Under review as a conference paper at ICLR 2025

LEARNING TO OPTIMIZE FOR MIXED-INTEGER NON-
LINEAR PROGRAMMING

Anonymous authors
Paper under double-blind review

ABSTRACT

Mixed-integer non-linear programs (MINLPs) arise in various domains, such as
energy systems and transportation, but are notoriously difficult to solve. Recent
advances in machine learning have led to remarkable successes in optimization
tasks, an area broadly known as learning to optimize. This approach includes us-
ing predictive models to generate solutions for optimization problems with contin-
uous decision variables, thereby avoiding the need for computationally expensive
optimization algorithms. However, applying learning to MINLPs remains chal-
lenging primarily due to the presence of integer decision variables, which compli-
cate gradient-based learning. To address this limitation, we propose two differen-
tiable correction layers that generate integer outputs while preserving gradient in-
formation. Combined with a soft penalty for constraint violation, our framework
can tackle both the integrality and non-linear constraints in a MINLP. Experi-
ments on three problem classes with convex/non-convex objective/constraints and
integer/mixed-integer variables show that the proposed learning-based approach
consistently produces high-quality solutions for parametric MINLPs extremely
quickly. As problem size increases, traditional exact solvers and heuristic meth-
ods struggle to find feasible solutions, whereas our approach continues to deliver
reliable results. Our work extends the scope of learning-to-optimize to MINLP,
paving the way for integrating integer constraints into deep learning models. Our
code is available at https://anonymous.4open.science/r/L20-MINLP/.

1 INTRODUCTION

Mixed-integer optimization is fundamental to a broad spectrum of real-world applications spanning
problems in fields as diverse as pricing Kleinert et al.| (2021)), battery dispatch (Nazir & Almas-
salkhil |2021)), transportation (Schouwenaars et al.,2001)), and optimal control (Marcucci & Tedrake,
2020). These problems involve discrete decisions, such as determining the number of items or the
activation of generators, combined with complex non-linear system constraints. Mixed-integer [lin-
ear programming (MILP) has been widely adopted due to its well-established solution techniques.
However, many practical problems exhibit non-linear relationships, leading to mixed-integer non-
linear programs (MINLPs). Unlike MILPs, where techniques such as branch-and-bound (Land &
Doigl 2010), cutting planes (Gomory, [2010), and heuristics (Crama et al., 2005} Johnson & Mc-
Geochl (1997) have matured, MINLPs require more complex approaches due to the combination
of discrete variables and non-convex constraints and objective function. Standard methods include
outer approximation (Fletcher & Leyffer,|1994), spatial branch-and-bound (Belotti et al., | 2009)), and
decomposition techniques (Nowakl |2005)), but these often struggle to scale to large problems.

Many applications demand that MINLPs be solved within a limited time budget, further compli-
cating the picture. To overcome this, learning-to-optimize (L20) methods offer a promising alter-
native by leveraging machine learning (ML) to enhance or even replace conventional optimization
approaches. In particular, end-to-end optimization directly maps input instance parameters to solu-
tions of optimization problems through a trained model (Kotary et al., 2021bj (Chen et al., 2022a)).
By identifying patterns in a distribution of similar instances of the same optimization problem and
predicting solutions accordingly, end-to-end optimization can bypass traditional, computationally
intensive optimization methods, enabling faster computation and improved scalability.

https://anonymous.4open.science/r/L2O-MINLP/

Under review as a conference paper at ICLR 2025

Many real-world applications have stringent requirements on operational, physical, or safety con-
straints. Thus, recent research in machine learning has focused on the feasibility issue. While
various strategies exist, such as embedding hard constraints into neural network architectures (Hen-
driks et al., |2020), using penalty terms in loss functions for soft constraints (Pathak et al., 2015} |Jia
et al.,2017), or projecting solutions onto feasible regions (Donti et al.,|2021])), these methods are not
directly applicable for problems that involve integer decisions.

This work tackles, for the first time, the non-differentiability associated with predicting integer vari-
ables using a deep neural network, in conjunction with non-linear objective function and constraints.
This challenge has been underexplored in learning-based methods due to the absence of useful gradi-
ent information. To that end, we propose two differentiable correction layers for rounding, allowing
for gradient-based optimization of a neural network that generates high-quality integer solutions
while maintaining feasibility. Our contributions are as follows:

— We initiate the study of the learning-to-optimize problem in MINLP for the first time in the
literature, a paradigm that can enable efficient solution generation as problem parameters
vary.

— We develop differentiable correction layers that perform soft rounding of neural network
outputs into integer assignments to decision variables.

— We adopt a self-supervised approach that requires no labeled data for training, making our
method efficient and scalable to large problem instances.

— We evaluate our methods on diverse problem benchmarks and show that they find high-
quality solutions extremely fast even for large-scale instances where other methods fail.

2 RELATED WORK

End-to-end optimization. End-to-end optimization focuses on training machine learning models
to predict the problem solutions, bypassing the need for computationally expensive solvers. One
of the early approaches was proposed by Hopfield & Tank! (1985)), who used Hopfield networks to
solve the traveling salesperson problem by incorporating a Lagrangian penalty for constraint feasi-
bility. Similarly, |[Fioretto et al.|(2020) applied the Lagrangian penalty in the context of continuous
non-linear optimization for energy systems. In addition to penalty-based methods for ensuring feasi-
bility, Pan et al.[|(2020) embedded certain constraints directly into neural networks by leveraging the
range of output values and solving linear systems. Although these supervised learning methods sig-
nificantly reduce inference time, they typically require large offline datasets of solutions (Gleixner,
et al., [2021}; [Kotary et al., [2021a), which can be impractical for large-scale problems where gener-
ating solutions is computationally expensive. This limitation highlights the need for self-supervised
learning approaches (Donti et al., [2021), which minimize both the objective function and constraint
violation from the predicted values, without relying on the imimitation of pre-solved solutions. Our
method first extends this self-supervised paradigm to problems involving discrete decision variables,
further broadening its applicability to mixed-integer optimization.

Constrained neural architectures. Specific neural network architectures can be designed to im-
pose certain classes of hard constraints. For instance, |Hendriks et al.[(2020) incorporate linear
operator constraints directly into the model design. |Vinyals et al.|(2015) and |Dai et al.| (2017) lever-
aged the inherent structure of graphs to construct feasible solutions for the traveling salesperson
problem. Additionally, |[Kervadec et al.[(2022) demonstrated that employing a log-barrier method
for inequality constraints improves accuracy, constraint satisfaction, and training stability. Penalty
methods (Pathak et al., 2015} Jia et al., 2017)), which impose inequality constraints through regu-
larization terms in the loss function, have also gained popularity for constraining neural networks.
As noted by Marquez-Neila et al| (2017), in practice, methods that incorporate hard constraints
rarely outperform their soft constraint counterparts, despite the latter offering weaker theoretical
performance guarantees. Building on penalty methods, [Donti et al.| (2021) proposed a differentiable
correction approach to complete partial solutions for linear equations and project solutions onto the
feasible region. In this paper, we adopt a penalty method for handling constraints and introduce two
novel differentiable rounding correction layers to guarantee the integrity of the solution.

Under review as a conference paper at ICLR 2025

Learning for mixed-integer programming. There has been significant interest in using ML to
accelerate the solution of integer programs. The vast majority of the work in this space focuses on
learning search strategies for exact MILP solvers. This includes parameter tuning (Xu et al.,|2011),
preprocessing (Berthold & Hendel, 2021)), branching variable selection (Khalil et al.| 2016} |Alvarez
et al., 2017; |Gasse et al., [2019} [Zarpellon et al.| [2021), node selection (He et al.l 2014), heuristic
selection (Chmiela et al.| [2021), and cut selection and generation (Deza & Khalill [2023). Another
line of research in ML-for-MILP relates to learning to generate integer solutions heuristically (Nair
et al.,2020; Khalil et al.} 2022; Ding et al., [2020; [Sonnerat et al.,[2021; Song et al., 2020; Bertsimas
& Stellatol 2022; Huang et al., 2023} |Ye et al.). We refer to the surveys of |Bengio et al.| (2021)
and [Zhang et al.| (2023) for more details. In contrast, there has been much less work on MINLP.
Ilustrative examples include the work of |Cauligi et al.[(2021) who proposed a two-stage algorithm
for quickly finding high-quality solutions for mixed-integer convex programs (MICPs), Baltean-
Lugojan et al.|(2019) who use supervised learning to select cuts for quadratic optimization, Nowak
et al.[(2018)) who learn to solve quadratic assignment problems with graph networks, and |Bonami
et al|(2022) who use a classifier to decide on the linearization of mixed-integer quadratic prob-
lems. Most relevant to our method is the recently proposed SurCO approach of |Ferber et al.| (2023).
They focus on mixed-integer problems with non-linear objective and linear constraints, learning to
approximate the former with a linear function for a simpler heuristic optimization. Our approach
differs from all of the above in its scope, addressing the most general class of MINLPs.

