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ABSTRACT

Bilevel optimization, with broad applications in machine learning, has an intri-
cate hierarchical structure. Gradient-based methods have emerged as a common
approach to large-scale bilevel problems. However, the computation of the hyper-
gradient, which involves a Hessian inverse vector product, confines the efficiency
and is regarded as a bottleneck. To circumvent the inverse, we construct a sequence
of low-dimensional approximate Krylov subspaces with the aid of the Lanczos
process. As a result, the constructed subspace is able to dynamically and incremen-
tally approximate the Hessian inverse vector product with less effort and thus leads
to a favorable estimate of the hyper-gradient. Moreover, we propose a provable
subspace-based framework for bilevel problems where one central step is to solve
a small-size tridiagonal linear system. To the best of our knowledge, this is the
first time that subspace techniques are incorporated into bilevel optimization. This
successful trial not only enjoys O(ϵ−1) convergence rate but also demonstrates
efficiency in a synthetic problem and two deep learning tasks.

1 INTRODUCTION

Bilevel optimization, in which upper-level and lower-level problems are nested with each other,
mirrors a multitude of applications, e.g., game theory (Stackelberg, 1952), hyper-parameter selection
(Ye et al., 2023), data poisoning (Liu et al., 2024), meta-learning (Bertinetto et al., 2018), neural
architecture search (Liu et al., 2018; Wang et al., 2022), adversarial training (Wang et al., 2021),
reinforcement learning (Hong et al., 2023; Chakraborty et al., 2024), computer vision (Liu et al.,
2021a). In this paper, we consider the bilevel problem:

min
x∈Rdx

φ(x) := f (x, y∗(x))

s. t. y∗(x) ∈ argmin
y∈Rdy

g(x, y), (1)

where the upper-level function f and the lower-level function g are defined on Rdx ×Rdy . φ is called
the hyper-objective, and the gradient of φ(x) is referred to as the hyper-gradient (Pedregosa, 2016;
Grazzi et al., 2020; Chen et al., 2023; Yang et al., 2023) if it exists. In contrast to standard single-level
optimization problems, bilevel optimization is inherently challenging due to its intertwined structure.
Specifically, the formulation (1) underscores the crucial role of the lower-level solution y∗(x) in each
update of x.

One of the focal points in recent bilevel methods has shifted towards nonconvex upper-level problems
coupled with strongly convex lower-level problems (Ghadimi and Wang, 2018; Ji et al., 2021; Chen
et al., 2022; Dagréou et al., 2022; Li et al., 2022; Hong et al., 2023). This configuration ensures that
y∗(x) is a single-valued function of x, i.e., y∗(x) = argminy∈Rdy g(x, y). Subsequently, ∇φ(x)
can be computed via the implicit function theorem following (Ghadimi and Wang, 2018),

∇φ(x) =∇xf (x, y∗ (x))−∇2
xyg (x, y

∗ (x))
[
∇2

yyg (x, y
∗ (x))

]−1 ∇yf (x, y∗ (x)) . (2)

Gradient methods based on the hyper-gradient, xk+1 = xk−λ∇φ(xk), are known as the approximate
implicit differentiation (AID) based methods (Ji et al., 2021; Liu et al., 2023b; Huang, 2024b).
Nevertheless, the computation of the hyper-gradient (2) suffers from two pains: 1) solving the
lower-level problem to obtain y∗(x); 2) assembling the Hessian inverse vector product

v∗(x) :=
[
∇2

yyg (x, y
∗ (x))

]−1 ∇yf (x, y∗ (x)) , (3)

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 1000 2000 3000 4000 5000
Outer Iteration

5 × 10 1

6 × 10 1

4 × 10 1

7 × 10 1

Te
st

 lo
ss

I=1
I=10
I=20
I=50
I=150

20 40 60 80 100 120 140 160
Time [sec]

10 5

10 4

10 3

10 2

10 1

Re
sid

ua
l n

or
m

LancBiO
SubBiO
AmIGO-GD
AmIGO-CG
SOBA

Figure 1: Left: test loss for the method stocBiO (Ji et al., 2021) with different inner iterations I
to approximate the Hessian inverse vector product; Right: Estimation error of the Hessian inverse
vector product in hyper-data cleaning task with corruption rate 0.5 for different methods: LancBiO
and SubBiO (ours), AmIGO (Arbel and Mairal, 2022), and SOBA (Dagréou et al., 2022).

or equivalently, solving a large linear system in terms of v,

∇2
yyg(x, y

∗(x))v = ∇yf(x, y
∗(x)). (4)

To this end, it is beneficial to adopt a few inner iterations to approximate y∗(x) and v∗(x) within
each outer iteration (i.e., the update of x). Note that the approximation accuracy of v∗(x) is crucial
for AID-based methods; see (Ji et al., 2022; Li et al., 2022). Specifically, the left of Figure 1 confirms
that the more inner iterations, the higher quality of the estimate of v∗, and the more enhanced descent
of the objective function within the same number of outer iterations.

Approximation: Existing efforts are dedicated to approximating v∗ in different fashions by regulating
the number of inner iterations, e.g., the Neumann series approximation (Ghadimi and Wang, 2018;
Ji et al., 2021) for the inverse, gradient descent (Arbel and Mairal, 2022; Dagréou et al., 2022) and
conjugate gradient descent (Pedregosa, 2016; Yang et al., 2023) for the linear system.

Amortization: Moreover, there are studies aimed at amortizing the cost of approximation through
outer iterations. These methods include using the inner estimate from the previous outer iteration
as a warm start for the current outer iteration (Ji et al., 2021; Arbel and Mairal, 2022; Dagréou et al.,
2022; Ji et al., 2022; Li et al., 2022; Xiao et al., 2023), or employing a refined step size control (Hong
et al., 2023).

Subspace techniques, widely adopted in nonlinear optimization (Yuan, 2014), approximately solve
large-scale problems in lower-dimensional subspaces, which not only reduce the computational
cost significantly but also enjoy favorable theoretical properties as in full space models. Taking
into account the above two principles, it is reasonable to consider subspace techniques in bilevel
optimization. Specifically, we can efficiently amortize the construction of low-dimensional subspaces
and sequentially solve linear systems (4) in these subspaces to approximate v∗ accurately.

1.1 CONTRIBUTIONS

In this paper, taking advantage of the Krylov subspace and the Lanczos process, we develop an inno-
vative subspace-based framework—LancBiO, which features an efficient and accurate approximation
of the Hessian inverse vector product v∗ in the hyper-gradient—for bilevel optimization. The main
contributions are summarized as follows.

Firstly, we build up a dynamic process for constructing low-dimensional subspaces that are tailored
from the Krylov subspace for bilevel optimization. This process effectively reduces the large-scale
subproblem (4) to the small-size tridiagonal linear system, which draws on the spirit of the Lanczos
process. To the best of our knowledge, this is the first time that the subspace technique is leveraged in
bilevel optimization.

Moreover, the constructed subspaces enable us to dynamically and incrementally approximate v∗

across outer iterations, thereby achieving an enhanced estimate of the hyper-gradient; the right of
Figure 1 illustrates that the proposed LancBiO reaches the best estimation error for v∗. Hence, we
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provide a new perspective for approximating the Hessian inverse vector product in bilevel optimization.
Specifically, the number of Hessian-vector products averages at (1 + 1

m ) per outer iteration with the
subspace dimension m, which is favorably comparable with the existing methods.

Finally, we offer analysis to circumvent the instability in the process of approximating subspaces,
with the result that LancBiO can profit from the benign properties of the Krylov subspace. We prove
that the proposed method LancBiO is globally convergent with the convergence rate O(ϵ−1). In
addition, the efficiency of LancBiO is validated by a synthetic problem and two deep learning tasks.

1.2 RELATED WORK

A detailed introduction to bilevel optimization methods can be found in Appendix A.

Krylov subspace methods: Subspace techniques have gained significant recognition in the realm
of numerical linear algebra (Parlett, 1998; Saad, 2011; Golub and Van Loan, 2013) and nonlinear
optimization (Yuan, 2014; Liu et al., 2021c). Specifically, numerous optimization methods utilized
subspace techniques to improve efficiency, including acceleration technique (Li et al., 2020), diagonal
preconditioning (Gao et al., 2023), and derivative-free optimization methods (Cartis and Roberts,
2023). Krylov subspace (Krylov, 1931), due to its special structure,

KN (A, b) := span
{
b, Ab,A2b, . . . , AN−1b

}

with the dimension N for a matrix A and a vector b, exhibits advantageous properties in convex
quadratic optimization (Nesterov et al., 2018), eigenvalue computation (Kuczyński and Woźniakowski,
1992), and regularized nonconvex quadratic problems (Carmon and Duchi, 2018). Krylov subspace
has been widely considered in large-scale optimization such as trust region methods (Gould et al.,
1999), trace maximization problems (Liu et al., 2013), and cubic Newton methods (Cartis et al.,
2011; Jiang et al., 2024). Lanczos process (Lanczos, 1950) is an orthogonal projection method onto
the Krylov subspace, which reduces a dense symmetric matrix to a tridiagonal form. Details of the
Krylov subspace and the Lanczos process are summarized in Appendix B.

Approximation of the Hessian inverse vector product : It is cumbersome to compute the Hessian
inverse vector product in bilevel optimization. To bypass it, several strategies implemented through
inner iterations were proposed, e.g., the Neumann series approximation (Ghadimi and Wang, 2018;
Ji et al., 2021), gradient descent (Arbel and Mairal, 2022; Dagréou et al., 2022), and conjugate
gradient descent (Pedregosa, 2016; Arbel and Mairal, 2022; Yang et al., 2023). Alternatively, the
previous information was exploited in (Ji et al., 2021; Arbel and Mairal, 2022) as a warm start for
outer iterations; Ramzi et al. (2022) suggested approximating the Hessian inverse in the manner of
quasi-Newton; Dagréou et al. (2022) and Li et al. (2022) proposed the frameworks without inner
iterations to approximate the Hessian inverse vector product.

2 SUBSPACE-BASED ALGORITHMS

In this section, we dive into the development of bilevel optimization algorithms for solving (1), which
dynamically construct subspaces to approximate the Hessian inverse vector product.

The (hyper-)gradient descent method carries out the k-th outer iteration as xk+1 = xk − λ∇φ(xk),
where the hyper-gradient is exactly computed by ∇φ(xk) = ∇xf (xk, y

∗
k)−∇2

xyg (xk, y
∗
k) v

∗
k with

y∗k := y∗(xk) and v∗k := v∗(xk) defined in (3). In view of the computational intricacy of y∗k and v∗k,
it is commonly concerned with the following estimator for the hyper-gradient

∇̃φ (xk, yk, vk) := ∇xf (xk, yk)−∇2
xyg (xk, yk) vk, (5)

where yk is an approximation of y∗k. Denote Ak = ∇2
yyg(xk, yk) and bk = ∇yf(xk, yk). vk is the

(approximate) solution of a quadratic optimization problem

min
v∈Sk

1

2
v⊤Akv − v⊤bk, (6)

where Sk is the full space Rdy and the exact solution is A−1
k bk. Subsequently, in order to reduce the

computational cost, it is natural to ask:
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Algorithm 1 SubBiO

Input: iteration threshold K, step sizes θ, λ, η, initialization x1, y1, v0
1: for k = 1, 2, . . . ,K do
2: Ak = ∇2

yyg (xk, yk), bk = ∇yf(xk, yk)
3: Sk = span{bk, (I − ηAk) vk−1}
4: vk = argminv∈Sk

1
2v

⊤Akv − b⊤k v
5: xk+1 = xk − λ

(
∇xf(xk, yk)−∇2

xyg(xk, yk)vk
)

6: yk+1 = yk − θ∇yg(xk+1, yk)
7: end for

Output: (xK+1, yK+1)

Can we construct a low-dimensional subspace Sk such that
the solution of (6) satisfactorily approximates A−1

k bk?

General subspace constructions introduced in the existing subspace methods (Yuan, 2014; Liu et al.,
2021c) are not straightforward and not exploited in the bilevel setting, rendering the exploration of
appropriate subspaces challenging. In the following subsections, we construct approximate Krylov
subspaces and propose an elaborate subspace-based framework for bilevel problems.

2.1 WHY KRYLOV SUBSPACE: THE SUBBIO ALGORITHM

In light of the Neumann series for a suitable η ∈ R, A−1b = η
∑∞

i=0(I − ηA)ib, it is observed
from Appendix B that A−1b belongs to a Krylov subspace for some N > 0, i.e.,

A−1b ∈ KN (A, b) = KN (I − ηA, b).

Hence, it is reasonable to consider a Krylov subspace for the construction of Sk.

Given a constant n ≪ N , we consider an approximation of A−1b in a lower-dimensional Krylov
subspace Kn(A, b), i.e., vn ∈ Kn(A, b) = Kn(I − ηA, b) and vn =

∑n−1
i=0 ci (I − ηA)

i
b ≈ A−1b.

Note that the approximation vn is composed of the set {(I − ηA)
i
b}n−1

i=0 in the sense of the Neumann
series. Moreover, we observe that (I − ηA)vn ∈ Kn+1(A, b) and hence we can recursively choose

vn+1 ∈ Sn+1 := span {b, (I − ηA)vn} ⊆ Kn+1(A, b)

since the subspace span {b, (I − ηA)vn} includes the information of the increased set
{(I − ηA)

i
b}ni=0. In summary, we can construct a sequence of two-dimensional subspaces {Sn}

that implicitly filters information from the Krylov subspaces. The rationale for this procedure can be
illustrated in Figure 2.

A−1b A−1b

A−1b

vn
vn+1

vN

· · ·Sn Sn+1
SN

Kn(A, b) Kn+1(A, b) KN (A, b)⊆ ⊆ · · · ⊆

Figure 2: Illustration of approximating A−1b ∈
KN (A, b) by vn in the two-dimensional sub-
space Sn ⊆ Kn(A, b).

In the context of bilevel optimization, we seek
the best solution vk to the subproblem (6) in the
subspace

Sk = span {bk, (I − ηAk)vk−1} . (7)

Repeating the procedure is capable of dynam-
ically approximating the Hessian inverse vec-
tor product, i.e., vk approximates A−1

k bk. The
Krylov Subspace-aided Bilevel Optimization al-
gorithm (SubBiO) is listed in Algorithm 1.

