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Abstract
Despite their general success, LLMs still lag001
behind on biomedical named entity recogni-002
tion (NER) tasks, which are difficult due to the003
presence of specialized terminology and lack004
of training data. In this work we set out to im-005
prove LLM performance on biomedical NER in006
limited data settings via: (i) A new knowledge007
augmentation approach which incorporates def-008
initions of relevant concepts on-the-fly, and009
(ii) A comprehensive exploration of prompt-010
ing strategies. Our experiments show that the011
proposed definition augmentation approach is012
useful for both open source and closed LLMs.013
For example, it increases GPT-4 performance014
(F1) by 15% on average across all (six) of our015
test datasets. We conduct extensive ablations016
and analyses to demonstrate that these perfor-017
mance improvements stem from adding rele-018
vant knowledge about definitions. We find that019
careful prompting strategies also improve LLM020
scores, allowing them to outperform fine-tuned021
language models in few-shot settings. To facili-022
tate future research in this direction, we plan to023
release our code upon acceptance.024

1 Introduction025

LLMs have achieved remarkable success on a wide026

range of tasks and domains, even in zero-shot and027

few-shot settings (Brown et al., 2020). However,028

their performance on named entity recognition029

(NER) in biomedical text remains underwhelming.030

For instance, Gutiérrez et al. (2022) observe that031

GPT-3 in-context learning significantly underper-032

forms compared to fine-tuning a smaller pretrained033

language model (PLM) on the same amount of034

data. Despite significant real-world utility, several035

aspects make this task challenging even for state-036

of-the-art LLMs. Biomedical texts contain a large037

proportion of specialized terminology that requires038

domain expertise to interpret. Additionally, this re-039

quirement for domain expertise makes annotation040

time-consuming and difficult to acquire, leading to041

limited availability of labeled data.042

Given the sentence from an abstract, extract 
all the diseases and return as a JSON.

Sentence: There are several common 
polymorphisms in the BRCA1 gene which 
generate amino acid substitutions. 

Output:  {'diseases': ['BRCA1]}

Using the definition given below ...return as 
a JSON.

Definitions:
BRCA1 gene: A tumor suppressor gene (GENES, 
TUMOR SUPPRESSOR)...component of DNA repair 
pathways.

Output:{'diseases': []}

Figure 1: Illustration of our approach using a zero-shot
example, with incorrect extraction (red) and correct
extraction (green) when provided with the definition of
the extracted entity (yellow).

Recently introduced LLMs have shown promis- 043

ing improvements in performance on general infor- 044

mation extraction tasks (Ashok and Lipton, 2023; 045

Wadhwa et al., 2023). Motivated by this, we aim 046

to improve LLM-based biomedical NER via two 047

approaches: (i) A new knowledge augmentation ap- 048

proach incorporating relevant concept definitions 049

on-the-fly, and (ii) An exploration of prompting 050

strategies that have demonstrated utility in other IE 051

tasks, establishing a strong baseline to test defini- 052

tion augmentation. 053

To conduct this exploration, we first design an ex- 054

perimental framework for assessment of LLMs on 055

biomedical NER (§ 2). Starting from the BigBIO 056

(Fries et al., 2022) collection of 100+ biomedical 057

datasets, we systematically construct an evalua- 058

tion testbed consisting of six NER datasets, which 059

cover extraction tasks of varying complexity rang- 060

ing from open extraction (i.e., no entity types) to 061
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extraction according to large, fine-grained schemas062

(10+ entity types). We use this testbed to bench-063

mark the performance of a series of SOTA LLMs,064

both open and closed, on biomedical NER in both065

zero-shot and few-shot settings (§ 3).066

Our benchmarking effort involves extensive ex-067

ploration of a host of prompting strategies which068

have provided utility in recent work on using LLMs069

for information extraction such as using defini-070

tions/explanations (Ashok and Lipton, 2023; Wad-071

hwa et al., 2023) and producing extractions in struc-072

tured formats like code (Dunn et al., 2022; Li et al.,073

2023b). To the best of our knowledge, our work is074

the first to conduct such exploration for biomedical075

NER with promising results; we find that these076

strategies enable LLMs to surpass smaller fine-077

tuned language models in few-shot settings, in con-078

trast to prior work.079

Building on these strong baselines, we propose080

a knowledge augmentation approach to further im-081

prove LLM performance. Our approach, illustrated082

in Figure 1, focuses on identifying and provid-083

ing definitions of relevant biomedical concepts as084

a follow-up step at inference time, allowing the085

model to correct its entity extractions.086

We explore two strategies for follow-up prompt-087

ing: (i) single-turn, which requires models to make088

all entity corrections within a single step, and (ii)089

iterative prompting, which simplifies the correction090

task by allowing models to make changes one entity091

at a time. Our results show that definition augmen-092

tation provides meaningful performance improve-093

ments on both closed and open SOTA LLMs. For094

example, including definitions increases GPT-4 per-095

formance by 15% on average across the datasets096

we use for evaluation.097

We also verify that these performance improve-098

ments are due to the presence of relevant con-099

cept definitions by conducting a series of ablations100

adding irrelevant definition knowledge, which re-101

sult in little to no performance improvement. Fi-102

nally, we evaluate the utility of definitions retrieved103

from various human-curated sources (UMLS, Wiki-104

Data) as well as ones automatically generated using105

LLMs, and find that human-curated definitions lead106

to higher performance improvements. Our results107

raise interesting questions about the value of defini-108

tion knowledge in improving LLM performance on109

various tasks and domains and indicate that LLMs110

have made substantial advancement on IE tasks in111

limited data settings.112

2 Experimental Framework 113

Models We evaluate SOTA LLMs over a set of 114

biomedical NER datasets from the BigBio bench- 115

mark (Fries et al., 2022). We assess a variety 116

of models including closed models available via 117

API—i.e., Open AI’s GPT 3.5 (Brown et al., 118

2020) and GPT 4 (OpenAI, 2023) and Anthropic’s 119

Claude 2 (Anthropic, 2023)—and an open-source 120

model (Llama 2; Touvron et al. 2023). We 121

enumerate these models in Table 12. We also 122

conducted preliminary experiments with Google’s 123

PaLM (Chowdhery et al., 2022) but found its per- 124

formance subpar and so did not pursue further. 125

Evaluation We evaluate all models with entity- 126

level F1. Prior work has shown that strict F1 may 127

underestimate the performance of generative mod- 128

els on information extraction tasks, because such 129

models can generate outputs that differ from refer- 130

ence annotations but which are still correct (Wad- 131

hwa et al., 2023). To address this, we complement 132

our automatic evaluation with manual evaluation 133

of a subset of examples presented in Appendix C. 134

Dataset Entity Types Size

CHEM (Krallinger et al.,
2017)

Chemicals,
Proteins

800

CDR (Li et al., 2016) Chemicals,
Diseases

500

NCBI (Doğan et al., 2014) Diseases 100

MEDM (Mohan and Li,
2019)

Biomedical
Concepts

879

PICO (Nye et al., 2018) Populations,
Interventions,
Outcomes

187

CHIA (Kury et al., 2020) Clinical Trial
Criteria

600

Table 1: Overview of all datasets included in our final
biomedical NER evaluation testbed. The size column
reports the size of the test split.

