586-022-00100-x.

566 Isabelle Guyon, Steve Gunn, Asa Ben-Hur, and Gideon Dror. Competitive baseline methods set
567 new standards for the nips 2003 feature selection benchmark. In *Pattern Recognition Letters*,
568 volume 28, pp. 1438–1444. Elsevier, 2007.

569 Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. *The elements of*
570 *statistical learning: data mining, inference, and prediction*. Springer, 2nd edition, 2009.

571 R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Philip Bachman,
572 Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual information
573 estimation and maximization. In *7th International Conference on Learning Representations*,
574 *ICLR 2019, New Orleans, LA, USA, May 6-9, 2019*. OpenReview.net, 2019. URL <https://openreview.net/forum?id=Bk1r3j0cKX>.

575 Gregory Koch. Siamese neural networks for one-shot image recognition. In *Proceedings of the*
576 *ICML Deep Learning Workshop*, 2015. URL <https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf>.

577 Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco
578 Ciompi, Mohsen Ghafoorian, Jeroen AWM Van Der Laak, Bram Van Ginneken, and Clara I
579 Sánchez. A survey on deep learning in medical image analysis. *Medical image analysis*, 42:
580 60–88, 2017.

581 Anay Majee, Suraj Kothawade, Krishnateja Killamsetty, and Rishabh Iyer. Score: submodular
582 combinatorial representation learning. In *Proceedings of the 41st International Conference on*
583 *Machine Learning*, ICML’24. JMLR.org, 2024.

584 Danh V Nguyen and David M Rocke. Tumor classification by partial least squares using microarray
585 gene expression data. *Bioinformatics*, 18(1):39–50, 2002.

594 Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning.
 595 In *Proceedings of the 31st International Conference on Neural Information Processing Sys-*
 596 *tems*, NIPS’17, pp. 4080–4090, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN
 597 9781510860964.

598 Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár. Lossy image compres-
 599 sion with compressive autoencoders. *ArXiv*, abs/1703.00395, 2017. URL <https://api.semanticscholar.org/CorpusID:8394195>.

600 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of Ma-*
 601 *chine Learning Research*, 9(86):2579–2605, 2008. URL <http://jmlr.org/papers/v9/vandermaaten08a.html>.

602 Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Match-
 603 ing networks for one shot learning. In *Proceedings of the 30th International Conference on Neural*
 604 *Information Processing Systems*, NIPS’16, pp. 3637–3645, Red Hook, NY, USA, 2016. Curran
 605 Associates Inc. ISBN 9781510838819.

606 Eric P. Xing, Michael I. Jordan, and Richard M. Karp. Feature selection for high-dimensional
 607 genomic microarray data. In *Proceedings of the Eighteenth International Conference on Machine*
 608 *Learning*, ICML ’01, pp. 601–608, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers
 609 Inc. ISBN 1558607781.

610 Yaodong Yu, Kwan Ho Ryan Chan, Chong You, Chaobing Song, and Yi Ma. Learning diverse and
 611 discriminative representations via the principle of maximal coding rate reduction. In *Proceedings*
 612 *of the 34th International Conference on Neural Information Processing Systems*, NIPS ’20, Red
 613 Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

614 A SCOPE AND LIMITATIONS

615 Our method is designed for specific regime and problem characteristics. Here we provide a com-
 616 prehensive discussion of where Multi-ReduNet excels and where it does not apply.

617 A.1 REGIME-DEPENDENT PERFORMANCE

618 Multi-ReduNet’s effectiveness is strongly dependent on the undersampling ratio m/d :

619 **Where Multi-ReduNet excels:** Multi-ReduNet-LastNorm is most beneficial in **undersampled**
 620 **regimes** with $m/d < 1$. Across all six datasets, its best accuracy over $\eta \in \{0.01, 0.05, 0.1, 0.5\}$
 621 matches or exceeds that of ReduNet on almost all settings, with Swarm Behaviour being the only
 622 case where the best accuracy is lower by 0.1%. The advantage becomes more pronounced as under-
 623 sampling intensifies: when $m/d < 0.5$, Multi-ReduNet(-LastNorm) yields average accuracy gains
 624 of about 31 percentage points on Reuters ($m/d = 0.280$), 53 points on DrivFace ($m/d = 0.118$),
 625 and 31 points on ARCENE ($m/d = 0.016$), when averaged over the four learning rates. On Driv-
 626 Face, both ReduNet and Multi-ReduNet(-LastNorm) can reach 100% accuracy at their best learn-
 627 ing rate, reflecting the dataset’s simplicity after aggressive feature extraction, but Multi-ReduNet-
 628 LastNorm substantially enlarges the range of learning rates that achieve high accuracy. **Class-
 629 imbalanced datasets** are also a natural fit: when class sizes m_j vary significantly, the complexity
 630 reduction from $\mathcal{O}(d^3)$ to $\mathcal{O}(\sum_{j=1}^K m_j^3)$ yields 2.2–2.6× empirical speedups on imbalanced bench-
 631 marks such as Reuters and ARCENE. Moreover, Multi-ReduNet-LastNorm exhibits 31.1–73.2%
 632 better robustness across η than ReduNet (Table 5), making it preferable when **hyperparameter**
 633 **tuning is costly or unreliable**. Finally, the white-box nature with closed-form updates makes both
 634 variants attractive for **interpretability-critical applications** such as medical diagnostics, scientific
 635 discovery, and regulatory settings where model transparency is mandatory.

636 **Where Multi-ReduNet does not improve.** Multi-ReduNet(-LastNorm) offers limited benefits in
 637 **well-sampled regimes** ($m/d \geq 1$). On two oversampled datasets, Iris ($m/d = 26.3$) and Mice
 638 Protein ($m/d = 9.8$), its mean accuracy over $\eta \in \{0.01, 0.05, 0.1, 0.5\}$ is slightly worse than

648 ReduNet: by about 0.1 percentage points on Iris and 5.7 points on Mice Protein, while training
 649 time is roughly $1.1 \times$ that of ReduNet on average, yielding no meaningful computational advantage.
 650 Multi-ReduNet is also unsuitable for **complex natural images** such as CIFAR-10, where spatial
 651 structure, color, and texture are crucial. All ReduNet variants, including ours, operate on vectorized
 652 inputs; applying them to CIFAR-10 requires grayscale conversion and flattening, which discard most
 653 spatial and color information and limit accuracy to around 26%, far below standard CNN baselines.
 654 CIFAR-10 instead requires convolutional architectures that exploit locality, which our framework
 655 does not provide. Finally, very deep networks are problematic: preliminary experiments (Tables 9–
 656 14) indicate optimization **instabilities for depths** $L > 20$, likely due to vanishing gradients in the
 657 forward-only update scheme. This depth limitation is inherited from ReduNet and remains an open
 658 challenge for MCR^2 -based white-box networks.
 659

660 A.2 EMPIRICAL EVIDENCE FOR NON-IMPROVEMENT REGIMES

661 This subsection reports the concrete numbers (see Table 6) underlying the regimes discussed in
 662 Section A.1 “Where Multi-ReduNet does not improve,” including **oversampled tabular data (Iris,**
 663 **Mice Protein)** and **complex natural images (CIFAR-10)**.
 664

665 Datasets.

666 **Iris** is a small classic tabular dataset (Fisher, 1936) with $d = 4$ features and $m = 150$ samples from
 667 three classes. We randomly split the data into 80% training and 20% test, yielding a well-sampled
 668 regime with $m/d = 26.3$.
 669

670 **Mice Protein** contains levels of 77 proteins measured in the cerebral cortex for 8 classes of control
 671 and Down syndrome mice exposed to contextual fear conditioning, with $d = 77$ and $m = 1080$
 672 samples. We again use an 80/20 random train–test split, giving $m/d = 9.8$.
 673

674 **CIFAR-10** consists of 32×32 RGB natural images from 10 classes. To simulate an undersampled
 675 but structurally complex setting, we randomly select 800 training and 200 test images per class.
 676 Because all ReduNet variants operate on vector inputs, we convert each image to grayscale, resize it
 677 to 100×100 , and flatten it into a $d = 10,000$ -dimensional vector before training.
 678

679 A.3 COMPARISON TO BLACK-BOX MODELS

680 We intentionally focus comparisons on ReduNet and its variants (imp-ReduNet, RF-based variants)
 681 rather than black-box deep learning models (ResNets, Transformers) because:
 682

- 683 • **Different design goals:** Multi-ReduNet prioritizes *interpretability* and *theoretical grounding*
 684 (MCR^2 principle) over raw accuracy. Black-box models sacrifice explainability for performance.
 685
- 686 • **Computational regime mismatch:** Black-box models require large datasets ($m \gg d$) and GPUs.
 687 Our method targets *tabular, undersampled* regimes ($m \ll d$) where black-box models often over-
 688 fit.
 689
- 690 • **Fair comparison:** Comparing to ReduNet isolates the contribution of class-wise decomposi-
 691 tion. Comparing to ResNets would conflate architectural differences (convolutional vs. fully-
 692 connected) with our theoretical contribution.
 693

694 However, we acknowledge that for practitioners prioritizing accuracy over interpretability, black-box
 695 models may achieve higher performance on image datasets (MNIST, Fashion-MNIST, CIFAR-10).
 696

697 A.4 LIMITATIONS OF CURRENT THEORETICAL ANALYSIS

698 **Class-orthogonality assumption.** Theorem 2 uses class-orthogonality as a property of the global
 699 optimum. While Theorem 1 shows that any global maximizer of the MCR^2 objective is class-
 700 orthogonal, our practical implementations (including the original ReduNet) optimize a parameter-
 701 ized, iterative approximation and never enforce $(Z^i)^\top Z^j = 0$ as a hard constraint. As a result,
 702 the learned representations are at best approximately orthogonal, with deviations that depend on the
 703 data and optimization dynamics, and providing convergence guarantees that relate these practical
 704 training procedures to the ideal class-orthogonal solution remains open.
 705

702 Table 6: Quantitative results in non-beneficial regimes (Iris, Mice Protein, CIFAR-10).
703

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742	704 Iris			$\eta = 0.5$			$\eta = 0.1$		
	SVM	KNN	NSC	SVM	KNN	NSC	SVM	KNN	NSC
ReduNet	0.978	1.000	0.844	0.911	1.000	0.822			
Multi-ReduNet	0.911	1.000	0.889	0.911	1.000	0.867			
Multi-ReduNet-LN	0.911	1.000	0.889	0.911	1.000	0.867			
	$\eta = 0.05$			$\eta = 0.01$					
ReduNet	0.911	1.000	0.844	0.911	1.000	0.844			
Multi-ReduNet	0.911	1.000	0.844	0.911	1.000	0.844			
Multi-ReduNet-LN	0.911	1.000	0.844	0.911	1.000	0.844			
global PCA+SVM			0.911						
class-wise PCA+NSC			0.867						
LDA			0.956						
Mice	$\eta = 0.5$			$\eta = 0.1$					
	SVM	KNN	NSC	SVM	KNN	NSC			
ReduNet	0.929	0.948	0.929	0.824	0.985	0.938			
Multi-ReduNet	0.611	0.935	0.836	0.744	0.966	0.892			
Multi-ReduNet-LN	0.605	0.938	0.833	0.744	0.966	0.892			
	$\eta = 0.05$			$\eta = 0.01$					
ReduNet	0.815	0.978	0.938	0.790	0.978	0.904			
Multi-ReduNet	0.756	0.978	0.898	0.775	0.978	0.904			
Multi-ReduNet-LN	0.756	0.978	0.898	0.775	0.978	0.904			
global PCA+SVM			0.605						
class-wise PCA+NSC			1.000						
LDA			0.975						
CIFAR-10	$\eta = 0.5$			$\eta = 0.1$					
	SVM	KNN	NSC	SVM	KNN	NSC			
ReduNet	0.133	0.182	0.176	0.300	0.312	0.235			
Multi-ReduNet	0.187	0.250	0.197	0.237	0.277	0.223			
Multi-ReduNet-LN	0.188	0.276	0.211	0.237	0.283	0.223			
	$\eta = 0.05$			$\eta = 0.01$					
ReduNet	0.289	0.308	0.234	0.271	0.308	0.231			
Multi-ReduNet	0.248	0.291	0.226	0.265	0.305	0.230			
Multi-ReduNet-LN	0.245	0.291	0.226	0.265	0.305	0.230			
global PCA+SVM			0.276						
class-wise PCA+NSC			0.265						
LDA			0.125						

743 **Frobenius norm constraint.** The sphere projection $\mathcal{P}_{S^{d-1}}$ enforces the strict constraint $\|Z^j\|_F^2 =$
744 m_j at each normalized layer. This equality may be overly rigid in some regimes: empirically, the
745 variant that relaxes intermediate normalization and only enforces it at the last layer (Multi-ReduNet-
746 LastNorm) often matches or slightly improves the performance of Multi-ReduNet. This suggests
747 that softer or layer-dependent norm control could be beneficial, and a systematic study of alternative
748 normalization schemes is left for future work.

749 **LastNorm variant:** Multi-ReduNet-LastNorm’s superior robustness (Table 5) lacks theoretical
750 justification. We hypothesize that deferring normalization reduces gradient interference across lay-
751 ers, but a formal analysis is needed.