2.2 WHY DYNAMIC LANCZOS: THE LANCBIO FRAMEWORK

Notice that the subproblem in SubBiO (Algorithm 1) can be equivalently reduced to

min
z∈R2

1

2
z⊤(S⊤

k AkSk)z − b⊤k Skz,

where Sk := [bk (I − ηAk) vk−1] ∈ Rdy×2. The solution z∗ ∈ R2 results in vk = Skz
∗. It is a two-

dimensional subproblem, whereas computing the projection S⊤
k AkSk requires two Hessian-vector

4
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products, which dominate the cost of the subproblem. Therefore, it is crucial to reduce or amortize
the projection cost while preserving the advantages of the Krylov subspace. To this end, we find that
the Lanczos process (Appendix B) provides an enlightening way (Lanczos, 1950; Saad, 2011; Golub
and Van Loan, 2013) since it allows for the construction of a Krylov subspace and maintaining a
tridiagonal matrix as the projection matrix, which significantly reduces the computational cost.

In bilevel optimization, since the quadratic problem (6) evolves through outer iterations, it is difficult
to leverage the Lanczos process to amortize the projection cost while updating variables as in SubBiO.
Specifically, the Lanczos process is inherently unstable (Paige, 1980), and thus the accumulative
difference among {Ak} and {bk} will make the Lanczos process invalid.

In order to address the above difficulties, we propose a restart mechanism to guarantee the benign
behavior of approximating the Krylov subspace and consider solving residual systems to employ
the historical information. In summary, we propose a dynamic Lanczos-aided Bilevel Optimization
framework, LancBiO, which is listed in Algorithm 2. The only difference between LancBiO and
SubBiO is solving the subproblem (line 3-4 in Algorithm 1).

Algorithm 2 LancBiO

Input: iteration threshold K, step sizes θ, λ, initialization
x1, y1, v1, initial correction ∆v0 = 0, subspace dimen-
sion m, initial epoch h = −1

1: for k = 1, 2, . . . ,K do
2: Ak = ∇2

yyg(xk, yk), bk = ∇yf(xk, yk)
3: if (k modm) = 1 then
4: h = h+ 1
5: v̄h = vk
6: wh = Akv̄h
7: Qk−1 = (bk − wh)/ ∥bk − wh∥
8: Tk−1 = Empty Matrix
9: βk = 0

10: end if
11: (Tk, Qk, βk+1)=DLanczos(Tk−1, Qk−1, Ak, βk)
12: rk = bk − wh

13: ∆vk = Qk(Tk)
−1Q⊤

k rk
14: vk = v̄h +∆vk
15: xk+1 = xk − λ

(
∇xf(xk, yk)−∇2

xyg(xk, yk)vk
)

16: yk+1 = yk − θ∇yg(xk+1, yk)
17: end for
Output: (xK+1, yK+1)

If we adapt the standard Lanczos
process for tridiagonalizing Ak, by
starting from q1 = b1/ ∥b1∥ , q0 =
0, β1 = 0 and using the dynamic ma-
trices Aj for j = 1, 2, . . . , k, the pro-
cess is as follows,

uj = Ajqj − βjqj−1,

αj = q⊤j uj ,

ωj = uj − αjqj ,

βj+1 = ∥ωj∥ ,
qj+1 = ωj/βj+1,

and Tk is a tridiagonal matrix recur-
sively computed from

Tj =

αj







.

0

0
Tj−1

βj

βj

Restart mechanism: In contrast to SubBiO, we construct the subspace

Sk = span(Qk) = span([q1, . . . , qk]).

Consequently, Qk approximates the basis of the true Krylov subspace Kk(Ak, bk), and Tk approxi-
mates the projection of Ak onto it, i.e., Tk ≈ Q⊤

k AkQk. However, Qk will lose the orthogonality
due to the evolution of Aj , and Tk will deviate from the true projection. Based on this observation,
we restart the subspace spanned by the matrix Q for every m outer iterations (line 3 to line 10
in Algorithm 2). The restart mechanism allows us to mitigate the accumulation of the difference
among {A1, . . . , Ak}, and hence, we can maintain a more reliable basis matrix to approximate Krylov
subspaces. The above dynamic Lanczos subroutine, DLanczos, is summarized in Appendix C.

Residual minimization: The preceding discussion reveals that the dimension of the subspace
Sk should be moderate to retain the reliability of the dynamic process. Nevertheless, the limited
dimension stagnates the approximation of the subproblem (6) to the full space problem. Therefore,
instead of directly solving the quadratic subproblem (6) in the subspace, we intend to find v ∈ Sk =
span(Qk) such that Akv ≈ bk. To this end, after going through m outer iterations, we denote the
current approximation by v̄. In the subsequent outer iterations, we concentrate on a linear system
with a residual in the form

Ak∆v = bk −Akv̄, ∆v ∈ Sk. (8)

5
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Specifically, we inexactly solve the minimal residual subproblem

min
∆v∈Sk

∥(bk −Akv̄)−Ak∆v∥2 (9)

and use the solution ∆vk as a correction to v̄ (line 12 to line 14 in Algorithm 2), vk = v̄ +∆vk.

Consequently, taking into account the two strategies above, we illuminate the framework LancBiO
in Figure 3. It is structured into epochs, with each epoch built by m outer iterations. Notably, each
epoch restarts by incrementally constructing from a one-dimensional space Q1 to an m-dimensional
space Qm, aiming to approximate the solution to the residual system within these subspaces. The
solution ∆vj to the subproblem serves as a correction to enhance the hyper-gradient estimation,
which facilitates the (x, y) updating.

Epochs

m Outer Iterations

Subspace Construction

· · · ··· · · · ···

Residual Minimization

bk −Akv̄

Hyper-gradient Estimation

(x, y) Updating

Q1 Q2 · · · Qj · · · Qm

∆v1 ∆v2 · · · ∆vj · · · ∆vm

∇̃φ1 ∇̃φ2 · · · ∇̃φj · · · ∇̃φm

One Epoch

Figure 3: An overview of LancBiO.

The combination of the two strategies, restart
mechanism and residual minimization, not only
controls the dimension of the subspace but also
utilizes historical information to enhance the ap-
proximation accuracy. By considering a simpli-
fied scenario, we reduce the two strategies into
solving a standard linear system problem Ax = b
with A and b fixed. Note that, from the perspec-
tive of Theorem 1 in (Carmon and Duchi, 2018),
the residual associated with solving a linear sys-
tem in an m-dimensional Krylov subspace decays
faster than a rate O

(
1/m2

)
after each restart. In

other words, the estimation error of the Hessian
inverse vector product experiences a decay rate
of O

(
1/m2

)
after every restart, i.e.,∥∥b−Avm(h+1)

∥∥2

∥b−Avmh∥2
=

∥∥(b−Av̄h)−A∆m(h+1)

∥∥2

∥b−Av̄h∥2

= O
(

1

m2

)
.

Remark 2.1. The classic Lanczos process is
known for its capability to solve indefinite lin-
ear systems (Greenbaum et al., 1999). In the
same fashion, the LancBiO framework can be
adapted to the bilevel problems with a noncon-
vex lower-level problem. Interested readers are
referred to Appendix D for details.

2.3 RELATION TO EXISTING ALGORITHMS

The proposed SubBiO and LancBiO have intrin-
sic connections to the existing algorithms. Gen-
erally, in each outer iteration, methods such as
BSA (Ghadimi and Wang, 2018) and TTSA (Hong et al., 2023) truncate the Neumann series at N ,
exploiting information from an N -dimensional Krylov subspace. In contrast, both SubBiO and
LancBiO implicitly gather knowledge from a high-dimensional Krylov subspace with less effort.

SubBiO shares similarities with SOBA (Dagréou et al., 2022) and FSLA (Li et al., 2022). The update
rule for the estimator v of the Hessian inverse vector product in SOBA and FSLA is

vk = vk−1 − η (Akvk−1 − bk) = (I − ηAk)vk−1 + ηbk,

while the proposed SubBiO constructs a two-dimensional subspace, Sk = span {bk, (I − ηAk)vk−1}
defined in (7). It is worth noting that the updated vk in SOBA and FSLA belongs to the subspace
Sk. Furthermore, in the sense of solving the two-dimensional subproblem (6), SubBiO selects the
optimal solution v in the subspace.

In addition, if the subspace dimension m is set to one, LancBiO is simplified to a scenario in which
one conjugate gradient (CG) step with the warm start mechanism is performed in each outer iteration,

6
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which exactly recovers the algorithm AmIGO-CG (Arbel and Mairal, 2022) with one inner iteration
to the update of v. Alternatively, if the step size λ in Algorithm 2 is set to 0 within each m-steps (i.e.,
only inner iterations are invoked), LancBiO reduces to the algorithm AmIGO-CG (Arbel and Mairal,
2022) with m inner iterations.

3 THEORETICAL ANALYSIS

In this section, we provide a non-asymptotic convergence analysis for LancBiO. Firstly, we introduce
some appropriate assumptions. Subsequently, to address the principal theoretical challenges, we
analyze the properties and dynamics of the subspaces constructed in Section 2. Finally, we prove the
global convergence of LancBiO and give the iteration complexity; the detailed proofs are provided in
the appendices.
Assumption 3.1. The upper-level function f is twice continuously differentiable. The gradients
∇xf(x, y) and ∇yf(x, y) are Lfx-Lipschitz and Lfy-Lipschitz, and ∥∇yf (x, y∗(x))∥ ≤ Cfy .
Assumption 3.2. The lower-level function g is twice continuously differentiable. ∇xg(x, y) and
∇yg(x, y) are Lgx-Lipschitz and Lgy-Lipschitz. The derivative ∇2

xyg(x, y) and the Hessian matrix
∇2

yyg(x, y) are Lgxy-Lipschitz and Lgyy-Lipschitz.

Assumption 3.3. For any x ∈ Rdx , the lower-level function g(x, ·) is µg-strongly convex.

The Lipschitz properties of f, g and the strong convexity of the lower-level problem revealed by the
above assumptions are standard in bilevel optimization (Ghadimi and Wang, 2018; Chen et al., 2021;
Ji et al., 2021; Khanduri et al., 2021; Arbel and Mairal, 2022; Chen et al., 2022; Dagréou et al., 2022;
Li et al., 2022; Ji et al., 2022; Hong et al., 2023). These assumptions ensure the smoothness of φ
and y∗; see the following results (Ghadimi and Wang, 2018).
Lemma 3.4. Under the Assumptions 3.2 and 3.3, y∗(x) is Lgx/µg -Lipschitz continuous, i.e., for
any x1, x2 ∈ Rdx , ∥y∗(x1)− y∗(x2)∥ ≤ Lgx

µg
∥x1 − x2∥.

Lemma 3.5. Under the Assumptions 3.1, 3.2 and 3.3, the hyper-gradient ∇φ(·) is Lφ-Lipschitz
continuous, i.e., for any x1, x2 ∈ Rdx , ∥∇φ(x1)−∇φ(x2)∥ ≤ Lφ ∥x1 − x2∥, where Lφ > 0 is
defined in Appendix E.
Assumption 3.6. There exists a constant Cfx so that ∥∇xf(x, y)∥ ≤ Cfx.

Assumption 3.6, commonly adopted in (Ghadimi and Wang, 2018; Ji et al., 2021; Liu et al., 2022;
Kwon et al., 2023a), is helpful in ensuring the stable behavior of the dynamic Lanczos process;
see Section 3.1.

3.1 SUBSPACE PROPERTIES IN DYNAMIC LANCZOS PROCESS

In view of the inherent instability of the Lanczos process (Paige, 1980; Meurant and Strakoš, 2006)
and the evolution of the Hessian {Ak} and the gradient {bk} in LancBiO, the analysis of the
constructed subspaces is intricate. Based on the existing work (Paige, 1976; 1980; Greenbaum, 1997),
this subsection sheds light on the analysis of the subspaces and the effectiveness of the subproblem in
approximating the full space problem in LancBiO.

An epoch is constituted of a complete m-step dynamic Lanczos process between two restarts, namely,
after h epochs, the number of outer iterations is mh. Given the outer iterations k = mh + j for
j = 1, 2, . . . ,m, we denote

εhst :=

(
1 +

Lgx

µg

)
∥xmh+s − xmh+t∥+

∥∥ymh+s − y∗mh+s

∥∥

for s, t = 1, 2, . . . ,m, and εhj := max1≤s,t≤j ε
h
st, serving as the accumulative difference. For brevity,

we omit the superscript where there is no ambiguity, and we are slightly abusing of notation that
at the current epoch, {Amh+j} and {bmh+j} are simplified by {Aj} and {bj} for j = 1, . . . ,m. In
addition, the approximations in the residual system (8) are simplified by v̄ and b̄ := b1 −A1v̄.

The following proposition demonstrates that the dynamic subspace constructed in Algorithm 2 within
an epoch is indeed an approximate Krylov subspace.
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Proposition 3.7. At the j-th step within an epoch (j = 1, 2, . . . ,m− 1), the subspace spanned by
the matrix Qj+1 in Algorithm 2 satisfies

span(Qj+1) ⊆ span
{
Aa1

1 Aa2
2 · · ·Aaj

j b̄
∣∣ as = 0 or 1, s = 1, 2, . . . , j

}
.

Specifically, when A1 = A2 = · · · = Aj = A and Qj+1 is of full rank, span(Qj+1) = Kj+1

(
A, b̄

)
.

Denote A∗ = ∇2
yyg(x, y

∗) and b∗ = ∇yf(x, y
∗). Notice that the dynamic Lanczos process in Algo-

rithm 2 centers on Aj instead of A∗
j . The subsequent lemma interprets the perturbation analysis for

the dynamic Lanczos process in terms of A∗
j , which satisfies an approximate three-term recurrence

with a perturbation term δQ.

Lemma 3.8. Suppose Assumptions 3.1 to 3.3 hold. The dynamic Lanczos process in Algorithm 2
with normalized q1 and αj , βj , qj satisfies

A∗
jQj = QjTj + βj+1qj+1e

⊤
j + δQj , for j = 1, 2, . . . ,m,

where Qj = [q1, q2, . . . , qj ], δQj = [δq1, δq2, . . . , δqj ] with ∥δqj∥ ≤ Lgyyεj , and Tj

is a j × j symmetric tridiagonal matrix with diagonal elements {α1, . . . , αj} and subdiagonal
elements {β2, . . . , βj}.

3.2 CONVERGENCE ANALYSIS

To guarantee the stable behavior of the dynamic process, we need the subsequent assumption.

Assumption 3.9. The initialization of y1 in Algorithm 2 satisfies∥y1 − y∗1∥ ≤
√
3µg

8(m+1)3Lgyy
.