Dataset Selection As a testbed for biomedical 135

NER, we select datasets from the BigBIO bench- 136

mark, a meta-resource of 100+ datasets sourced 137

from various areas of biomedicine, covering 12 task 138

types and 10+ languages. NER is the dominant task 139

category in BigBIO, consisting of 76 datasets (Fries 140

et al., 2022). We narrow these down by first exclud- 141

ing datasets that contain: Clinical/EHR data, social 142

media content, and non-English texts. 143

Several of the remaining datasets contain anno- 144

tations for the same entity types. Therefore, we 145

further filter the corpora by retaining only 1-2 rep- 146
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resentative datasets for all entity types. We dis-147

carded datasets from especially narrow/specialized148

domains (e.g., stem cell identification) and kept149

datasets which are part of existing benchmarks,150

e.g., BLURB (Gu et al., 2021), BLUE (Peng et al.,151

2019) and BoX (Parmar et al., 2022).152

This filtering yields 16 datasets, out of which153

we manually select six for our experiments. These154

datasets are summarized in Table 1 and further155

described in Table 13 (including examples).156

3 ICL for Biomedical NER157

In this section we establish the baseline perfor-158

mance of LLMs in zero- and few-shot settings over159

all datasets. To contextualize these results, we also160

report on the performance of a smaller, fine-tuned161

model (Flan-T5-XL; Chung et al. 2022).162

3.1 Zero-Shot Experimental Setup163

We evaluate zero-shot prompting strategies along164

two main axes: (i) Input format (i.e., prompt tem-165

plate), which controls how the task description166

and expected target categories are provided to the167

model; (ii) Output format, which controls how the168

model structures outputs (i.e., text, code or JSON).169

We explore two possible types of input format:170

(i) Text, using a standard prompt with a brief de-171

scription of the task and a list of valid target entity172

types to be extracted; and (ii) Schema Def, aug-173

menting the standard prompt with detailed descrip-174

tions of all target entity types following Ashok and175

Lipton (2023); Shao et al. (2023).176

For output format, we explore two types of struc-177

tured formats: (i) JSON (Dunn et al., 2022; Li178

et al., 2023a), and (ii) Code snippets (Li et al.,179

2023b; Wang et al., 2023a). Recent work has180

shown that such formats improve zero-shot IE per-181

formance of LLMs, while producing valid extrac-182

tions which are easier to post-process and evaluate.183

Our zero-shot experiments evaluate the perfor-184

mance of all four combinations of input and out-185

put formats on all models to determine the best186

prompting strategy (except GPT-4, omitted in these187

experiments given the high costs of querying the188

API). Example prompts for each combination are189

presented in Appendix 5.190

3.2 Few-Shot Experimental Setup191

For our few-shot experiments, we adopt the combi-192

nation of input/output formats that performed the193

best for each dataset in the zero-shot setting. We194

validated this decision by evaluating all combina- 195

tions of input/output formats on one of the datasets 196

(i.e., CDR) and observing that the best performing 197

format in zero-shot also applies to the few-shot set- 198

ting (for k = {1, 3, 5}). These results are shown in 199

Table 7 of the Appendix B.1. 200

In addition to input/output formats, few-shot 201

prompting can also vary along two axes: (i) se- 202

lection of few-shot exemplars; and (ii) ordering of 203

chosen exemplars. For the former, we compared 204

selection of few-shot exemplars at random to the 205

similarity-based approach due to (Gutiérrez et al., 206

2022). For the latter, we compared passing exem- 207

plars in a random but fixed order against shuffling 208

exemplars per test instance. In preliminary experi- 209

ments, we did not observe meaningful differences 210

in performance based on these strategies, therefore 211

we carried the rest of the experiments with ran- 212

domly selected exemplars shuffled per test instance. 213

See Appendix B.2 for additional details on these 214

few-shot prompting strategies. 215

We test the performance of all models for 216

k = {1, 3, 5}. For each setting, we conduct three 217

runs with different seeds and report the average 218

performance (additional results for larger values of 219

k are provided in Figure 3). 220

3.3 Fine-tuning Experimental Setup 221

To put our results in context, we also measure 222

the performance of a smaller language model fine- 223

tuned on the each of the datasets. Specifically, we 224

fine-tune Flan-T5-XL on linearized targets. We 225

train the model on the same set of 5 instances used 226

in the few-shot experiments using LoRA, a param- 227

eter efficient fine-tuning method (Hu et al., 2021). 228

We provide implementation details in E. 229

3.4 Results 230

In preliminary experiments, we observed that 231

Claude 2 was unable to generate valid code out- 232

puts so we only report results for JSON outputs. 233

In regards to input formats, we see that prompts 234

augmented with schema definitions perform worse 235

across all models and datasets. As for output for- 236

mats, we find that JSON was preferred on most 237

datasets with the exception of PICO and CHIA. 238

However, this observation holds consistently across 239

all models. See Table 2 for the results of GPT-3.5, 240

Claude 2 and LLama 2 on all datasets. 241

Given these findings, we executed few-shot ex- 242

periments using plain prompts and JSON outputs 243

(aside from PICO and CHIA, for which we used 244
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Model Input Output CHEM CDR MEDM NCBI PICO CHIA

GPT3.5

Text JSON 49.60 65.64 43.42 54.05 10.71 7.43
Code 42.31 50.72 42.91 44.23 14.88 31.28

+ Schema Def JSON 47.70 64.74 43.72 46.79 9.53 4.72
Code 41.49 51.16 42.46 47.13 13.52 29.43

Claude 2 Text JSON 56.36 67.96 36.39 44.17 7.70 19.96
+Schema Def JSON 45.19 60.51 34.30 37.93 4.81 19.11

LLaMA2

Text JSON 59.75 66.77 28.93 34.23 7.49 4.03
Code 57.53 55.18 23.69 24.64 15.39 21.59

+Schema Def JSON 52.47 55.47 23.05 28.22 3.95 3.32
Code 56.04 54.91 28.82 24.05 15.12 7.49

Table 2: Zero Shot scores with text input, JSON output, text input and code output, definition input and JSON output
and definition input and code output, with an exception of Claude 2 which we experimented on JSON (did not
output executable code).