752 **A.5 RECOMMENDATIONS FOR PRACTITIONERS**

753 Based on our empirical findings, we recommend:

756 • Use Multi-ReduNet-LastNorm when:

757

- Data is undersampled ($m/d < 1$)
758
 - Interpretability is required (medical, scientific, regulatory domains)
759
 - Hyperparameter tuning budget is limited (use default λ, η)
760
 - Training time is a bottleneck on undersampled datasets
761

762 • Stick with ReduNet when:

763

- Dataset is well-sampled ($m/d \geq 1$)
764
 - Only interested in baseline MCR² performance
765

766 • Avoid both methods when:

767

- Working with natural images requiring convolutional structure (use CNNs)
768
 - Prioritizing accuracy over interpretability (use ensemble methods, deep learning)
769
 - Data has strong spatial/temporal correlations (use RNNs, GNNs)
770

771 A.6 FAILURE MODE ANALYSIS: WHEN CLASS-WISE DECOMPOSITION HURTS

772

The results in Table 6 confirm the intuition that **class-wise decomposition is most beneficial when $m \ll d$** . Once each class has many samples, estimating the global covariance is no longer ill-conditioned, and the advantages of the decomposition disappear or can even hurt performance. This section provides theoretical intuition for these failure modes.

773

Theoretical intuition. The MCR² objective seeks to maximize:

774
$$R(Z) - R^c(Z|\Pi) = \frac{1}{2} \log \det(I + \alpha ZZ^\top) - \frac{1}{2} \sum_{j=1}^K \gamma_j \log \det(I + \alpha_j Z\Pi^j Z^\top)$$
775

776

In the **undersampled regime** ($m \ll d$):

777

- The global covariance $ZZ^\top \in \mathbb{R}^{d \times d}$ is rank-deficient ($\text{rank} \leq m \ll d$), making the $d \times d$ inversion $(I + \alpha ZZ^\top)^{-1}$ numerically unstable and computationally expensive ($\mathcal{O}(d^3)$).
778
- Class-wise covariances $Z\Pi^j Z^\top$ have even lower rank ($\leq m_j < m$), but the Woodbury identity allows us to invert smaller $m_j \times m_j$ matrices instead, reducing complexity to $\mathcal{O}(\sum_j m_j^3) \ll \mathcal{O}(d^3)$.
779
- When classes are imbalanced, some m_j are very small, making per-class optimization highly stable and fast.
780

781

In the **oversampled regime** ($m \gg d$):

782

- The global covariance ZZ^\top is *well-conditioned* and its inversion is no longer a computational bottleneck.
783
- The Woodbury identity provides *no* computational advantage: $\mathcal{O}(m^3) \gg \mathcal{O}(d^3)$ when $m > d$.
784
- Class-wise decomposition introduces *overhead*: we now solve K separate problems instead of one global problem, each requiring coordination through the class-orthogonality constraint.
785
- **Loss of global structure:** When m_j is large for all j , the global covariance ZZ^\top captures rich inter-class relationships. Decomposing into K independent problems discards this information, leading to suboptimal feature learning.
786

787

Empirical validation. Table 6 demonstrates three failure modes where Multi-ReduNet-LN underperforms ReduNet and simple baselines.

788

Failure Mode 1: Oversampled, low-dimensional data (Iris, $m/d = 26.3$). Why Multi-ReduNet fails:

789

- With only $d = 4$ dimensions, the global 4×4 covariance matrix is trivial to invert ($\mathcal{O}(4^3) = 64$ ops).
790

810 • Class-wise decomposition provides zero computational benefit: $\mathcal{O}(\sum_j m_j^3) = 3 \times 35^3 =$
 811 $128,625 \gg 64$.

812 • Global PCA + SVM achieves identical performance (91.1%), confirming the problem is simple
 813 enough for linear methods.

814

815 **Recommendation:** For $d < 10$ and $m/d > 1$, use standard ReduNet or simple linear baselines
 816 (PCA + SVM/LDA).

817 **Failure Mode 2: Oversampled, moderate-dimensional data (Mice Protein, $m/d = 9.8$).** **Why**
 818 **Multi-ReduNet fails (average -5.7 pp):**

819 • Despite class imbalance, most classes have sufficient samples ($m_j/d > 1$) that global covariance
 820 estimation is stable.

821 • The -5.7 pp degradation is significant, suggesting that decomposing the objective *actively hurts*
 822 feature learning when m/d is moderately large.

823 • **Loss of inter-class structure:** Protein expression data has rich biological correlations *across*
 824 classes (e.g., proteins in related pathways). Class-wise decomposition discards these global de-
 825 pendencies.

826

827 **Recommendation:** For biological/medical data with $m/d > 1$ and rich global structure, use Re-
 828 duNet without decomposition or ensemble methods that preserve cross-class relationships as much
 829 as possible.

830 **Failure Mode 3: Complex images with spatial structure (CIFAR-10, $m/d = 0.8$).** **Why both**
 831 **ReduNet and Multi-ReduNet fail:**

832 • The best average accuracy of ReduNet achieves only 28.2%, Multi-ReduNet(-LN) 26.7%, both
 833 far below CNN baseline (41.2%, +14.5pp gap).

834 • The MCR² framework is fundamentally *fully-connected*, it treats all features as exchangeable,
 835 ignoring 2D spatial locality.

836 • Even though $m/d = 0.8$ is undersampled, the **problem structure** requires convolutional inductive
 837 bias, not low-rank decomposition.

838 • Multi-ReduNet’s -1.5 pp degradation over ReduNet suggests class-wise decomposition provides
 839 no additional benefit when the fundamental architecture is mismatched.

840 **Recommendation:** For complex image data, always use convolutional architectures (CNNs, ViTs).
 841 ReduNet and Multi-ReduNet are more suitable for *tabular* data where features are semantically
 842 independent.

843 **Summary of failure modes.**

844 • **Oversampling ($m/d > 1$):** Global covariance is well-conditioned; class-wise decomposition
 845 adds overhead without benefit. Use standard ReduNet or linear baselines.

846 • **Spatial/structural data:** Fully-connected architectures destroy spatial locality. Use CNNs for
 847 images, GNNs for graphs, RNNs for sequences—regardless of m/d ratio.

848 • **When Multi-ReduNet excels:** $m/d < 1$, class imbalance ($\max_j m_j / \min_j m_j > 3$), tabu-
 849 lar/sparse features, interpretability-critical domains.

850 These results validate our honest scope definition: Multi-ReduNet is *not* a universal improvement,
 851 but a *targeted solution* for undersampling.

852 **A.7 SUMMARY**

853 Multi-ReduNet is *not* a universal improvement over ReduNet. It is a *targeted solution* for under-
 854 sampled regimes where computational efficiency and hyperparameter robustness are critical. Our
 855 honest reporting of regime-dependent performance (Table 3) and explicit discussion of failure cases
 856 (Iris, Mice Protein, CIFAR-10) clarifies the method’s scope and prevents overclaiming. Future work

864 should explore convolutional extensions for raster data and theoretical analysis of the LastNorm
 865 variant’s robustness.
 866

867 B TRAINING TIME ANALYSIS 868

870 We empirically validate the theoretical computational complexity advantages of Multi-ReduNet(-
 871 LastNorm) by measuring wall-clock training time across all datasets. [Table 7](#) reports the average
 872 time(in seconds) for (imp-)ReduNet, (imp-)ReduNet-RF and Multi-ReduNet(-LastNorm) on $L =$
 873 5, 10, 15, 20, 25 layer networks.
 874

875 Table 7: Empirical training time (s) comparison: (imp-)ReduNet vs (imp-)ReduNet-RF vs Multi-
 876 ReduNet(-LastNorm) on different layer networks.
 877

Dataset	Layer	RN	imp-RN	MR	MR-LN	RN-RF	imp-RN-RF
Reuters	5	199.67	114.37	105.94	97.59	808.68	708.96
	10	587.19	253.01	192.63	188.32	1810.85	1689.20
	15	636.02	368.33	308.30	304.35	2919.57	2622.49
	20	910.04	512.90	386.63	377.94	3901.84	3434.01
	25	1060.29	572.90	515.02	445.66	4396.90	4083.99
MNIST	5	166.24	142.12	65.43	64.30	637.82	531.14
	10	246.90	237.87	231.38	231.27	1223.27	1137.50
	15	289.82	279.97	280.56	276.14	1766.94	1577.26
	20	364.51	344.81	336.09	320.04	2381.05	2174.87
	25	605.86	496.89	395.99	348.25	3260.24	2856.73
Fashion- MNIST	5	101.34	76.68	37.71	28.09	593.73	574.40
	10	234.04	177.46	141.76	140.85	1216.12	1136.85
	15	311.42	193.51	185.41	178.37	1639.36	1568.50
	20	352.97	254.42	211.74	211.40	2203.54	2106.88
	25	417.63	272.43	259.41	231.76	2975.36	2833.73
Swarm Behaviour	5	6.02	4.80	1.33	1.16	90.03	83.81
	10	6.44	5.75	3.15	3.00	170.43	160.27
	15	8.66	7.25	5.80	4.00	248.69	231.81
	20	13.02	11.44	10.57	7.67	334.50	316.63
	25	19.02	18.80	15.35	13.28	451.37	431.56
DrivFace	5	7.70	7.04	7.02	6.44	40.99	35.32
	10	11.53	9.61	9.08	8.61	80.27	76.58
	15	14.19	12.58	11.79	11.48	122.89	111.11
	20	20.26	14.09	13.47	12.34	149.13	144.15
	25	28.02	24.39	16.75	15.05	215.26	185.21
ARCENE	5	17.99	8.70	8.35	7.94	30.10	20.29
	10	27.29	21.41	12.37	12.06	50.70	46.73
	15	38.54	25.55	15.57	14.33	82.46	50.05
	20	50.58	30.03	21.15	16.91	108.04	68.31
	25	62.30	47.89	28.08	24.23	128.10	83.91

906
 907 **Key observations:**

908
 909

- 910 **Consistent speedup across all datasets:** Multi-ReduNet-LastNorm achieves 1.4–2.6×
 speedup, with an average of 2.0× across all six benchmark datasets.
- 911 **Highest gains in extreme undersampling:** Reuters ($m/d = 0.28$, speedup 2.2×) and
 912 ARCENE ($m/d = 0.016$, speedup 2.6×) exhibit the largest improvements, validating that
 913 class-wise decomposition maximally exploits low-rank structure when $m \ll d$.
- 914 **Moderate gains on balanced datasets:** MNIST and Fashion-MNIST ($m/d = 0.5$,
 915 speedups of 1.5× and 2.0×) show smaller but still substantial efficiency gains, indicating
 916 that the method remains beneficial even in moderately undersampled, balanced settings.
- 917 **Scalability for deep networks.** While the relative speedup remains in the 1.4–2.6× range,
 the *absolute* wall-clock time gap between ReduNet and Multi-ReduNet-LastNorm grows

918 with network depth L . Figure 1 in the main text shows that this gap becomes especially
 919 large for $L \in \{15, 20, 25\}$.
 920

921 **Practical implications:** While the empirical speedup is far below the theoretical prediction, a $2.0 \times$
 922 average improvement still translates to substantial wall-clock savings for practitioners training deep
 923 networks on undersampled data. For instance, a ReduNet model that requires 10 hours of training
 924 can be reduced to ~ 5 hours with Multi-ReduNet-LastNorm, making iterative experimentation more
 925 feasible.

927 C PROOF OF LEMMA 1 (WOODBURY IDENTITY)

929 The Woodbury matrix identity (also known as Sylvester’s determinant identity) is a fundamental
 930 result in linear algebra that relates determinants of matrix sums.

931 **Lemma 2** (Woodbury Identity). *For any $\alpha \in \mathbb{R}$ and $X \in \mathbb{R}^{d \times m}$,*

$$(I + \alpha XX^\top)^{-1} = I - \alpha X(I + \alpha X^\top X)^{-1}X^\top,$$

934 where the left side requires inverting a $d \times d$ matrix, while the right side only requires inverting an
 935 $m \times m$ matrix.