Similar initialization refinement is used in (Hao et al., 2024), which can be achieved by implementing
several gradient descent steps for the smooth and strongly convex lower-level problem. The following
lemma reveals that the dynamic process yields an improved solution for the subproblem (9).

Lemma 3.10. Suppose Assumptions 3.1, 3.2, 3.3, 3.6 and 3.9 hold. Within each epoch, we set the
step size θ ∼ O(1/m) a constant for y and the step size for x as zero in the first m0 ∼ Ω(1) steps,
and the others as an appropriate constant λ ∼ O(1/m4), then we have the following inequality,

∥r̄j∥
∥r̄0∥

≤ 2
√
κ̃ (j)

(√
κ̃ (j)− 1√
κ̃ (j) + 1

)j

+
√

jLgyyεj κ̃ (j) ,

where κ̃ (j) :=
Lgy+

2
√

3
3 (j+1)3Lgyyεj

µg− 2
√

3
3 (j+1)3Lgyyεj

.

Theorem 3.11. Suppose Assumptions 3.1, 3.2, 3.3, 3.6 and 3.9 hold. Within each epoch, we set the
step size θ ∼ O( 1

m ) a constant for y and the step size for x as zero in the first m0 steps, and the
others as an appropriate constant λ ∼ O( 1

m4 ), then the iterates {xk} generated by Algorithm 2
satisfy

m

K (m−m0)

K∑

k=0,
(k modm)>m0

∥∇φ (xk)∥2 = O
(

mλ−1

K (m−m0)

)
,

where m0 ∼ Ω(logm) is a constant and m is the subspace dimension.

In other words, we prove that the proposed LancBiO is globally convergent, and the average norm
square of the hyper-gradient ∥∇φ(xk)∥2 achieves ϵ within O(ϵ−1) outer iterations.

4 NUMERICAL EXPERIMENTS

In this section, we conduct experiments in the deterministic setting to empirically validate the
performance of the proposed algorithms. We test on a synthetic problem and two deep learning tasks.
The selection of parameters and more details of the experiments are deferred to Appendix I. We have
made the code available on https://anonymous.4open.science/r/LancBiO.
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Figure 4: Comparison of the bilevel algorithms on data hyper-cleaning task when p = 0.8. Left: test
accuracy; Center: test loss; Right: residual norm of the linear system, ∥Akvk − bk∥.

Data hyper-cleaning on three datasets: The data hyper-cleaning task (Shaban et al., 2019) aims
to train a classifier in a corruption scenario, where the labels of the training data are randomly
altered to incorrect classification numbers at a probability p, referred to as the corruption rate. The
results on the MNIST dataset are presented in Figure 4 and Table 1. Note that LancBiO is crafted for
approximating the Hessian inverse vector product v∗, while the two solid methods, TTSA and stocBiO
are not. Consequently, with respect to the residual norm of the linear system, i.e., ∥Akvk − bk∥,
we only compare the results with AmIGO-GD, AmIGO-CG and SOBA. Observe that the proposed
subspace-based LancBiO achieves the lowest residual norm and the best test accuracy, and subBiO is
comparable to the other algorithms. Specifically, in Figure 4, the efficiency of LancBiO stems from
its accurate approximation of the linear system. Additionally, while AmIGO-CG is also adept at
approximating v∗, the results in Table 1 indicate that it tends to yield higher variance. Moreover,
algorithms are also evaluated on the Fashion-MNIST and Kuzushiji-MNIST datasets; see Figure 8 and
Figure 9, respectively. The proposed LancBiO performs better than other algorithms and showcases
robustness across various datasets.

Synthetic problem: We concentrate on a synthetic bilevel optimization (1) with dx = dy = d and

f(x, y) := c1 cos
(
x⊤D1y

)
+

1

2
∥D2x− y∥2 ,

g(x, y) := c2

d∑

i=1

sin(xi + yi) + log

(
d∑

i=1

exiyi

)
+

1

2
y⊤ (D3 +G) y.

It can be seen from Figure 10 that LancBiO achieves the final accuracy the fastest, which benefits
from the more accurate v∗ estimation. Figure 11 illustrates how variations in m and I influence
the performance of LancBiO and AmIGO, tested across a range from 10 to 150 for m, and from
2 to 10 for I . For clarity, we set the seed of the experiment at 4, and present typical results to
encapsulate the observed trends. It is observed that the increase of m accelerates the decrease in the
residual norm, thus achieving better convergence of the hyper-gradient, which aligns with the spirit
of the classic Lanczos process. Under the same outer iterations, to attain a comparable convergence
property, I for AmIGO-CG should be set to 10. Furthermore, given that the number of Hessian-vector
products averages at (1 + 1/m) per outer iteration for LancBiO, whereas AmIGO involves I ≥ 2
calculations, it follows that LancBiO is more efficient. Moreover, to illustrate how the methods scales
with increasing dimensions, we present the convergence time and the final upper-level value under
different problem dimensions d = 10i, i = 1, 2, 3, 4 in Table 2. The results demonstrate the proposed
methods maintain decent performance across different problem dimensions.

Logistic regression on 20Newsgroup: Consider the hyper-parameters selection task on the
20Newsgroups dataset (Grazzi et al., 2020). The goal is to train a linear classifier w and deter-
mine the optimal regularization parameter ζ. As shown in Figure 13, AmIGO-CG exhibits slightly
better performance in reducing the residual norm. Nevertheless, under the same time, LancBiO
implements more outer iterations to update x, which optimizes the hyper-function more efficiently.
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Generally, to solve standard linear systems, the Lanczos process is recognized for its efficiency and
versatility over gradient descent methods. LancBiO, in a sense, reflects this principle in the context
of bilevel optimization, underscoring the effectiveness of the dynamic Lanczos-aided approach.
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Appendix

A RELATED WORK IN BILEVEL OPTIMIZATION

A variety of bilevel optimization algorithms are based on reformulation (Liu et al., 2021b; Yao et al.,
2024). These algorithms involve transforming the lower-level problem into a set of constraints, such
as the optimal conditions of the lower-level problem (Dempe and Dutta, 2012; Li et al., 2023), or
the optimal value condition (Outrata, 1990; Ye and Zhu, 1995; 2010; Dempe and Zemkoho, 2013;
Lin et al., 2014; Xu and Ye, 2014). Furthermore, incorporating the constraints of the reformulated
problem as the penalty function into the upper-level objective inspires a series of algorithms (Liu
et al., 2022; Hu et al., 2023; Kwon et al., 2023b;a; Lu and Mei, 2023). Another category of methods
in bilevel optimization is the iterative differentiation (ITD) based method (Maclaurin et al., 2015;
Franceschi et al., 2017; Shaban et al., 2019; Grazzi et al., 2020; Liu et al., 2020; Ji et al., 2021),
which takes advantage of the automatic differentiation technique. Central to this approach is the
construction of a computational graph during each outer iteration, achieved by solving the lower-level
problem. This setup facilitates the approximation of the hyper-gradient through backpropagation, and
it is noted that parts of these methods share a unified structure, characterized by recursive equations
(Ji et al., 2021; Li et al., 2022; Zhang et al., 2023). The approximate implicit differentiation (AID)
treats the lower-level variable as a function of the upper-level variable. It calculates the hyper-gradient
to implement alternating gradient descent between the two levels (Ghadimi and Wang, 2018; Ji et al.,
2021; Chen et al., 2022; Dagréou et al., 2022; Li et al., 2022; Hong et al., 2023).

B KRYLOV SUBSPACE AND LANCZOS PROCESS

Krylov subspace (Krylov, 1931) is fundamental in numerical linear algebra (Parlett, 1998; Saad, 2011;
Golub and Van Loan, 2013) and nonlinear optimization (Yuan, 2014; Liu et al., 2021c), specifically
in the context of solving large linear systems and eigenvalue problems. We will briefly introduce the
Krylov subspace and the Lanczos process, and recap some important properties; readers are referred
to Saad (2011); Golub and Van Loan (2013) for more details.

An N -dimensional Krylov subspace generated by a matrix A and a vector b is defined as follows,

KN (A, b) := span
{
b, Ab,A2b, . . . , AN−1b

}
,

and the sequence of vectors
{
b, Ab,A2b, . . . , AN−1b

}
forms the basis for it. The Krylov subspace

is widely acknowledged for its favorable properties in various aspects, including approximating
eigenvalues (Kuczyński and Woźniakowski, 1992), solving the regularized nonconvex quadratic
problems (Gould et al., 1999; Zhang et al., 2017; Carmon and Duchi, 2018), and reducing computation
cost (Brown and Saad, 1990; Bellavia and Morini, 2001; Liu et al., 2013; Jiang et al., 2024).

The Lanczos process (Lanczos, 1950) is an algorithm that exploits the structure of the Krylov
subspace when A is symmetric. Specifically, in the j-th step of the Lanczos process, we can
efficiently maintain an orthogonal basis Qj of Kj(A, b), so that Tj = Q⊤

j AQj is tridiagonal, which
means a tridiagonal matrix Tj approximates A in the Krylov subspace. Consequently, it allows to
solve the minimal residual problem or the eigenvalue problem efficiently within the Krylov subspace.
There are several equivalent variants of the Lanczos process (Paige, 1971; 1976; Meurant and Strakoš,
2006), and we follow the update rule as shown in Algorithm 3. We now present several key properties
of the Krylov subspace and the Lanczos Process from Saad (2011).
Definition B.1. The minimal polynomial of a vector v ∈ Rn with respect to a matrix A ∈ Rn×n

is defined as the non-zero monic polynomial p of the lowest degree such that p(A)v = 0, where a
monic polynomial is a non-zero univariate polynomial with the coefficient of highest degree equal
to 1.
Remark B.2. The degree of the minimal polynomial p does not exceed n because the set of n+1
vectors {Anv,An−1v, . . . , A2v,Av, v} is linearly dependent.
Remark B.3. Suppose the minimal polynomial of a vector v with respect to a matrix A is

p(x) = xm + cm−1x
m−1 + · · ·+ c2x

2 + c1x+ c0,

and has a degree of m. If c0 ̸= 0 and A is invertible, by Definition B.1,
Amv + cm−1A

m−1v + · · ·+ c2A
2v + c1Av + c0v = 0,
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Algorithm 3 Lanczos process

Input: dimension m, matrix A ∈ Rn×n, initial vector b ∈ Rn

1: Initialization: q1 = b
∥b∥ , q0 = 0, β1 = 0, Q0 = T0 = Empty Matrix

2: for j = 1, 2, . . . ,m do
3: uj = Aqj − βjqj−1

4: αj = q⊤j uj

5: ωj = uj − αjqj
6: βj+1 = ∥ωj∥
7: qj+1 = ωj/βj+1

8: Qj = [Qj−1 qj ]

9: Tj =




Tj−1

βj

βj αj




10: end for
Output: Tm, Qm, ∥b∥ e1

multiply both sides of the equation by A−1 and rearrange the equation,

A−1v = − 1

c0

(
Am−1v + cm−1A

m−2v + · · ·+ c2Av + c1v
)
.

In other words, A−1v belongs to the Krylov subspace Km(A, v).

Proposition B.4. Denote the n × j matrix with column vectors q1, . . . , qj by Qj and the j × j
tridiagonal matrix by Tj , all of which are generated by Algorithm 3. Then the following three-term
recurrence holds.

AQj = QjTj + βj+1qj+1e
⊤
j ,

Q⊤
j AQj = Tj .

Based on Proposition B.4, the Lanczos process is illustrated in Figure 5
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+ βj+1qj+1e
⊤
j

Figure 5: Classic three-term recurrence

C DYNAMIC LANCZOS SUBROUTINE

This section lists the DLanczos subroutine (Algorithm 4) invoked in the LancBiO framework (Al-
gorithm 2). One of the main differences between Algorithm 3 and Algorithm 4 is that Algorithm 3
represents the entire m-step Lanczos process, while Algorithm 4 serves as a one-step subroutine.
Specifically, LancBiO invokes DLanczos once in each outer iteration (line 11 in Algorithm 2),
expanding both T and Q by one dimension. Consequently, the inputs of Algorithm 4 are not in-
dexed to avoid confusion, with their corresponding variables (Tk−1, Qk−1, Ak, βk) in Algorithm 2
evolving across outer iterations indexed by k. Another difference lies in the dynamic property of
the DLanczos subroutine, i.e., the matrix Ak passed during each invocation varies in Algorithm 2,
while the classic Lanczos process (Algorithm 3) employs a static A.
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Algorithm 4 Dynamic Lanczos subroutine for LancBiO (DLanczos)

Input: tridiagonal matrix T , basis matrix Q with j columns, Hessian matrix A, and β
1: if j = 1 then
2: [q1] = Q, q−1 = 0
3: else
4: [q1, q2, . . . , qj ] = Q
5: end if
6: uj = Aqj − βqj−1

7: αj = q⊤j uj

8: ωj = uj − αjqj
9: βj+1 = ∥ωj∥

10: qj+1 = ωj/βj+1

11: Qj+1 = [Q qj+1]

12: Tj+1 =




T
β

β αj




Output: Tj+1, Qj+1, βj+1

D EXTENDING LANCBIO TO NON-CONVEX LOWER-LEVEL PROBLEM

The Lanczos process is known for its efficiency of constructing Krylov subspaces and is capable of
solving indefinite linear systems (Greenbaum et al., 1999). In this section, we will briefly demonstrate
that the dynamic Lanczos-aided Bilevel Optimization framework, LancBiO, can also handle lower-
level problems with the indefinite Hessian.

Suppose A is invertible, and consider solving a standard linear system

Ax = b,

with initial ponit x0, initial residual r0 = b− Ax0 and initial error e0 = A−1b− x0. If the matrix
A is positive-definite, the classic Lanczos algorithm is equivalent to the Conjugate Gradient (CG)
algorithm (Hestenes et al., 1952), both of which minimize the A-norm of the error in an affine
space (Greenbaum, 1997; Meurant and Strakoš, 2006), i.e., at the m-th step,

xm = argmin
x∈x0+Km(A,b)

∥∥A−1b− x
∥∥
A
.