Model #Shots CHEM CDR MEDM NCBI PICO CHIA

GPT3.5
0 49.60 65.64 43.42 54.05 14.88 31.28
1 56.06 (± 1.03) 64.05 (± 2.92) 49.15 (± 1.69) 44.27 (± 2.59) 15.83 (± 1.9) 33.72 (±0.99)
3 59.54 (± 2.24) 67.44 (± 0.52) 48.47 (± 1.63) 54.20 (± 1.53) 17.11 (± 1.65) 34.8 (±0.65)
5 58.66 (± 0.79) 68.19 (± 1.07) 48.10 (± 1.28) 56.02 (± 1.48) 17.12 (±3.83) 36.47 (±0.6)

Claude 2
0 56.36 67.96 36.39 44.17 7.70 19.96
1 55.19 (± 2.21) 66.43 (± 3.08) 44.82 (± 3.04) 37.89 (± 13.42) 6.3 (± 1.2) 18.94 (± 1.43)
3 59.68 (± 1.61) 68.13 (± 6.01) 48.20 (± 1.91) 43.89 (± 1.63) 6.21 (± 2.6) 19.87 (± 3.41)
5 63.04 (± 0.21) 69.74 (± 1.47) 48.12 (± 1.45) 42.99 (± 1.59) 6.12 (± (8.21) 19.88 (± 1.63)

LLaMa 2
0 59.75 66.77 28.93 34.23 15.39 21.59
1 57.11 (± 1.73) 54.77 (± 12.23) 45.04 (± 1.07) 37.88 (± 14.05) 12.95 (±1.49) 24.1 (±2.75)
3 55.23 (± 4.94) 64.76 (± 0.99) 45.25 (± 1.51) 45.08 (± 6.17) 17.08 (±1.32) 32.78 (±1.79)
5 59.86 (± 0.93) 64.89 (± 1.63) 47.37 (± 1.33) 46.96 (± 3.75) 18.26 (±0.91) 35.44 (±1.85)

Flan-T5 5 30.32 (±6.62) 29.33 (±1.8) 38.84 (±4.23) 30.68 (±12.53) 14.74 (±6.78) 4.84 (±1.32)

Table 3: Few shot scores with k = {1, 3 and 5}. We ran experiments with 3 seeds and averaged the results. Results
show F1 scores and standard deviation. We have chosen the format that works best for each dataset. CHEM, CDR,
MEDM, NCBI on text input, JSON output and PICO and CHIA with text input and code output, with an exception
of Claude 2 which we experimented on JSON.

code outputs). As we can see in Table 3, model245

performance tends to increase with the number of246

shots (except for NCBI and MEDM datasets, where247

we observe minor fluctuations in performance). Fi-248

nally, we see that few-shot learning with instruction249

tuned LLMs performs much better than a smaller250

LM fine-tuned on the same 5 instances.251

4 Augmenting Prompts with Definitions252

ICL approaches rely on the parametric knowledge253

acquired by the models during pre-training. How-254

ever, this internal knowledge can be incorrect, in-255

sufficient or outdated. Prior work has tried to ad-256

dress knowledge gaps in LLMs by augmenting257

prompts with relevant factual knowledge on-the-fly,258

improving performance on language understanding 259

tasks like question answering (Baek et al., 2023; 260

Wang et al., 2023b). 261

This motivates us to explore whether augment- 262

ing prompts with relevant knowledge dynamically 263

improves ICL performance for biomedical NER. In 264

our work, we focus on a specific category of knowl- 265

edge — definitions of biomedical concepts present 266

in the input text. Intuitively, generic LLMs may not 267

be proficient with biomedical concepts; providing 268

targeted information at test time may permit fast 269

adaptation to this domain. 270

We propose to operationalize this approach as 271

follows. First, we curate a knowledge base of 272

biomedical concept definitions and leverage an 273
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Model Setting CHEM CDR MedM NCBI PICO CHIA

GPT3.5

ZS 48.61 67.65 43.77 54.05 10.25 7.50
+Def 48.34 (-0.27) 68.21 (+0.56) 45.00 (+1.23) 51.94 (-2.11) 10.20 (-0.05) 7.95 (+0.45)
IP 47.27 (-1.34) 66.12 (-1.53) 42.71 (-1.06) 51.18 (-2.87) 10.27 (+0.02) 7.59 (+0.09)
+Def 56.39 (+7.78) 72.86 (+5.21) 50.05 (+6.28) 58.24 (+4.19) 9.88 (-0.37) 17.64 (+10.14)

Claude 2

ZS 54.28 70.07 36.98 44.17 7.26 20.12
+Def 57.62 (+3.34) 68.91 (-1.16) 36.12 (-0.86) 43.65 (-0.52) 7.67 (+0.41) 19.17 (-0.95)
IP 52.93 (-1.35) 69.34 (-0.73) 36.71 (-0.27) 43.43 (-0.74) 7.66 (+0.40) 19.82 (-0.30)
+Def 59.96 (+5.68) 73.04 (+2.97) 41.82 (+4.84) 51.60 (+7.43) 8.98 (+1.72) 22.12 (+2.00)

LLaMA2

ZS 60.30 64.07 25.98 47.38 7.88 4.24
+Def 67.49 (+7.19) 68.54 (+4.47) 35.56 (+9.58) 51.44 (+4.06) 8.54 (+0.66) 9.50 (+5.26)
IP 58.31 (-1.99) 65.63 (-1.56) 24.54 (-1.44) 45.58 (-1.80) 7.49 (-0.39) 4.50 (+0.26)
+Def 67.54 (+7.24) 69.05 (+4.98) 34.90 (+8.92) 50.57 (+3.19) 9.59 (+1.71) 9.42 (+5.18)

GPT4

ZS 62.12 70.92 47.13 54.67 7.29 16.39
+Def 67.05 (+4.93) 76.19 (+5.27) 51.91 (+4.78) 60.91 (+6.24) 9.24 (+1.95) 20.88 (+4.49)
IP 59.67 (-2.45) 69.41 (-1.51) 47.01 (-0.12) 52.31 (-2.36) 7.47 (+0.18) 17.94 (+1.55)
+Def 65.39 (+3.27) 75.62 (+4.70) 52.13 (+5.00) 58.72 (+4.05) 9.47 (+2.18) 20.09 (+3.70)

Table 4: Zero shot (ZS) scores with Definition Augmentation (+Def), Iterative Prompting (IP) and Iterative
Prompting augmented with Definitions (+Def) on four models. Results show F1 scores and the delta wrt zero-shot
in the parenthesis.