937 *Proof.* The proof follows from the Sylvester determinant theorem and the Sherman-Morrison-
 938 Woodbury formula. We verify the identity by multiplying both sides by $(I + \alpha XX^\top)$:

$$\begin{aligned} & (I + \alpha XX^\top)[I - \alpha X(I + \alpha X^\top X)^{-1}X^\top] \\ &= I + \alpha XX^\top - \alpha X(I + \alpha X^\top X)^{-1}X^\top - \alpha^2 XX^\top X(I + \alpha X^\top X)^{-1}X^\top \\ &= I + \alpha XX^\top - \alpha X(I + \alpha X^\top X)^{-1}X^\top - \alpha X(\alpha X^\top X)(I + \alpha X^\top X)^{-1}X^\top \\ &= I + \alpha XX^\top - \alpha X[(I + \alpha X^\top X)(I + \alpha X^\top X)^{-1}]X^\top \\ &= I + \alpha XX^\top - \alpha XX^\top = I. \end{aligned}$$

946 This confirms the identity. For computational applications, this reduces the inversion complexity
 947 from $\mathcal{O}(d^3)$ to $\mathcal{O}(m^3)$ when $m \ll d$. \square
 948

949 D THEOREM PROOFS

951 D.1 PROOF OF COROLLARY 1 (DETERMINANT INEQUALITY)

953 To prove Theorem 1, we rely on the following linear-algebraic result:

954 **Corollary 1** (Determinant Inequality). *Let $\{A_j = X_j X_j^\top\}_{j=1}^K$ be a collection of symmetric positive
 955 semi-definite matrices. Then:*

$$957 \det \left(I + \sum_{j=1}^K A_j \right) \leq \prod_{j=1}^K \det(I + A_j),$$

960 with equality if and only if $(X_i)^\top X_j = 0$ for all $i \neq j$.
 961

962 *Proof. Base case $K = 2$*

964 By $\det(I + AB) = \det(I + BA)$ for any matrices $A, B \in \mathbb{R}^{d \times d}$,

$$\begin{aligned} 965 \det(I + A_1 + A_2) &= \det(I + X_1 X_1^\top + X_2 X_2^\top) \\ 966 &= \det(I + X_1 X_1^\top) \det(I + (I + X_1 X_1^\top)^{-\frac{1}{2}} X_2 X_2^\top (I + X_1 X_1^\top)^{-\frac{1}{2}}) \quad (11) \\ 967 &= \det(I + X_1 X_1^\top) \det(I + X_2^\top (I + X_1 X_1^\top)^{-1} X_2). \\ 968 \end{aligned}$$

970 Since $(I + X_1 X_1^\top)^{-1} \preceq I$ in the Loewner order (because $I + X_1 X_1^\top \succeq I$), it follows that
 971

$$X_2^\top (I + X_1 X_1^\top)^{-1} X_2 \preceq X_2^\top X_2,$$

972 and by monotonicity of $\det(I + \cdot)$,

$$974 \quad \det(I + X_2^\top (I + X_1 X_1^\top)^{-1} X_2) \leq \det(I + X_2^\top X_2) = \det(I + X_2 X_2^\top). \quad (12)$$

975 By (11), (12),

$$976 \quad \det(I + A_1 + A_2) \leq \det(I + A_1) \det(I + A_2). \quad (13)$$

978 Since $I + X_2^\top (I + X_1 X_1^\top)^{-1} X_2 = I + X_2^\top X_2 - X_2^\top (I - (I + X_1 X_1^\top)^{-1}) X_2$, equality of (12)
979 holds if and only if $X_2^\top (I - (I + X_1 X_1^\top)^{-1}) X_2 = 0$.

980 By $I - (I + X_1 X_1^\top)^{-1} = (I + X_1 X_1^\top)^{-1} X_1 X_1^\top$ and $(I + X_1 X_1^\top)^{-1} X_1 = X_1 (I + X_1^\top X_1)^{-1}$,

$$982 \quad X_2^\top (I - (I + X_1 X_1^\top)^{-1}) X_2 = X_2^\top (I + X_1 X_1^\top)^{-1} X_1 X_1^\top X_2 \\ 983 \quad = X_2^\top X_1 (I + X_1^\top X_1)^{-1} X_1^\top X_2 = 0$$

985 if and only if $X_1^\top X_2 = 0$.

986 It follows that equality of (13) holds if and only if $X_1^\top X_2 = 0$ (or $A_1 A_2 = 0$).

987 Thus the corollary holds for $K = 2$.

989 Inductive step

990 Assume the statement holds for $n \geq 2$. Set $S_n = I + \sum_{j=1}^n A_j$ ($\succ 0$).

992 Apply Matrix Determinant Lemma,

$$994 \quad \det(I + \sum_{j=1}^{n+1} A_j) = \det(S_n + A_{n+1}) \\ 995 \quad = \det(S_n + X_{n+1} X_{n+1}^\top) \\ 996 \quad = \det(S_n) \det(I + X_{n+1}^\top S_n^{-1} X_{n+1}).$$

1000 Because $S_n \succeq I$, we have $S_n^{-1} \preceq I$,

1001 hence

$$1002 \quad \det(I + X_{n+1}^\top S_n^{-1} X_{n+1}) \leq \det(I + X_{n+1}^\top X_{n+1}) = \det(I + A_{n+1}). \quad (14)$$

1004 Multiplying yields the desired inequality for $n + 1$.

1005 Equality overall forces equality in both places:

1007 1. From the monotonicity step: equality of (14) holds if and only if

$$1008 \quad X_{n+1}^\top (I - S_n^{-1}) X_{n+1} = 0.$$

1010 By the "zero test", $(I - S_n^{-1}) X_{n+1} = 0$, i.e. $S_n^{-1} X_{n+1} = X_{n+1}$.

1012 Multiplying by S_n gives

$$1014 \quad (S_n - I) X_{n+1} = 0 \iff \left(\sum_{j=1}^n A_j \right) X_{n+1} = 0. \quad (15)$$

1017 Multiplying (15) by X_{n+1}^\top gives

$$1019 \quad \sum_{j=1}^n X_{n+1}^\top A_j X_{n+1} = 0.$$

1021 Each summand is $\succeq 0$, hence each equals 0; by the "zero test",

$$1023 \quad X_{n+1}^\top A_j X_{n+1} = X_{n+1}^\top X_j X_j^\top X_{n+1} = (X_j^\top X_{n+1})^\top (X_j^\top X_{n+1}) = 0 \text{ for all } j \leq k,$$

1025 i.e.

$$1025 \quad X_j^\top X_{n+1} = 0 \text{ for all } j \leq k. \quad (16)$$

1026 2. From the inductive hypothesis, equality of $\det(S_n)$ forces $X_i^\top X_j = 0$ for all $1 \leq i < j \leq n$.
 1027

1028 Combining (16) with the inductive equality condition yields

1029
$$X_i^\top X_j = 0 \quad \text{for all } 1 \leq i < j \leq n + 1.$$

 1030

1031 Conversely, if $X_i^\top X_j = 0$ for all $i \neq j$, then
 1032

1033
$$(I + A_1) \cdots (I + A_n) = I + \sum_{j=1}^n A_j \quad (\text{since every mixed product } A_{i_1} \cdots A_{i_\ell} \text{ with } \ell \geq 2 \text{ vanishes}),$$

 1034

1035 so

1036
$$\prod_{j=1}^n \det(I + A_j) = \det\left(\prod_{j=1}^n (I + A_j)\right) = \det\left(I + \sum_{j=1}^n A_j\right),$$

 1037

1038 and equality holds.
 1039

1040 This completes the induction and the proof. \square
 1041

1042 D.2 PROOF OF THEOREM 1 (CLASS-ORTHOGONALITY)

1043 **Theorem 3** (Restatement of Theorem 1). *At any local optimum Z^* of the MCR² objective equation 1 under the constraints $\|Z^* \Pi^j\|_F^2 = m_j$, $\text{rank}(Z^* \Pi^j) \leq d_j$ for all $j = 1, \dots, K$, and $\sum d_j \leq d$, the class-wise representations satisfy*

1044
$$(Z^{*i})^\top Z^{*j} = 0 \quad \text{for all } i \neq j,$$

 1045

1046 where $Z^{*j} = Z^* \Pi^j$ denotes the features of class j .
 1047

1048 *Proof.* We prove by contradiction using Corollary 1.
 1049

1050 **Step 1: Assume non-orthogonality.** Suppose for contradiction that Z^* is a local optimum with $(Z^{*j_1})^\top Z^{*j_2} \neq 0$ for some classes $j_1 \neq j_2$. By Corollary 1, the global coding rate satisfies:

1051
$$\log \det\left(I + \alpha \sum_{j=1}^K Z^{*j} (Z^{*j})^\top\right) < \sum_{j=1}^K \log \det(I + \alpha Z^{*j} (Z^{*j})^\top), \quad (17)$$

 1052

1053 with strict inequality due to the class overlap $(Z^{*j_1})^\top Z^{*j_2} \neq 0$.
 1054

1055 **Step 2: Construct orthogonal alternative.** We construct an alternative solution Z' by re-
 1056 orthogonalizing the class partitions. For each $Z^{*j} = U^{*j} \Sigma^{*j} (V^{*j})^\top$ (SVD decomposition),
 1057 construct orthogonal matrices $\{U'_j\}_{j=1}^K$ such that $[U'_1, \dots, U'_K]$ has orthogonal columns. This is possi-
 1058 ble since $\sum_{j=1}^K \text{rank}(Z^{*j}) \leq \sum_{j=1}^K d_j \leq d$. Define:
 1059

1060
$$Z'^j = U'_j \Sigma^{*j} (V^{*j})^\top.$$

 1061

1062 By construction, $(Z'^i)^\top Z'^j = 0$ for $i \neq j$, and each Z'^j preserves the singular values of Z^{*j} , hence
 1063 satisfies all constraints.
 1064

1065 **Step 3: Show strict improvement.** Since Z'^j has the same singular values as Z^{*j} , each per-class
 1066 coding rate is preserved:
 1067

1068
$$\log \det(I + \alpha Z'^j (Z'^j)^\top) = \log \det(I + \alpha Z^{*j} (Z^{*j})^\top).$$

 1069

1070 However, by Corollary 1 with equality condition, the orthogonality of $\{Z'^j\}$ implies:
 1071

1072
$$\log \det\left(I + \alpha \sum_{j=1}^K Z'^j (Z'^j)^\top\right) = \sum_{j=1}^K \log \det(I + \alpha Z'^j (Z'^j)^\top).$$

 1073

1074 Combining these, Z' achieves strictly higher objective value than Z^* , contradicting the optimality
 1075 of Z^* .
 1076

1077 Therefore, any local optimum must satisfy class-orthogonality. \square
 1078

1080 D.3 PROOF OF THEOREM 2 (DECOMPOSITION EQUIVALENCE)
10811082 **Theorem 4** (Restatement of Theorem 2). *Assume that the per-class representations $Z^j \in \mathbb{R}^{d \times m_j}$
1083 are mutually orthogonal and $\sum_{j=1}^K m_j = m \leq d$, the global MCR² objective 1 is equivalent to the
1084 sum of K independent class-wise objectives:*

1085
$$\max_{Z^j} \frac{1}{2} \left[\log \det \left(I + \frac{d}{m\epsilon^2} Z^j (Z^j)^\top \right) - \frac{m_j}{m} \log \det \left(I + \frac{d}{m_j\epsilon^2} Z^j (Z^j)^\top \right) \right], \quad (18)$$

1086 *subject to $\|Z^j\|_F^2 = m_j$.*1087 *Proof.* Let

1088
$$\Delta R(Z) := \frac{1}{2} \log \det \left(I + \alpha Z Z^\top \right) - \frac{1}{2} \sum_{j=1}^K \gamma_j \log \det \left(I + \alpha_j Z^j (Z^j)^\top \right)$$

1089 denote the global MCR² objective in equation 1, where Z^j is the class j partition of Z . And

1090
$$\Delta R_j(Z^j) := \frac{1}{2} \log \det \left(I + \alpha Z^j (Z^j)^\top \right) - \frac{1}{2} \gamma_j \log \det \left(I + \alpha_j Z^j (Z^j)^\top \right)$$

1091 denote the j -th class-wise objective in equation 18, and $\alpha = \frac{d}{m\epsilon^2}$, $\alpha_j = \frac{d}{m_j\epsilon^2}$, $\gamma_j = \frac{m_j}{m}$. Let

1092
$$v_1 := \max_Z \Delta R(Z), \quad v_2 := \sum_{j=1}^K \max_{Z^j} \Delta R_j(Z^j)$$

1093 be the optimal values of the global and class-wise problems, respectively.

1094 **Direction 1 ($v_2 \leq v_1$).** Let $\{Z'^j\}_{j=1}^K$ be maximizers of the K class-wise objectives, and set $Z' := [Z'^1, \dots, Z'^K]$. By the Frobenius constraints in the theorem statement, $\{Z'^j\}_{j=1}^K$ is feasible for the class-wise problems and Z' is feasible for the global problem.

1095 By the orthogonality assumption in the theorem statement, we can apply Corollary 1 in the equality
1096 case with $A_j = \alpha Z'^j (Z'^j)^\top$, that gives

1097
$$\log \det \left(I + \alpha Z' Z'^\top \right) = \log \det \left(I + \alpha \sum_{j=1}^K Z'^j (Z'^j)^\top \right) = \sum_{j=1}^K \log \det \left(I + \alpha Z'^j (Z'^j)^\top \right).$$

1098 Hence the global objective value at Z' decomposes as

1099
$$\begin{aligned} \Delta R(Z') &= \frac{1}{2} \log \det \left(I + \alpha Z' Z'^\top \right) - \frac{1}{2} \sum_{j=1}^K \gamma_j \log \det \left(I + \alpha_j Z'^j (Z'^j)^\top \right) \\ &= \sum_{j=1}^K \frac{1}{2} \left[\log \det \left(I + \alpha Z'^j (Z'^j)^\top \right) - \gamma_j \log \det \left(I + \alpha_j Z'^j (Z'^j)^\top \right) \right] \\ &= v_2. \end{aligned}$$

1100 Since Z' is a feasible point for the global problem, we obtain $v_2 = \Delta R(Z') \leq \max_Z \Delta R(Z) = v_1$.

1101 **Direction 2 ($v_1 \leq v_2$).** Let Z^* be a global maximizer of ΔR . By Theorem 1, Z^* satisfies class-
1102 orthogonality, i.e. $(Z^{*i})^\top Z^{*j} = 0$ for all $i \neq j$, and each class-wise block Z^{*j} satisfies the Frobe-
1103 nius constraint $\|Z^{*j}\|_F^2 = m_j$. Thus $\{Z^{*j}\}_{j=1}^K$ is feasible for the class-wise problems.