If the matrix A is not positive-definite, MINRES (Paige and Saunders, 1975) is the algorithm
recognized to minimize the 2-norm of the residual in an affine space (Greenbaum, 1997; Meurant and
Strakoš, 2006), i.e., at the m-th step,

xm = argmin
x∈x0+Km(A,b)

∥b−Ax∥ . (10)

Additionally, based on Qm as the basis of the Krylov subspace Km(A, b), Tm as the projection of A
onto Km(A, b), and the three-term recurrence

AQm = QmTm + βm+1qm+1e
⊤
m,

we can rewrite (10) as
xm = x0 +Qmcm,

with

cm =argmin
c

∥r0 −AQmc∥

=argmin
c

∥r0 −Qm+1Tm+1,mc∥

=argmin
c

∥Qm+1 (∥r0∥ e1 − Tm+1,mc)∥

=argmin
c

∥∥r0∥ e1 − Tm+1,mc∥ ,
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where

Tm+1,m :=

[
Tm

βm+1e
⊤
m

]
.

In the spirit of MINRES, to address the bilevel problem where the lower-level problem exhibits
an indefinite Hessian, the framework LancBiO (Algorithm 2) requires only a minor modification.
Specifically, line 13 in Algorithm 2, , which solves a small-size tridiagonal linear system, will be
replaced by solving a low-dimensional least squares problem

ck = argmin
c

∥∥rk∥ e1 − Tk+1,kc∥2 ,

and computing the correction
∆vk = Qkck,

where

Tk+1,k :=

[
Tk

βk+1e
⊤
k

]
.

E PROOF OF SMOOTHNESS OF y∗ AND φ

To ensure completeness, in this subsection, we provide detailed proofs for the preliminary lemmas
that characterize the smoothness of the lower level solution y∗ and the hyper-objective φ.

Lemma E.1. Under the Assumptions 3.2 and 3.3, y∗(x) is Lgx

µg
-Lipschitz continuous, i.e., for any

x1, x2 ∈ Rdx ,

∥y∗(x1)− y∗(x2)∥ ≤ Lgx

µg
∥x1 − x2∥ .

Proof. The assunption that ∇xg(x, y) is Lgx-Lipschitz reveals
∥∥∇2

xyg(x, y)
∥∥ ≤ Lgx. Then

∥∇y∗ (x)∥ =
∥∥∥∇2

xyg (x, y)
[
∇2

yyg (x, y)
]−1
∥∥∥ ≤

∥∥∇2
xyg (x, y)

∥∥
∥∥∥
[
∇2

yyg (x, y)
]−1
∥∥∥ ≤ Lgx

µg
,

since g(x, ·) is µg-strongly convex.

Lemma E.2. Under the Assumptions 3.1, 3.2 and 3.3, the hyper-gradient ∇φ(x) is Lφ-Lipschitz
continuous, i.e., for any x1, x2 ∈ Rdx ,

∥∇φ(x1)−∇φ(x2)∥ ≤ Lφ ∥x1 − x2∥ ,

where Lφ =
(
1 +

Lgx

µg

)(
Lfx +

LgxLfy+LgxyCfy

µg
+

LgxCfyLgyy

µ2
g

)
.

Proof. By combining

(A∗
1)

−1
b∗1 − (A∗

2)
−1

b∗2

=(A∗
1)

−1
b∗1 − (A∗

1)
−1

b∗2 + (A∗
1)

−1
b∗2 − (A∗

2)
−1

b∗2

=(A∗
1)

−1
(b∗1 − b∗2) + (A∗

1)
−1

(A∗
2 −A∗

1) (A
∗
2)

−1
b∗2

with the properties revealed by Assumptions 3.1 3.2 and 3.3, we can derive
∥∥∥(A∗

1)
−1

b1 − (A∗
2)

−1
b2

∥∥∥ ≤ Lfy

µg

(
1 +

Lgx

µg

)
∥x1 − x2∥+

CfyLgyy

µ2
g

(
1 +

Lgx

µg

)
∥x1 − x2∥ .

In a similar way, the subsequent decomposition holds,

∇φ (x1)−∇φ (x2) = (∇xf (x1, y
∗ (x1))−∇xf (x2, y

∗ (x2)))

−∇2
xyg (x1, y

∗ (x1)) (A
∗
1)

−1
b∗1 +∇2

xyg (x1, y
∗ (x1)) (A

∗
2)

−1
b∗2

+∇2
xyg (x2, y

∗ (x2)) (A
∗
2)

−1
b∗2 −∇2

xyg (x1, y
∗ (x1)) (A

∗
2)

−1
b∗2.
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It follows that

∥∇φ (x1)−∇φ (x2)∥ ≤ Lfx

(
1 +

Lgx

µg

)
∥x1 − x2∥

+ Lgx

(
1 +

Lgx

µg

)(
Lfy

µg
+

CfyLgyy

µ2
g

)
∥x1 − x2∥

+ Lgxy
Cfy

µg

(
1 +

Lgx

µg

)
∥x1 − x2∥

= Lφ ∥x1 − x2∥ ,

where Lφ :=
(
1 +

Lgx

µg

)(
Lfx +

LgxLfy+LgxyCfy

µg
+

LgxCfyLgyy

µ2
g

)
.

F PROPERTIES OF DYNAMIC SUBSPACE IN SECTION 3.1

In this section, we focus on the properties of the basis matrix Q and the tridiagonal matrix T
constructed within each epoch of the dynamic Lanczos process. Denote

A∗
k = ∇2

yyg (xk, y
∗
k) and b∗k = ∇yf (xk, y

∗
k) .

An epoch is constituted of a complete m-step dynamic Lanczos process between two restarts, namely,
after h epochs, the number of outer iterations is mh. Given the outer iterations k = mh + j for
j = 1, 2, . . . ,m, we denote

εhst :=

(
1 +

Lgx

µg

)
∥xmh+s − xmh+t∥+

∥∥ymh+s − y∗mh+s

∥∥

for s, t = 1, 2, . . . ,m and
εhj := max

1≤s,t≤j
εhst,

serving as the accumulative difference. For brevity, we omit the superscript where there is no
ambiguity, and we are slightly abusing of notation that at the current epoch, {Amh+j} and {bmh+j}
are simplified by {Aj} and {bj} for j = 1, . . . ,m. In addition, the approximations in the residual
system (8) are simplified by v̄ and b̄ := b1 −A1v̄.

We rewrite the dynamic update rule from Section 2.2

uj = Ajqj − βjqj−1, (11)

αj = q⊤j uj , (12)

ωj = uj − αjqj , (13)
βj+1 = ∥ωj∥ , (14)
qj+1 = ωj/βj+1, (15)

for j = 1, 2, . . . ,m with q0 = 0 , β1 = 0 and Q1 = q1 = b̄/
∥∥b̄
∥∥. The following proposition

characterizes that the dynamic subspace constructed in Algorithm 2 within an epoch is indeed an
approximate Krylov subspace.
Proposition F.1. At the j-th step within an epoch (j = 1, 2, . . . ,m− 1), the subspace spanned by
the matrix Qj+1 in Algorithm 2 satisfies

span(Qj+1) ⊆ span

{
Aa1

1 Aa2
2 · · ·Aaj

j b̄

∣∣∣∣
as = 0 or 1

∀s = 1, 2, . . . , j

}
. (16)

Specifically, when A1 = A2 = · · · = Aj = A and Qj+1 is of full rank,

span(Qj+1) = Kj+1

(
A, b̄

)

Proof. Note that Q1 = span{q1} with q1 = b̄

∥b̄∥ satisfies (16). We will give a proof by induction.

Suppose for i = 1, 2, . . . , j, it holds that

span(Qi+1) ⊆ span

{
Aa1

1 Aa2
2 · · ·Aai

i b̄

∣∣∣∣
as = 0 or 1

∀s = 1, 2, . . . , i

}
.
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By the dynamic Lanczos process, it yields

qj+2 =
1

βj+2
(Aj+1qj+1 − βj+1qj − αj+1qj+1) . (17)

Since

qj+1 ∈ span

{
Aa1

1 Aa2
2 · · ·Aaj

j b̄

∣∣∣∣
as = 0 or as = 1
∀s = 1, 2, . . . , j

}
,

then we have

Aj+1qj+1 ∈ span

{
Aa1

1 Aa2
2 · · ·Aaj+1

j+1 b̄

∣∣∣∣
as = 0 or as = 1

∀s = 1, 2, . . . , j + 1

}
.

It follows from (17) that

qj+2 ∈ span

{
Aa1

1 Aa2
2 · · ·Aaj+1

j+1 b̄

∣∣∣∣
as = 0 or as = 1

∀s = 1, 2, . . . , j + 1

}
.

By induction, we complete the proof.

Although we can estimate the difference between the basis of the above two subspaces, it is noted
that the Krylov subspaces can be very sensitive to small perturbation (Meurant and Strakoš, 2006;
Paige, 1976; 1980; Greenbaum, 1997). The next lemma interprets the perturbation analysis for the
dynamic Lanczos process in terms of A∗

j , which satisfies an approximate three-term recurrence with
a perturbation term δQ.

Lemma F.2. Suppose Assumptions 3.1 to 3.3 hold. The dynamic Lanczos process in Algorithm 2
with normalized q1 and αj , βj , qj satisfies

A∗
jQj = QjTj + βj+1qj+1e

⊤
j + δQj (18)

for j = 1, 2, . . . ,m, where Qj = [q1, q2, . . . , qj ], δQj = [δq1, δq2, . . . , δqj ],

Tj =




α1 β2

β2 α2 β3

β3
. . .

. . .
. . .

. . . βj

βj αj




.

The columns of the perturbation δQj satisfy

∥δqi∥ ≤ Lgyyεj , for i = 1, 2, . . . , j.

Additionally, if we decompose Qj as

Q⊤
j Qj = R⊤

j +Rj , (19)

with Rj as a strictly upper triangular matrix, then

TjRj −RjTj = βj+1Q
⊤
j qj+1e

⊤
j + δRj , (20)

where δRj is strictly upper triangular with elements |ζst| ≤ 2Lgyyεj , for 1 ≤ s < t ≤ j.

Proof. From
αj = q⊤j uj = q⊤j Ajqj − βjq

⊤
j qj−1

and

q⊤j+1qj =
1

βj+1
ω⊤
j qj =

1

βj+1
(uj − αjqj)

⊤
qj =

1

βj+1
(Ajqj − αjqj − βjqj−1)

⊤
qj ,

we can derive
q⊤j+1qj = 0 (21)
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by induction. Then, we combine equations (11), (12), (13) and (15), and rewrite them in the perturbed
form:

βi+1qi+1 = Aiqi − βiqi−1 − αiqi = A∗
jqi − βiqi−1 − αiqi + δqi, for i = 1, 2, . . . , j, (22)

where ∥δqi∥ ≤ Lgyyεj due to Assumpstions 3.2 and 3.3. Specifically, (22) can be rewritten in a
compact form:

A∗
jQj = QjTj + βj+1qj+1e

⊤
j + δQj .

Then, we consider the orthogonality of matrix Qj , which is reflected by Rj in (19). Multiply on both
sides of (18) by Q⊤

j ,

Q⊤
j A

∗
jQj = Q⊤

j QjTj + βj+1Q
⊤
j qj+1e

⊤
j +Q⊤

j δQj .

Combining its symmetry with the decomposition (19), we obtain

Tj

(
R⊤

j +Rj

)
−
(
R⊤

j +Rj

)
Tj = βj+1

(
Q⊤

j qj+1e
⊤
j − ejq

⊤
j+1Qj

)
+Q⊤

j δQj − δQ⊤
j Qj . (23)

Denote Mj = TjRj − RjTj which is upper triangular. Since the consecutive qi is orthogonal as
revealed by (21), we conclude that the diagonal elements of Mj are 0. Furthermore, by extracting the
upper triangular part of the right hand side of (23), we can get

Mj = TjRj −RjTj = βj+1Q
⊤
j qj+1e

⊤
j + δRj ,

where δRj is strictly upper triangular with elements ζst satisfying: for t = 2, 3, . . . , j,
{

ζt−1,t = q⊤t−1δqt − δq⊤t−1qt
ζst = q⊤s δqt − δq⊤s qt, s = 1, 2, . . . , t− 2.

From the boundedness of ∥δqj∥, it follows that for 1 ≤ s < t ≤ j, |ζst| ≤ 2Lgyyεj .

Lemma F.2 illustrates the influence of the dynamics in Algorithm 2 imposed on the three-term
Lanczos recurrence, and as (19) reveals, R reflects the loss of orthogonality of the basis Q. However,
the following lemmas demonstrate that the range of eigenvalues of the approximate projection matrix
T is indeed controllable.

To proceed, we establish the Ritz pairs of Tj as
(
µ
(j)
i , y

(j)
i

)
for i = 1, 2, . . . , j, such that

TjY
(j) = Y (j) diag

(
µ
(j)
1 , µ

(j)
2 , . . . , µ

(j)
j

)
.

where the normalized {y(j)i }ji=1 form the orthogonal matrix Y (j) with the elements ς
(j)
st for 1 ≤

s, t ≤ j, and we arrange the Ritz values in a specific order,

µ
(j)
1 > µ

(j)
2 > · · · > µ

(j)
j .

We define the j-th approximate eigenvector matrix

Z(j) :=
[
z
(j)
1 , z

(j)
2 , . . . , z

(j)
j

]
:= QjY

(j).

and the corresponding Rayleigh quotients of A∗
j

ν
(j)
i :=

(
z
(j)
i

)⊤
A∗

jz
(j)
i

(
z
(j)
i

)⊤
z
(j)
i

, for i = 1, 2, . . . , j.

The subsequent lemma describes the difference of eigenvalues between Tj and some Tn constructed
in preceding steps.

Lemma F.3. Suppose Assumptions 3.1 to 3.3 hold. For any eigenpair
(
µ
(j)
i , y

(j)
i

)
of Tj , there exists

an integer pair (s, n) where 1 ≤ s ≤ n < j, such that
∣∣∣µ(j)

i − µ(n)
s

∣∣∣ ≤ 2j2Lgyyεj
√
3

∣∣∣∣
(
y
(j)
i

)⊤
Rjy

(j)
i

∣∣∣∣
. (24)
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Proof. Multiply the extended eigenvector y(i)r of Ti by Tj , where i < j,

Tj

[
y
(i)
r

0

]
=

[
µ
(i)
r y

(i)
r

βi+1ς
(i)
ir e1

]
. (25)

Then multiply
(
y
(j)
s

)⊤
on the both sides of (25),

(
µ(j)
s − µ(i)

r

)(
y(j)s

)⊤ [ y
(i)
r

0

]
= βi+1ς

(i)
ir ς

(j)
i+1,s, (26)

and multiply the eigenvectors
(
y
(j)
s

)⊤
and y

(j)
t on the left and right of equation (20), respectively,

(
µ(j)
s − µ

(j)
t

)(
y(j)s

)⊤
Rjy

(j)
t = ς

(j)
jt βj+1

(
z(j)s

)⊤
qj+1 + ϵ

(j)
st , (27)

where we define
ϵ
(j)
st :=

(
y(j)s

)⊤
δRjy

(j)
t . (28)

Note that
∣∣∣ϵ(j)st

∣∣∣ ≤ 2jLgyyεj because of Lemma F.2. Specifically, taking s = t in (27),

(
z(j)s

)⊤
qj+1 = − ϵ

(j)
ss

βj+1ς
(j)
js

, (29)

we can rewrite (29) in the matrix form

Q⊤
r qr+1 = Y (r)cr, (30)

where for r = 1, . . . , s,

e⊤s cr := − ϵ
(r)
ss

βr+1ς
(j)
rs

.