Model Setting CHEM CDR MedM NCBI PICO CHIA

GPT3.5 FS 57.92 (± 0.78) 68.89 (± 1.03) 49.08 (± 01.33) 56.02 (± 1.48) 11.07 (± 1.77) 21.72 (± 1.23)
+Def 59.23 (± 1.54) 68.7 (± 2.47) 48.41 (± 0.77) 57.6 (± 2.75) 11.19 (± 0.52) 22.15 (± 1.03)

Claude 2 FS 61.6 (± 0.36) 71.95 (± 2.62) 48.3 (± 1.44) 44.92 (± 1.62) 6.2 (± 2.83) 19.72 (± 2.94)
+Def 61.17 (± 0.26) 72.81 (± 1.58) 49.32 (± 1.36) 48.98 (± 1.51) 9.97 (± 2.13) 22.21 (± 1.03)

LLaMA2 FS 60.15 (± 0.92) 66.77 (± 1.32) 38.92 (± 11.83) 47.97 (± 3.65) 8.0 (±1.98) 9.32 (± 0.45)
+Def 59.86 (± 0.93) 64.89 (± 1.63) 47.37 (± 1.33) 46.96 (± 3.75) 18.26 (± 0.91) 35.44 (± 1.85)

GPT4 FS 64.92 (± 1.28) 74.23 (± 3.48) 54.59 (± 1.89) 62.28 (± 1.97) 8.74 (± 1.68) 23.21 (± 1.60)
+Def 69.72 (± 0.68) 79.63 (± 2.96) 59.17 (± 1.5) 66.21 (± 0.96) 7.63 (± 0.58) 24.51 (± 0.77)

Table 5: Few shot scores with Definition Augmentation (+Def) with k = 5. We ran experiments with 3 seeds and
averaged the results. Results show F1 scores and standard deviation in the parenthesis.

off-the-shelf entity linker to map occurrences of274

concepts to entries in the knowledge base (§4.1).275

Second, we perform inference with a sequence of276

prompts: first, we prompt models to extract enti-277

ties as discussed in §3; then, we craft follow-up278

prompts augmented with concept definitions and279

asking the model to revise the initial extractions,280

which can include removing/adding entities or re-281

assigning entity types. We provide definitions for282

all the entities identified by the model in the first283

turn, and all other biomedical concepts that can284

be linked to the knowledge base (as identified by285

the entity linker). We evaluate this approach in286

zero-shot (§4.2) and few-shot (§4.3) settings.287

4.1 Concept Definitions288

We obtain concept definitions from Unified Med-289

ical Language System (UMLS), a collection of290

key terminology and coding standards from sev- 291

eral biomedical vocabularies, standards and knowl- 292

edge bases (Bodenreider, 2004). Some concepts 293

in UMLS belong to fairly broad categories (e.g., 294

event, activity, group) and their definitions might 295

not provide much utility to LLMs. We avoid includ- 296

ing definitions for such concepts by curating a set 297

of fine-grained categories which contain specific 298

and useful concepts. The final set of categories 299

used for all definition augmentation experiments 300

is listed in Table 15. At inference time, we use 301

the entity linker available in the SciSpaCy pack- 302

age (Neumann et al., 2019) to map all mentions of 303

biomedical concepts in the input text to entries in 304

UMLS, and retrieve the associated definitions. 305
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4.2 Zero-Shot Definition Augmentation306