1104 Applying Corollary 1 again with $A_j = \alpha Z^{*j} (Z^{*j})^\top$ and using the equality condition, we obtain

1105
$$\log \det \left(I + \alpha Z^* Z^{*\top} \right) = \log \det \left(I + \alpha \sum_{j=1}^K Z^{*j} (Z^{*j})^\top \right) = \sum_{j=1}^K \log \det \left(I + \alpha Z^{*j} (Z^{*j})^\top \right),$$

21

1134 and therefore
 1135

$$\begin{aligned}
 1136 \quad \Delta R(Z^*) &= \frac{1}{2} \log \det(I + \alpha Z^* Z^{*\top}) - \frac{1}{2} \sum_{j=1}^K \gamma_j \log \det(I + \alpha_j Z^{*j} (Z^{*j})^\top) \\
 1137 \\
 1138 \quad &= \sum_{j=1}^K \frac{1}{2} [\log \det(I + \alpha Z^{*j} (Z^{*j})^\top) - \gamma_j \log \det(I + \alpha_j Z^{*j} (Z^{*j})^\top)] \\
 1139 \\
 1140 \quad &= \sum_{j=1}^K \Delta R_j(Z^{*j}) \\
 1141 \\
 1142 \quad &\leq \sum_{j=1}^K \max_{Z^j} \Delta R_j(Z^j) = v_2.
 \end{aligned}$$

1143 Since $v_1 = \Delta R(Z^*)$, this yields $v_1 \leq v_2$.
 1144

1145 Combining the two directions gives $v_1 = v_2$, establishing the equivalence of the global and class-
 1146 wise formulations. \square
 1147

1148 D.4 PROOF COMPARISON: OUR APPROACH VS. PRIOR WORK

1149 We now compare our proof strategy for Theorem 1 (class-orthogonality) with the approach used in
 1150 prior work (Chan et al., 2021).
 1151

1152 **Chan et al., 2021 Approach – 4-Step Indirect Proof:**

1153 Chan et al.’s proof proceeds through the following steps (~5 pages of derivations):
 1154

- 1155 1. **Property of $\log \det(\cdot)$:** Introduce strict convexity of $\log \det(\cdot)$ function.
- 1156 2. **Lower and upper bound for single coding rate term:** Using concavity of $\log \det(\cdot)$ to
 1157 prove the upper bounds for coding rate.
- 1158 3. **Upper bound on coding rate reduction:** Based on the above results, finding upper bound
 1159 of coding rate reduction.
- 1160 4. **Proof of class-orthogonality:** reaching upper bound of coding rate reduction iff class-
 1161 orthogonality is satisfied.

1162 This approach is rigorous but involves substantial technicalities. The proof spans approximately 5
 1163 pages in the supplementary material of Chan et al. (2021).
 1164

1165 **Our Approach – 2-Step Direct Proof via Determinant Inequality:**

1166 Our proof is more concise and leverages a linear-algebraic tool (Corollary 1) to directly establish the
 1167 result (~3 pages total, including Corollary 1 proof):
 1168

- 1169 1. **Contradiction setup:** Assume a local optimum Z^* has class overlap $(Z^{*j_1})^\top Z^{*j_2} \neq 0$ for
 1170 some $j_1 \neq j_2$. By Corollary 1, this strictly reduces the global coding rate relative to the
 1171 per-class rates.
- 1172 2. **Orthogonal reconstruction:** Construct an alternative Z' by re-orthogonalizing class rep-
 1173 resentations via SVD while preserving singular values. By Corollary 1 equality condition,
 1174 Z' achieves strictly higher objective value, contradicting optimality of Z^* .
 1175

1176 **Advantages of Our Proof:**

- 1177 • **Clarity:** The determinant inequality (Corollary 1) provides immediate geometric intuition: over-
 1178 lapping class representations “waste” coding capacity due to the subadditivity of log-determinants
 1179 for non-orthogonal matrices.
- 1180 • **Generality:** Corollary 1 is a standalone linear-algebraic result applicable to *any* objective of the
 1181 form $\log \det(I + \sum_j A_j)$ with PSD matrices A_j . This includes recent variants like SCoRe-LogDet
 1182 (Majee et al., 2024) and other LogDet-based self-supervised objectives.
 1183

1188 • **Conciseness:** By isolating the key mathematical tool (determinant inequality) in Corollary 1, the
 1189 main proof (Theorem 1) becomes a short 2-step argument. The full proof chain (Corollary 1 +
 1190 Theorem 1) fits in ~ 3 pages vs. ~ 5 pages for the upper bound of coding rate reduction approach.
 1191

1192 **Broader Applicability:**

1193 Beyond Multi-ReduNet, Corollary 1 provides a general-purpose tool for analyzing class-wise de-
 1194 compositions in any MCR²-based or LogDet-based learning framework. For instance:
 1195

1196 • **SCoRe** (Majee et al., 2024): Submodular Combinatorial Representation Learning, where the
 1197 SCoRe-LogDet objective models the volume of a set A_k in the embedding space via a log-
 1198 determinant term; our determinant inequality provides an alternative tool for analyzing such
 1199 volume- and separation-based objectives.
 1200 • **Future MCR² variants:** Any method optimizing $\log \det(I + \sum_j X_j X_j^\top)$ can leverage our in-
 1201 equality to establish orthogonality properties.
 1202

1203 In summary, our proof simplification is not merely cosmetic, it provides a reusable mathematical
 1204 tool (Corollary 1) with broader theoretical utility beyond the specific context of Multi-ReduNet.
 1205

1206 **E GRADIENT DERIVATIONS AND ALGORITHM DETAILS**

1208 This appendix section provides step-by-step derivations of the gradient update equations used in
 1209 Multi-ReduNet (Equations 4-5 in the main text), eigenvalue spectrum analysis justifying the Multi-
 1210 ReduNet-LastNorm design, and additional algorithmic details.
 1211

1212 **E.1 TRAINING ALGORITHM FOR MULTI-REDUNET**

1215 **Algorithm 2** Training Algorithm for Multi-ReduNet

1216 **Require:** Input data $X \in \mathbb{R}^{d \times m}$, class memberships $\{\Pi^j\}_{j=1}^K$, parameters $\epsilon > 0$, learning rate η ,
 1217 number of layers L .
 1218 1: Compute class sizes: $m_j = \text{tr}(\Pi^j)$, priors $\gamma_j = \frac{m_j}{m}$
 1219 2: Set $\alpha = \frac{d}{m\epsilon^2}$, and $\alpha_j = \frac{d}{m_j\epsilon^2}$ for $j = 1, \dots, K$
 1220 3: Initialize features: $Z_1 = X$
 1221 4: **for** $l = 1$ to L **do**
 1222 5: **if** $l = 1$ **then**
 1223 6: Extract class-wise inputs: $Z_l^j = Z_1 \Pi^j$ for all $j = 1, \dots, K$
 1224 7: **end if**
 1225 8: **for** $j = 1$ to K **do**
 1226 9: Compute gradient matrices: $E_l^j = (I + \alpha Z_l^j (Z_l^j)^\top)^{-1}$, $C_l^j = (I + \alpha_j Z_l^j (Z_l^j)^\top)^{-1}$
 1227 10: Update and project: $Z_{l+1}^j = \mathcal{P}_{S^{d-1}}(Z_l^j + \eta(E_l^j Z_l^j - \gamma_j C_l^j Z_l^j))$
 1228 11: **end for**
 1229 12: **end for**
 1230 13: **return** Class-wise features $\{Z_l^j\}_{j=1, l=1}^{K, L+1}$

1233 **E.2 STEP-BY-STEP GRADIENT DERIVATIONS FOR MULTI-REDUNET UPDATES**

1235 We derive the closed-form gradient updates for the class-wise MCR² objective used in Multi-
 1236 ReduNet. Recall that for each class $j \in \{1, \dots, K\}$, we independently maximize:

$$1237 \mathcal{R}_j(Z^j) = \frac{1}{2} \left[\log \det \left(I + \frac{d}{m\epsilon^2} Z^j (Z^j)^\top \right) - \frac{m_j}{m} \log \det \left(I + \frac{d}{m_j\epsilon^2} Z^j (Z^j)^\top \right) \right],$$

1240 subject to $\|Z^j\|_F^2 = m_j$, where $Z^j \in \mathbb{R}^{d \times m_j}$ contains features for class j samples.
 1241

Step 1: Gradient of the Global Coding Rate Term

1242 The global coding rate contribution from class j is:

$$1244 R_{\text{global}}^j = \frac{1}{2} \log \det(I + \alpha Z^j (Z^j)^\top), \quad \alpha = \frac{d}{m\epsilon^2}.$$

1246 Using the matrix calculus identity $\frac{\partial}{\partial X} \log \det(I + XX^\top) = 2(I + XX^\top)^{-1}X$, we obtain:

$$\begin{aligned} 1248 \frac{\partial R_{\text{global}}^j}{\partial Z^j} &= \frac{1}{2} \cdot 2\alpha(I + \alpha Z^j (Z^j)^\top)^{-1} Z^j \\ 1250 &= \alpha(I + \alpha Z^j (Z^j)^\top)^{-1} Z^j \\ 1251 &\equiv E^j Z^j, \end{aligned}$$

1252 where $E^j = \alpha(I + \alpha Z^j (Z^j)^\top)^{-1}$ is the *expansion operator* for class j .

1254 Step 2: Apply Woodbury Identity to Reduce Complexity

1255 Direct computation of E^j requires inverting a $d \times d$ matrix. By Lemma 1 (Woodbury identity):

$$1256 (I + \alpha Z^j (Z^j)^\top)^{-1} = I - \alpha Z^j (I + \alpha (Z^j)^\top Z^j)^{-1} (Z^j)^\top,$$

1257 where the right-hand side only requires inverting an $m_j \times m_j$ matrix $(I + \alpha (Z^j)^\top Z^j)^{-1}$. This
1258 reduces complexity from $\mathcal{O}(d^3)$ to $\mathcal{O}(m_j^3)$.

1260 Define $\text{preE}_l^j = (I + \alpha (Z_l^j)^\top Z_l^j)^{-1} \in \mathbb{R}^{m_j \times m_j}$. Then:

$$1262 E_l^j = \alpha \left(I - \alpha Z_l^j \cdot \text{preE}_l^j \cdot (Z_l^j)^\top \right).$$

1263 Step 3: Gradient of the Per-Class Coding Rate Term

1265 The per-class coding rate term is:

$$1266 R_{\text{class}}^j = \frac{m_j}{2m} \log \det(I + \alpha_j Z^j (Z^j)^\top), \quad \alpha_j = \frac{d}{m_j \epsilon^2}.$$

1269 Following the same matrix calculus rule:

$$\begin{aligned} 1270 \frac{\partial R_{\text{class}}^j}{\partial Z^j} &= \frac{m_j}{2m} \cdot 2\alpha_j (I + \alpha_j Z^j (Z^j)^\top)^{-1} Z^j \\ 1272 &= \frac{m_j}{m} \alpha_j (I + \alpha_j Z^j (Z^j)^\top)^{-1} Z^j \\ 1274 &\equiv \gamma_j C^j Z^j, \end{aligned}$$

1275 where $\gamma_j = \frac{m_j}{m}$ (class prior) and $C^j = \alpha_j (I + \alpha_j Z^j (Z^j)^\top)^{-1}$ is the *compression operator* for
1276 class j .