By observing that Q⊤
r qr+1 = Y (r)cr is the (r + 1)-th column of Rj , we can derive

(
y
(j)
i

)⊤
Rjy

(j)
i = −

j−1∑

r=1

ς
(j)
r+1,i

r∑

t=1

ϵ
(r)
tt

βr+1ς
(r)
rt

(
y
(j)
i

)⊤ [ y
(r)
t
0

]
(31)

= −
j−1∑

r=1

(
ς
(j)
r+1,i

)2 r∑

t=1

ϵ
(r)
tt

µ
(j)
i − µ

(r)
t

, (32)

where (31) and (32) follow from (30) and (26) respectively. Consequently, the definition (28) reveals
j∑

s,t=1

(
ϵ
(j)
st

)2
= ∥δRj∥2F ≤ 2j2Lgyyεj . (33)

Based on (32) and the orthogonality of Y (j),

∣∣∣∣
(
y
(j)
i

)⊤
Rjy

(j)
i

∣∣∣∣ ≤

∣∣∣∣∣∣∣

j−1∑

r=1

ς
(j)
r+1,i

r∑

t=1

ϵ
(r)
tt

min
1≤d≤l<j

∣∣∣µ(j)
i − µ

(l)
d

∣∣∣

∣∣∣∣∣∣∣

≤ 1

min
1≤d≤l<j

∣∣∣µ(j)
i − µ

(l)
d

∣∣∣

∣∣∣∣∣

j−1∑

r=1

r∑

t=1

ς
(j)
r+1,iϵ

(r)
tt

∣∣∣∣∣ ,

it follows from the Cauchy–Schwarz inequality and (33) that

min
1≤d≤l<j

∣∣∣µ(j)
i − µ

(l)
d

∣∣∣ ≤
√
j

√
∑j−1

r=1

∑r
t=1

(
ϵ
(r)
tt

)2

∣∣∣∣
(
y
(j)
i

)⊤
Rjy

(j)
i

∣∣∣∣
≤ 2j2Lgyyεj

√
3

∣∣∣∣
(
y
(j)
i

)⊤
Rjy

(j)
i

∣∣∣∣
.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Lemma F.4. Suppose Assumptions 3.1 to 3.3 hold. Qj and Tj are the basis matrix and the approxi-
mate tridiagonal matrix in the j-th step and Rj is the strictly upper triangular matrix defined in (19)
characterizing the orthogonality of Qj . Given µ

(j)
i the i-th eigenvalue of Tj , then for i = 1, . . . , j,

µg −
2
√
3

3
(j + 1)

3
Lgyyεj ≤ µ

(j)
i ≤ Lgy +

2
√
3

3
(j + 1)

3
Lgyyεj . (34)

Proof. By conducting the left multiplication with
(
y
(j)
i Qj

)⊤
and the right multiplication with y

(j)
i

on both sides of equation (18), we obtain the following equation,
(
z
(j)
i

)⊤
A∗

jz
(j)
i − µ

(j)
i

(
z
(j)
i

)⊤
z
(j)
i = −ϵ

(j)
ii +

(
z
(j)
i

)⊤
δQjy

(j)
i .

Dividing it by
(
z
(j)
i

)⊤
z
(j)
i , we have

∣∣∣∣∣∣∣

(
z
(j)
i

)⊤
A∗

jz
(j)
i − µ

(j)
i

(
z
(j)
i

)⊤
z
(j)
i

(
z
(j)
i

)⊤
z
(j)
i

∣∣∣∣∣∣∣
≤

∣∣∣ϵ(j)ii

∣∣∣+
∣∣∣∣
(
z
(j)
i

)⊤
δQjy

(j)
i

∣∣∣∣
∣∣∣∣1 + 2

(
y
(j)
i

)⊤
Rjy

(j)
i

∣∣∣∣

≤

∣∣∣ϵ(j)ii

∣∣∣+ Lgyyεj

√
j

(∣∣∣∣1 + 2
(
y
(j)
i

)⊤
Rjy

(j)
i

∣∣∣∣
)

∣∣∣∣1 + 2
(
y
(j)
i

)⊤
Rjy

(j)
i

∣∣∣∣
, (35)

where the inequalities come from
∥∥∥z(j)i

∥∥∥
2

= 1 + 2
(
y
(j)
i

)⊤
Rjy

(j)
i . (36)

Case I: If ∣∣∣∣
(
y
(j)
i

)⊤
Rjy

(j)
i

∣∣∣∣ <
3

8
− εj

2
(37)

holds, then from (36), ∥∥∥z(j)i

∥∥∥ ≥ 1

2
.

Furthermore, (35) reveals that there exists a Rayleigh quotient ν(j) of A∗
j that satisfies

∣∣∣ν(j) − µ
(j)
i

∣∣∣ ≤ 2
∣∣∣ϵ(j)ii

∣∣∣+
√
2jLgyyεj ≤

(
4j +

√
2j
)
Lgyyεj .

Case II: If the condition (37) does not hold, by applying Lemma F.3, we can find an integer pair
(s1, n1) with 1 ≤ s1 ≤ n1 < j such that

∣∣∣µ(j)
i − µ(n1)

s1

∣∣∣ ≤ 2j2Lgyyεj
√
3

∣∣∣∣
(
y
(j)
i

)⊤
Rjy

(j)
i

∣∣∣∣
≤ 2

√
3j2Lgyyεj .

By observing that
(
µ
(n1)
s1 , y

(n1)
s1

)
and

(
y
(n1)
s1

)⊤
Rn1y

(n1)
s1 can also be categorized into Case I or

Case II, we can repeat this process and construct a sequence {(st, nt)}l+1
t=0 with 1 ≤ nl+1 < nl <

· · · < n1 < n0 = j until ∣∣∣∣
(
y(nl+1)
sl+1

)⊤
Rjy

(nl+1)
sl+1

∣∣∣∣ <
3

8
− εnl+1

2
.
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Inequality (37) holds when the superscript j = 1 since T1 = [α1], y
(1)
1 = 1 and z

(1)
1 = q1. Therefore,

we can obtain {(st, nt)}l+1
t=0 in finite steps, resulting in the following estimate.

∣∣∣ν̄(j) − µ
(j)
i

∣∣∣ ≤
∣∣∣ν̄(j) − µ(nl+1)

sl+1

∣∣∣+
l∑

t=0

∣∣∣µ(nt+1)
st+1

− µ(nl)
st

∣∣∣

≤
(
4j +

√
2j
)
Lgyyεj +

l∑

t=0

2
√
3n2

tLgyyεj

≤ 2
√
3

3
(j + 1)

3
Lgyyεj ,

for some ν̄(j).

Any Rayleigh quotient of A∗
j is bounded by its eigenvalues (Parlett, 1998), i.e., for any ν(j),

λ
(j)
min ≤ ν(j) ≤ λ(j)

max,

where λ
(j)
min and λ

(j)
max are the minimum and maximal eigenvalue of A∗

j , respectively. Based on
Assumption 3.2 and Assumption 3.3, we complete the proof.

G PROOF OF LEMMA 3.10

G.1 PROOF SKETCH

The proof of Lemma 3.10 is structured by four steps.

Step1: extending εj to ε̃j within the lemmas detailed in Appendix F.
In Appendix F, we adopt A∗

j and b∗j as reference values with each epoch for the analysis, i.e., for
j = 1, 2, . . . ,m,

A∗
j := ∇2

yyg
(
xj , y

∗
j

)
, b∗j := ∇yf

(
xj , y

∗
j

)
, b̄ := b1 −A1v̄, r̄0 := b̄, r̄j := b̄−A∗

j∆vj .

and

εj := max
1≤s,t≤j

(
1 +

Lgx

µg

)
∥xmh+s − xmh+t∥+

∥∥ymh+s − y∗mh+s

∥∥ .

In parallel, we can also view the A1, b1 as reference values. In this way, denote the similar quantities

Aj := ∇2
yyg (xj , yj) , bj := ∇yf (xj , yj) , b̄

′ := b1 −A1v̄, r̄
′
0 := b̄′, r̄′j := b̄′ −A1∆vj . (38)

and

ε̃j := max
1≤s,t≤j

∥xmh+s − xmh+t∥+ ∥ymh+s − ymh+t∥ . (39)

Consequently, we extend the lemmas in Appendix F. The results listed in Appendix G.2 are the recipe
of Step2.

Step2: upper-bounding the residual
∥∥r̄′j
∥∥.

In Appendix G.3, we then demonstrate that if the value of ε̃j is not too large,
∥∥r̄′j
∥∥ can be bounded,

which is an important lemma for Step3.

Step3: controlling ε̃j and εj by induction.
Since the expression of ε̃j does not involve y∗, its magnitude can be controlled by adjusting the step
size, implied by (39). With the help of the stability of ε̃j , we can prove

µg −
2
√
3

3
(j + 1)

3
Lgyyεj > 0. (40)

Step4: proof of Lemma 3.10
Based on the conclusion (40) revealing the benign property of the dynamic process, we achieve the
proof of Lemma 3.10.
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G.2 EXTENDED LEMMAS FROM APPENDIX F

In this part, we view the A1, b1 as reference values. In this way, we can institute A∗
j with A1 and εj

with ε̃j in the lemmas from Appendix F, resulting in the extended version of lemmas.

Lemma G.1. (Extended version of Lemma F.2) Suppose Assumptions 3.1 to 3.3 hold. The dynamic
Lanczos process in Algorithm 2 with normalized q1 and αj , βj , qj satisfies

A1Qj = QjTj + βj+1qj+1e
⊤
j + δQ′

j (41)

for j = 1, 2, . . . ,m, where Qj = [q1, q2, . . . , qj ], δQ′
j =

[
δq′1, δq

′
2, . . . , δq

′
j

]
,

Tj =




α1 β2

β2 α2 β3

β3
. . .

. . .
. . .

. . . βj

βj αj




.

The columns of the perturbation δQ′
j satisfy

∥δq′i∥ ≤ Lgyy ε̃j , for i = 1, 2, . . . , j. (42)

Lemma G.2. (Extended version of Lemma F.4) Suppose Assumptions 3.1 to 3.3 hold. Qj and Tj

are the basis matrix and the approximate tridiagonal matrix in the j-th step. Take µ
(j)
i as the i-th

eigenvalue of Tj , then for i = 1, . . . , j,

µg −
2
√
3

3
(j + 1)

3
Lgyy ε̃j ≤ µ

(j)
i ≤ Lgy +

2
√
3

3
(j + 1)

3
Lgyy ε̃j . (43)

G.3 PROOF OF STEP2

The following lemma demonstrates that if the value of ε̃j is not too large,
∥∥r̄′j
∥∥ can be bounded.

Lemma G.3. Suppose Assumpsions 3.1 to 3.3 and

µg −
2
√
3

3
(j + 1)

3
Lgyy ε̃j > 0

are satisfied within an epoch. Then, it holds that
∥∥r̄′j
∥∥

∥r̄′0∥
≤ 2
√
κ̃′ (j)

(√
κ̃′ (j)− 1√
κ̃′ (j) + 1

)j

+
√

jLgyyεj κ̃
′ (j) ,

where κ̃′ (j) :=
Lgy+

2
√

3
3 (j+1)3Lgyy ε̃j

µg− 2
√

3
3 (j+1)3Lgyy ε̃j

.

Proof. Denote the solution in the dynamic subspace in the j-th step by

∆ξj = (Tj)
−1

b̄ = ∥r̄′0∥ (Tj)
−1

e1, (44)

where Tj is nonsingular because of Lemma G.2. By (38), (41), and (44), we have

r̄′j = b̄−A1Qj∆ξj = −βj+1qj+1e
⊤
j ∆ξj − δQ′

j∆ξj .

It follows that ∥∥r̄′j
∥∥

∥r̄′0∥
≤
∥∥δQ′

j

∥∥
∥∥∥(Tj)

−1
∥∥∥+

∣∣∣βj+1e
⊤
j (Tj)

−1
e1

∣∣∣ . (45)

The first term on the right side of (45) can be bounded by (42) and (43):

∥∥δQ′
j

∥∥
∥∥∥(Tj)

−1
∥∥∥ ≤

√
jLgyy ε̃j

Lgy

µg − 2
√
3

3 (j + 1)
3
Lgyy ε̃j

≤
√

jLgyy ε̃j κ̃
′ (j) . (46)
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Recall that

Tj+1,j :=

[
Tj

βj+1e
⊤
j

]
, (47)

and that for any symmetric tridiagonal matrix T , where the upper left (j +1)× j block is Tj+1,j , the
application of the classic Lanczos algorithm to T , starting with the initial vector e1 will result in the
matrix Tj+1,j at the j-th step. To construct a suitable (j + 1)× (j + 1) symmetric tridiagonal matrix
T, we consider a virtual step with λ⋄ = θ⋄ = 0, which leads to (x⋄

j+1, y
⋄
j+1) = (xj , yj), ε̃⋄j+1 = ε̃j ,

and

T =




Tj+1,j

βj+1

α̃⋄
j+1




By Lemma G.2, given any eigenvalue µ of T

µg −
2
√
3

3
(j + 1)

3
Lgyy ε̃j ≤ µ ≤ Lgy +

2
√
3

3
(j + 1)

3
Lgyy ε̃j .

In this way,
∣∣∣βj+1e

⊤
j (Tj)

−1
e1

∣∣∣ can be seen as the residual in the j-th step of the classic Lanczos
process with the positive-definite matrix T and the iniitial vector e1. Since the eigenvalues of T
satisfy (47), it follows from the standard convergence property of the Lanczos process (Greenbaum,
1997) that

∣∣∣βj+1e
⊤
j (Tj)

−1
e1

∣∣∣ ≤ 2
√
κ̃′ (j)

(√
κ̃′ (j)− 1√
κ̃′ (j) + 1

)j

,

which completes the proof.