In the zero-shot setting, we first prompt the model307

to extract entities as described in §3.1. Then we308

consider two strategies for follow-up prompting.309

Single-turn (ZS+Def): A single definition aug-310

mented follow-up prompt asks the model to make311

corrections to all extracted entities.312

Iterative Prompting (IP+Def): iterative313

prompts augmented with the definition of a314

single concept and asking the model to make315

corrections to a single extracted entity (if needed)316

at a time. This breaks down the correction process317

into atomic steps, but significantly increases the318

number inference steps (which incurs additional319

costs when using proprietary models). This320

approach is related to prior work suggesting that321

LLMs are able to correct and revise their own322

outputs and this self-verification can improve323

performance in clinical information extraction324

tasks (Gero et al., 2023). The novelty on offer325

here is providing contextual knowledge to aid the326

process of self-verification. In our experiments, we327

ablate the impact of self-verification from that of328

the concept definitions.329

4.3 Few-Shot Definition Augmentation330

In the few-shot setting, again we first prompt the331

model to extract entities as described in §3.2, and332

then ask it to correct the extractions in a follow-up333

prompt with concept definitions. The follow-up334

prompt includes: (i) all few-shot exemplars pro-335

vided in the first prompt along with the associated336

concept definitions; and (ii) definitions for all the337

concepts identified in the current input (both for338

extracted entities and other biomedical concepts).339

Here, we only test the single-turn strategy be-340

cause including few-shot examples rapidly in-341

creases context size, making iterative prompting342

very expensive.343

4.4 Definition Augmentation Results344

All the experiments are carried out with JSON out-345

puts to maintain a uniform experimental setting346

across all datasets. The few-shot experiments are347

all carried with k = 5 shots randomly selected and348

shuffled per test instance. We run each experiment349

with three different random seeds and report the350

average performance. In addition to the models351

considered in the previous section, here we also352

evaluate GPT-4 — this is motivated by prior sug- 353

gesting that GPT-4 is more competent that GPT-3.5 354

at editing previous outputs, which is a key step of 355

our proposed approach (Gero et al., 2023). How- 356

ever, given the high costs of querying the API, we 357

subsampled our test sets to 100 instances in the 358

experiments with this model. 359

Tables 4 and 5 present the performance of 360

GPT3.5, Claude 2 and Llama 2 and GPT-4 with 361

definition augmentation on all datasets in the zero- 362

and few-shot settings, respectively. In zero-shot 363

settings, we see consistent and significant improve- 364

ments in the performance of Llama 2 and GPT-4 365

with both prompting strategies. 366

We see an average increase of 32.6% and 33.9% 367

for Llama 2 and 15% and 13.7% for GPT-4 on 368

single turn and iterative prompting, respectively. 369

However, Claude 2 and GPT-3.5 can only benefit 370

from the iterative prompting approach with average 371

gains of 12% and 29.5%, respectively. We also 372

assessed the performance of iterative prompting but 373

without the definitions - this is similar to the (Gero 374

et al., 2023) self-verification method. However, our 375

results show that the models are not able to correct 376

their predictions in the absence of the definitions. 377

In the few-shot setting, we also see improve- 378

ments in most cases. Claude 2 and GPT-4 improve 379

in 5 out of 6 datasets; Llama 2 and GPT-3.5 show 380

gains in 3 and 4 datasets, respectively. Overall, we 381

found that GPT-4 with iterative prompting achieves 382

the best performance. 383

Our results show that concept definition aug- 384

mented prompts improve the performance of 385

biomedical NER. A key step of this approach 386

is linking biomedical concepts to definitions in 387

UMLS. One natural question is how much of the 388

observed gains are simply due to the use of an en- 389

tity linking model which was explicitly trained to 390

recognize entities. To answer this question, we 391

measured the performance of the entity linker by it- 392

self on the same test sets and found that it performs 393

poorly, with an average F1 of 1.05 across all the 394

datasets. 395

5 Assessing the Utility of Definition 396

Knowledge 397

We further assess the utility of concept definitions 398

by conducting ablation experiments probing the 399

following dimensions: (1) Relevance of the concept 400

definitions; (2) Source of the knowledge base. 401

We conduct all experiments in the single-turn 402
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Figure 2: Definition relevance ablations with GPT-4 on CDR dataset (left) and LLaMa2 on MEDM dataset (right).
We see similar trends across all models and datasets - a consistent decrease in performance with less relevant
definitions.

zero-shot setting (§4.2), with one closed model403

(GPT-4) and one open-source model (Llama 2),404

over the two datasets with the largest gains in405

performance from concept definitions (CDR and406

NCBI for GPT4; MEDM and CHIA for Llama 2).407

5.1 Probing Definition Relevance408

Motivated by prior work showing that LLMs often409

produce correct predictions even with misleading410

or irrelevant prompts (Webson and Pavlick, 2022),411

we ablate over the relevance of definitions provided412

for a given entity. This allows us to assess whether413

performance gains are due to accurate definitions or414

simply from additional context, irrespective of rele-415

vance. To this end, we measure the performance of416

increasingly less relevant knowledge by swapping417

out various components of provided definitions.418

These ablations are realized as follows.419

Diff Entity include definitions of concepts men-420

tioned in a different instance (within the same421

dataset). As this samples instances in the same422

dataset, it will include concepts from the same423

entity types being extracted (e.g., for NCBI, the424

swapped concepts will include some diseases).425

Diff Type include definitions from concepts men-426

tioned in a different instance within the same427

dataset, but exclude concepts from the entity types428

being extracted (e.g., for NCBI, add all swapped429

concepts that are not diseases).430

Swap Def replace definitions for all concepts men-431

tioned in the current instance with random incorrect432

definitions (e.g., for NCBI, if the disease extracted433

is Arrhythmia, we provide a an incorrect definition434

for Arrhythmia).435

Diff Domain include definitions for concepts men- 436

tioned in an instance from a different domain. For 437

instance, for datasets containing Pubmed abstracts 438

(MEDM), we add concepts mentioned in a dataset 439

of clinical trial criteria (CHIA) and vice versa. 440

Figure 2 shows the performance of GPT-4 and 441

Llama 2, with different definition relevance ab- 442

lations, respectively on CDR (left) and MEDM 443

(right). See ?? and ?? for plots with NCBI and 444

CHIA datasets. We see similar trends across all 445

models and datasets: A consistent decrease in per- 446

formance with less relevant definitions. This pro- 447

vides evidence that the model is indeed capitalizing 448

on the definitions and suggests that the quality of 449

the definitions plays a critical role on our proposed 450

method. Interestingly, we observe that augment- 451

ing prompts with definitions of other entities (of 452

the same type) also yields consistent gains across 453

models and datasets. A possible explanation is that 454

since the entities are of the same type, they may 455

be similar enough that model can still learn from 456

their definitions. Finally, we do observe some gains 457

from definitions of entities of a different type, but 458

these are smaller and less consistent. 459

5.2 Probing Definition Sources 460

After establishing that the success of our approach 461

is largely due to adding relevant definition knowl- 462

edge, we assess the impact of the source of defini- 463

tional knowledge. We evaluate the same models 464

and datasets as in the previous experiments but 465

using concept definitions: (i) collected from Wiki- 466

data; and (ii) automatically generated by GPT-4. 467

Table 6 shows the results for all models and data 468

sources. We observe that definitions from Wiki- 469
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Setting CDR NCBI MEDM CHIA

ZS 70.92 54.67 25.98 4.24
+UMLS 76.19 60.91 35.56 9.50
+Wiki 72.9 57.5 32.6 9.53
+GPT4 69.24 54.83 25.29 7.32

Table 6: Ablations with GPT-4 [CDR, NCBI] and
LLaMa 2 [MEDM, CHIA], providing definitions from
different sources. Original source being UMLS and ab-
lations with Wikipedia and GPT 4 generated definitions.

