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Fig. 1: Risk-Calibrated Interactive Planning (RCIP) statistically calibrates risk for human-robot interaction. Given a set of possi-
ble human intents and confidence scores, a planner generates a weighted set of actions. The set of actions from each plan are col-
lected in a set according to a threshold on the predicted intents. If there is more than one action in the set, the robot asks for help.

Abstract— Tasks where robots must cooperate with humans,
such as navigating around a cluttered home or sorting everyday
items, are challenging because they exhibit a wide range of
valid actions that lead to similar outcomes. Moreover, zero-shot
cooperation between human-robot partners is an especially chal-
lenging problem because it requires the robot to infer and adapt
on the fly to a latent human intent, which could vary significantly
from human to human. Recently, deep learned motion prediction
models have shown promising results in predicting human intent
but are prone to being confidently incorrect. In this work, we
present Risk-Calibrated Interactive Planning (RCIP), which is
a framework for measuring and calibrating risk associated with
uncertain action selection in human-robot cooperation, with the
fundamental idea that the robot should ask for human clarifica-
tion when unertainty in the human’s intent may adversely affect
task performance. RCIP builds on the theory of set-valued risk
calibration to provide a finite-sample statistical guarantee on the
cumulative loss incurred by the robot while minimizing the cost
of human clarification in complex multi-step settings. Our main
insight is to frame the risk control problem as a sequence-level
multi-hypothesis testing problem, allowing efficient calibration
using a low-dimensional parameter that controls a pre-trained
risk-aware policy. Experiments across a variety of simulated and
real-world environments demonstrate RCIP’s ability to predict

and adapt to a diverse set of dynamic human intents.1

I. INTRODUCTION

Predicting and understanding human intent is a critical task
for robotics, specifically for safe interaction with humans
in cluttered, close-quarters environments. However, human
intent prediction is challenging because no two humans
may have the same preferences, and intents may differ
depending on the specific environment. As an example, a
robot is tasked with sorting items into three bins based on an
example provided by the human (see Fig. 1). While the bins
have a ground-truth sorting criterion known by the human
(vegetables, children’s toys, and miscellaneous orange items),
the robot must infer the human’s intent in order to sort new
items. Given the provided context, the robot should be able
to sort some unambiguous items (e.g. the crab) autonomously,
while other items (e.g. the carrot) may be placed into
multiple bins, resulting in situational ambiguity. If asked to

1Website with additional information, videos, and code: https://risk-
calibrated-planning.github.io/
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operate fully autonomously, the robot must take a risk and
guess the correct placement for the carrot. However, the robot
may also ask for help if it is unsure, guaranteeing the correct
action but potentially burdening the human. In this work,
we study the tradeoff between risk and autonomy governing
optimal action selection in the face of situational ambiguity.

Recently, calibrated predict-then-plan (also known as
contingency planning) [1, 2] approaches have demonstrated
the ability to generate provably safe plans by first using
confidence-aware prediction models to generate a set of
possible futures and then constructing a safe plan that
accommodates for the future uncertainty. These approaches
enable synthesis of large amounts of scene-specific context
(such as image or map information) while simultaneously
providing a guarantee on the plan success rate by calibrating
the coverage of the prediction. However, one of the major
challenges of predict-then-plan approaches comes from
multi-modal human behavior: if the distribution of human
actions contains multiple high-level behaviors, a single
robot plan may become overly conservative in trying
to accommodate all possible human intents. Moreover,
environments themselves may generate additional sources
of ambiguity that may result in unsafe behavior from the
robot if misinterpreted. In such cases, if possible, the robot
should ask for help in order to clarify the human’s intent
instead of committing to a potentially unsafe action.

Our approach utilizes deep-learned human intent prediction
models (e.g. [3, 4]) for understanding interactivity, and rigor-
ously quantifies the uncertainty of these models in order to
decide when to ask for help. As shown in Fig. 1 (middle), we
produce a limited set of human intents based on the prediction
model’s confidence scores. For each predicted intent, we plan
a sequence of actions that satisfy an environment objective,
such as placing the item in the correct bin. To accommodate
different levels of robot autonomy, we assume that the pre-
dictor has a small number of highly flexible hyperparameters
(such as the temperature), which allow the end-user to specify
high-level behaviors (more or less confident predictions). We
use a small calibration dataset of human-robot interactions to
choose a set of valid hyperparameters that provide a level of
risk and autonomy set in advance by the user. By leveraging
recent advances in distribution-free risk control [5], we show
that the robot’s behavior can simultaneously limit several
notions of risk. We formalize this challenge via two objectives:
(i) statistical risk calibration: the robot should seek sufficient
help from the human when necessary to ensure a statistically
guaranteed level risk specified by the user, and (ii) flexible
autonomy: the robot should ask for a minimal amount of help
as specified by the user by by narrowing down situational
ambiguities through planning. We refer to these simultaneous
objectives, with help from the human when necessary, as
Risk-Calibrated Interactive Planning (RCIP).