Differentiable optimization. A different category of methods integrates optimization solvers as
layers within deep neural network architectures (Agrawal et al.,[2019). These methods can handle
various types of optimization problems, such as quadratic programs (Amos & Kolter| |2017; [Samb-
harya et al., 2023)), stochastic optimization (Donti et al.,|2017), submodular optimization (Djolonga
& Krause,2017)), and even integer linear programs (Wilder et al., 2019} Berthet et al.| 20205 |Pogancic¢
et al.| 2020). In these approaches, optimization algorithms or solvers are embedded within the neu-
ral network, allowing gradients of optimization solvers to be computed and propagated during back-
propagation. [King et al.[(2024) shows how differentiable optimization can enhance the convergence
of proximal operator algorithms via end-to-end learning of proximal metrics. However, as [Tang &
Khalil (2024)) noted, training with a differentiable optimizer requires iteratively solving optimization
throughout the training process, making the computational burden prohibitively expensive. In con-
trast, our self-supervised approach generates solutions directly through neural network structures,
eliminating the need to repeatedly call high-complexity solvers and thus significantly reducing com-
putational overhead.

3 LEARNING TO OPTIMIZE MINLPS: A PROBLEM FORMULATION

A generic learning-to-optimize formulation for parametric mixed-integer non-linear programming
is given by:

min E[f(%€)], st g8 <0, XER™xZ", % =go(é).

Here, &' € R"¢ is a vector of instance parameters which vary across different instances; the mapping
e (£) is a neural network with weights © that outputs a parametric solution X%; &° = (%!, %) is a
predicted assignment for the mixed-integer decision variables, where X%. € R™" and X! € Z"+ rep-
resent the continuous and integer parts, respectively. The goal is to find the neural network weights
that minimize the expected objective function f(X, &) over the parameter distribution, subject to the
constraints g(%X,£&) < 0. Note that g(-) is a vector-valued function representing one or more in-
equality constraints. As is typical in MINLP, we assume that the objective and constraint functions
are differentiable.

As is typical, we will train the neural network using empirical risk minimization on a sample of m
training instances. Then, the average value of the objective function f(-) serves as a natural loss
function. Our approach is self-supervised since the loss calculation does not require any labeled
data. This is particularly appealing as computing optimal or even feasible solutions to a MINLP
is, in general, extremely challenging. Solely minimizing the average objective is insufficient if the
solutions violate the constraints. Therefore, similarly to [Donti et al.[(2021)), we incorporate penalty
terms into the loss function to account for constraint violations, enhancing the feasibility of the

Under review as a conference paper at ICLR 2025

solution and resulting in a soft-constrained empirical risk minimization loss function given:

1 - oi i oi i PN i
£©) = — 3 (E&,€) +A- (8(%'€)),) with %' = o(&), @
i=1
where (), ensures only positive constraint violations are penalized (implemented via a ReLU func-
tion), and A > 0 is a penalty hyperparameter that balances the trade-off between minimizing the
objective function and satisfying the constraints.

4 PRELIMINARIES: DIFFERENTIATING THROUGH DISCRETE OPERATIONS

Straight-through Estimator. The Straight-through Estimator (STE) (Bengio et al.,[2013) is a sim-
ple yet effective method for handling non-differentiable operations in neural networks. In our ap-
proaches, STE plays a crucial role in enabling backpropagation through discrete operations. During
the forward pass, STE applies a (non-differentiable) discrete operation, such as rounding a variable
up or down, binarizing it, or using an indicator function I(-). However, in the backward pass, STE
replaces the non-existent gradient of these discrete functions with soft approximations. For round-
ing operations, the gradient of the identity function is used during backpropagation, whereas for
binarization or indicator functions, the gradient of the Sigmoid function is applied.

Gumbel-Sigmoid Noise. Although the STE is effective for backpropagating through discrete de-
cisions, it lacks the stochasticity that can improve model training. This is where the Gumbel-noise
method (Jang et al.| [2016) comes into play. Specifically, Gumbel noise perturbs the logits before
applying the Sigmoid function, allowing for randomness in the binary decisions. After this, a hard
binarization step is applied using the STE, ensuring that the final outputs are discrete binary values
while retaining gradients for backpropagation. Further technical details can be found in Appendix[A]

5 LEARNING TO OPTIMIZE MINLPS WiTH CORRECTION LAYERS

Samples of problem Solution mapping g, (&) Rounding correction Loss function £(0)
parameters §ePg for Continuous Relaxation ~ Pe, (¥, §*) for integrality with Constraint Penalties

Figure 1: Conceptual diagram for our self-supervised differentiable programming-based solution
approach for parametric MINLP problems.

Our learnable correction layers, Rounding Classification (RC) and Learnable Threshold (LT), are
designed to handle the integrality constraints of MINLPs. We decompose the mapping ©g : R™¢ —
R™ x Z"= from an instance parameter vector to a candidate mixed-integer solution into two steps:

1. The first step consists in applying a learnable relaxed solution mapping e, : R™ —
R™*7: encoded by a deep neural network with weights ©;. It outputs a continuously
relaxed solution X € R™ ™" without enforcing the integrality requirement. Note that
continuous variables are also predicted in this first step.

2. The second step is a differentiable correction layer @@, : R" T x R™¢ — R™ x Z"= that
takes as input the instance parameter vector and the continuous solution produced in the first
step, and outputs a candidate mixed-integer solution while maintaining differentiability.
Here, © represents the weights of the neural network dg, : R7r7z % R s RPrH72
which implicitly influences the rounding strategy employed by the correction layer g, .

They differ in how to determine the rounding direction but are equally easy to train with gradient
descent and fast at test time. RC utilizes a classification-based stochastic rounding approach, while
LT employs learnable thresholds to determine rounding directions. Further details are provided in

Appendix [B]

Under review as a conference paper at ICLR 2025

Alogorithm. Algorithm |l summarizes both of our approaches. Line 1 invokes the first step’s
network mg, and lines 2—11 describe both versions of ¢g,. Our correction layers are not only simple
and efficiently computable but also designed to be trainable to refine its rounding strategy. While
the STE and Gumbel-Sigmoid techniques have been used to train binarized or quantized neural
networks, they have not been leveraged in the context of learning-to-optimize to our knowledge. As
we will see in the experimental results, the simplicity of the correction layers is key to fast solution
generation in large-scale MINLP problems.

Algorithm 1 Learning-to-optimize MINLPs with Correction Layers: Forward Pass.

Require: Instance of the problem parameters £°, neural networks 7o, (-) and e, (+)
: Predict a continuously relaxed solution X* < 7e, (£°)

: Obtain an initial correction prediction h’ + de, (X*, &)

: Update continuous variables: %¢ — Xt + hi

: Round integer variables down: X < |X} |

. if using Rounding Classification then)
Compute b* as the rounding direction using Gumbel-Sigmoid(h})
: else if using Learnable Threshold then

Compute v* € [0,1]"* « Sigmoid(h})

Compute rounding direction: b’ + I((X. — x.) — v' > 0)

: end if

: Update integer variables: % %L+ b

: return X

——
= OO0 X0INUN AW =

Finally, during training, the loss function eq. is used to train the neural network weights © =
01 U 04, implicitly taking into account the objective function value and constraint violations of
the predicted mixed-integer solution X’. This process is illustrated in Figure |1, Additionally, an
example of the evolution of predicted solutions during training is provided in Appendix [C|for further
visualization.

These approaches can be viewed as an end-to-end learnable version of the Relaxation Enforced
Neighborhood Search (RENS) algorithm (Berthold,[2014)). Instead of explicitly searching the neigh-
borhood of the relaxed solution, the neural network implicitly learns the corrections required to
achieve a feasible integer solution by exploring the solution space near the integer variables while
updating the continuous variables.

6 EXPERIMENTAL RESULTS

6.1 EXPERIMENTAL SETUP

Methods. Table [I] provides an overview of all the methods used in the following experiments. A
60 or 1000-second time limit is enforced for all methods and problems. The experiments evaluate
our learning-based methods, Rounding Classification (RC) and Learnable Threshold (LT), against
traditional exact optimization (EX), which can compute optimal solutions but is often computation-
ally expensive, and heuristic-based approaches such as Rounding after Relaxation (RR) and root
node solutions (N1), which offer faster results without quality guarantees. Note that baselines EX
and N1 include a wide range of heuristics that are embedded in the MINLP solver of choice (Gurobi
or SCIP) and that are executed in conjunction with the tree search procedure; we are also implicitly
comparing to these heuristics, not just to the exact search. As such, the competing methods cover
a broad spectrum of optimization strategies, from exact solvers to fast heuristics, allowing for a
comprehensive evaluation of solution quality and computational efficiency. In addition, we evaluate
two ablation baselines, which isolate different aspects of our correction layers g, to highlight their
impact on performance. Details of these ablation studies, including methodology and results, are
provided in Appendix [F}

Problem classes. We tested the methods on a variety of optimization problems, including inte-
ger convex quadratic problems, simple integer non-convex problems, and high-dimensional mixed-
integer Rosenbrock problems. These problem classes were selected to cover both convex and non-
convex scenarios and to evaluate the scalability of the methods in higher-dimensional settings. Each

Under review as a conference paper at ICLR 2025

Table 1: Summary of Methods. Methods with “*” use a trained model.