data also improve over the zero-shot baseline, al-470

beit to a lesser degree than UMLS. On the other471

hand, the definitions generated by GPT-4 seem to472

have little to no impact on the model’s performance.473

These results again highlight the importance of the474

knowledge source: we see larger improvements475

with concept definitions from a more domain spe-476

cific source. However, seeing that models can also477

benefit from concept definitions from more gen-478

eral sources such as Wikidata, suggests that our479

proposed approach may also be suitable for appli-480

cations in other, less specialized, domains.481

6 Related Work482

Information Extraction with LLMs Recent work483

has shown that LLMs are capable of extracting in-484

formation from documents in zero- and few-shot485

settings. For instance, (Agrawal et al., 2022) found486

that GPT-3 competes with or outperforms smaller487

models on a small set of clinical tasks extraction488

tasks. However, in the scientific and biomedical489

domain, LLMs were lagging in the performance as490

compared to their pretrained and fine-tuned counter-491

parts (Gutiérrez et al., 2022). GPT-3’s ICL (Brown492

et al., 2020) compares favorably to supervised mod-493

els in several tasks (e.g., NLI, text classification,494

machine translation (Liu et al., 2022)). Several495

methods have been introduced to improve its per-496

formance, optimizing prompt retrieval (Shin et al.,497

2021), ordering (Lu et al., 2022), and design (Perez498

et al., 2021).499

Iterative Prompting with LLMs Recent works500

including (Gero et al., 2023) explores self verifica-501

tion as a strategy to improve the performance on IE502

tasks. This builds on prior works (Wu et al., 2022)503

and (Wang et al., 2022) that iteratively prompt504

LLMs to improve their performance. In recent505

work, (Gero et al., 2023), the authors performed506

clinical information retrieval along with self verifi-507

cation and grounding the extraction with LLMs for508

clinical information extraction. 509

Knowledge Augmentation with LLMs Prior 510

to LLMs, REALM (Guu et al., 2020) and RAG 511

(Lewis et al., 2021) proposed to integrate the knowl- 512

edge, retrieve documents such as documents from 513

unstructured corpora (e.g., Wikipedia) and facts 514

from Knowledge Graphs (KGs), into LMs. With 515

adding this information to these methods the accu- 516

racy improves. Recently, concurrent to our work, 517

(Nori et al., 2023) explores iterative prompting with 518

knowledge augmentation in clinical domain. Their 519

prompting strategy combines kNN-based few- 520

shot example selection, GPT-4–generated chain- 521

of-thought prompting, and answer-choice shuffled 522

ensembling reduces the error rate by 27% medical 523

question answering (MedQA) dataset. 524

7 Conclusions 525

In this work, we extensively evaluated the perfor- 526

mance of ICL approaches for biomedical NER with 527

modern LLMs. We compared different combina- 528

tions of input and output formats and characterized 529

the main types of errors made by these models. 530

Then, we proposed and evaluated a method for 531

rapid adaptation of general LLMs to biomedical 532

NER by providing models with concept definitions 533

from an external knowledge base dynamically. 534

We perform inference with a sequence of 535

prompts which allows models to revise their pre- 536

dictions given definitions of key concepts in the 537

input. The first prompt asks the model to extract 538

entities from the input; and the subsequent prompts 539

are augmented with definitions for all biomedical 540

concepts including the entities identified in the first 541

prompt, and ask the model to revise its predictions. 542

Our evaluation, conducted over 6 datasets, 543

showed consistent and often substantial improve- 544

ments over baselines, especially in zero-shot set- 545

tings. Ablation experiments confirm that the ob- 546

served gains stem from the models’ ability to capi- 547

talize on the concept definitions. In particular, we 548

observe that without these definitions the models 549

are unable to meaningfully improve their predic- 550

tions. 551

While we only considered datasets from a spe- 552

cialized domain (biomedicine), our ablations show 553

that our approach can also be used with more gen- 554

eral knowledge bases, such as Wikidata. This pro- 555

vides some evidence for the potential utility of this 556

approach in other domains. We leave a thorough 557

exploration of this for future work. 558
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8 Limitations559

Since our work evaluates LLMs trained on undis-560

closed data sources, it is possible that the mod-561

els have encountered parts of our evaluation sets562

during pre-training or instruction tuning. The un-563

derlying text corpora for all datasets in our NER564

evaluation testbed are sourced from easily acces-565

sible text collections (e.g., PubMed, AACT) and566

so it is quite likely that these have been seen by567

models during pre-training. However, this is not568

a major issue in the case of NER, because simply569

training on these sentences with a language mod-570

eling objective does not provide any indication of571

which words are named entities. Consequently, our572

primary concern is potential exposure of label in-573

formation from these datasets during some form of574

entity-aware training or instruction tuning phase.575

To assess this, we provide models with the raw576

text and some entity labels and test whether they577

are able to correctly produce the remaining entities578

in the original format. We observe that all mod-579

els failed at this, indicating that though we cannot580

make strong claims about data contamination, it is581

unlikely that models have accurately memorized582

these test sets.583

Another limitation of our work is that we only584

evaluate on biomedical NER and do not test how585

well our approach would work for other tasks586

or domains. Additionally, we rely on the avail-587

ability of expert-curated knowledge (UMLS) for588

biomedicine — however, such resources may not589

be readily available for for other tasks or domains.590

Even within biomedical NER, we test our approach591

on a limited number of datasets due to the experi-592

mental costs of testing proprietary LLMs, and it is593

possible that our approach may not work for other594

datasets.595

Finally, current metrics for IE tasks are not well-596

suited to generative models. We mitigate this by597

performing additional human evaluation, but this598

approach is not scalable.599
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A Input Format862

Selection of few-shot examples: Prior work has863

shown that in-context learning can benefit from so-864

phisticated strategies for selecting exemplars, e.g.865

based on diversity (Hongjin et al., 2022) or infor-866

mativeness (Wu et al., 2023) of the samples. We867

defer a thorough exploration of these strategies to868

future work, and here focus on two relatively sim-869

ple approaches: (i) Random, where k examples870

are randomly sampled; and (ii) Retrieval, which871

follows Gutiérrez et al. (2022). The training set is872

subsampled to 100 examples; then for every test in-873

stance, k most similar examples are retrieved from874

this pool. Similarity between examples is com-875

puted using SPECTER2 embeddings (Singh et al.,876

2022).877

Ordering of few-shot examples: Prior work has878

also shown that models can be very sensitive to879

the order in which examples are provided for in-880

context learning (e.g., Lu et al. (2022)), thus we881

compared two ordering criteria: (i) Fixed order,882

chosen at random; and (ii) Shuffled order of ex-883

amples per test instance. Note that for the retrieval-884

based shot selection, examples are provided in de-885

creasing order of similarity (Gutiérrez et al., 2022).886

B Ablations887

B.1 Best output format in Few Shot888

Ablation experiment testing multiple format com-889

binations on CDR with k=1, 3 and 5 shots. We890

use text as the input format as this was the best891

performing over def prompts across all models and892

all datasets.893

Setting K CDR

JSON
1 64.35
3 65.98
5 66.26

Code
1 56.17
3 60.26
5 60.56

Table 7: Few-shot JSON input and code output ablations.
Results show F1 scores. We evaluate combinations of
input/output formats on CDR dataset and observe that
the best performing format in zero-shot also applies to
the few-shot setting.