Statement of contributions. In this work, we introduce
RCIP, a framework for measuring and calibrating risk in situ-
ations that involve interactions with humans with potentially
ambiguous action choices. By reasoning about the human’s de-
sired task outcome in the space of intents, we efficiently plan

safe actions in the face of diverse, multi-modal human behav-
ior, and ask for help when necessary. We make the following
contributions: (1) We demonstrate how to use statistical risk
control (SCR) to control the planning error rate across a set of
model hyper-parameters, allowing flexible but provably safe
levels of autonomy. (2) We prove theoretical guarantees for
multi-dimensional risk control for both single-step and multi-
step planning problems: with a set of user-specified risk bud-
gets (α1,...,αK) for different measures of risk (e.g., probabil-
ity of failure and probability that the robot asks for help) and
the robot performs the task correctly (with high probability)
by asking for help if any of the K risk budgets will be violated.
(3) We evaluate RCIP in both simulation and hardware with a
suite of human-robot interactive planning tasks with various
styles of situational ambiguity (spatial, contextual, semantic).
Experiments across multiple platforms and human uncer-
tainty showcase the ability of RCIP to provide statistically
guaranteed task success rates while providing more flexible
autonomy levels than baseline approaches. RCIP reduces the
amount of human help by 5−30% versus baseline approaches.

II. RELATED WORK

RCIP brings together techniques from contingency
planning, human intent prediction, and conformal prediction
and empirical risk control.

A. Contingency Planning and Priviledged Learning

Contingency planning [6] is a growing literature on
planning for multi-agent interactive scenarios where future
outcomes are diverse. Recent approaches [7]–[10] typically
favor a predict-then-plan approach, wherein multi-modal
motion predictions are first generated and then used to
produce a set of safe plans conditioned on each prediction.
The authors of [11] formulate a multi-agent contingency
planning problem as a generalized Nash equilibrium problem,
thereby assuming that agents are non-cooperative. In this
work, we assume that the human and robot act in good faith
(i.e., they are cooperative). Similar to contingency planning
is the learning under privileged information paradigm [12]–
[14], which provides the learning algorithm with additional
information during training to help bootstrap near-optimal
behaviors. Privileged learning has shown empirical success in
semantic reasoning [15], vision-based robotic manipulation
[16], and learning policies that can be deployed in the wild
[17]–[19]. In [20], privileged information about the human’s
trajectory is used to train a policy that most efficiently
apprehends a human opponent, and a partially-observed
deployment policy is distilled using a teacher-student
paradigm. Similarly, in [21], a visuomotor policy for social
navigation is trained by using exact pedestrian positions
during training, and a model for estimating for the position
embedding is distilled from the privileged embedding.

In this work, we provide the robot with additional
information about the internal state of the “human” during
the planning phase. We eliminate the need for a separate
distillation procedure by instead using a set-valued prediction
strategy, introduced in the following sections. We use



contingency planning and privileged learning to find (or
learn) optimal intent-conditioned policies, which can then be
used to predict an optimal action via an upstream predictor.
By allowing the robot to ask for help when it is uncertain,
we statistically quantify risk associated with the robot acting
optimally, even when it is uncertain.

B. Human Intent Prediction

Predicting intent of humans for downstream planning has
been widely applied in autonomous driving [22]–[24], social
navigation [4, 25, 26], and game theory [27]. Several works
[23, 28] use a discrete latent variable to capture qualitative
behaviors in human motion. To aid in human goal satisfaction,
the authors of [29] show that human actions can be predicted
directly in interactive settings, but the prediction model must
be retrained whenever the task or human partner changes.
Conversely, in our work we leverage recent advances in vision
language models (VLMs) [30] for their ability to condition on
internet-scale data to predict intuitive human motions in a va-
riety of tasks. In this work, we use intent prediction to bound
directly the risk associated with downstream planning. We use
set-valued prediction to compute a set of possible intents, from
which a planning module can compute a conditional plan.