Method Abbr Description

Learning-based rounding approach using classification for inte-
ger variable rounding.

Rounding Classification* RC*

Learning-based method where a neural network learns the

* *
Learnable Threshold LT threshold for rounding integer variables.

Solves the problem using Gurobi for convex problems and SCIP

Exact Optimization EX + Ipopt for non-convex problems.

Solves the continuous relaxation, then rounds the continuous

R ing after Relaxati RR . .
ounding after Relaxation solution to the nearest integer.

A feasible solution from the root node of the solver, which uses

R lution 1
oot Node Solutio N heuristics after continuous relaxation with cutting planes.

method was assessed in terms of objective value, constraint violation, and solving time, provid-
ing a comprehensive view of their performance across different types of problems. In addition,
we evaluated our methods on integer linear programs (MILPs), in which the dataset from the MIP
Workshop 2023 Computational Competition |Bolusani et al.| (2023). These experiments primarily
serve to demonstrate that our methods can also handle integer linear cases, though the use of MILP
solvers may be preferable. Further details are provided in Appendix [H]

Training protocol. The solution mapping g, used across all learning-based methods (RC, LT,
and RL) and the rounding correction network ¢g, for RC and LT are based on fully connected
layers with ReLU activations. Further details regarding the network hyperparameters can be found
in Appendix D} For all problems, the training samples 8,000 instances from the distribution, and
the test set includes 100 instances. An additional set of 1,000 instances was used for validation to
fine-tune the models and select hyperparameters.

Computational setup. All experiments were conducted on a system with 2 Intel Silver 4216 Cas-
cade Lake @ 2.1GHz CPUs, 64GB RAM, and 4 NVIDIA V100 Volta GPUs. The software envi-
ronment was configured with Python 3.10.13, PyTorch 2.5.0+cul22 (Paszke et al., [2019) for deep
learning models, and NeuroMANCER 1.5.2 (Drgona et al., 2023)) for modeling parametric con-
strained optimization problems. Gurobi 11.0.1 (Gurobi Optimization, LLC, [2021) is used as the
exact method for convex quadratic problems; beyond quadratic polynomials, Gurobi needs to ap-
proximate non-linearities using piecewise-linear functions. For those more general mixed-integer
non-convex problems, we use SCIP 9.0.0 (Bestuzheva et al.| 2021) with Ipopt 3.14.14 (Wachter
& Biegler], [2006) as the continuous non-linear solver. Note that Gurobi and SCIP are considered
to be among the state-of-the-art solvers for MINLP, as noted by [Lundell & Krongvist (2022) who
performed a comprehensive benchmarking of more than ten MINLP solvers: “It is clear, however,
that the global solvers Antigone, BARON, Couenne and SCIP are the most efficient at finding the
correct primal solution when regarding the total time limit. [...] Gurobi also is very efficient when
considering that it only supports a little over half of the total number of problems!”

Overall results. As shown in Figure[2] the exact solvers like Gurobi and SCIP gradually improve
the objective value over time, but this often comes at a high computational cost. For more complex
problems, they may even fail to find feasible solutions within reasonable time limits. In contrast,
our methods, RC and LT, achieve high-quality, feasible solutions in mere milliseconds. Even when
accounting for the 131.72 seconds required to train the neural network for the Rosenbrock problem,
our approaches remain significantly more efficient. Once trained, these models generalize well
to unseen instances, making them ideal for repeated problem-solving scenarios where the training
cost is amortized. Additionally, RC and LT could provide high-quality initial solutions for exact
solvers, reducing the search space and accelerating convergence, thus enhancing the performance of
traditional optimization methods.

Under review as a conference paper at ICLR 2025

An Instance on 100x100 Quadratic An Instance on 60x4 Rosenbrock

9.20+17 o Method
© Bp e =200 EX (SCIP)
= Method = RC
= EX (Gurobi) 2 150 LT
£ LT 22100
i3 3
é —20) 50

0100 200 300 400 500 600 0 00 200 300 400 500 600

Time (Second) Time (Second)

Figure 2: Illustration of objective value evolution for a 100 x 100 Convex Quadratic instance and
60 x 4 Rosenbrock instance over 600 seconds.

Table 2: Result for a Convex Quadratic Problem. Each problem size is evaluated on a test set of
100 instances. “Obj Mean” and “Obj Median” represent the mean and median objective values for
this minimization problem, with smaller values being better. “% Infeasible” denotes the fraction of
infeasible solutions, and “Time (Sec)” is the average solving/inference time per instance. The “—”
symbol indicates that no solution is found for any instance within 1000 seconds.

Method Metric ‘ 5x5 10x10 20x20 50x50 100x100 200200 500500 1000x1000
ObjMean | 0.803 —1476 —4.151 —12422 —13564 —30.799 —71.373 —120.378

RC Obj Median 0.648 —1.719 —-4.166 —12.416 —13.634 —30.789 —71.476 —120.492
% Infeasible | 0% 3% 1% 0% 1% 1% 1% 3%
Time (Sec) 0.0019 0.0019 0.0019 0.0019 0.0021 0.0025 0.0026 0.0045
Obj Mean 0.743 —1.615 —4.165 —12.355 —13.395 —29.728 —71.350 —114.434

LT Obj Median 0.554 —1.928 —4.203 —12.352 —13.527 —29.808 —71.601 —114.522
% Infeasible 1% 1% 0% 4% 3% 0% 3% 1%
Time (Sec) 0.0019 0.0019 0.0019 0.0019 0.0023 0.0022 0.0026 0.0046
Obj Mean 0.294 —-2.779 —-5.120 —15.928 —20.790 — — —

EX Obj Median 0.129 —-2.991 —-5.130 —15.956 —20.778 — — —
% Infeasible | 0% 0% 0% 0% 0% — — —
Time (Sec) 0.496 0.664 8.728 1520.733 1237.534 — — —
Obj Mean 0.211 —2.858 —5.179 —-16.173 —21.922 —46.727 -—-106.526 —213.312

RR Obj Median 0.058 —3.033 —5.217 —16.205 —21.892 —46.755 —106.536 —213.292
% Infeasible 97% 100% 100% 100% 100% 100% 100% 100%
Time (Sec) 0.411 0.412 0.417 0.440 0.583 0.846 2.639 8.874
Obj Mean 0.549 1.2el5 9.8e07 1.7el7 1.5e¢l18 — — —

N Obj Median 0.369 —1.900 9.600 2.4el7 1.4e18 — — —
% Infeasible 0% 0% 0% 0% 0% — — —
Time (Sec) 0.420 0.422 0.415 0.498 104.204 — — —

6.2 CONVEX QUADRATIC PROBLEM

Since there is a lack of publicly available datasets for parametric MINLPs, the convex quadratic
problems used in the experiments are adapted from|Donti et al.| (2021)), which originally focused on
learning under continuous constraints. We introduced integrality constraints on all decision variables
to tailor these problems to our discrete setting. Additionally, we removed equality constraints to
avoid the issue of generating infeasible instances. These modifications ensure compatibility with
our framework while preserving the essential structure of the original problems. Further details on
the mathematical formulation and data generation process can be found in Appendix

We experimented with quadratic problems of different sizes, from 5 decision variables and 5 con-
straints (5 x 5) up to (1000 x 1000). The results in Table[2]summarize the performance of all methods
across different problem sizes. For a detailed analysis of constraint violation metrics, please refer
to Appendix [G] The RC and LT methods exhibit robust performance across the board, achieving
objective values second only to EX while consistently maintaining low percentages of infeasible
solutions and fast solution times across all problem sizes. These methods achieve several orders
of magnitude speed-ups, scaling effectively even for large instances up to 1000 x 1000. The exact
solver EX, while performing well on smaller problem sizes, fails to produce any solutions for in-
stances of size 200 x 200 and larger within the 1000-second time limit, highlighting its limitations
when handling more complex problems. N1, on the other hand, can find feasible solutions within a
short time frame for smaller cases but suffers from severe numerical instability as the problem size
increases. When scaled to 200 x 200, N1 also fails to produce a solution. The RR method, which

Under review as a conference paper at ICLR 2025

relies on rounding relaxations, encounters significant feasibility challenges. Overall, this analysis
underscores that learning-based methods like RC and LT offer considerable advantages in both solu-
tion quality and computational speed, especially for large-scale problems, compared to exact solvers
or other heuristics.