B.2 Ordering shots in Few Shot 894

Ablations testing example selection and ordering 895

strategies on CDR with k=1, 3 and 5 shots. 896

• Random: Fixed order of k examples are ran- 897

domly sampled. 898

• Retrieval: For every test instance, k most similar 899

examples are retrieved from this pool. Similarity 900

between examples is computed using SPECTER 901

V2 embeddings and examples are provided in 902

decreasing order of similarity. 903

• Random + Shuffle: Shuffling order of examples 904

per test instance where k examples are randomly 905

sampled. 906

Setting K CDR

Random
1 68.25
3 70.93
5 72.02

Random + Shuffle
1 68.06
3 70.29
5 71.93

Retrieved
1 63.94
3 71.46
5 72.22

Table 8: Few-shot shot selection ablations. Results show
F1 scores. We do not observe meaningful differences
in performance based on these strategies, therefore we
carried few-shot experiments with randomly selected
exemplars shuffled per test instance.

C Qualitative Error Analysis 907

To better understand the performance of LLMs 908

on biomedical NER and characterize errors these 909

models still make, we conduct a qualitative error 910

analysis of 50 examples from the best performing 911

zero-shot and few-shot models per dataset. This 912

analysis surfaced four major categories of errors: 913

• Type mismatch: An entity is extracted correctly 914

but assigned the wrong type. 915

• Boundary issues: The extracted entity is missing 916

terms or contains extra terms when compared to 917

the gold entity. 918

• Extra entities: Model extracts entities which 919

are not present in gold annotations. We observe 920

that these extractions are not always errors either, 921

which motivates the need for human evaluation. 922

• Missing entities: Model does not extract entities 923

present in gold annotation. 924

12



(a) Few shot performance on CHEM (b) Few shot performance on CDR

(c) Few shot performance on MedM (d) Few shot performance on NCBI

(e) Few shot performance on PICO (f) Few shot performance on CHIA

Figure 3: F1 score plotted against the number of shots in few-shot setting. Performance of all models tends to
increase with the number of shots (except for NCBI and MEDM datasets where we observe minor fluctuations in
performance).

Table 10 in the appendix provides an overview of925

the error distribution for every dataset. Several er-926

ror categories mentioned above could potentially927

be corrected by providing models access to addi-928

tional definition knowledge about those entities.929

This further motivates our exploration of definition-930

augmented information extraction using LLMs.931

Manual Evaluation Prior work has shown that932

strict F1 can underestimate the performance of933

generative models on information extraction tasks934

(Wadhwa et al., 2023). To quantify the impact of935

this issue on our results, we conduct a small scale936

human evaluation on two of our datasets (i.e., PICO937

and CHIA) by randomly sampling 100 sentences938

with incorrect predictions and re-assessing all the939

false positive and false negatives. Our analysis940

showed 51% of PICO and 30% of CHIA predic-941

tions deemed incorrect were actually correct.942

D Definition Augmentation Error 943

Analysis 944

We wanted to understand which categories of er- 945

rors (as per the taxonomy in §C) does definition 946

augmentation help with. For each dataset, we ran- 947

domly sampled 50 instances with one or more in- 948

correct extractions which were corrected with defi- 949

nition augmentation (in the zero-shot setting). We 950

then looked at the distribution of error types, and 951

found that extra entities and missing entities were 952

the most common error types fixed using definition 953

information (Table 11). 954
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Model CDR CHEM MedM NCBI PICO CHIA

Missing Entities 75 22.6 47.1 5.5 10.6 39.2

Extra Entities 14.5 21.3 14.2 75 54.54 11.7

Boundary Issues 10.4 22.6 38.5 19.4 12.12 49

Entity Mismatch 0 33.3 - - 22.7 0

Table 9: Percentage (%) distribution of different types of errors mentioned in C for all datasets in zero-shot setting.
Note that NCBI and MEDM datasets have only one entity type, hence there are no type mismatch errors.

Model CDR CHEM MedM NCBI PICO CHIA

Missing Entities 51.2 19.7 24.3 17 32.7 46

Extra Entities 12.1 25.35 18.9 70.2 21.8 9.5

Boundary Issues 34.1 28.1 56.7 12.7 12.7 44.4

Entity Mismatch 2.4 26.7 - - 32.7 0

Table 10: Percentage (%) distribution of different types of errors mentioned in C for all datasets in few-shot setting.
Note that NCBI and MEDM datasets have only one entity type, hence there are no type mismatch errors.

Setting CDR NCBI MEDM CHIA

Type Mismatch 7.5 - - 28.9
Boundary Issue 9.4 5.8 0 24
Extra Entities 71.6 82.3 16.4 42
Missing Entities 11.3 11.7 83.5 4.8

Table 11: Percentage (%) distribution of different types
of errors mentioned in C for 4 datasets. Note that NCBI
and MEDM datasets have only one entity type, hence
there are no type mismatch errors.

Model Engine Cutoff

GPT 3.5 gpt-3.5-turbo-0613 Sep 2021
GPT 4 gpt4-0613 Sep 2021
Claude 2 claude-2 Dec 2022
LLaMa 2 llama-2-70b-chat Jul 2023

Table 12: Overview of all models.
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Dataset Descriptions Examples

CHEM The BioCreative VI Chemical-Protein
Interaction corpus (Krallinger et al.,
2017) contains biomedical abstracts
with annotations for chemical and pro-
tein entities.

Sentence : AMPK activity was measusalmon as
the amount of radiolabelled phosphate transfer-
salmon to the SAMS peptide. Entities : ’Chem-
icals’: [’phosphate’], ’Proteins’: [’AMPK’]

CDR The BioCreative V Chemical-Disease
Relation corpus (Li et al., 2016) contains
biomedical abstracts with annotations
for diseases and chemical entities.

Sentence : Pre-treatment of bupivacaine-
induced cardiovascular depression using differ-
ent lipid formulations of propofol. Entities :
Chemicals : [’bupivacaine’, ’propofol’], "Dis-
eases": [’cardiovascular depression’]

NCBI The Natural Center for Biotechnol-
ogy Information Disease corpus (Doğan
et al., 2014) contains biomedical ab-
stracts annotated with disease mentions

Sentence: Twins with AS were identified from
the Royal National Hospital for Rheumatic Dis-
eases database. Entities: [’AS’, ’Rheumatic
Diseases’]

MEDM (Mohan and Li, 2019)corpus consists of
biomedical abstracts with annotations
for biomedical concepts that can be
found in knowledge bases.