G.4 PROOF OF µg − 2
√
3

3 (j + 1)
3
Lgyyεj > 0

In this part, we will give the detailed proof of µg − 2
√
3

3 (j + 1)
3
Lgyyεj > 0. At the same time, we

demonstrate that, with appropriate step sizes, the auxiliary variable vk is bounded, thereby showing
that the hyper-gradient estimator (5) remains bounded. This ensures the stable behavior of the
dynamic Lanczos process,

Lemma G.4. Suppose Assumptions 3.1, 3.2, 3.3, 3.6 and 3.9 hold. If within each epoch, we set the
step size θ ∼ O( 1

m ) a constant for y and the step size for x as zero in the first m0 ∼ O(1) steps, and
the others as an appropriate constant λ ∼ O( 1

m4 ), then for any epoch,

µg −
2
√
3

3
(j + 1)

3
Lgyyεj > 0, for j = 1, 2, . . . ,m+ 1,

and there exists a constant Cv > 0 so that ∥vk∥ ≤ Cv for vk generated by Algorithm 2.

Proof. Consider the iterates within one epoch and the constants

0 < ε̃ < µg and κ̃ :=
Lgy + ε̃

µg − ε̃
.

It follows from Lemma G.3 that if ε̃j ≤
√
3ε̃

2(m+1)3Lgyy
, then

∥b1 −A1vj∥
∥b1 −A1v̄∥

≤ 2
√
κ̃

(√
κ̃− 1√
κ̃+ 1

)j

+

√
3ε̃

2(m+ 1)2
κ̃ ≤ 3

√
κ̃. (48)

Then, we give a proof by induction. At the beginning of the algorithm, Assumption 3.9 reveals

ε1 = ∥y1 − y∗1∥ ≤
√
3µg

8 (m+ 1)
3
Lgyy

.
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Combining it with ∥b1 −A1v̄0∥ ≤ Cr constructs the start of induction within an epoch and induction
between epochs. Within an epoch, suppose the following statements hold for i = 1, 2, . . . , j,

∥b1 −A1vi∥ ≤ 3
√
κ̃Cr,

∥vi∥ ≤ 1

µg

(
3
√
κ̃Cr + Cfx

)
,

∥∥∥∇̃φi

∥∥∥ ≤ Cfx +
1

µ2
g

(
3
√
κ̃Cr + Cfx

)
,

ε̃i ≤
√
3ε̃

2(m+ 1)3Lgyy
,

εi ≤
√
3µg

4 (m+ 1)
3
Lgyy

.

Then by setting the stepsizes

θ ≤ ε̃

µgLgym
,

λ ≤
√
3ε̃

4(m+ 1)4Lgyy

(
1 + θ

LgyLgx

µg

)−1(
Cfx +

1

µ2
g

(
3
√
κ̃Cr + Cfx

))−1

,

(49)

and noticing that

∥∇yg(xi+1, yi)∥ =
∥∥∇yg(xi+1, yi)−∇yg(xi+1, y

∗
i+1)

∥∥
≤ Lgy

∥∥yi − y∗i+1

∥∥
≤ Lgy

(
∥yi − y∗i ∥+

∥∥y∗i − y∗i+1

∥∥)

≤ Lgy ∥yi − y∗i ∥+
LgyLgx

µg
∥xi − xi+1∥ ,

we can get

ε̃j+1 ≤ λ

i=j∑

i=1

∥∥∥∇̃φi

∥∥∥+ θ

i=j∑

i=1

∥∇yg (xi+1, yi)∥

≤
(
1 + θ

LgyLgx

µg

)
λ

i=j∑

i=1

∥∥∥∇̃φi

∥∥∥+ θLgy

i=j∑

i=1

∥yi − y∗i ∥

≤
(
1 + θ

LgyLgx

µg

)
λ

i=j∑

i=1

∥∥∥∇̃φi

∥∥∥+ θLgy

i=j∑

i=1

εi

≤
(
1 + θ

LgyLgx

µg

)
λ

i=j∑

i=1

∥∥∥∇̃φi

∥∥∥+ θLgy

√
3µgm

4 (m+ 1)
3
Lgyy

≤
√
3ε̃

2(m+ 1)3Lgyy
. (50)

It follows from (48) that

∥b1 −A1vj+1∥ ≤ 3
√
κ̃Cr, (51)

∥vj+1∥ =
∥∥A−1

1 (b1 −A1vj+1 − b1)
∥∥ ≤ 1

µg

(
3
√
κ̃Cr + Cfx

)
, (52)

∥∥∥∇̃φj+1

∥∥∥ ≤ Cfx +
1

µ2
g

(
3
√
κ̃Cr + Cfx

)
. (53)
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Additionally, the descent property of ∥ys − y∗s∥ and the Lipschitz continuity of y∗ reveal that

∥ys − y∗s∥ ≤ (1− θµg)
1
2 ∥ys−1 − y∗s∥ (54)

≤ (1− θµg)
1
2
∥∥ys−1 − y∗s−1

∥∥+ (1− θµg)
1
2

(
Lgx

µg

)
∥xs − xs−1∥

≤ (1− θµg)
s−1
2 ∥y1 − y∗1∥+ (1− θµg)

1
2

(
Lgx

µg

)
λ

t=s−1∑

t=1

∥∥∥∇̃φt

∥∥∥

≤∥y1 − y∗1∥+ (1− θµg)
1
2

(
Lgx

µg

)
λ

t=s−1∑

t=1

∥∥∥∇̃φt

∥∥∥. (55)

Setting

λ ≤
√
3µg

8(m+ 1)4Lgyy

(
Cfx +

1

µ2
g

(
3
√
κ̃Cr + Cfx

))−1(
1 +

Lgx

µg
+ (1− θµg)

1
2

(
Lgx

µg

))−1

yields from Assumption 3.9, (52), (55) that

εj+1 ≤
(
1 +

Lgx

µg

)
max

1≤s,t≤j+1
∥xs − xt∥+ max

1≤s≤j+1
∥ys − y∗s∥

≤∥y1 − y∗1∥+
(
1 +

Lgx

µg
+ (1− θµg)

1
2

(
Lgx

µg

))
λ

i=j∑

i=1

∥∥∥∇̃φi

∥∥∥

≤∥y1 − y∗1∥+
(
1 +

Lgx

µg
+ (1− θµg)

1
2

(
Lgx

µg

))
λ

i=j∑

i=1

∥∥∥∇̃φi

∥∥∥

≤
√
3µg

4 (m+ 1)
3
Lgyy

. (56)

As for the next epoch, denoting Cv = 1
µg

(
3
√
κ̃Cr + Cfx

)
, we have

∥bm+1 −Am+1vm∥ ≤ (Lfx + LgyyCv) ε̃m+1 + ∥b1 −A1vm∥

≤ (Lfx + LgyyCv) ε̃m+1 +

(
2
√
κ̃

(√
κ̃− 1√
κ̃+ 1

)m

+
√
mLgyy ε̃m+1κ̃

)
Cr

≤ Cr

((
Lfx + LgyyCv

Cr

)
ε̃m+1 + 2

√
κ̃

(√
κ̃− 1√
κ̃+ 1

)m

+
√
mLgyy ε̃m+1κ̃

)

≤ Cr, (57)

by choosing m, ε̃ such that
(
Lfx + LgyyCv

Cr

)
ε̃m+1 + 2

√
κ̃

(√
κ̃− 1√
κ̃+ 1

)m

+
√
mLgyy ε̃m+1κ̃ ≤ 1.

Moreover, since the step size for x is set as zero at the first m0 steps in the next epoch, we obtain for
i = 1, 2, . . . ,m0,

εm+i =
∥∥ym+i − y∗m+i

∥∥ ≤ (1− θµg)
i
2 ∥ym − y∗m∥ ≤ εm ≤

√
3µg

4 (m+ 1)
3
Lgyy

. (58)

Specifically,

∥∥ym+m0
− y∗m+m0

∥∥ ≤ (1− θµg)
m0
2 ∥ym − y∗m∥ ≤

√
3µg

8 (m+ 1)
3
Lgyy

(59)

if we choose m0 so that (1− θµg)
m0
2 ≤ 1

2 . Therefore, by induction within an epoch (50), (51), (52),
(53), (56) and induction between epochs (57), (58), (59), we conclude the lemma.
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G.5 PROOF OF LEMMA 3.10

Lemma G.5. Suppose Assumptions 3.1, 3.2, 3.3, 3.6 and 3.9 hold. If within each epoch, we set the
step size θ ∼ O( 1

m ) a constant for y and the step size for x as zero in the first m0 ∼ O(1) steps, and
the others as an appropriate constant λ ∼ O( 1

m4 ), then we have the following.

∥r̄j∥
∥r̄0∥

≤ 2
√
κ̃ (j)

(√
κ̃ (j)− 1√
κ̃ (j) + 1

)j

+
√

jLgyyεj κ̃ (j) ,

where κ̃ (j) :=
Lgy+

2
√

3
3 (j+1)3Lgyyεj

µg− 2
√

3
3 (j+1)3Lgyyεj

.

Proof. Lemma G.4 guarantees the condition

µg −
2
√
3

3
(j + 1)

3
Lgyyεj > 0

is satisfied. The remaining proof can be directly adapted from Lemma G.3.

H PROOF OF THE MAIN THEOREM

In this section, we provide proof of the main theorem presented in Section 3.2. Let Ak =
∇2

yyg(xk, yk) and bk = ∇yf(xk, yk), and let the reference values be A∗
k = ∇2

yyg (xk, y
∗
k),

b∗k = ∇yf (xk, y
∗
k) and v∗k = (A∗

k)
−1b∗k. To begin with, a short proof sketch is provided for

guidance, which is structured in four main steps.

Step1: upper-bounding the residual ∥vk − v∗k∥
Appendix F and G lay a foundation to bound the residual term ∥vk − v∗k∥ (as a corollary of
Lemma G.5).

Step2: studying the descent property of ∥yk − y∗k∥
Lemma H.1 reveals the descent property of the estimation error for y∗ as follows,

∥∥yk+1 − y∗k+1

∥∥2 ≤ (1 + σ) (1− θµg) ∥yk − y∗k∥2+
(
1 +

1

σ

)
(1− θµg)

(
Lgx

µg

)2

∥xk+1 − xk∥2 .

Step3: Controlling the hyper-gradient estimation error ∥∇̃φ(xk)−∇φ(xk)∥
Defining

δk =

(
L2
fxµ

2
g + L2

gxyC
2
fg

L2
gxµ

2
g

)
∥yk − y∗k∥2 + ∥vk − v∗k∥2 ,

and incorporating the results from the last two steps, then in Lemma H.2 we can establish the upper
bound for ∥∇̃φ(xk)−∇φ(xk)∥ and δk recursively.

Step4: Assembling the estimations above and achieving the conclusion
Consider the descent property of Lk := φk + δk. Substituting the inequalities developed in step1 to
3, and telescoping the index from 0 to K concludes the convergence results.

The following lemma displays the descent property of the iterates {yk}.

Lemma H.1. Suppose Assumptions 3.2 and 3.3 hold. Setting 0 < θ ≤ 2
µg+Lgy

, we have

∥∥yk+1 − y∗k+1

∥∥2 ≤ (1 + σ) (1− θµg) ∥yk − y∗k∥2+
(
1 +

1

σ

)
(1− θµg)

(
Lgx

µg

)2

∥xk+1 − xk∥2 ,

for any σ > 0.
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Proof. Algorithm 2 executes a single-step gradient descent on the strongly convex function g(xk+1, ·)
during the outer iteration. Leveraging the established convergence properties of strongly convex
functions (Nesterov et al., 2018), we are thus able to derive the following.

∥∥yk+1 − y∗k+1

∥∥2 ≤ (1− θµg)
∥∥yk − y∗k+1

∥∥2 .

By Young’s inequality that |a+ b|2 ≤ (1 + σ) |a|2 +
(
1 + 1

σ

)
∥b∥2 with any σ > 0,

∥∥yk+1 − y∗k+1

∥∥2 ≤ (1 + σ) (1− θµg) ∥yk − y∗k∥2+
(
1 +

1

σ

)
(1− θµg)

(
Lgx

µg

)2

∥xk+1 − xk∥2 .

In the context of bilevel optimization, we define the initial residual in the (h+ 1)-th epoch as

rh+1 := bmh+1 −Amh+1v̄h,

and the residual in k-th step

rk := (bmh+1 −Amh+1v̄h)−A∗
k∆vk.

Based on the boundness of vk in Lemma G.4 we can estimate

µg ∥vk − v∗k∥ ≤∥(b∗k −A∗
kv̄h)−A∗

k∆vk∥
= ∥(b∗k −A∗

kv̄h)−A∗
k∆vk − rk + rk∥

≤∥b∗k − bmh+1∥+ ∥A∗
k −Amh+1∥ ∥v̄h∥+ ∥rk∥

≤ Lfy ∥(xk, y
∗
k)− (xmh+1, ymh+1)∥

+ Lgyy ∥(xk, y
∗
k)− (xmh+1, ymh+1)∥ ∥v̄h∥+ ∥rk∥

=(Lfy + Lgyy ∥vmh∥) εhj + ∥rk∥
≤ (Lfy + LgyyCv) ε

h
j + ∥rk∥ , (60)

which comes from
∥∥(A∗

j )
−1
∥∥ ≤ 1

µg
, vk = v̄h +∆vk, and ∥vk∥ ≤ Cv .