It is important to note that some of the Obj Mean and Median values are extremely large. This occurs
when the baseline methods, such as EX and N1, generate poor-quality feasible solutions, particularly
for larger problem instances. Since the decision variables are not explicitly upper/lower bounded,
the baselines occasionally produce trivial yet suboptimal solutions, leading to inflated objective
values. This issue is not limited to this particular case but also appears in other problem instances,
further underscoring the limitations of the baseline methods in handling larger-scale optimization
tasks effectively.

In addition to evaluating solution quality, feasibility, and solving/inference times, we also measured
the offline training times for our two approaches on different problem sizes. These results, along
with training times for other problem types, are presented in Appendix [, where it is evident that the
training times for the learning-based methods scale well with problem size.

6.3 SIMPLE NON-CONVEX PROBLEM

To evaluate the performance on non-convex optimization tasks, we extended the convex quadratic
programming problem by introducing a trigonometric term to the objective function, following the
approach in [Donti et al.| (2021). This modification introduces non-convexity, increasing the chal-
lenge of finding optimal solutions. Additionally, we parameterized the constraint matrix to further
enrich the complexity. Further details on the formulation, parameter generation, and experimental
setup can be found in Appendix[E} In addition, the scales of the problem and the experiment setting
are also identical to those of the quadratic problems.

Table 3: Results for a Simple Non-convex Problem. See the caption of Tablefor details. The “—”
symbol indicates that no solution is found for any instance within 60 seconds.

Method Metric 5x5 10x10 20x20 5050 100100 200x200 500x500 1000x1000
Obj Mean 0.383 1.102 0.228 0.771 1.664 1.472 0.526 1.422
RC Obj Median 0.240 0.838 0.217 0.752 1.594 1.436 0.526 0.809
% Infeasible 1% 3% 0% 2% 0% 1% 1% 3%
Time (Sec) 0.0019 0.0019 0.0019 0.0020 0.0022 0.0022 0.0029 0.0040
Obj Mean 0.359 0.910 0.195 0.580 0.669 —0.356 —1.374 —3.744
LT Obj Median 0.226 0.683 0.175 0.566 0.649 —0.373 —1.594 —3.716
% Infeasible 0% 2% 1% 2% 4% 0% 2% 1%

Time (Sec) 0.0019 0.0019 0.0019 0.0020 0.0021 0.0023 0.0029 0.0050

Obj Mean 0.001 —0.182 —0.406 25.750 — — — —
Obj Median —0.095 —0.310 —0.420 9.520 — — — —

EX

% Infeasible 0% 0% 0% 0% — — — —
Time (Sec) 0.118 2.509 60.153 60.125 — — — —
Obj Mean —0.047 —-0.168 —0.464 —1.039 —2.068 —3.990 —7.935 —
RR Obj Median —0.089 —0.325 —0.476 —1.215 —2.307 —4.327 —7.104 —
% Infeasible 64% 86% 97% 100% 100% 100% 56% —
Time (Sec) 0.216 0.422 1.013 1.198 4.654 52.242 62.006 —
Obj Mean 1.690 1.1e3 2.1e4 3.7e6 — — — —
N1 Obj Median 0.183 0.557 2.222 45.847 — — — —

% Infeasible 0% 0% 0% 0% — — — —
Time (Sec) 0.0434 0.1029 0.1516 8.936 — — — —

The results presented in Table 3| reflect patterns similar to those observed in the quadratic problem.
However, the sine function exacerbates the non-convexity of the problem, rendering it more chal-
lenging for traditional methods. Despite this added complexity, the RC and LT methods perform
robustly, scaling to large instances for which the baselines fail to produce any solutions.

6.4 MULTI-DIMENSIONAL MIXED-INTEGER ROSENBROCK PROBLEM

The high-dimensional mixed-integer Rosenbrock problem is a challenging benchmark adapted from
the classic Rosenbrock function, extended with integer variables, non-linear constraints, and para-

Under review as a conference paper at ICLR 2025

metric variations. It evaluates scalability and the ability to handle complex optimization landscapes.
All parameters and the constraint structure, are described in Appendix

We conducted experiments on mixed-integer Rosenbrock problems with the number of decision
variables ranging from 2 to 20,000; the number of constraints was fixed at 5. The results in Table E]
show that RC and LT exhibit strong performance, even outperforming EX in smaller cases. However,
as the problem size increases to 10,000 variables, a noticeable decline in feasibility is observed for
both RC and LT, while solver-based methods such as EX, N1, and RR fail to produce any solutions.
As seen in previous experiments, RR, which relies on rounding relaxations, continues to suffer from
significant infeasibility issues.

Table 4: Results for the Mixed-Integer Rosenbrock Problem. The number of decision variables
varies from 2 to 20,000, while the number of constraints is 5. See the caption of Tablefor details.
The “— symbol indicates that no solution is found for any instance within 60 sec time limits. “%
Unsolved” denotes the percentage of instances that could not be solved within the given time limit.

Method Metric 2x4 20x4 200x4 2000x4 20000x4

Obj Mean / Median ~ 23.27/21.48 59.39/48.86 503.51/461.71 5938.37/5792.52 66883.20/66797.11
RC % Infeasible 3% 0% 1% 1% 24%

Time (Sec) 0.0019 0.0019 0.0021 0.0033 0.0116

Obj Mean / Median ~ 23.18/20.80 62.51/63.40 622.78/626.04 5611.78/5557.82 47622.18/34518.87
LT % Infeasible 2% 0% 0% 3% 34%

Time (Sec) 0.0019 0.0020 0.0026 0.0030 0.0127

Obj Mean / Median 19.62/18.20 65.50/59.16 9.93¢5/911.90 2.50e11/9262.09 —
EX % Infeasible 0% 0% 0% 0% —

% Unsolved 0% 0% 0% 8% 100%

Time (Sec) 3.5630 60.2459 60.1416 60.3500 —

Obj Mean / Median ~ 22.24/22.19 1.20e4/51.17 1.43e4/501.90 7.02e8/85346.61 —
RR % Infeasible 45% 41% 18% 1% —

% Unsolved 0% 0% 42% 92% 100%

Time (Sec) 0.1877 0.5635 1.4163 8.4646 —

Obj Mean / Median 40.37/27.93 87.83/77.34 3.72e8/957.42 8.31€12/9325.37 —
NI % Infeasible 0% 0% 0% 0% —

% Unsolved 0% 0% 0% 6% 100%

Time (Sec) 0.0313 0.0829 0.2241 12.4214 —

6.5 EFFECT OF PENALTY WEIGHT

This section investigates the impact of the penalty weight, a critical hyperparameter, on the perfor-
mance of the optimization methods. Experiments were conducted on three representative problems:
a 1000x1000 convex quadratic problem, a 1000x1000 simple non-convex problem, and a 20000x4
Rosenbrock problem. For each problem, we evaluated the RC and LT methods under penalty weights
of 1, 5, 10, 50, 100, 500, and 1000.

1000x1000 Convex Quadratic 1000x1000 Simple Non-Convex . 20000x4 Rosenbrock
=100 Niebod 300 Method 1.2] Method
£ —120 W RC 20 1 RC L0 | RC
© 1T 10 LT 0.8 LT
= —140, i : 0.6)
= | -
2160 | Y 0.4
) —10 0.2
© 180 —20l i 0.0
T 75100 50 1000 500 1000 T 5 10 50 100 500 1000 i 5 10 50 100 500 1000
100 100) 100]
> Method Method Method
= 80 RO 80 RC 80 RC
= 60 LT 60 LT 60 LT
<
£ 40 40 40
0 20 20
0 _ 0 _ 0 _
i 5 10 50 100 500 1000 T 5 10 50 100 500 100 i 5 10 50 100 500 1000
Penalty Weights Penalty Weights Penalty Weights

Figure 3: Illustration of the objective value (Top) and proportion of infeasible solutions (Bottom) on
the test set. As the penalty weight increases, the fraction of infeasible solutions decreases while the
objective value generally deteriorates, as expected.

Figure [3| reveals an inherent trade-off between achieving a higher proportion of feasible solutions
and maintaining lower objective values. While increasing the penalty weight improves the feasibility

Under review as a conference paper at ICLR 2025

rate, it often results in worse objective values. However, for the 20000x4 Rosenbrock problem, even
with progressively increasing penalties, the predictor still yields many infeasible solutions. This
limitation is addressed in Section

6.6 EFFECT OF TRAINING SAMPLE SIZE

The large number of infeasible solutions observed in the 20000x4 Rosenbrock problem can primar-
ily be attributed to significant overfitting within the model. Given that we have prior knowledge
of the parameter distribution and our self-supervised learning approach does not rely on optimal
solution labels, we can easily scale up the sample size to effectively mitigate overfitting.