Sentence: A premature electrical impulse from
one of four grid corners was utilized to initiate
activation. Entities : [’premature’, ’electrical
impulse’, ’initiate’, ’activation’]

PICO The EBM-NLP corpus (Nye et al., 2018)
contains clinical trial abstracts annotated
with (P)articipants, (I)nterventions, and
(O)utcomes.

Sentence: Evaluation of lidocaine in human in-
ferior alveolar nerve block. Entities : ’popula-
tion’: [’human inferior alveolar nerve block’],
’intervention’: [’lidocaine’], ’outcome’: []

CHIA This dataset contains text snippets from
clinical trial eligibility criteria annotated
with entities that can be used to form
executable logic statements/queries rep-
resenting the criteria.(Kury et al., 2020)

Sentence: Use of medications that alter the ab-
sorption or metabolism of levothyroxine. Enti-
ties : ’Drug’ : [’medications’, ’levothyroxine’],
’Negation’ : [’alter’], ’Observation’ : [’absorp-
tion of levothyroxine’, ’metabolism of levothy-
roxine’], ’Scope’ : [’absorption or metabolism
of levothyroxine’]

Table 13: Overview of all datasets included in our final biomedical NER evaluation testbed.
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TUI id Name of the entity

T017 Anatomical Structure
T018 Embryonic Structure
T019 Congenital Abnormality
T020 Acquisalmon Abnormality
T021 Fully Formed Anatomical Structure
T024 Tissue
T025 Cell
T026 Cell Component
T028 Gene or Genome
T032 Organism Attribute
T034 Laboratory or Test Result
T037 Injury or Poisoning
T038 Biologic Function
T039 Physiologic Function
T040 Organism Function
T041 Mental Process
T045 Genetic Function
T046 Pathologic Function
T047 Disease or Syndrome
T048 Mental or Behavioral Dysfunction
T059 Laboratory Procedure
T060 Diagnostic Procedure
T061 Therapeutic or Preventive Procedure
T064 Governmental or Regulatory Activity
T082 Spatial Concept

Table 14: The final set of categories used for all defini-
tion augmentation experiments (Part 1)

TUI id Name of the entity

T082 Spatial Concept
T063 Molecular Biology Research Technique
T083 Geographic Area
T085 Molecular Sequence
T086 Nucleotide Sequence
T087 Amino Acid Sequence
T088 Carbohydrate Sequence
T089 Regulation or Law
T095 Self-help or Relief Organization
T097 Professional or Occupational Group
T101 Patient or Disabled Group
T121 Pharmacologic Substance
T122 Biomedical or Dental Material
T123 Biologically Active Substance
T125 Hormone
T126 Enzyme
T127 Vitamin
T129 Immunologic Factor
T131 Hazardous or Poisonous Substance
T169 Functional Concept
T170 Intellectual Product
T191 Neoplastic Process
T192 Receptor
T203 Drug Delivery Device
T204 Eukaryote

Table 15: The final set of categories used for all defini-
tion augmentation experiments (Part 2)
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E Implementation Details955

We used OpenAI API 1, Anthropic API 2 and To-956

gether API 3 to run inference. We use the following957

settings for all closed source models. Temperature958

is 0 and max number of tokens for extractions be-959

ing 256. For generating definitions with GPT-4,960

we increase the max number of tokens to 4096.961

We use the spaCy (en_core_web_sm) library (Hon-962

nibal and Montani, 2017) for tagging biomedical963

entities.964

We fine-tune Flan-T5-XL from HuggingFace965

(Wolf et al., 2020) library on NVIDIA RTX A6000966

GPU. We fine-tune with a learning rate of 1e-3967

for 10 epochs. We adapt Low-Rank Adaptation of968

LLM (LoRA) (Hu et al., 2021) with the following969

parameters : lora_alpha: 32, lora_dropout: 0.05970

and SEQ_2_SEQ_LM as the task type.971

Output formatting: For datasets with a sin-972

gle entity type (i.e., MEDM and NCBI), we973

format the outputs as entity_name <sep>974

entity_name; for datasets with multiple types975

(i.e., CHEM, CDR, PICO and CHIA) we use976

the format: [entity_name:entity_type,977

..., entity_name:entity_type].978

1https://platform.openai.com/
2https://console.anthropic.com/
3https://api.together.xyz/
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Model Setting CHEM CDR MedM NCBI PICO CHIA

GPT-3.5 ZS 48.61 67.65 43.77 54.05 10.25 7.50
SC 47.18 68.01 45.6 52.29 8.16 8.53

Claude 2 ZS 54.28 70.07 36.98 44.17 7.26 20.12
SC 55.43 68.75 35.55 37.28 6.9 20.17

Llama 2 ZS 60.30 64.07 25.98 47.38 7.88 4.24
SC 57.63 64.07 26.08 44.81 6.7 5.87

GPT-4 ZS 62.12 70.92 47.13 54.67 7.29 16.39
SC 63.85 71.02 46.86 56.75 7.41 16.96

Table 16: F1 scores of zero-shot (ZS) followed by self-consistency (SC) for all models and datasets. We don’t see
gain in the performance when prompted without augmenting with the definitions.
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Figure 4: Definition relevance ablations with GPT-4 on NCBI dataset (left) and Llama 2 on CHIA dataset (right).
We see similar trends across all models and datasets - a consistent decrease in performance with less relevant
definitions.

Figure 5: Zero-shot Prompt with text input and JSON output
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Figure 6: Zero-shot Prompt with schema def input and JSON output

Figure 7: Zero-shot Prompt with text input and code output

Figure 8: Zero-shot Prompt with schema def input and code output
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Figure 9: Few-shot Prompt with text and JSON output

Figure 10: Few-shot Prompt with text and code output

Figure 11: Zero-shot Definition Augmentation with Single Turn
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Figure 12: Zero-shot Definition Augmentation with Iterative Prompting with extracted entities

Figure 13: Zero-shot Definition Augmentation with Iterative Prompting with biomedical phrases

Figure 14: Few-shot Definition Augmentation with Single Turn
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