1277 Step 4: Apply Woodbury Identity to Compression Operator

1279 Similarly, define $\text{preC}_l^j = (I + \alpha_j (Z_l^j)^\top Z_l^j)^{-1} \in \mathbb{R}^{m_j \times m_j}$. Then:

$$1281 C_l^j = \alpha_j \left(I - \alpha_j Z_l^j \cdot \text{preC}_l^j \cdot (Z_l^j)^\top \right).$$

1282 Step 5: Combined Gradient Update

1284 The gradient of the full objective $\mathcal{R}_j(Z^j) = R_{\text{global}}^j - R_{\text{class}}^j$ is:

$$1285 \nabla_{Z^j} \mathcal{R}_j = E_l^j Z_l^j - \gamma_j C_l^j Z_l^j.$$

1287 Applying projected gradient ascent with learning rate η and projection onto the unit sphere $\mathcal{P}_{S^{d-1}}(\cdot)$:

$$1288 Z_{l+1}^j = \mathcal{P}_{S^{d-1}} \left(Z_l^j + \eta(E_l^j Z_l^j - \gamma_j C_l^j Z_l^j) \right).$$

1290 For Multi-ReduNet-LastNorm, the sphere projection is omitted at intermediate layers and applied
1291 only at the final layer L :

$$1293 Z_{l+1}^j = \begin{cases} Z_l^j + \eta(E_l^j Z_l^j - \gamma_j C_l^j Z_l^j), & l < L, \\ \mathcal{P}_{S^{d-1}} \left(Z_l^j + \eta(E_l^j Z_l^j - \gamma_j C_l^j Z_l^j) \right), & l = L. \end{cases}$$

1295 This completes the derivation of Equations 4-5 in the main text.

1296 E.3 EIGENVALUE SPECTRUM ANALYSIS: JUSTIFYING MULTI-REDUNET-LASTNORM
12971298 We now provide numerical evidence for why per-layer normalization (Multi-ReduNet) may be
1299 overly restrictive compared to last-layer-only normalization (Multi-ReduNet-LastNorm).
13001301 **Observation:** In Multi-ReduNet, each layer l projects updated features onto the unit sphere:
1302 $\|z_{l+1,i}^j\|_2 = 1$ for all samples i in class j . This enforces uniform feature norms across layers,
1303 which may conflict with the natural gradient dynamics.1304 **Analysis:** Consider the eigenvalue spectrum of the gradient update matrix $G_l^j = E_l^j - \gamma_j C_l^j$. If the
1305 eigenvalues of G_l^j vary significantly across dimensions, forcing all features to have unit norm after
1306 each layer may distort the learned representations.
13071308 **Interpretation:**1309

- 1310 The gradient matrix G_l^j has *non-uniform* eigenvalue spectrum, indicating that different feature
1311 dimensions evolve at different rates during optimization.
- 1312 Per-layer normalization ($\mathcal{P}_{S^{d-1}}$ after every layer) forces all dimensions to have unit magnitude,
1313 potentially suppressing the natural dynamics encoded in the eigenvalues.
- 1314 Last-layer-only normalization allows intermediate representations to evolve freely according to
1315 their natural gradient scales, only enforcing the Frobenius constraint $\|Z^j\|_F^2 = m_j$ at the final
1316 output layer.

13171318 **Empirical Validation:**
13191320 Table 5 shows that Multi-ReduNet-LastNorm achieves average 2.6% better hyperparameter robust-
1321 ness across 6 datasets compared to Multi-ReduNet, supporting the hypothesis that relaxing interme-
1322 diate normalization improves optimization stability.
13231324 F ACCURACY OF REDUNET VARIANTS ACROSS η AND DATASETS
13251326 In the main text, we report results either at a fixed learning rate $\eta = 0.05$ (Table 3) or using the
1327 best test accuracy over a small grid $\eta \in \{0.01, 0.05, 0.1, 0.5\}$ (Tables 4). For completeness, this
1328 appendix provides the full accuracy tables for all ReduNet variants and baselines across all datasets
1329 and all four learning rates. These results confirm that Multi-ReduNet(-LastNorm) have more stable
1330 performance and can achieve accuracy that is on par with or even higher than ReduNet across η .
13311332 G TRAINING AND EVALUATION PROCEDURES
13331334 G.1 REDUNET
13351336 Let $\{x^i, y^i\}_{i=1}^m \subset \mathbb{R}^d \times [K]$ denote labeled training samples. For convenience, we denote $\Pi =$
1337 $\{\Pi^j \in \mathbb{R}^{m \times m}\}_{j=1}^K$ as a set of diagonal matrices whose diagonal entries represent the membership
1338 of m samples in K classes: $(\Pi^j)_{ii} = 1$ if $y^i = j$, and 0 otherwise. Given the distortion ϵ , ReduNet
1339 aims to learn interpretable features z_l^i via iterative gradient updates on maximizing a coding-rate
1340 based objective:
1341

1342
$$\begin{aligned} 1343 \Delta R(Z, \Pi, \epsilon) &= R(Z, \epsilon) - R^c(Z, \epsilon | \Pi) \\ 1344 &= \frac{1}{2} \log \det(I + \frac{d}{m\epsilon^2} ZZ^\top) - \sum_{j=1}^K \frac{\text{tr}(\Pi^j)}{2m} \log \det(I + \frac{d}{\text{tr}(\Pi^j)\epsilon^2} Z^j (Z^j)^\top) \end{aligned}$$

1345

1346 where $Z^j = Z\Pi^j$ denotes features of class- j samples, $\Delta R(\cdot, \Pi, \epsilon)$ is the coding rate reduction.
1347 Features are updated layer-wise using closed-form statistics derived from previous representations
1348 Z_l . See Algorithm 3 for details. In essence, each layer computes per-class compression operators
1349

1350 Table 8: Full test accuracy of ReduNet variants across all datasets and learning rates $\eta \in$
1351 $\{0.01, 0.05, 0.1, 0.5\}$.
1352

Reuters	$\eta = 0.5$			$\eta = 0.1$		
	SVM	KNN	NSC	SVM	KNN	NSC
ReduNet	0.073	0.127	0.281	0.465	0.721	0.747
Multi-ReduNet	0.955	0.603	0.941	0.984	0.930	0.957
Multi-ReduNet-LN	0.956	0.709	0.946	0.986	0.941	0.958
	$\eta = 0.05$			$\eta = 0.01$		
	SVM	KNN	NSC	SVM	KNN	NSC
ReduNet	0.802	0.670	0.922	0.956	0.878	0.949
Multi-ReduNet	0.984	0.939	0.957	0.988	0.949	0.957
Multi-ReduNet-LN	0.985	0.943	0.957	0.988	0.950	0.957
global PCA+SVM	0.975					
class-wise PCA+NSC	0.867					
LDA	0.471					
MNIST	$\eta = 0.5$			$\eta = 0.1$		
	SVM	KNN	NSC	SVM	KNN	NSC
ReduNet	0.074	0.019	0.020	0.901	0.913	0.908
Multi-ReduNet	0.414	0.655	0.361	0.797	0.878	0.869
Multi-ReduNet-LN	0.518	0.720	0.653	0.815	0.890	0.880
	$\eta = 0.05$			$\eta = 0.01$		
	SVM	KNN	NSC	SVM	KNN	NSC
ReduNet	0.906	0.930	0.903	0.894	0.937	0.897
Multi-ReduNet	0.837	0.902	0.871	0.885	0.926	0.897
Multi-ReduNet-LN	0.842	0.903	0.873	0.905	0.926	0.909
global PCA+SVM	0.878					
class-wise PCA+NSC	0.773					
LDA	0.615					
Fashion-MNIST	$\eta = 0.5$			$\eta = 0.1$		
	SVM	KNN	NSC	SVM	KNN	NSC
ReduNet	0.137	0.141	0.073	0.824	0.812	0.841
Multi-ReduNet	0.369	0.738	0.402	0.744	0.762	0.778
Multi-ReduNet-LN	0.371	0.776	0.584	0.749	0.773	0.798
	$\eta = 0.05$			$\eta = 0.01$		
	SVM	KNN	NSC	SVM	KNN	NSC
ReduNet	0.858	0.826	0.836	0.852	0.826	0.836
Multi-ReduNet	0.798	0.790	0.800	0.845	0.813	0.831
Multi-ReduNet-LN	0.801	0.802	0.803	0.858	0.828	0.835
global PCA+SVM	0.829					
class-wise PCA+NSC	0.667					
LDA	0.781					

1392 $\{C_l^j\}_{j=1}^K$ and a global expansion operator E_l from current features Z_l :
1393

$$\begin{aligned}
 1395 \quad & \frac{1}{2} \frac{d \log \det(\mathbf{I} + \alpha \mathbf{Z} \mathbf{Z}^\top)}{d \mathbf{Z}} |_{\mathbf{Z}_l} = \underbrace{\alpha (\mathbf{I} + \alpha \mathbf{Z}_l \mathbf{Z}_l^\top)^{-1}}_{\mathbf{E}_l} \mathbf{Z}_l, \\
 1396 \quad & \frac{\text{tr}(\Pi^j)}{2m} \frac{d \log \det(\mathbf{I} + \alpha_j \mathbf{Z} \Pi^j \mathbf{Z}^\top)}{d \mathbf{Z}} |_{\mathbf{Z}_l} = \frac{\text{tr}(\Pi^j)}{m} \underbrace{\alpha_j (\mathbf{I} + \alpha_j \mathbf{Z}_l \Pi^j \mathbf{Z}_l^\top)^{-1}}_{\mathbf{C}_l^j} \mathbf{Z}_l \Pi^j,
 \end{aligned}$$

1402 and performs a projected gradient update using their discrepancy. These updates are fully transparent
1403 and closed-form, making ReduNet interpretable by design.
1404

Table 8 continued

Swarm Behaviour	$\eta = 0.5$			$\eta = 0.1$		
	SVM	KNN	NSC	SVM	KNN	NSC
ReduNet	0.679	0.567	0.601	0.802	0.981	0.996
Multi-ReduNet	0.990	0.863	0.738	1.000	0.998	0.896
Multi-ReduNet-LN	0.990	0.867	0.765	1.000	0.998	0.896
	$\eta = 0.05$			$\eta = 0.01$		
	SVM	KNN	NSC	SVM	KNN	NSC
ReduNet	0.802	1.000	0.996	1.000	1.000	0.979
Multi-ReduNet	1.000	1.000	0.929	1.000	1.000	0.956
Multi-ReduNet-LN	1.000	1.000	0.927	1.000	1.000	0.977
global PCA+SVM			1.000			
class-wise PCA+NSC			0.913			
LDA			0.977			
DrivFace	$\eta = 0.5$			$\eta = 0.1$		
	SVM	KNN	NSC	SVM	KNN	NSC
ReduNet	0.295	0.098	0.104	0.219	0.235	0.169
Multi-ReduNet	0.820	0.978	0.852	1.000	0.918	0.984
Multi-ReduNet-LN	0.869	0.967	0.907	1.000	0.940	0.984
	$\eta = 0.05$			$\eta = 0.01$		
	SVM	KNN	NSC	SVM	KNN	NSC
ReduNet	0.432	0.393	0.366	1.000	1.000	1.000
Multi-ReduNet	1.000	0.951	0.995	1.000	1.000	1.000
Multi-ReduNet-LN	1.000	0.978	0.995	1.000	1.000	1.000
global PCA+SVM			1.000			
class-wise PCA+NSC			1.000			
LDA			1.000			
ARCENE	$\eta = 0.5$			$\eta = 0.1$		
	SVM	KNN	NSC	SVM	KNN	NSC
ReduNet	0.366	0.341	0.220	0.439	0.439	0.561
Multi-ReduNet	0.561	0.659	0.732	0.683	0.683	0.829
Multi-ReduNet-LN	0.561	0.683	0.829	0.805	0.732	0.805
	$\eta = 0.05$			$\eta = 0.01$		
	SVM	KNN	NSC	SVM	KNN	NSC
ReduNet	0.439	0.415	0.463	0.341	0.707	0.780
Multi-ReduNet	0.829	0.732	0.805	0.829	0.780	0.829
Multi-ReduNet-LN	0.829	0.732	0.805	0.829	0.780	0.829
global PCA+SVM			0.805			
class-wise PCA+NSC			0.756			
LDA			0.878			

Evaluation follows a similar layer-wise procedure but omits gradient-based updates. At each layer, the learned compression operators C_l^j are used to compute soft class attribution probabilities $\hat{\pi}^j$:

$$\hat{\pi}^j(z_l) = \frac{\exp(-\lambda \|C_l^j z_l\|)}{\sum_{i=1}^K \exp(-\lambda \|C_l^i z_l\|)}$$

where $C_l^j z_l$ approximates projection of z_l onto the orthogonal complement of class- j 's subspace. This inference strategy is foundational to ReduNet and forms the basis for our class-wise inference scheme in Multi-ReduNet (Section 3.3). The complete training and evaluation procedures are summarized in Algorithm 3 and Algorithm 4, respectively.

We denote $\mathcal{P}_{S^{d-1}}(\cdot)$ as the projection operator onto the d -dimensional unit sphere. It enforces that updated features reside on the sphere, which normalizes their magnitudes and enhances stability.

1458

Algorithm 3 Forward Training Algorithm of ReduNet

1459

Require: Input data $X = [x^1, x^2, \dots, x^m] \in \mathbb{R}^{d \times m}$, λ, ϵ, Π , learning rate η .

1460

1: set $\alpha = \frac{d}{m\epsilon^2}$, $\{\alpha_j = \frac{d}{tr(\Pi^j)\epsilon^2}\}_{j=1}^K$, $\{\gamma_j = \frac{tr(\Pi^j)}{m}\}_{j=1}^K$.