To assess the impact of sample size, we trained the model on datasets of 800, 8,000, and 80,000
instances, adjusting training epochs to 2000, 200, and 20 (with early stopping) to ensure comparable
iterations. All other hyperparameters remained consistent to isolate the effect of sample size.

w2

Method
RC

Method
RC

=

% Feasibility Rate
EEssus

LT

800

8,000 80,000
Training Sample Size

Objective Value (10

800 8,000 80,000
Training Sample Size

Figure 4: Illustration of the objective value (Left) and proportion of infeasible solutions (Right) of
20000x4 Rosenbrock problem on the test set. As the training sample size increases, the fraction of
infeasible solutions decreases while the objective value generally deteriorates, as expected.

As shown in Section [6.6] increasing the sample size yields significant improvements in both objec-
tive values and feasibility. With 80,000 samples for training, the infeasibility ratio was reduced to
5% on the test set, demonstrating better generalization to unseen instances. This emphasizes the crit-
ical role of sufficient sample size and demonstrates the scalability advantage of our self-supervised
framework.

7 CONCLUSION

We have introduced a new learning-based heuristic method for MINLP. Our approach includes two
novel correction layers—rounding classification and learnable threshold—that enable neural net-
works to generate high-quality integer solutions while preserving gradient information for training
through backpropagation. These layers allow us to tackle optimization tasks with discrete vari-
ables and non-linear constraints in a way that is scalable and computationally efficient. As a self-
supervised approach, our method does not require collecting optimal solutions as labels, significantly
reducing the time and effort typically needed for data collection.

Our experiments demonstrate that our learning-based methods outperform traditional solvers and
other heuristics across various problem types, including convex quadratic, non-convex, and high-
dimensional mixed-integer optimization problems. Despite the increasing complexity of these tasks,
our methods maintain strong performance in terms of both feasibility and solution quality, particu-
larly in high-dimensional settings where traditional approaches often fail to produce solutions within
areasonable time due to the curse of dimensionality. To our knowledge, our work is the first to tackle
learning for parametric MINLPs in full generality.

Our method enables efficient heuristic solutions for large-scale parametric MINLPs, achieving better
performance and computational efficiency, though feasibility is not guaranteed. Future work could
explore improving feasibility through alternative constraint-handling techniques or post-processing.
For certain problem classes, a subset of constraints could be relaxed into the loss function while
directly optimizing over the rest using differentiable optimization layers /Agrawal et al.|(2019). Ad-
ditionally, redesigning neural network architectures to handle varying instance parameters and deci-
sion variables is a promising direction, leveraging set-based, permutation-equivariant architectures
such as graph neural networks [Cappart et al.|(2023); Dumouchelle et al.|(2024); |Chen et al.| (2022b;
2024).

10

Under review as a conference paper at ICLR 2025

REFERENCES

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and Zico Kolter.
Differentiable convex optimization layers. ArXiv, abs/1910.12430, 2019.

Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. A machine learning-based
approximation of strong branching. INFORMS Journal on Computing, 29(1):185-195, 2017.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International conference on machine learning, pp. 136—145. PMLR, 2017.

Radu Baltean-Lugojan, Pierre Bonami, Ruth Misener, and Andrea Tramontani. Scoring positive
semidefinite cutting planes for quadratic optimization via trained neural networks. https://
optimization—-online.orqg/2018/11/6943/,2019.

Pietro Belotti, Jon Lee, Leo Liberti, Francois Margot, and Andreas Wichter. Branching and bounds
tightening techniques for non-convex MINLP. Optimization Methods & Software, 24(4-5):597-
634, 2009.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405-421, 2021.

Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, and Francis
Bach. Learning with differentiable pertubed optimizers. Advances in neural information process-
ing systems, 33:9508-9519, 2020.

Timo Berthold. Rens: the optimal rounding. Mathematical Programming Computation, 6:33-54,
2014.

Timo Berthold and Gregor Hendel. Learning to scale mixed-integer programs. In Proceedings of
the AAAI Conference on Artificial Intelligence, 2021.

Dimitris Bertsimas and Bartolomeo Stellato. Online mixed-integer optimization in milliseconds.
INFORMS Journal on Computing, 34(4):2229-2248, 2022.

Ksenia Bestuzheva, Mathieu Besancon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper
van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, et al. The scip
optimization suite 8.0. arXiv preprint arXiv:2112.08872, 2021.

Suresh Bolusani, Mathieu Besangon, Ambros Gleixner, Timo Berthold, Claudia D’ Ambrosio, Gon-
zalo Mufoz, Joseph Paat, and Dimitri Thomopulos. The MIP Workshop 2023 computational
competition on reoptimization, 2023. URL http://arxiv.org/abs/2311.14834.

Pierre Bonami, Andrea Lodi, and Giulia Zarpellon. A classifier to decide on the linearization of
mixed-integer quadratic problems in cplex. Operations research, 70(6):3303-3320, 2022.

Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar
Velickovi¢. Combinatorial optimization and reasoning with graph neural networks. Journal of
Machine Learning Research, 24(130):1-61, 2023.

Abhishek Cauligi, Preston Culbertson, Edward Schmerling, Mac Schwager, Bartolomeo Stellato,
and Marco Pavone. Coco: Online mixed-integer control via supervised learning. IEEE Robotics
and Automation Letters, 7(2):1447-1454, 2021.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, and
Wotao Yin. Learning to optimize: A primer and a benchmark. Journal of Machine Learning
Research, 23(189):1-59, 2022a.

Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing linear pro-
grams by graph neural networks. arXiv preprint arXiv:2209.12288, 2022b.

11

https://optimization-online.org/2018/11/6943/
https://optimization-online.org/2018/11/6943/
http://arxiv.org/abs/2311.14834

Under review as a conference paper at ICLR 2025

Ziang Chen, Xiaohan Chen, Jialin Liu, Xinshang Wang, and Wotao Yin. Expressive power of graph
neural networks for (mixed-integer) quadratic programs. arXiv preprint arXiv:2406.05938, 2024.

Antonia Chmiela, Elias Khalil, Ambros Gleixner, Andrea Lodi, and Sebastian Pokutta. Learning to
schedule heuristics in branch and bound. Advances in Neural Information Processing Systems,
34:24235-24246, 2021.

Yves Crama, Antoon WJ Kolen, and EJ Pesch. Local search in combinatorial optimization. Artificial
Neural Networks: An Introduction to ANN Theory and Practice, pp. 157-174, 2005.

Hanjun Dai, Elias Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial opti-
mization algorithms over graphs. Advances in neural information processing systems, 30, 2017.

Arnaud Deza and Elias B. Khalil. Machine learning for cutting planes in integer programming: A
survey. In Proceedings of the Thirty-Second International Joint Conference on Artificial Intelli-
gence, IJCAI-2023. International Joint Conferences on Artificial Intelligence Organization, Au-
gust 2023. doi: 10.24963/ijcai.2023/739. URL http://dx.doi.org/10.24963/IJCAI.
2023/739.

Jian-Ya Ding, Chao Zhang, Lei Shen, Shengyin Li, Bing Wang, Yinghui Xu, and Le Song. Ac-
celerating primal solution findings for mixed integer programs based on solution prediction. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2020.

Josip Djolonga and Andreas Krause. Differentiable learning of submodular models. Advances in
Neural Information Processing Systems, 30, 2017.

Priya Donti, Brandon Amos, and J Zico Kolter. Task-based end-to-end model learning in stochastic
optimization. Advances in neural information processing systems, 30, 2017.

Priya L Donti, David Rolnick, and J Zico Kolter. DC3: A learning method for optimization with
hard constraints. arXiv preprint arXiv:2104.12225, 2021.

Jan Drgona, Aaron Tuor, James Koch, Madelyn Shapiro, Bruno Jacob, and Draguna Vrabie. Neuro-
mancer: Neural modules with adaptive nonlinear constraints and efficient regularizations, 2023.
URLhttps://github.com/pnnl/neuromancer.

Justin Dumouchelle, Esther Julien, Jannis Kurtz, and Elias Boutros Khalil. Neur2RO: Neural two-
stage robust optimization. In The Tielfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=T5Xb01GCCv.

Aaron M Ferber, Taoan Huang, Daochen Zha, Martin Schubert, Benoit Steiner, Bistra Dilkina,
and Yuandong Tian. Surco: Learning linear surrogates for combinatorial nonlinear optimization
problems. In International Conference on Machine Learning, pp. 10034-10052. PMLR, 2023.

Ferdinando Fioretto, Terrence WK Mak, and Pascal Van Hentenryck. Predicting ac optimal power
flows: Combining deep learning and lagrangian dual methods. In Proceedings of the AAAI con-
ference on artificial intelligence, 2020.

Roger Fletcher and Sven Leyffer. Solving mixed integer nonlinear programs by outer approximation.
Mathematical programming, 66:327-349, 1994.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in neural information
processing systems, 32, 2019.

Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo
Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, et al. Miplib 2017: data-
driven compilation of the 6th mixed-integer programming library. Mathematical Programming
Computation, 13(3):443-490, 2021.

Ralph E Gomory. Outline of an algorithm for integer solutions to linear programs and an algorithm
for the mixed integer problem. Springer, 2010.