Lemma H.2 (Modified version without original Assumption 3.10). Suppose Assumptions 3.1, 3.2,
3.3, 3.6 and 3.9 hold. Within each epoch, we set the step size θ ∼ O( 1

m ) a constant for y and the step
size for x as zero in the first m0 steps, and the others as an appropriate constant λ ∼ O( 1

m4 ), then
the iterates

{xk} for k = mh+ j, h = 0, 1, 2, . . . , and j = m0 + 1,m0 + 2, . . . ,m,

generated by Algorithm 2 satisfy
∥∥∥∇̃φ (xk)−∇φ (xk)

∥∥∥
2

≤ 3L2
gxδk, (61)

and

δk ≤ ι2(m−m0)
(
δm(h−1)

)
+ ι2mδm(h−1) + ι2mδm(h−2)

+ 12m2λ2ωφ

(
∥∇̃φ(xmh)∥2 + ∥∇̃φ(xm(h−1))∥2 + ∥∇̃φ(xm(h−2))∥2

+

j−1∑

t=m0

∥∇̃φ(xmh+t)∥2 +
m−1∑

t=m0

∥∇̃φ(xm(h−1)+t)∥2 +
m−1∑

t=m0

∥∇̃φ(xm(h−2)+t)∥2
)
, (62)

where 0 < ι < 1, m0 ∼ Ω(logm) are constants, m is the subspace dimension, and δk is defined as

δk =

(
L2
fxµ

2
g + L2

gxyC
2
fg

L2
gxµ

2
g

)
∥yk − y∗k∥2 + ∥vk − v∗k∥2 .
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Proof. By (60), conclusion from Lemma G.3 and the Young’s inequality, it holds that

∥vk − v∗k∥2 ≤ 2

(
Lfy + LgyyCv

µg

)2 (
εhj
)2

+ 2
1

µ2
g

∥rk∥2

≤ 2

(
Lfy + LgyyCv

µg

)2 (
εhj
)2

+ 2
1

µ2
g


2
√
κ̃ (j)

(√
κ̃ (j)− 1√
κ̃ (j) + 1

)j

+
√
jLgyyε

h
j κ̃ (j)




2

∥rk0∥2

≤ 2

(
Lfy + LgyyCv

µg

)2 (
εhj
)2

+ 4
1

µ2
g


4κ̃ (j)

(√
κ̃ (j)− 1√
κ̃ (j) + 1

)2j

+
(√

jκ̃ (j)Lgyy

)2 (
εhj
)2

 ∥rk0∥2 .

An estimate can be made for ∥rh+1∥,

∥rh+1∥ = ∥bmh+1 −Amh+1v̄h∥
= ∥bmh+1 − b∗mh +A∗

mhv
∗
mh −Amh+1vmh∥

≤ Lfy ∥(xmh+1, ymh+1)− (xmh, y
∗
mh)∥

+
Cfy

µg
Lgyy ∥(xmh+1, ymh+1)− (xmh, y

∗
mh)∥+ Lgy ∥v∗mh − vmh∥

= Lgy ∥vmh − v∗mh∥+
µgLfy + CfyLgyy

µg

(
1 +

Lgx

µg

)
∥xmh+1 − xmh∥ ,

and thus

∥vk − v∗k∥2 ≤ ωε

(
εhj
)2

+
L2
gy

µ2
g

κ̃ (j)

(√
κ̃ (j)− 1√
κ̃ (j) + 1

)2j

∥vmh − v∗mh∥2

+
κ̃ (j)

µ2
g

(
µgLfy + CfyLgyy

µg

(
1 +

Lgx

µg

))2
(√

κ̃ (j)− 1√
κ̃ (j) + 1

)2j

∥xmh+1 − xmh∥2 ,

(63)

where

ωε = 2

(
Lfy + LgyyCv

µg

)2

+
4

µ2
g

(√
mκ̃ (m)Lgyy

)2
(
L2
gyC

2
v +

(
µgLfy + CfyLgyy

µg

(
1 +

Lgx

µg

))2

C2
s

)
∼ O (m) .

By definition of εhj , the update rule of x, and Young’s inequality, it holds that

(
εhj
)2 ≤ 2mλ2

(
1 +

Lgx

µg

)2 j−1∑

i=1

∥∥∥∇̃φ (xmh+i)
∥∥∥
2

+ 2
∥∥∥ymh+i(j) − y∗mh+i(j)

∥∥∥
2

for some m0 + 1 ≤ i(j) ≤ j. Then we apply the descent property of ∥yk − y∗k∥ (Lemma H.1)
recursively to derive

(
εhj
)2 ≤ 2mλ2

(
1 +

Lgx

µg

)2 j−1∑

i=1

∥∥∥∇̃φ (xmh+i)
∥∥∥
2

+ 2 (1 + σ)
i(j)

(1− θµg)
i(j) ∥ymh − y∗mh∥2

+ 2

(
1 +

1

σ

)
(1− θµg)

(
Lgx

µg

)2 i(j)∑

r=0

(1 + σ)
r
(1− θµg)

r ∥xk−r − xk−r−1∥2

≤ 2λ2

(
1 +

Lgx

µg

)2(
m+

(
1 +

1

σ

)
(1− θµg)

) j−1∑

i=1

∥∥∥∇̃φ (xmh+i)
∥∥∥
2

+ 2 ∥ymh − y∗mh∥2

≤ 2λ2

(
1 +

Lgx

µg

)2(
m+

(
1 +

1

σ

)
(1− θµg)

) j−1∑

i=1

∥∥∥∇̃φ (xmh+i)
∥∥∥
2

+ 2 (1 + σ)
m0 (1− θµg)

m0 ∥ymh − y∗mh∥2 . (64)
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Since Lemma G.4 reveals that under the appropriate step-size setting λ ∼ O( 1
m4 ) and θ ∼ O( 1

m ),
κ̃(j) ≤ κ̃ for κ̃ ∼ Ω(

Lgy

µgy
), we also choose σ > 0 such that

ι := max

{√
κ̃− 1√
κ̃+ 1

,
√
(1 + σ) (1− θµg)

}
< 1 (65)

Additionally, set the warm-up steps m0 to satisfy

ι−2m0 ≥ max

{(
L2
fxµ

2
g + L2

gxyC
2
fg

L2
gxµ

2
g

)−1(
L2
fxµ

2
g + L2

gxyC
2
fg

L2
gxµ

2
g

+m

)
,

L2
gy

µ2
g

κ̃

(
µgLfy + CfyLgyy

µg

(
1 +

Lgx

µg

))2

, 2ωφ

}
,

which means m0 ∼ Ω (logm). In this manner, adding
(

L2
fxµ

2
g+L2

gxyC
2
fg

L2
gxµ

2
g

)
∥yk − y∗k∥

2 on both sides

of (63) and incorporating the estimation for ϵhj (64) yield that

δk ≤ ι2(j−m0) (δmh) + ∥ymh − y∗mh∥2 + 6m2λ2ωφ

(
j−1∑

t=m0

∥∥∥∇̃φ (xmh+t)
∥∥∥
2

+
∥∥∥∇̃φ(xmh)

∥∥∥
2
)

≤ ι2(j−m0) (δmh) + ι2m∥ym(h−1) − y∗m(h−1)∥2

+ 6m2λ2ωφ

( j−1∑

t=m0

∥∇̃φ(xmh+t)∥2 + ∥∇̃φ(xmh)∥2

+

m−1∑

t=m0

∥∇̃φ(xm(h−1)+t)∥2 + ∥∇̃φ(xm(h−1))∥2
)
, (66)

where we apply Lemma H.1 recursively to obtain the second inequality, and adopt the notation

ωφ := max

{
ωε

m

(
1 +

Lgx

µg

)2

,
κ̃ι

m2µ2
g

(
µgLfy + CfyLgyy

µg

(
1 +

Lgx

µg

))2

,

1

m2

(
1 +

1

σ

)
(1− θµg)

(
L2
fxµ

2
g + L2

gxyC
2
fg

L2
gxµ

2
g

+m

)(
Lgx

µg

)2
}

∼ O (1) .

Consequently, expanding δmh in (66) in the same way derives (62). Regrading the upper-bound of
the hyper-gradient estimation error, we have
∥∥∥∇̃φ (xk)−∇φ (xk)

∥∥∥
2

≤ 3 ∥∇xf (xk, yk)−∇xf (xk, y
∗
k)∥2 + 3

∥∥∇2
xyg (xk, yk)

∥∥2 ∥vk − v∗k∥2

+ 3
∥∥∇2

xyg (xk, yk)−∇2
xyg (xk, y

∗
k)
∥∥2 ∥v∗k∥2

≤ 3L2
fx ∥yk − y∗k∥2 + 3L2

gx ∥vk − v∗k∥2 + 3L2
gxy

(
Cfy

µg

)2

∥yk − y∗k∥2

= 3L2
gxδk.

Theorem H.3 (Modified version without original Assumption 3.10). Suppose Assumptions 3.1, 3.2,
3.3, 3.6 and 3.9 hold. Within each epoch, we set the step size θ ∼ O( 1

m ) a constant for y and the step
size for x as zero in the first m0 steps, and the others as an appropriate constant λ ∼ O( 1

m4 ), then
the iterates {xk} generated by Algorithm 2 satisfy

m

K (m−m0)

K∑

k=0,
(k modm)>m0

∥∇φ (xk)∥2 = O
(

mλ−1

K (m−m0)

)
,

where m0 ∼ Ω(logm) is a constant and m is the subspace dimension.
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Proof. Consider the Lyapunov function Lk := φ(xk) + δk. According to Lemma E.2, a gradient
descent step leads to the decrease in the hyper-function:

φ (xk+1)− φ (xk) ≤ ⟨∇φ (xk) , xk+1 − xk⟩+
Lφ

2
∥xk+1 − xk∥2 . (67)

Then, telescoping Lk+1 − Lk over the index set I := {k : 0 ≤ k ≤ K, (k modm) > m0},
∑

k∈I
Lk+1 − Lk

=
∑

k∈I
φ(xk+1)− φ(xk) +

K+1∑

k=1,
((k−1) modm)>m0

δk −
∑

k∈I
δk

(i)

≤
∑

k∈I
⟨∇φ(xk), xk+1 − xk⟩+ (

Lφ

2
+ 36m3ωφ)∥xk+1 − xk∥2 +

h−1∑

e=0

2mι2(m−m0)δme −
∑

k∈I
δk

(ii)

≤
∑

k∈I
−
(
λ

2
− λ2(Lφ + 72m3ωφ)

)
∥∇φ(xk)∥2 +

(
λ

2
+ λ2(Lφ + 72m3ωφ)

)
∥∇φ(xk)− ∇̃φ(xk)∥2

+

h−1∑

e=0

2mι2(m−m0)δme −
∑

k∈I
δk

(iii)

≤
∑

k∈I
−
(
λ

2
− λ2(Lφ + 72m3ωφ)

)
∥∇φ(xk)∥2

+ 3L2
gx

(
λ

2
+ λ2(Lφ + 72m3ωφ)

)∑

k∈I
δk +

h−1∑

e=0

2mι2(m−m0)δme −
∑

k∈I
δk, (68)

where (i) follows from inequalities (62) and (67); (ii) results from the update rule xk+1 = xk −
λ∇̃φ(xk) and Young’s inequality; (iii) comes from (61). Taking the coefficients of δk into account,
we set the dimension parameters (m,m0) satisfying mι2(m−m0) < 1/4 and the step size λ such that

λ ≤ min

{
1

6L2
gx

,
1

(
12 (Lφ + 72m3ωφ)L2

gx

)1/2 ,
1

4 (Lφ + 72m3ωφ)

}
. (69)

In this way, we obtain the following result from (68),

LK+1 − L0 =

K∑

k=0,
(k modm)>m0

Lk+1 − Lk ≤
K∑

k=0,
(k modm)>m0

−
(
λ

2
− λ2

(
Lφ + 72m3ωφ

))
∥∇φ (xk)∥2.

Rearrange the above inequality and denote φ∗ := minx∈Rdx φ(x),

K∑

k=0,
(k modm)>m0

∥∇φ (xk)∥2 ≤ 4 (φ (x0)− φ∗)
λ

+
4δ0
λ

,

which completes the proof by dividing both sides by m−m0

m K.

I DETAILS ON EXPERIMENTS

I.1 GENERAL SETTINGS

We conduct experiments to empirically validate the performance of the proposed algorithms. We test
on a synthetic problem, a hyper-parameters selection task, and a data hyper-cleaning task. We com-
pare the proposed SubBiO and LancBiO with the existing algorithms in bilevel optimization: stocBiO
(Ji et al., 2021), AmIGO-GD and AmIGO-CG (Arbel and Mairal, 2022), SOBA (Dagréou et al., 2022)
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and TTSA (Hong et al., 2023), F2SA (Kwon et al., 2023a) and HJFBiO (Huang, 2024a). The experi-
ments are produced on a server that consists of two Intel® Xeon® Gold 6330 CPUs (total 2×28 cores),
512GB RAM, and one NVIDIA A800 (80GB memory) GPU. The synthetic problem and the deep
learning experiments are carried out on the CPUs and the GPU, respectively. For wider accessibility
and application, we have made the code available on https://anonymous.4open.science/r/LancBiO.

For the proposed LancBiO, we initiate the subspace dimension at 1, and gradually increase it to
m = 10 for the deep learning experiments and to m = 80 for the synthetic problem. For all the
compared algorithms, we employ a grid search strategy to optimize the parameters. The optimal
parameters yield the lowest loss. The experiment results are averaged over 10 runs. Note that
Assumption 3.9 for initialization is not used in practice, for which we treat it as a theoretical
assumption rather than incorporating it into Algorithm 2 in this paper.

In this paper, we consider the algorithms SubBiO and LancBiO in the deterministic scenario, so we
initially compare them against the baseline algorithms with a full batch (i.e., deterministic gradient).
In this setting, LancBiO yields favorable numerical results. Moreover, in the data hyper-cleaning task,
to facilitate a more effective comparison with algorithms designed for stochastic applications, we
implement all compared methods with a small batch size, finding that the proposed methods show
competitive performance.

Table 1: Comparison of the bilevel algorithms on data hyper-cleaning task across two corruption
rates p = 0.5 and p = 0.8. The results are averaged over 10 runs and ± is followed by the standard
deviation. The results are conducted after 40 and 60 seconds running time.