1461

2: Initialize $Z_1 = X$

1462

3: **for** $l = 1, 2, \dots, L$ **do**

1463

4: $E_l = \alpha(I + \alpha Z_l Z_l^\top)^{-1}$, $\{C_l^j = \alpha_j(I + Z_l \Pi^j Z_l^\top)^{-1}\}_{j=1}^K$

1464

5: **for** $i = 1, 2, \dots, m$ **do**

1465

6: $\{\hat{\pi}^j(z_l^i) = \frac{\exp(-\lambda\|C_l^j z_l^i\|)}{\sum_{j=1}^K \exp(-\lambda\|C_l^j z_l^i\|)}\}_{j=1}^K$

1466

7: $z_l^i = \mathcal{P}_{S^{d-1}}(z_l^i + \eta \cdot (E_l z_l^i - \sum_{j=1}^K \gamma_j C_l^j z_l^i \hat{\pi}^j(z_l^i)))$

1467

8: **end for**

1468

9: **end for**

1469

10: **return** features Z_{L+1} , the learned parameters $\{E_l\}_{l=1}^L$, $\{C_l^j\}_{j=1,l=1}^{K,L}$, $\{\gamma_j\}_{j=1}^K$.

1470

1471

1472

Algorithm 4 Evaluation Algorithm of ReduNet

1473

Require: Input $x \in \mathbb{R}^d$, network parameters $\{\mathbf{E}_l\}_{l=1}^L$, $\{\mathbf{C}_l^j\}_{l=1,j=1}^{L,K}$, $\{\gamma_j\}_{j=1}^K$, λ and learning rate η .

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

G.2 MULTI-REDUNET AND MULTI-REDUNET-LASTNORM

1487

Although ReduNet computes per-class compression terms $R^c(Z, \epsilon | \Pi)$, its optimization is global. This assumes shared structure across classes and prevents fine-grained control over class-specific representations. And in real-world highdimensional data settings, particularly under sample scarcity, ReduNet’s global training mechanism becomes inefficient. Each layer requires computing class-wise compression matrices $C_l^j \in \mathbb{R}^{d \times d}$ and a global expansion matrix $E_l \in \mathbb{R}^{d \times d}$, leading to expensive matrix inversions when feature dimension d is large. This hinders deployment on resource-constrained platforms.

1494

To address this, we propose **Multi-ReduNet**, which decomposes the global ReduNet objective MCR² into K class-wise subproblems:

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

$$\sum_{j=1}^K \max_{Z^j \in \mathbb{R}^{d \times \text{tr}(\Pi^j)}} \frac{1}{2} \left[\log \det \left(I + \frac{d}{m\epsilon^2} Z^j (Z^j)^\top \right) - \frac{\text{tr}(\Pi^j)}{m} \log \det \left(I + \frac{d}{\text{tr}(\Pi^j)\epsilon^2} Z^j (Z^j)^\top \right) \right]$$

$$\begin{aligned} Z_{l+1}^j &\propto Z_l^j + \eta * \left(\frac{1}{2} \frac{d \log \det(I + \frac{d}{m\epsilon^2} Z_l^j (Z_l^j)^\top)}{d Z_l^j} - \frac{\text{tr}(\Pi^j)}{2m} \frac{d \log \det(I + \frac{d}{\text{tr}(\Pi^j)\epsilon^2} Z_l^j (Z_l^j)^\top)}{d Z_l^j} \right) \\ &= Z_l^j + \eta * \left(\underbrace{\frac{d}{m\epsilon^2} (I + \frac{d}{m\epsilon^2} Z_l^j (Z_l^j)^\top)^{-1} Z_l^j}_{E_l^j} - \frac{\text{tr}(\Pi^j)}{m} \underbrace{\frac{d}{\text{tr}(\Pi^j)\epsilon^2} (I + \frac{d}{\text{tr}(\Pi^j)\epsilon^2} Z_l^j (Z_l^j)^\top)^{-1} Z_l^j}_{C_l^j} \right) \end{aligned}$$

Note that E_l^j and C_l^j are both functions of the same class-wise covariance $Z_l^j (Z_l^j)^\top$, but they arise from the expansion and compression log-det terms with different coefficients α and α_j . The actual

1512 update for class j depends on their difference $(E_l^j - \frac{tr(\Pi^j)}{m} C_l^j) Z_l^j$, so the two operators act as
 1513 opposing forces (promoting global spread vs. within-class compactness) rather than as a simple
 1514 rescaling. Crucially, in Multi-ReduNet these operators are computed from the *class-wise* covariance
 1515 $Z_l^j (Z_l^j)^\top$ instead of the global covariance ZZ^\top , which makes the optimization fully decoupled
 1516 across classes.
 1517

Algorithm 5 Training Algorithm of Multi-ReduNet and Multi-ReduNet-LastNorm

1519 **Require:** Input data $X \in \mathbb{R}^{d \times m}$, class memberships $\{\Pi^j\}_{j=1}^K$, parameters $\epsilon > 0$, λ , learning rate
 1520 η .
 1521 1: Compute class sizes: $m_j = tr(\Pi^j)$, priors $\gamma_j = \frac{m_j}{m}$
 1522 2: Set $\alpha = \frac{d}{m\epsilon^2}$, and $\alpha_j = \frac{d}{m_j\epsilon^2}$ for $j = 1, \dots, K$
 1523 3: Initialize features: $Z_1 = X$
 1524 4: **for** $l = 1$ to L **do**
 1525 5: **if** $l = 1$ **then**
 1526 6: Extract class-wise inputs: $\{Z_l^j = Z_1 \Pi^j\}_{j=1}^K$
 1527 7: **end if**
 1528 8: **for** $j = 1$ to K **do**
 1529 9: **#Per-class forward update**
 1530 10: Compute: $\text{preE}_l^j = (I + \alpha(Z_l^j)^\top Z_l^j)^{-1} \in \mathbb{R}^{m_j \times m_j}$
 1531 11: Compute: $E_l^j = \alpha(I - \alpha Z_l^j \cdot \text{preE}_l^j \cdot (Z_l^j)^\top)$
 1532 12: Compute: $\text{preC}_l^j = (I + \alpha_j(Z_l^j)^\top Z_l^j)^{-1} \in \mathbb{R}^{m_j \times m_j}$
 1533 13: Compute: $C_l^j = \alpha_j(I - \alpha_j Z_l^j \cdot \text{preC}_l^j \cdot (Z_l^j)^\top)$
 1534 14: Update features:
 1535 15: $Z_{l+1}^j = \begin{cases} \mathcal{P}_{S_{d-1}}(Z_l^j + \eta(E_l^j Z_l^j - \gamma_j C_l^j Z_l^j)), & \text{(Multi-ReduNet)} \\ Z_l^j + \eta(E_l^j Z_l^j - \gamma_j C_l^j Z_l^j), & \text{(Multi-ReduNet-LastNorm)} \end{cases}$
 1536 16: **end for**
 1537 17: **end for**
 1538 18: **if** Multi-ReduNet-LastNorm **then**
 1539 19: Apply $\mathcal{P}_{S_{d-1}}(\cdot)$ to all Z_{l+1}^j for $j = 1, \dots, K$
 1540 20: **return** features $\{Z_l^j\}_{j=1, l=1}^{K, L+1}$, priors $\{\gamma_j\}_{j=1}^K$

1545
 1546 Using Lemma 1, these matrix inverses can be computed efficiently via Woodbury identity. For
 1547 training samples with known class membership, the features are updated by:

$$z_{l+1}^j = \mathcal{P}_{S_{d-1}}\left(Z_l^j + \eta(E_l^j Z_l^j - \frac{tr(\Pi^j)}{m} C_l^j Z_l^j)\right)$$

1548 During evaluation, since test labels are unknown, we compute soft membership scores by soft-
 1549 max function $\hat{\pi}^j$. Then, unlike ReduNet, which only uses $\hat{\pi}^j$ to weigh compression terms, **Multi-**
 1550 **ReduNet performs a full forward update within each class-specific subnetwork independently**,
 1551 ignoring $\hat{\pi}^j$ during that step. These per-class updated features are finally aggregated using $\hat{\pi}^j$ as
 1552 weights:
 1553

$$z_{l+1} = \mathcal{P}_{S_{d-1}}\left(\sum_{j=1}^K \left(z_l + \eta \cdot (E_l^j z_l - \frac{tr(\Pi^j)}{m} C_l^j z_l) \right) \cdot \hat{\pi}^j\right)$$

1554 This forward scheme captures how confident the model is about a test sample’s class alignment, and
 1555 allows each class branch to contribute accordingly.

1556 To further reduce storage overhead, we adopt **parameterized model storage**: instead of saving all
 1557 $L \cdot (2K) d \times d$ parameter matrices, we store only the learned features Z_l per layer and reconstruct
 1558 E_l^j, C_l^j on-the-fly when needed.

1559 Finally, we introduce **Multi-ReduNet-LastNorm**, which differs by postponing unit-norm projection
 1560 to the final layer. This provides more flexibility during intermediate optimization while ensuring fair
 1561 comparison across classes at inference.

1566 **Algorithm 6** Evaluation Algorithm of Multi-ReduNet and Multi-ReduNet-LastNorm

1567 **Require:** Input sample $x \in \mathbb{R}^d$, training features $\{Z_l = [Z_l^1, \dots, Z_l^K] \in \mathbb{R}^{d \times m}\}_{l=1}^{L+1}$, hyperparameters $\{\gamma_j\}_{j=1}^K$, λ , learning rate η .

1568 1: Compute $\alpha = \frac{n}{m\epsilon^2}$, $\alpha_j = \frac{n}{\text{tr}(\Pi^j)\epsilon^2}$

1569 2: Set $z_1 = x$

1570 3: **for** $l = 1$ to L **do**

1571 4: $\text{pre}E_l^j = (I + \alpha(Z_l^j)^\top Z_l^j)^{-1}$ for $j = 1, \dots, K$

1572 5: $\text{pre}C_l^j = (I + \alpha_j(Z_l^j)^\top Z_l^j)^{-1}$ for $j = 1, \dots, K$

1573 6: $E_l^j = \alpha (I - \alpha Z_l^j \cdot \text{pre}E_l^j \cdot (Z_l^j)^\top)$

1574 7: $C_l^j = \alpha_j (I - \alpha_j Z_l^j \cdot \text{pre}C_l^j \cdot (Z_l^j)^\top)$

1575 8: Compute soft membership weights:

1576
$$\hat{\pi}^j(z_l) = \frac{\exp(-\lambda \|C_l^j z_l\|)}{\sum_{i=1}^K \exp(-\lambda \|C_l^i z_l\|)} \in [0, 1]$$

1577 9: For each class j , compute tentative update:

1578
$$z'_{l+1}^j = z_l + \eta(E_l^j z_l - \gamma_j C_l^j z_l)$$

1579

1580 10: Aggregate:

1581
$$z_{l+1} = \begin{cases} \mathcal{P}_{S^{d-1}} \left(\sum_{j=1}^K z'_{l+1}^j \cdot \hat{\pi}^j(z_l) \right), & \text{if Multi-ReduNet} \\ \sum_{j=1}^K z'_{l+1}^j \cdot \hat{\pi}^j(z_l), & \text{if Multi-ReduNet-LastNorm} \end{cases}$$

1582

1583

1584 11: **end for**

1585 12: **if** Multi-ReduNet-LastNorm **then**

1586 13: $z_{L+1} \leftarrow \mathcal{P}_{S^{n-1}}(z_{L+1})$

1587 14: **end if**

1588 15: **return** Final feature z_{L+1}

1590 1591 1592 The complete training and evaluation procedures for Multi-ReduNet and Multi-ReduNet-LastNorm
1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
1602 1603 1604 1605 1606 1607 1608 1609 1610
1603 1604 1605 1606 1607 1608 1609 1610
1604 1605 1606 1607 1608 1609 1610
1605 1606 1607 1608 1609 1610
1606 1607 1608 1609 1610
1607 1608 1609 1610
1608 1609 1610
1609 1610
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
1611 1612 1613 1614 1615 1616 1617 1618 1619
1612 1613 1614 1615 1616 1617 1618 1619
1613 1614 1615 1616 1617 1618 1619
1614 1615 1616 1617 1618 1619
1615 1616 1617 1618 1619
1616 1617 1618 1619
1617 1618 1619
1618 1619
1619

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
1602 1603 1604 1605 1606 1607 1608 1609 1610
1603 1604 1605 1606 1607 1608 1609 1610
1604 1605 1606 1607 1608 1609 1610
1605 1606 1607 1608 1609 1610
1606 1607 1608 1609 1610
1607 1608 1609 1610
1608 1609 1610
1609 1610
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
1611 1612 1613 1614 1615 1616 1617 1618 1619
1612 1613 1614 1615 1616 1617 1618 1619
1613 1614 1615 1616 1617 1618 1619
1614 1615 1616 1617 1618 1619
1615 1616 1617 1618 1619
1616 1617 1618 1619
1617 1618 1619
1618 1619
1619

H EXPERIMENTAL SETUP

H.1 EXPERIMENTS OF MULTI-REDUNET AND VARIANTS

We evaluate Multi-ReduNet and its LastNorm variant on six datasets spanning diverse modalities: [Reuters](#) (text), [mnist](#) (images), [fashion-mnist](#) (images), [Swarm Behaviour](#) (survey data), [DrivFace](#) (images), and [ARCENE](#) (medical diagnostics):

- **Reuters:** the Reuters dataset is a commonly used text classification dataset and consists of a total of 135 document categories. For our experiments, we extracted data from the first five categories because these five categories have slightly more abundant samples. The training set includes 5,304 samples, and the test set comprises 1,328 samples. The dataset can be downloaded from <http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html>.
- **MNIST:** this is a widely used handwritten dataset in the field of machine learning, comprising 70,000 grayscale images of size 28×28, representing the digits from 0 to 9. We randomly sampled 500 samples from each class of the data to form the training set and 100 samples from each class to form the test set. Additionally, each image sam-

1620 ple is reshaped to a size of 100×100 and then flattened into a 10,000-dimensional vector. The dataset can be downloaded from <https://www.kaggle.com/datasets/hojjatk/mnist-dataset>.