12

http://dx.doi.org/10.24963/IJCAI.2023/739
http://dx.doi.org/10.24963/IJCAI.2023/739
https://github.com/pnnl/neuromancer
https://openreview.net/forum?id=T5Xb0iGCCv

Under review as a conference paper at ICLR 2025

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021. URL https://www.
gurobi.com.

He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms.
Advances in neural information processing systems, 27, 2014.

Johannes Hendriks, Carl Jidling, Adrian Wills, and Thomas Schoén. Linearly constrained neural
networks. arXiv preprint arXiv:2002.01600, 2020.

John J Hopfield and David W Tank. “neural” computation of decisions in optimization problems.
Biological cybernetics, 52(3):141-152, 1985.

Taoan Huang, Aaron M Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large
neighborhoods for integer linear programs with contrastive learning. In International Conference
on Machine Learning, pp. 13869-13890. PMLR, 2023.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Zhipeng Jia, Xingyi Huang, I Eric, Chao Chang, and Yan Xu. Constrained deep weak supervision for
histopathology image segmentation. IEEFE transactions on medical imaging, 36(11):2376-2388,
2017.

David S Johnson and Lyle A McGeoch. The traveling salesman problem: a case study. Local search
in combinatorial optimization, pp. 215-310, 1997.

Hoel Kervadec, Jose Dolz, Jing Yuan, Christian Desrosiers, Eric Granger, and Ismail Ben Ayed.
Constrained deep networks: Lagrangian optimization via log-barrier extensions. In 2022 30th
European Signal Processing Conference (EUSIPCO), pp. 962-966. IEEE, 2022.

Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to branch
in mixed integer programming. In Proceedings of the AAAI Conference on Artificial Intelligence,
2016.

Elias Khalil, Christopher Morris, and Andrea Lodi. MIP-GNN: A data-driven framework for guiding
combinatorial solvers. In Proceedings of the AAAI Conference on Artificial Intelligence, 2022.

Ethan King, James Kotary, Ferdinando Fioretto, and Jan Drgona. Metric learning to accelerate
convergence of operator splitting methods for differentiable parametric programming, 2024. URL
https://arxiv.org/abs/2404.00882.

Thomas Kleinert, Martine Labbé, Ivana Ljubi¢, and Martin Schmidt. A survey on mixed-integer
programming techniques in bilevel optimization. EURO Journal on Computational Optimization,
9:100007, 2021.

James Kotary, Ferdinando Fioretto, and Pascal Van Hentenryck. Learning hard optimization prob-
lems: A data generation perspective. Advances in Neural Information Processing Systems, 34:
24981-24992, 2021a.

James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, and Bryan Wilder. End-to-end con-
strained optimization learning: A survey. arXiv preprint arXiv:2103.16378, 2021b.

Ailsa H Land and Alison G Doig. An automatic method for solving discrete programming problems.
Springer, 2010.

Andreas Lundell and Jan Kronqvist. Polyhedral approximation strategies for nonconvex mixed-
integer nonlinear programming in shot. Journal of Global Optimization, 82(4):863-896, 2022.

Tobia Marcucci and Russ Tedrake. Warm start of mixed-integer programs for model predictive
control of hybrid systems. IEEE Transactions on Automatic Control, 66(6):2433-2448, 2020.

Pablo Mérquez-Neila, Mathieu Salzmann, and Pascal Fua. Imposing hard constraints on deep net-
works: Promises and limitations. arXiv preprint arXiv:1706.02025, 2017.

13

https://www.gurobi.com
https://www.gurobi.com
https://arxiv.org/abs/2404.00882

Under review as a conference paper at ICLR 2025

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving
mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

Nawaf Nazir and Mads Almassalkhi. Guaranteeing a physically realizable battery dispatch without
charge-discharge complementarity constraints. IEEE Transactions on Smart Grid, 14(3):2473—
2476, 2021.

Alex Nowak, Soledad Villar, Afonso S Bandeira, and Joan Bruna. Revised note on learning quadratic
assignment with graph neural networks. In 2018 IEEE Data Science Workshop (DSW), pp. 1-5.
IEEE, 2018.

Ivo Nowak. Relaxation and decomposition methods for mixed integer nonlinear programming,
volume 152. Springer Science & Business Media, 2005.

Xiang Pan, Tianyu Zhao, Minghua Chen, and Shengyu Zhang. Deepopf: A deep neural network
approach for security-constrained dc optimal power flow. IEEE Transactions on Power Systems,
36(3):1725-1735, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems, pp.
8024-8035, 2019.

Deepak Pathak, Philipp Krahenbuhl, and Trevor Darrell. Constrained convolutional neural networks
for weakly supervised segmentation. In Proceedings of the IEEE international conference on
computer vision, pp. 1796-1804, 2015.

Marin Vlastelica Poganci¢, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek. Differ-
entiation of blackbox combinatorial solvers. In International Conference on Learning Represen-
tations, 2020.

Rajiv Sambharya, Georgina Hall, Brandon Amos, and Bartolomeo Stellato. End-to-end learning to
warm-start for real-time quadratic optimization. In Learning for Dynamics and Control Confer-
ence, pp. 220-234. PMLR, 2023.

Tom Schouwenaars, Bart De Moor, Eric Feron, and Jonathan How. Mixed integer programming for
multi-vehicle path planning. In 2001 European control conference (ECC), pp. 2603-2608. IEEE,
2001.

Jialin Song, Yisong Yue, Bistra Dilkina, et al. A general large neighborhood search framework
for solving integer linear programs. Advances in Neural Information Processing Systems, 33:
20012-20023, 2020.

Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large
neighborhood search algorithm for mixed integer programs. arXiv preprint arXiv:2107.10201,
2021.

Bo Tang and Elias B Khalil. Cave: A cone-aligned approach for fast predict-then-optimize with bi-
nary linear programs. In International Conference on the Integration of Constraint Programming,
Artificial Intelligence, and Operations Research, pp. 193-210. Springer, 2024.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural informa-
tion processing systems, 28, 2015.

Andreas Wichter and Lorenz T Biegler. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical programming, 106:25-57, 2006.

Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions pipeline: Decision-

focused learning for combinatorial optimization. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2019.

14

Under review as a conference paper at ICLR 2025

Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Hydra-mip: Automated algorithm
configuration and selection for mixed integer programming. In RCRA workshop on experimental
evaluation of algorithms for solving problems with combinatorial explosion at the international
Jjoint conference on artificial intelligence (IJCAI), pp. 16-30, 2011.

Huigen Ye, Hua Xu, and Hongyan Wang. Light-milpopt: Solving large-scale mixed integer linear
programs with lightweight optimizer and small-scale training dataset. In The Twelfth International
Conference on Learning Representations.

Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. Parameterizing branch-and-bound
search trees to learn branching policies. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2021.

Jiayi Zhang, Chang Liu, Xijun Li, Hui-Ling Zhen, Mingxuan Yuan, Yawen Li, and Junchi Yan.
A survey for solving mixed integer programming via machine learning. Neurocomputing, 519:
205-217, 2023.

15

Under review as a conference paper at ICLR 2025

A GUMBEL-SIGMOID TRICK

The Gumbel-Sigmoid trick works by adding noise to the logits &, in which noise is sampled from a
Gumbel distribution, defined as:

g = —log(—log(U)), U ~ Uniform(0,1).

The Gumbel-Sigmoid function produces a soft approximation with random perturbation:

1
1+ exp (_ h+91*92)

T

Gumbel-Sigmoid(h) =

where g; and g5 are independent samples from the Gumbel distribution, and the temperature param-
eter 7 controls the smoothness: as 7 — 0, the output becomes closer to a hard binarization. In our
experiments, we set 7 = 1 for simplicity.

B DETAILS OF CORRECTION LAYERS

The following subsections describe two distinct approaches for designing the correction layer ¢g,;
the same network g, is used in both approaches.

Rounding Classification. Line 6 of Algorithm [I]is the key step in the rounding classification
(RC) approach. For the integer variables, RC applies a stochastic soft-rounding to the output h®
of the neural network dg, (X*, &%), yielding b® € {0,1}":. An entry of b’ determines whether the
continuously relaxed value X° of the corresponding variable is rounded down or up. In the backward
pass, STE is used in line 4 for the rounding down operation. In line 6, the derivative of the Sigmoid
function is used.

Learnable Threshold. The key steps of the learnable threshold (LT) approach are described in
lines 8 and 9 of Algorithm Rather than use Gumbel-Sigmoid for the rounding as in RC, LT
learns a vector of per-variable rounding thresholds, v* € [0, 1)™=, that the Sigmoid generates in line
8 of Algorithm [1} A variable is rounded up if the fractional part of its relaxed value, (X — x%),
exceeds the threshold. The indicator function I(-) in line 9 produces a binary output in the forward
pass. In the backward pass, the gradient is approximated by that of the Sigmoid function with a
slope:

1

T Thexp(—10-(xi —x —vi))

i

Here, the slope is set to 10 to sharpen the Sigmoid function.