Algorithm p = 0.5 p = 0.8

Test accuracy (%) Test loss Residual Test accuracy (%) Test loss Residual

LancBiO 90.35 ± 0.1716 0.36 ± 0.0028 1.20e−4 ± 2.52e−5 89.45 ± 0.2470 0.42 ± 0.0038 9.18e−5 ± 2.77e−5
SubBiO 90.21 ± 0.2159 0.36 ± 0.0035 2.22e−2 ± 2.63e−3 89.22 ± 0.2587 0.42 ± 0.0050 2.49e−2 ± 1.93e−3
AmIGO-GD 90.16 ± 0.2114 0.37 ± 0.0044 3.66e−2 ± 4.00e−3 89.14 ± 0.2722 0.43 ± 0.0044 1.07e−2 ± 8.25e−4
AmIGO-CG 90.06 ± 0.2305 0.38 ± 0.0053 5.89e−4 ± 2.52e−4 88.57 ± 0.5839 0.46 ± 0.0176 6.32e−4 ± 3.74e−4
SOBA 90.00 ± 0.1811 0.37 ± 0.0051 2.74e−2 ± 8.52e−3 88.99 ± 0.2661 0.42 ± 0.0054 1.73e−2 ± 1.70e−3
TTSA 89.35 ± 0.2747 0.40 ± 0.0103 - 82.91 ± 0.4516 0.74 ± 0.0072 -
stocBiO 89.20 ± 0.1824 0.43 ± 0.0033 - 86.44 ± 0.2907 0.54 ± 0.0064 -
F2SA 89.78 ± 0.1969 0.40 ± 0.0073 - 88.65 ± 0.2828 0.51 ± 0.0055 -
HJFBiO 90.21 ± 0.2027 0.37 ± 0.0048 - 89.30 ± 0.3594 0.43 ± 0.0040 -

I.2 DATA HYPER-CLEANING

The data hyper-cleaning task (Shaban et al., 2019), conducted on the MNIST dataset (LeCun et al.,
1998), aims to train a classifier in a corruption scenario, where the labels of the training data are
randomly altered to incorrect classification numbers at a certain probability p, referred to as the
corruption rate. The task is formulated as follows,

min
λ

Lval(λ,w
∗) := 1

|Dval|
∑

(xi,yi)∈Dval
L(w∗xi, yi)

s. t. w∗ = argmin
w

Ltr(w, λ)

: =
1

|Dtr|
∑

(xi,yi)∈Dtr

σ(λi)L(wxi, yi) + Cr∥w∥2,

where L(·) is the cross-entropy loss, σ(·) is the sigmoid function, and Cr is a regularization parameter.
In addition, w serves as a linear classifier and σ (λi) can be viewed as the confidence of each data.

In the deterministic setting, where we implement all compared methods with full-batch, the
training set, the validation set and the test set contain 5000, 5000 and 10000 samples, respec-
tively. For algorithms that incorporate inner iterations to approximate y∗ or v∗, we select
the inner iteration number from the set {5i | i = 1, 2, 3, 4}. The step size of inner iteration
is selected from the set {0.01, 0.1, 1, 10} and the step size of outer iteration is chosen from{
5× 10i | i = −3,−2,−1, 0, 1, 2, 3

}
. Regarding the Hessian/Jacobian-free algorithm HJFBiO,

we set the step size δ = 1× 10−5 to implement finite difference methods. The results are presented
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in Figure 4. Note that LancBiO is crafted for approximating the Hessian inverse vector product v∗,
while the solid methods stocBiO, TTSA, F2SA, and HJFBiO are not. Consequently, concerning the
residual norm of the linear system, i.e., ∥Akvk − bk∥, we only compare the results with AmIGO-GD,
AmIGO-CG and SOBA. Observe that the proposed subspace-based LancBiO achieves the lowest
residual norm and the best test accuracy, and SubBiO is comparable to the other algorithms. Specif-
ically, in Figure 4, the efficiency of LancBiO stems from its accurate approximation of the linear
system. Furthermore, we implement the solvers designed for the stochastic setting using mini-batch
to enable a broader comparison in Figure 6. It is shown that the stochastic algorithm SOBA tends to
converge faster initially, but algorithms employing a full-batch approach achieve higher accuracy.
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Figure 6: Comparison of the bilevel algorithms on data hyper-cleaning task with mini-batch when p =
0.5. The training set, the validation set and the test set contain 5000, 5000 and 10000 samples,
respectively. The post-fix of legend represents the batch size. Left: test accuracy; Right:test loss.

To explore the potential for extending our proposed methods to a stochastic setting, we also con-
duct an experiment with stochastic gradients. In this setting, where we implement all compared
methods with mini-batch, the training set, the validation set and the test set contain 20000, 5000
and 10000 samples, respectively. For algorithms that incorporate inner iterations to approximate y∗

or v∗, we select the inner iteration number from the set {3i | i = 1, 2, 3, 4}. The step size of inner
iteration is selected from the set {0.01, 0.1, 1, 10}, the step size of outer iteration is chosen from{
1× 10i | i = −3,−2,−1, 0, 1, 2, 3

}
and the batch size is picked from

{
32× 2i | i = 0, 1, 2, 3

}
.

AmIGO-CG is not presented since it fails in this experiment in our setting. The results in Figure 7
demonstrate that LancBiO maintains reasonable performance with stochastic gradients, exhibiting
fast convergence rate, although the final convergence accuracy is slightly lower.
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Figure 7: Comparison of the bilevel algorithms on data hyper-cleaning task with mini-batch when p =
0.5. The training set, the validation set and the test set contain 20000, 5000 and 10000 samples,
respectively. The post-fix of legend represents the batch size. Left: test accuracy; Right:test loss.

Generally, for standard linear systems, the traditional Lanczos process is recognized for its efficiency
and versatility over gradient descent methods. LancBiO, in a sense, reflects this principle within
the context of bilevel optimization, underscoring the effectiveness of the dynamic Lanczos-aided
approach.

Additionally, we also evaluate the performance of bilevel algorithms on Fashion-MNIST (Xiao
et al., 2017) and Kuzushiji-MNIST (Clanuwat et al., 2018) datasets, both of which present more
complexity compared to MNIST. Specifically, Fashion-MNIST serves as a modern replacement for
MNIST, featuring grayscale images of clothing items across 10 categories, and Kuzushiji-MNIST is
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a culturally rich dataset of handwritten Japanese characters. The results, reported in Figures 8 and 9,
reveal that LancBiO performs better than other algorithms and showcases robustness across various
datasets, and SubBiO delivers a comparable convergence property.
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Figure 8: Data hyper-cleaning task tested on the Fashion-MNIST dataset when p = 0.5. Left: test
accuracy; Center: test loss; Right: residual norm of the linear system, ∥Akvk − bk∥.
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Figure 9: Data hyper-cleaning task tested on the Kuzushiji-MNIST dataset when p = 0.6. Left: test
accuracy; Center: test loss; Right: residual norm of the linear system, ∥Akvk − bk∥.

I.3 SYNTHETIC PROBLEMS

We concentrate on a synthetic scenario in bilevel optimization:

min
x∈Rd

f(x, y∗) := c1 cos
(
x⊤D1y

∗)+ 1
2 ∥D2x− y∗∥2 ,

s. t. y∗ = argmin
y∈Rd

g(x, y)

: = c2

d∑

i=1

sin(xi + yi) + log

(
d∑

i=1

exiyi

)
+

1

2
y⊤ (D3 +G) y,

(70)

where we incorporate the trigonometric and log-sum-exp functions to enhance the complexity of the
objective functions. In addition, we utilize the positive-definite matrix G to ensure a strongly convex
lower-level problem, and diagonal matrices Di (i = 1, 2, 3) to control the condition numbers of both
levels.

In this experiment, we set the problem dimension d = 104 and the constants c1 = 0.1, c2 = 0.5.
G is constructed randomly with d eigenvalues from 1 to 105. We generate entries of D1, D2 and D3

from uniform distributions over the intervals [−5, 5], [0.1, 1.1] and [0, 0.5], respectively. Taking into
account the condition numbers dominated by Di (i = 1, 2, 3) and G, we choose λ = 1 and θ = 10−5

for all algorithms compared after a manual search.

It can be seen from Figure 10 that LancBiO achieves the final accuracy the fastest, which benefits
from the more accurate v∗ estimation. Figure 11 illustrates how variations in m and I influence the
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Figure 10: Comparison of the bilevel algorithms on the synthetic problem. Left: norm of the
hyper-gradient; Right: residual norm of the linear system, ∥Akvk − bk∥.
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Figure 11: Influence of the subspace dimension m on LancBiO. The post-fix of legend represents the
subspace dimension m or the inner iteration I . Left: norm of the hyper-gradient; Right: residual
norm of the linear system, ∥Akvk − bk∥.

performance of LancBiO and AmIGO, tested across a range from 10 to 150 for m, and from 2 to 10
for I . For clarity, we set the seed of the experiment at 4, and present typical results to encapsulate the
observed trends. It is observed that the increase of m accelerates the decrease in the residual norm,
thus achieving better convergence of the hyper-gradient, which aligns with the spirit of the classic
Lanczos process.

When m = 50, the estimation of v∗ is sufficiently accurate to facilitate effective hyper-gradient
convergence, which is demonstrated in Figure 11 that for m ≥ 50, further increases in m merely
enhance the convergence of the residual norm. Under the same outer iterations, to attain a comparable
convergence property, I for AmIGO-CG should be set to 10. Furthermore, given that the number
of Hessian-vector products averages at (1 + 1

m ) per outer iteration for LancBiO, whereas AmIGO
requires I ≥ 2, it follows that LancBiO is more efficient.

Table 2: Comparison on the synthetic problem (70). The dimension of problems is denoted by d.
Results are averaged over 10 runs.

Algorithm d = 10 d = 100 d = 1000 d = 10000

UL Val. Time (S) UL Val. Time (S) UL Val. Time (S) UL Val. Time (S)

LancBiO 4.52e−2 0.32 6.37e−2 0.53 5.29e−2 1.30 −1.21e−2 16.36
SubBiO 3.73e−2 1.00 7.19e−2 1.17 4.63e−2 1.72 −2.91e−2 21.26
AmIGO-GD 1.67e−1 2.44 1.05e−1 3.48 1.05e−1 1.46 4.96e−2 46.53
AmIGO-CG 5.56e−2 0.40 7.65e−2 1.90 5.73e−2 2.44 3.68e−2 25.00
SOBA 1.70e−1 0.60 1.28e−1 1.64 1.03e−1 2.52 3.49e−2 33.89
TTSA 5.66e−2 0.47 5.52e−2 0.89 6.52e−2 2.81 1.87e−1 121.07
stocBiO 6.24e−2 0.29 6.02e−2 0.45 5.21e−2 1.34 −1.30e−2 20.66

Moreover, to illustrate how the proposed methods scales with increasing dimensions, we present
the convergence time and the final upper-level (UL) value under different problem dimensions

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

d = 10i, i = 1, 2, 3, 4 in Table 2. The results show the robustness of the proposed methods across
varying problem dimensions.

In addition, as discussed in Appendix D, to address the bilevel problem where the lower-level problem
exhibits an indefinite Hessian, the framework LancBiO (Algorithm 2) requires a minor modification.
Specifically, line 13 in Algorithm 2, which solves a small-size tridiagonal linear system, will be
replaced by solving a low-dimensional least squares problem. We test the modified method LancBiO-
MINRES on the following bilevel example borrowed from Liu et al. (2023a) with a non-convex
lower-level problem,

min
x∈R

f(x, y∗) := ∥x− a∥2 + ∥y∗ − a− c∥2

s. t. y∗i ∈ argmin
yi∈R

sin(x+ yi − ci), for i = 1, 2, . . . , d,
(71)

where the subscript i denotes the i-th component of a vector, while a ∈ R and c ∈ Rd are parameters.
The results, reported in Figure 12, imply the potential of extending our work to non-convex scenarios.
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Figure 12: Test LancBiO-MINRES on the synthetic problem (71) with d = 100. The metric follows
from the necessary conditions developed for lower-level non-convex bilevel problems in Theorem 1
of Xiao et al. (2023).

I.4 LOGISTIC REGRESSION ON 20NEWSGROUP
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Figure 13: Comparison of the bilevel algorithms hyper-parameters selection task. Left: validation
accuracy; Center: validation loss; Right: residual norm of the linear system, ∥Akvk − bk∥.

Consider the hyper-parameters selection task on the 20Newsgroups dataset (Grazzi et al., 2020),
which contains c = 20 topics with around 18000 newsgroups posts represented in a feature space of
dimension l = 130107. The goal is to simultaneously train a linear classifier w and determine the
optimal regularization parameter ζ. The task is formulated as follows,

min
λ

Lval(ζ, w
∗) := 1

|Dval|
∑

(xi,yi)∈Dval
L(w∗xi, yi)

s. t. w∗ = argmin
w

Ltr(w, ζ)

: =
1

|Dtr|
∑

(xi,yi)∈Dtr

L(wxi, yi) +
1

cl

c∑

i=1

l∑

j=1

ζ2jw
2
ij .
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where L(·) is the cross-entropy loss and {ζ2j } are the non-negative regularizers.

The experiment is implemented in the deterministic setting, where we implement all compared
methods with full-batch, the training set, the validation set and the test set contain 5657, 5657
and 7532 samples, respectively. For algorithms that incorporate inner iterations to approximate
y∗ or v∗, we select the inner iteration number from the set {5i | i = 1, 2, 3, 4}. To guarantee the
optimality condition of the lower-level problem, we adopt a decay strategy for the outer itera-
tion step size, i.e., λk = λ/k0.4, for all algorithms. The constant step size θ of inner iteration
is selected from the set {0.01, 0.1, 1, 10} and the initial step size λ of outer iteration is chosen
from

{
5× 10i | i = −3,−2,−1, 0, 1, 2, 3

}
. The results are presented in Figure 13. In this setting,

AmIGO-CG exhibits slightly better performance in reducing the residual norm. Nevertheless, un-
der the same time, LancBiO implements more outer iterations to update x, which optimizes the
hyper-function more efficiently.

J REMOVE ASSUMPTION 3.10 FROM ANALYSIS

Thanks for the reviewers’ comments, we are enlightened that Assumption 3.10 can be circumvented
by a more technical analysis. Specifically, in the original version, only the proof of the original
Lemma H.2 resorts to Assumption 3.10. In this version, we remove it in the proof. The modifications
are structured into the following two main steps.
(1). We develop a new upper bound for εhm (see (64)) as a substitution for Assumption 3.10. In this
way, we re-estimate the term δk in Lemma H.2.
(2). In the final convergence analysis, the new estimation of δk is incorporated to derive the descent
property of the Lyapunov function Lk := φ(xk) + δk.

39


	Introduction
	Contributions
	Related Work

	Subspace-based Algorithms
	Why Krylov subspace: the SubBiO algorithm
	Why dynamic Lanczos: the LancBiO framework
	Relation to existing algorithms

	Theoretical Analysis
	Subspace Properties in Dynamic Lanczos Process
	Convergence Analysis

	Numerical Experiments
	Related Work in Bilevel Optimization
	Krylov Subspace and Lanczos Process
	Dynamic Lanczos Subroutine
	Extending LancBiO to Non-convex Lower-level Problem
	Proof of Smoothness of y* and 
	Properties of Dynamic Subspace in sec:subspaceerror
	Proof of lem:descentres
	Proof sketch
	Extended lemmas from sec:prooflanc
	Proof of Step2
	Proof of g-233( j+1 ) 3Lgyy j>0
	Proof of lem:descentres

	Proof of The Main Theorem
	Details on Experiments
	General settings
	Data hyper-cleaning
	Synthetic problems
	Logistic regression on 20Newsgroup

	blueRemove Assumption 3.10 from analysis