1621

1622

1623 • **Fashion-MNIST**: this dataset is a dataset used for clothing image classification, containing 28×28 pixel images of clothing from 10 different categories. We randomly selected 500 samples from each class of the data to form the training set and 100 samples from each class to form the test set. Each image is then rescaled to 100×100 pixels and flattened into a 10,000-dimensional vector. The dataset can be downloaded from https://www.tensorflow.org/datasets/catalog/fashion_mnist.

1624

1625

1626 • **Swarm Behaviour**: this dataset was obtained from an online survey run by UNSW, Australia. It has 2,400-dimensional input features and 2 classes. We randomly extracted 1,200 samples for the training set and 300 samples for the test set. Detailed data information and download address are available at: <https://archive.ics.uci.edu/dataset/524/swarm+behaviour>.

1627

1628 • **DrivFace**: this dataset contains images sequences of subjects while driving in real scenarios. It is composed of 606 samples acquired over different days from 4 drivers with several facial features. We randomly extracted 484 samples for training set and the remaining 122 samples for test set. Each sample is rescaled as 64×64 pixels and then flattened into a 4096-dimensional vector. The dataset can be download from <https://archive.ics.uci.edu/dataset/378/drivface>.

1629

1630 • **ARCENE**: this dataset contains mass-spectrometric data from healthy individuals and cancer patients. We split the data from both healthy individuals and cancer patients into training and test sets with an 8:2 ratio, respectively. This dataset is one of 5 datasets of the NIPS 2003 feature selection challenge. The details and the download link are <https://archive.ics.uci.edu/dataset/167/arcene>.

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

In each experiment, we benchmark six models: ReduNet, ReduNet-RF (replacing the internal membership predictor with a random forest classifier), imp-ReduNet (using Lemma 1 for parameter computation), imp-ReduNet-RF (combining model 2 and 3), Multi-ReduNet, and Multi-ReduNet-LastNorm. The evaluation focuses on:

1645 • **Classification accuracy**: Features from the final layer are evaluated using three downstream classifiers:

1646 1. **SVM**: Support Vector Machine with RBF kernel.

1647 2. **KNN**: k -nearest neighbors classifier with $k = 5$.

1648 3. **NSC (Nearest Subspace Classifier)**: for each class j , we compute the mean $\mu_j \in \mathbb{R}^d$ of the learned features Z^j , and let $U^j \in \mathbb{R}^{d \times r_j}$ be the top r_j principal components of Z^j . Then, a feature z is classified to class j' where $j' = \arg \min_{j \in \{1, \dots, K\}} \|(I - U^j U^{j \top})(z - \mu_j)\|_2^2$. We set $r_j = 10$ for all j .

1649 • **Training efficiency**: We compare total training time across models with different layer counts.

1650 • **Computational complexity**: Table 2 presents theoretical parameter calculation costs in undersampled regimes.

1651 • **Feature separability**: We visualize test features learned by ReduNet, ReduNet-RF, Multi-ReduNet, and Multi-ReduNet-LastNorm using t-SNE plots in Figure 2. These visualizations are based on features extracted from models $L = 5$ layers. Since imp-ReduNet and imp-ReduNet-RF only optimize computation without modifying representations, their features are not visualized.

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

I EXTENDED EXPERIMENT RESULTS

I.1 CLASSIFICATION ACCURACY OF REDUNET VARIANTS WITH VARYING LAYERS $L = 10, 15, 20, 25$

The experimental results of ReduNet variants with 10, 15, 20, and 25 layers (with fixed $\eta = 0.05$, $\epsilon^2 = 0.1$) are reported in Tables 9–14. Specifically, Table 9 corresponds to Reuters, Table 10

to MNIST, Table 11 to Fashion-MNIST, Table 12 to Swarm Behaviour, Table 13 to DrivFace, and Table 14 to ARCENE. These results provide a comprehensive comparison across different depths and datasets.

Table 9: Accuracy comparison of ReduNet variants on Reuters

	Layers=10			Layers=15		
	SVM	KNN	NSC	SVM	KNN	NSC
ReduNet	0.837	0.591	0.939	0.771	0.576	0.925
ReduNet-RF	0.441	0.562	0.623	0.441	0.562	0.552
imp-ReduNet	0.838	0.591	0.939	0.771	0.576	0.925
imp-ReduNet-RF	0.441	0.562	0.623	0.441	0.562	0.552
Multi-ReduNet	0.985	0.931	0.957	0.978	0.892	0.953
Multi-ReduNet-LastNorm	0.986	0.944	0.957	0.981	0.929	0.956
	Layers=20			Layers=25		
	SVM	KNN	NSC	SVM	KNN	NSC
ReduNet	0.758	0.569	0.909	0.746	0.569	0.874
ReduNet-RF	0.440	0.562	0.826	0.439	0.561	0.468
imp-ReduNet	0.757	0.571	0.909	0.750	0.570	0.876
imp-ReduNet-RF	0.451	0.572	0.846	0.441	0.561	0.488
Multi-ReduNet	0.977	0.830	0.950	0.971	0.732	0.953
Multi-ReduNet-LastNorm	0.977	0.907	0.951	0.974	0.879	0.950

Table 10: Accuracy comparison of ReduNet variants on mnist

	Layers=10			Layers=15		
	SVM	KNN	NSC	SVM	KNN	NSC
ReduNet	0.898	0.909	0.910	0.885	0.881	0.917
ReduNet-RF	0.354	0.468	0.672	0.261	0.250	0.278
imp-ReduNet	0.898	0.909	0.906	0.885	0.881	0.917
imp-ReduNet-RF	0.354	0.468	0.661	0.261	0.250	0.276
Multi-ReduNet	0.787	0.859	0.848	0.684	0.816	0.782
Multi-ReduNet-LastNorm	0.788	0.868	0.858	0.728	0.848	0.838
	Layers=20			Layers=25		
	SVM	KNN	NSC	SVM	KNN	NSC
ReduNet	0.880	0.875	0.910	0.876	0.874	0.906
ReduNet-RF	0.207	0.144	0.195	0.124	0.124	0.195
imp-ReduNet	0.880	0.875	0.908	0.876	0.874	0.906
imp-ReduNet-RF	0.208	0.153	0.195	0.124	0.124	0.195
Multi-ReduNet	0.595	0.748	0.725	0.534	0.736	0.668
Multi-ReduNet-LastNorm	0.664	0.805	0.800	0.628	0.805	0.779

I.2 ENLARGED T-SNE VISUALIZATIONS OF TEST FEATURES AND ANALYSIS

Figure 3 presents t-SNE visualizations of test features learned on the Reuters dataset across four ReduNet variants. The vanilla ReduNet (top-left) shows entangled feature clusters with significant overlaps between classes, indicating limited separability. ReduNet-RF (top-right) marginally improves class separation but still suffers from boundary ambiguity. In contrast, both Multi-ReduNet (bottom-left) and Multi-ReduNet-LastNorm (bottom-right) exhibit markedly improved clustering, with each class forming compact and well-separated regions. Notably, Multi-ReduNet-LastNorm demonstrates the cleanest class delineation, suggesting that class-wise decomposition and final-layer normalization contribute synergistically to enhancing discriminative structure in the learned features.

Figure 4 shows the t-SNE projections of test-set features extracted by different ReduNet variants on mnist. ReduNet and ReduNet-RF (top row) exhibit limited class separation: while some clusters be-

Table 11: Accuracy comparison of ReduNet variants on fashion-mnist

	Layers=10			Layers=15		
	SVM	KNN	NSC	SVM	KNN	NSC
ReduNet	0.822	0.799	0.842	0.806	0.788	0.837
ReduNet-RF	0.418	0.419	0.564	0.270	0.265	0.302
imp-ReduNet	0.822	0.799	0.842	0.806	0.788	0.832
imp-ReduNet-RF	0.418	0.419	0.565	0.270	0.265	0.304
Multi-ReduNet	0.707	0.746	0.764	0.604	0.745	0.723
Multi-ReduNet-LastNorm	0.720	0.763	0.788	0.618	0.772	0.755
	Layers=20			Layers=25		
	SVM	KNN	NSC	SVM	KNN	NSC
ReduNet	0.801	0.793	0.830	0.799	0.799	0.818
ReduNet-RF	0.270	0.256	0.270	0.270	0.243	0.270
imp-ReduNet	0.801	0.793	0.830	0.794	0.799	0.813
imp-ReduNet-RF	0.271	0.266	0.278	0.270	0.243	0.272
Multi-ReduNet	0.520	0.741	0.667	0.463	0.750	0.602
Multi-ReduNet-LastNorm	0.529	0.765	0.723	0.470	0.774	0.700

Table 12: Accuracy comparison of ReduNet variants on Swarm Behaviour

	Layers=10			Layers=15		
	SVM	KNN	NSC	SVM	KNN	NSC
ReduNet	0.802	0.985	0.995	0.802	0.883	0.995
ReduNet-RF	0.920	0.911	0.925	0.869	0.861	0.887
imp-ReduNet	0.802	0.985	0.995	0.802	0.883	0.994
imp-ReduNet-RF	0.920	0.911	0.925	0.869	0.861	0.887
Multi-ReduNet	1.000	0.998	0.884	1.000	0.968	0.860
Multi-ReduNet-LastNorm	1.000	0.998	0.910	1.000	0.972	0.865
	Layers=20			Layers=25		
	SVM	KNN	NSC	SVM	KNN	NSC
ReduNet	0.802	0.837	0.971	0.802	0.804	0.936
ReduNet-RF	0.869	0.817	0.825	0.869	0.773	0.800
imp-ReduNet	0.802	0.837	0.971	0.802	0.804	0.939
imp-ReduNet-RF	0.869	0.817	0.825	0.869	0.773	0.800
Multi-ReduNet	1.000	0.938	0.823	0.990	0.915	0.805
Multi-ReduNet-LastNorm	1.000	0.938	0.844	1.000	0.920	0.821

gin to emerge (e.g., digits 0, 1, and 7), the overall feature distributions are entangled, with noticeable overlaps between semantically similar digits (e.g., 4, 5).

In contrast, Multi-ReduNet (bottom left) yields significantly more structured clusters, albeit with mild boundary fuzziness. The clearest improvement appears in Multi-ReduNet-LastNorm (bottom right), where all ten classes are sharply delineated with minimal intra-class variance. The resulting clusters are not only well-separated but also uniformly distributed, indicating improved feature compactness and discriminability.

These visualizations corroborate the accuracy gains in Table 2 and validate the hypothesis that class-wise decomposition promotes more interpretable and orthogonal representations.

Figure 5 presents the t-SNE visualizations of final-layer features learned by different ReduNet variants on the fashion-mnist test set. Despite the increased complexity of this 10-class clothing dataset (relative to mnist), the separation and compactness of class-wise features vary substantially across models.

ReduNet (top-left) exhibits notable class entanglement, with overlapping clusters and unclear margins between semantically distinct categories (e.g., classes 0, 3, and 7). The representation remains

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
Table 13: Accuracy comparison of ReduNet variants on DrivFace

	Layers=10			Layers=15		
	SVM	KNN	NSC	SVM	KNN	NSC
ReduNet	0.322	0.202	0.169	0.279	0.164	0.240
ReduNet-RF	0.284	0.295	0.306	0.284	0.295	0.273
imp-ReduNet	0.326	0.202	0.169	0.279	0.164	0.240
imp-ReduNet-RF	0.284	0.295	0.306	0.284	0.295	0.303
Multi-ReduNet	0.995	0.934	0.984	0.973	0.907	0.967
Multi-ReduNet-LastNorm	1.000	0.951	0.989	0.990	0.956	0.984
	Layers=20			Layers=25		
	SVM	KNN	NSC	SVM	KNN	NSC
ReduNet	0.317	0.131	0.218	0.256	0.131	0.191
ReduNet-RF	0.284	0.240	0.273	0.218	0.322	0.251
imp-ReduNet	0.317	0.131	0.218	0.256	0.131	0.191
imp-ReduNet-RF	0.284	0.240	0.273	0.218	0.322	0.249
Multi-ReduNet	0.919	0.929	0.945	0.891	0.939	0.923
Multi-ReduNet-LastNorm	0.984	0.973	0.967	0.962	0.978	0.962

Table 14: Accuracy comparison of ReduNet variants on ARCENE

	Layers=10			Layers=15		
	SVM	KNN	NSC	SVM	KNN	NSC
ReduNet	0.536	0.512	0.488	0.439	0.414	0.439
ReduNet-RF	0.882	0.890	0.439	0.098	0.098	0.439
imp-ReduNet	0.536	0.512	0.488	0.439	0.418	0.439
imp-ReduNet-RF	0.882	0.890	0.439	0.098	0.098	0.439
Multi-ReduNet	0.756	0.707	0.805	0.634	0.708	0.805
Multi-ReduNet-LastNorm	0.785	0.759	0.817	0.752	0.734	0.805
	Layers=20			Layers=25		
	SVM	KNN	NSC	SVM	KNN	NSC
ReduNet	0.560	0.487	0.414	0.439	0.390	0.463
ReduNet-RF	0.901	0.890	0.437	0.098	0.098	0.439
imp-ReduNet	0.560	0.487	0.414	0.439	0.390	0.463
imp-ReduNet-RF	0.902	0.888	0.437	0.098	0.098	0.439
Multi-ReduNet	0.599	0.707	0.783	0.570	0.707	0.781
Multi-ReduNet-LastNorm	0.712	0.708	0.805	0.651	0.685	0.786

1820
1821 largely diffuse, reflecting its global coupling across classes and lack of explicit discriminability constraints.