C EXAMPLE ILLUSTRATION

Figure [5| shows the evolution of both the relaxed and rounded solutions, (Z, %) and (&, §), across
different epochs of the training of an RC model on two-dimensional mixed-integer Rosenbrock
problems defined as follows:

. 2 2\2
Lonin (a—z)° +50(y — %)

subjectto y >b/2, 22<b, =<0, y>0.

In this formulation, z is a continuous decision variable, and y is an integer decision variable, subject
to linear constraints. The instances have parameters a and b, which represent the input features to the
neural network; for the instance illustrated in Figure[3] these are set to 3.83 and 6.04, respectively.

The illustration shows that the training of this differentiable rounding approach converges remark-
ably well in this particular instance, with the final rounding solution being very close to the optimum.
We will show this to be a generalizable phenomenon, with both of our learning approaches converg-
ing to highly accurate neural network models on a variety of problem classes and sizes.

16

Under review as a conference paper at ICLR 2025

Optimal Solution
Relaxed Solutions
Rounding Solutions

*
([
o
2 -1 0
XER

Figure 5: Example of the relaxed solutions Z, %y and the rounding solutions Z, ¢ across different
epochs of training for the same sample instance using the Rounding Classification approach.

D NEURAL NETWORK STRUCTURE AND HYPERPARAMETERS

The solution mapping me, used across all learning-based methods—RC, LT, and RL—consists of
five fully connected layers with ReLU activations. The rounding correction network g, for RC
and LT is composed of four fully connected layers, also with ReLU activations, and incorporates
Batch Normalization and Dropout with a rate of 0.2 to prevent overfitting.

The hidden layer sizes were adjusted based on the problem size. For the convex quadratic and
simple non-convex problems, the hidden layer width used in the learning-based methods was scaled
accordingly, increasing from 16, 32, 64 up to 1024 for the corresponding problem sizes. Smaller
problems, such as 5 x5, used smaller hidden layers 16, while larger problems, such as 500x 500, used
hidden layers with widths up to 1024 to accommodate the complexity. Similarly, for the Rosenbrock
problem, the hidden layer width was scaled based on the number of variables: a width of 4 was used
for problems with 2 variables, 16 for problems with 20 variables, and up to 1024 for problems with
10, 000 variables.

The constraint penalty weight A was set to 200 for convex quadratic problems, 100 for simple non-
convex problems and Rosenbrock problems. All networks were trained using the AdamW optimizer
with a learning rate of 10~3 and a batch size of 64 over 200 epochs. Early stopping was applied
based on validation performance to ensure convergence without overfitting.

E MINLP PROBLEM SETUP AND PARAMETER SAMPLING

Convex Quadratic Problems The convex quadratic problems used in our experiments are formu-
lated as follows: 1

min —xTQx + pTx subjectto Ax < b

zezZr 2
where the coefficients Q@ € R"*", p € R", and A € R™*" were fixed, while b € R™ were treated
as parametric coefficients (input features), varying across instances.

where Q € R™*™ is a diagonal matrix with entries sampled uniformly from [0,0.01], ensuring
convexity. The vector p € R™ has entries drawn from a uniform distribution over [0, 0.1], while
the constraint matrix A € R™*" is generated from a normal distribution with a standard deviation
of 0.1. The parameter b € R™, representing the right-hand side of the inequality constraints, is
sampled uniformly from [—1, 1]. These variations in b across instances ensure the parametric nature
of the problem.

Simple Non-convex Problems The simple non-convex problem used in the experiments is derived
by modifying the convex quadratic programming problem as follows:

1
miZn inQa: + pTsin (x) subjectto Az < b
fASYAL

17

Under review as a conference paper at ICLR 2025

where the sine function is applied element-wise to the decision variables . This introduces non-
convexity into the problem, making it more challenging compared to the convex case. For the simple
non-convex problems, the coefficients @, p, A, and b are generated in the same way as in the
quadratic formulation. However, an additional parameter d € R™ is introduced, with each element
independently sampled from a uniform distribution over [—0.5,0.5]. The parameter d modifies
the constraint matrix A by adding d to its first column and subtracting d from its second column.
Alongside d, the right-hand side vector b remains a dynamic parameter in the problem.

Ronsenbrock Problems. The mixed-integer Rosenbrock problem used in this study is defined as:

. _ T _ 50 L A2\T o2
Lmin (@ @)T(a - @)+ 500y —) (Y~)

b
subjectto ||z|3 < nb, 1Ty > %,me <0,q"y <0,

where € R"™ are continuous decision variables and y € Z™ are integer decision variables. The
vectors p € R™ and g € R"™ are fixed for each instance, while the parameters b and a vary. In details,
the vectors p € R™ and g € R" aregenerated from a standard normal distribution. The parameter b
is uniformly distributed over [1, 8] for each instance, and the parameter a € R™ represents a vector
where elements drawn independently from a uniform distribution over [0.5, 4.5]. The parameters b
and a influence the shape of the feasible region and the landscape of the objective function, serving
as input features to the neural network.

F ABLATION STUDY

Overview. To better understand the contribution of the correction layers ¢g,, we include two
ablation baselines in our experiments:

* Rounding after Learning (RL): This baseline trains only the first neural network 7g,,
which predicts relaxed solutions. Rounding to the nearest integer is applied post-training,
meaning that the rounding step does not participate in the training process. This isolates
the effect of excluding the corrective adjustments provided by pg,. This direct rounding
can lead to significant deviations in the objective value and feasibility violations, under-
scoring the importance of end-to-end learning where updates are guided by the ultimate
loss function.

* Rounding with STE (RS): In the Algorithm [2] continuous values predicted by 7e, are
rounded during training using the Straight-Through Estimator (STE), allowing gradients to
pass through the rounding operator. While this mechanism applies a correction to produce
integer values by rounding to the nearest integer, it is not learnable and does not adjust the
rounding based on the parameter or the relaxation output. Thus, the correction is fixed and
solely determined by the nearest-integer rounding, without leveraging additional learning
for refinement.

Algorithm 2 Rounding with STE for Learning-to-optimize MINLPs: Forward Pass.

Require: Training instance £ and neural networks 7g, (+)

Predict a continuously relaxed solution X < 7g, (£%)

Round integer variables down: %X < |X! |

Compute b’ as the rounding direction using Gumbel-Sigmoid(x — %% — 0.5)
Update integer variables: X! + X% + b?

return x°

AN A ey

Results and Insights. The results of the ablation experiments, summarized in Table demonstrate
the importance of the correction layers ¢g, in improving both solution quality and feasibility. RL
shows a significant drop in feasibility rates, highlighting the importance of incorporating learnable
corrective adjustments during training. Similarly, while RS benefits from differentiability via STE,
the lack of learnable correction limits its performance compared to RC and LT.

18

Under review as a conference paper at ICLR 2025

Table 5: Ablation Study for Convex Quadratic Problems. See the caption of Table [2{for details.

Method Metric | 5x5 10x10 20x20 50x50 100x100 200x200 500x500 1000x1000

Obj Mean 0.567 —2.325 —4.576 —13.932 -16.734 —35.562 —88.217 —170.738
Obj Median | 0.405 —2.654 —4.606 —13.952 —16.803 —35.545 —88.217 —170.738

RL % Infeasible 24% 4% 23% 33% 62% 73% 100% 100%
Time (Sec) 0.0004 0.0005 0.0004 0.0004 0.0006 0.0005 0.0005 0.0011
Obj Mean 1.024 —0.973 —-3.677 —11.542 —10.092 —22.366 —53.036 —105.194

RS Obj Median 0.880 —1.269 -3.706 —11.525 —10.073 —22.483 —53.036 —105.194
% Infeasible 0% 0% 0% 0% 0% 0% 0% 0%
Time (Sec) 0.0010 0.0010 0.0010 0.0011 0.0012 0.0012 0.0016 0.0032

Table 6: Ablation Study for Simple Non-Convex Problems. See the caption of Table [3|for details.

Method Metric | 5x5 10x10 20x20 50x50 100x100 200x200 500x500 1000x1000

Obj Mean 0.241 0.595 —0.138 —0.629 —1.581 —4.196 —11.531 —23.639
Obj Median | 0.090 0.484 —0.148 —0.655 —1.554 —4.196 —11.531 —23.639

RL % Infeasible | 28% 46% 13% 49% 85% 100% 100% 100%
Time (Sec) | 0.0005 0.0005 0.0005 0.0005 0.0006 0.0006 0.0006 0.0013
ObjMean | 0453 1398 0292 1.734 2.849 4921 9511 25.358

RS ObjMedian | 0.328 0.983 0284 1736 2.841 4907 9.511 25.358
% Infeasible 0% 0% 0% 0% 0% 0% 0% 0%

Time (Sec) 0.0011 0.0011 0.0012 0.0011 0.0012 0.0013 0.0018 0.0031

Table 7: Ablation Study for Rosenbrock Problems. See the caption of Table for details.