1822
1823 ReduNet-RF (top-right) shows similar structure on ReduNet, indicating that global orthogonality
1824 constraints alone are insufficient for resolving subtle visual categories in fashion-mnist.

1825
1826 Multi-ReduNet (bottom-left) introduces sharper decision boundaries and better class separation,
1827 thanks to its per-class decomposition strategy. Though some clusters still partially overlap, the
1828 overall layout is more class-discriminative and geometrically organized.

1829
1830 Multi-ReduNet-LastNorm (bottom-right) achieves the most clearly separated and compact clusters,
1831 with minimal inter-class confusion and high intra-class cohesion. Notably, all 10 classes form dis-
1832 tinct, non-overlapping blobs, validating the effectiveness of the final projection step in enforcing
1833 orthogonality and enhancing visual interpretability.

1834
1835 Figure 6 shows the t-SNE projections of test-time features on the Swarm Behaviour dataset, a binary
1836 classification task characterized by limited samples and subtle class variation.

1837
1838 ReduNet (top-left) fails to effectively separate the two classes in the projected feature space. Most
1839 samples are scattered and interleaved, indicating weak class-discriminative structure. This reflects

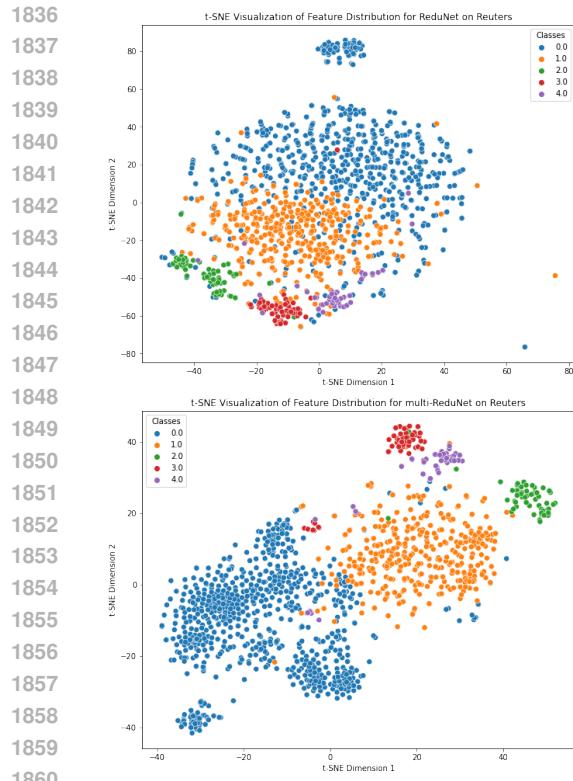
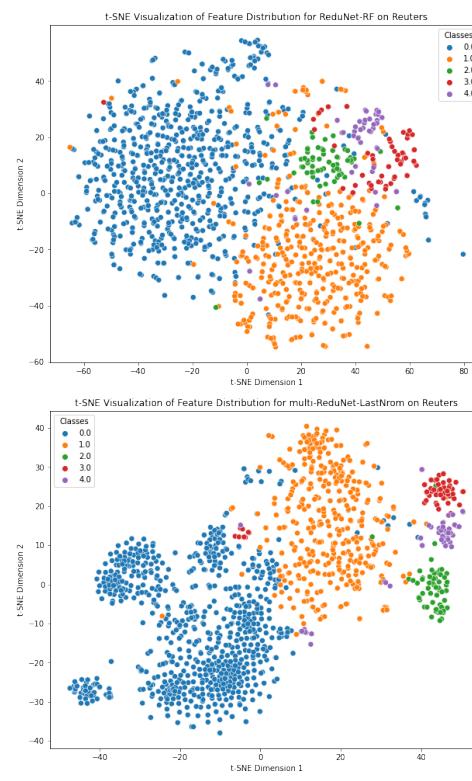


Figure 3: t-SNE visualizations of learned features on Reuters

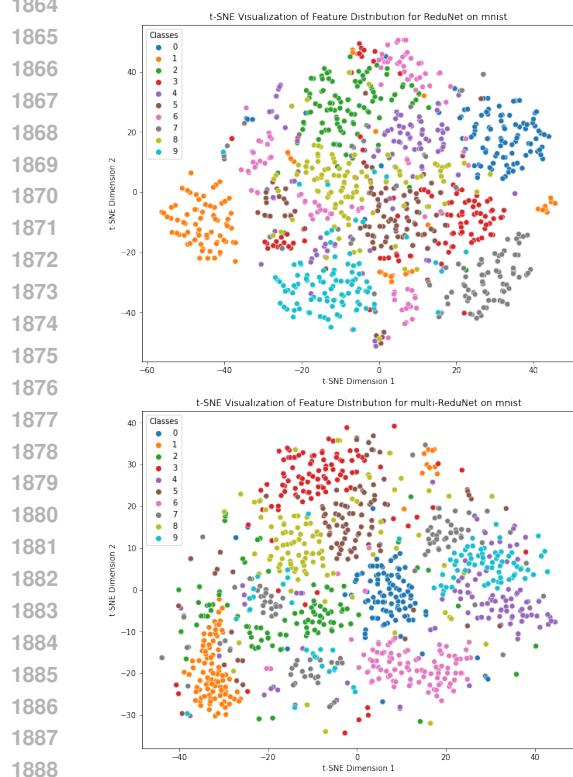


Figure 4: t-SNE visualizations of learned features on mnist

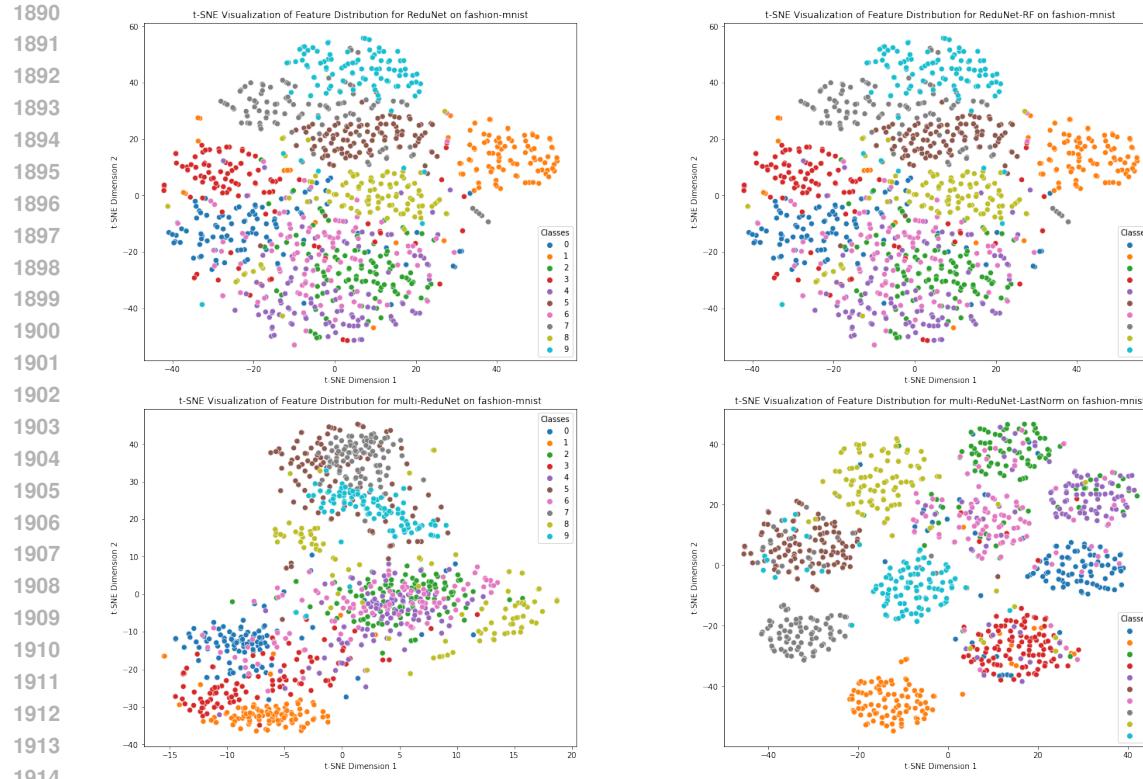


Figure 5: t-SNE visualizations of learned features on fashion-mnist

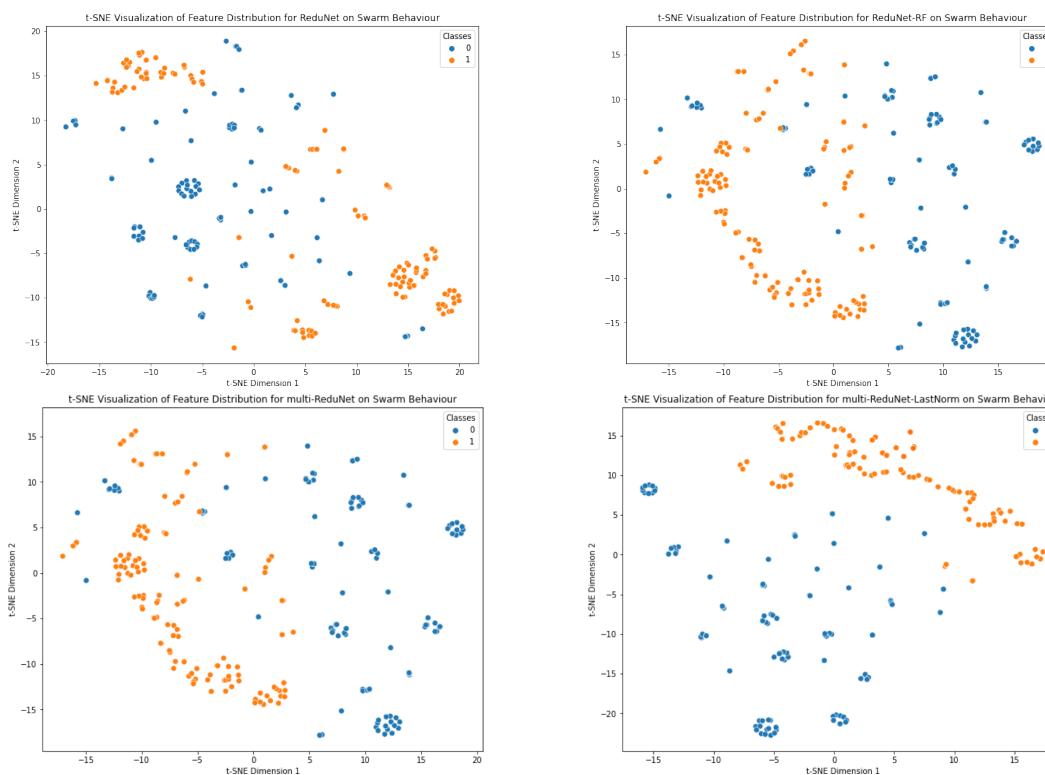


Figure 6: t-SNE visualizations of learned features on Swarm Behaviour

1944 the challenge of capturing meaningful boundaries when using globally coupled updates without
1945 class-specific refinement.

1946
1947 ReduNet-RF (top-right) shows slight improvement, with some local grouping of class-1 (orange)
1948 points, though the global overlap remains significant. The marginal gain suggests that random fea-
1949 ture projections alone are insufficient to resolve this low-data regime.

1950 Multi-ReduNet (bottom-left) introduces clearer inter-class margins and tighter intra-class clusters.
1951 While the separation is not perfect, distinct grouping patterns emerge—indicating that independent
1952 class-wise subspace optimization provides meaningful gains in geometric regularity and class align-
1953 ment.

1954 Multi-ReduNet-LastNorm (bottom-right) delivers the clearest boundary among all variants. Class 0
1955 (blue) and class 1 (orange) form nearly disjoint clusters along a horizontal axis, with minimal cross-
1956 class confusion. The use of a final projection to enforce global separation yields a feature space that
1957 is highly linearly separable, well-suited for downstream nonparametric classifiers like SVM or NSC.

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997