Method Metric 2x4 20x4 200x4 2000x4 20000x4

Obj Mean 58.34 63.70 605.88 6221.75 68364.18
Obj Median ~ 58.00 61.95 609.00 5949.55 69087.00

RL % Infeasible 86% 36% 44% 28% 31%
Time (Sec) 0.0006 0.0005 0.0005 0.0008 0.0014
Obj Mean 25.09 69.36 684.67 6852.08 72910.55

RS Obj Median 25.35 68.58 663.10 6509.01 68904.42

% Infeasible 0% 3% 0% 1% 39%
Time (Sec) 0.0010 0.0010 0.0012 0.0019 0.0103

G DETAILS FOR CONSTRAINTS VIOLATIONS

In this section, we analyze constraint violations for three benchmark problems. The analysis focuses
on both the frequency and magnitude of constraint violations, visualized through heatmaps for a
comprehensive understanding. Each heatmap (Figure [] Figure [7]and Figure [§) illustrates rows as
test instances and columns as individual constraints.

The heatmap for the convex quadratic problem (Figure [6) and the simple non-convex problem (Fig-
ure (7)) reveals a sparse distribution of violations, predominantly concentrated in a single constraint.
This indicates that most constraints are consistently satisfied, with only a few isolated violations.
Notably, 4 out of 100 test instances of convex quadratic problem under RC are infeasible, and
among these, 3 violations occur within the same constraint, and all 3 infeasible solutions of convex
quadratic from LT method also appear in the one constraint. Overall, the constraint violations are
nearly negligible, confirming the effectiveness of the proposed methods.

Figure [§| highlights a much denser distribution of violations, reflecting the complexity of this bench-
mark. The nonlinear constraint ||x|3 < nb is particularly challenging, as shown by the more fre-
quent and larger violations.

The heatmaps reveal key insights into the performance of the RC and LT methods. While the con-
vex quadratic and simple non-convex problems exhibit minimal violations, the Rosenbrock problem
highlights the difficulty of satisfying nonlinear constraints. These observations underscore the need
for further refinement of penalty weights. Specifically, constraint-specific adjustments could miti-
gate violations by placing higher penalties on constraints that are harder to satisfy.

19

Under review as a conference paper at ICLR 2025

Constraint Violations Heatmap for 500x500 Convex Quadtratic (RC Method

10°

107!

10

S5

10

Violation Magnitude

10~

Instance Index

x

0 100 200 300 100
Constraint Index

Constraint Violations Heatmap for 500x500 Convex Quadtratic (LT Method

Instance Index

Violation Magnitude

0 100 200 300 400
Constraint Index

Figure 6: Illustration of Constraint Violation Heatmap for 500x500 Convex Quadratic Problem for
RC method (Top) and LT method (bottom) on 100 test instances: Each row represents an instance
in the test set, while each column corresponds to a specific constraint.

Constraint Violations Heatmap for 500 x500 Simple Non-Convex (RC Method

3

< £
=) g
8 107
=60 E
7‘? 10 ‘E
s 1055

0 100 200 300 400 o

Constraint Index

Constraint Violations Heatmap for 500x500 Convex Quadtratic (LT Method "
A2 10 ‘;;‘
Z 2
= 1023
=)
:‘: 1032
E 10 ‘E
Z -
— 055

0 100 200 300 400
Constraint Index

Figure 7: Illustration of Constraint Violation Heatmap for 500x500 Simple Non-Convex Problem
for RC method (Top) and LT method (bottom) on 100 test instances: Each row represents an instance
in the test set, while each column corresponds to a specific constraint.

H EXPERIMENTS ON BINARY LINEAR PROGRAMS

Dataset. For our experiments involving mixed-integer linear programs (MILPs), we utilized the
‘Obj Series 1° dataset from the MIP Workshop 2023 Computational Competition (Bolusani et al.|
2023). This dataset comprises 50 related MILP instances derived from a common mathematical for-
mulation, where the instances differ in a subset of the objective function coefficients. Each instance
contains 360 binary variables and 55 constraints, with 120 out of the 360 objective coefficients
varying across instances. All other components of the problem remain consistent.

Model Configuration. The neural network architecture and hyperparameters were consistent with
those used for other experiments in the main paper. Specifically for the MILP problem in this study,
the input dimension of the neural network was set to 120, corresponding to the number of varying

20

Under review as a conference paper at ICLR 2025

Constraint Violations Heatmap for 20000 x4 Rosenbrock (RC Method

30000

25000

20000

B

15000

10000

Instance Index
Violation Magnitude

5000

0

[< nb ¥ = nb/2 plx <0 a'y <0

Constraint

Constraint Violations Heatmap for 20000 x4 Rosenbrock (LT Method

30000

25000

20000

15000

10000

Instance Index
Violation Magnitude

5000

T E 0
p’x<0 q'y <0

[Ix]3 < nb y >nb/2

Constraints

Figure 8: Illustration of Constraint Violation Heatmap for 20000x4 Rosenbrock Problem for RC
method (Top) and LT method (bottom) on 100 test instances: Each row represents an instance in the
test set, while each column corresponds to a specific constraint.

objective function coefficients, and the output dimension was set to 360, representing the binary
decision variables. The hidden layer consisted of 256 neurons.

Results. Table 8] summarizes the results of the ILP experiments: Both learning-based methods
(RC and LT) demonstrate the ability to generate high-quality feasible solutions efficiently, with RC
even surpassing the heuristic-based method N1 in terms of objective value. However, N1 is the
fastest method overall, showcasing the robustness and efficiency of the heuristic in the MILP solver.
Notably, the training time for the learning-based models is approximately 120 seconds, making them
well-suited for applications requiring repeated problem-solving.

Table 8: Comparison of Optimization Methods on the MILP. See the caption of Tablefor details.

Method \ Obj Mean ObjMedian % Infeasible Time (Sec)

RC 9745.90 9763.00 0% 0.04
LT 14149.00 14149.00 0% 0.04
EX 8756.80 8747.00 0% 28.91
N1 11901.10 11933.00 0% 0.01

I TRAINING TIME COMPARISON

In this section, we present the training times for the LR, LT, and RL methods across various problem
sizes. All training runs were conducted using datasets of 9,000 instances for each problem with
1,000 instances reserved for validation per epoch. It is important to note that while the training
process was set for 200 epochs, an early stopping strategy was applied, allowing the training to
terminate earlier when performance plateaued.

Table 9: Training Times (in seconds) for LR, LT, and RL methods across different problem sizes for
the Convex Quadratic Problem. Each method was set to train for 200 epochs, with early stopping
applied.

Method | 5x5 10x10 20x20 50x50 100x100 200x200 500x500 1000x1000

RC 24228 22538 15398 237.11 141.15 149.43 606.23 727.32
LT 217.01 22538 154.33 158.61 128.86 139.17 458.62 462.41
RL 21353 6396 7372 6195 85.91 88.49 304.80 277.78

21

Under review as a conference paper at ICLR 2025

Table 10: Training Times (in seconds) for RC, LT, and RL methods across different problem sizes for
the Simple Non-convex Problem. Each method was set to train for 200 epochs, with early stopping

applied.
Method | 5x5 10x10 20x20 50x50 100x100 200x200 500x500 1000x1000
RC 257.28 14446 173.02 13853 13601 10405 11601 156.85
LT 22609 26034 10435 8841 11138 8924 230.52 195.67
RL 11107 7567 7928 5886 81.43 8428 149.87 131.42

Table 11: Training Times (in seconds) for RC, LT, and RL methods across different problem sizes
for the Rosenbrock Problem. Each method was set to train for 200 epochs, with early stopping

applied.
Method | 2x4 20x4 200x4 2000x4 20000x4
RC 230.68 11235 7549 10676 5227.05
LT 12660 125.11 8643 8461 6508.41
RL 3979 9812 103.38 6130 1920.59

Table O] [10] and [T1] summarize the training times (in seconds) required by each method for prob-
lems of different scales. These results offer a clear view of the computational demands as problem

complexity grows.

22

	Introduction
	Related Work
	Learning to Optimize MINLPs: a Problem Formulation
	Preliminaries: Differentiating through Discrete Operations
	Learning to Optimize MINLPs with Correction Layers
	Experimental Results
	Experimental Setup
	Convex Quadratic Problem
	Simple Non-convex Problem
	Multi-Dimensional Mixed-Integer Rosenbrock Problem
	Effect of Penalty Weight
	Effect of Training Sample Size

	Conclusion
	Gumbel-Sigmoid Trick
	Details of Correction Layers
	Example Illustration
	Neural Network Structure and Hyperparameters
	MINLP Problem Setup and Parameter Sampling
	Ablation Study
	Details for Constraints Violations
	Experiments on Binary Linear Programs
	Training Time Comparison