C. Conformal Prediction and Empirical Risk Control

Conformal prediction [31]–[33] has recently gained popular-
ity in a variety of machine learning and robotics applications
due to its ability to rigorously quantify and calibrate un-
certainty. A recent line of works [34]–[36] has extended
the theory from prediction of labels (e.g. actions) to se-
quences (e.g. trajectories). Several works [37, 38] have studied
adaptive conformal prediction, wherein a robot’s predictive
conservativeness is dynamically adjusted within a policy
rollout by assuming that there always exists a conservative
fallback policy. Finally, some recent works [39, 40] have
extended conformal prediction theory to handle more general
notions of risk. Our work differs in three key ways: (i) we
provide a separate calibration stage in which the robot can
adjust its parameterization of prediction sets through a modest-
size dataset of interactive scenarios, reducing the number of
“unrecoverable” scenarios in which the robot exceeds its risk
budget early on in a rollout, and (ii) we provide a way to
synthesize from scratch risk-averse control policies, and (iii)
we reason about human uncertainty in the space of intents,
permitting a more natural way to capture diverse interactive
behaviors than other representations (e.g. trajectories).

III. PROBLEM FORMULATION

In this section, we pose the problem of human-robot
cooperation with intent uncertainty as a partially observable
Markov decision process (POMDP). We present a brief
overview of the prediction-to-action pipeline and our goals
of risk specification and flexible autonomy.

A. Dynamic Programming with Intent Uncertainty

Environment Dynamics. We consider an interaction
between a robot R and human H in environment e, governed

by a nonlinear dynamical system with time horizon T :

xt+1=fe(xt,ut) ∀t∈ [T ], (1)

where xt ∈ S ⊆ Rn is the joint state of the system and
ut ∈ U ⊆ Rm is the joint (robot-human) control input
(uR

t ,u
H
t ). We use a superscript for individual agent indexing,

and we use bar notation to denote aggregation over time, e.g.
x̄t = (x1,...,xt). Let π = (πR,πH) denote the joint control
policy governing system (1). We permit the human’s action
to be drawn from a potentially multi-modal distribution πH .

We present a methodology for learning a policy set
ΠR that selects a set of optimal actions contingent on the
uncertainty in πH .

Intent Dynamics. We assume that the human’s (potentially
unknown) policy πH is parameterized by a discrete latent
variable with the following dynamics:

zt+1∼q(·|xt,zt), (2)

where zt∈Z=[N ] characterizes the human’s intent at time
t, and N is the number of high-level human behaviors. We
assume that conditioned on the human’s latent intent (which
may be stochastic), each agent’s action is conditionally
deterministic, i.e., ui

t=πi(xt,zt), for i∈{R,H}.
Planning Objective. Each agent i ∈ {R, H} has the

goal to minimize their corresponding cost function J i in
finite-horizon T with running cost li. The cumulative cost of
a policy πi starting from initial state x and a known human
intent z is

J i(x,z,πi)=Eπ

[
T∑

t=1

li(xt,ut)
∣∣∣x1=x,z1=z

]
. (3)

The objective of agent i is to find a policy πi that minimizes
eqn. (3). To ensure the safety of the human, we add an
additional set of inequality constraints hi that depend on the
(time-varying) intent of the human:

min
πi

J i(x,z,πi)

s.t. hi(xt,zt)≤0 ∀t∈ [T ]
(x1,z1)=(x,z).

(4)

Conditional Action Selection. For each intent z, the
value function associated with the latent intent z can be
evaluated as a function of the state-intent pair (x,z). That is,

V i(x,z)=inf
πi

{
J i(x,z,πi)

}
. (5)

The Bellman optimality principle states that the optimal
policy satisfies Bellman’s equation:

V i(x,z)=inf
πi

{
Eπ,q

[
li(x,u)+V i(fe(x,u),zt+1)

]}
, (6)

where zt+1 is sampled according to eqn. (2). The action-value
function is similarly defined as

Qi(x,ui,z)= li(x,ui,u¬i)+Eπ,q[V i(xt+1,zt+1)], (7)

where (xt+1,zt+1) are the next state-intent pair under the
state dynamics (1) and intent dynamics (2), ¬i is the other
agent, and u¬i = π¬i(x,z). Eqn. (7) states that since both
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Fig. 2: RCIP formulates interactive planning as a multi-hypothesis risk control problem. Using a small set of calibration
scenarios, RCIP computes step-wise prediction losses to form an aggregate emperical risk estimate. Using a risk limit, for
each pair (λ,θ) of prediction thresholds and model hyperparameters, RCIP evaluates the hypothesis that the test set risk
is above the limit. Thus, for all hypotheses that are rejected, the test set risk satisfies the threshold (with high probability).

agents’ policies are conditionally deterministic, the optimal
cost-to-go is a deterministic function of the state-intent
pair (x, z). If the latent intent z were known, then the
expected cost-to-go is a deterministic function of the current
observation x, intent z, and the joint control u. Without
knowledge of z, the state of the system would not be fully
observable, and the cost-to-go would vary due to uncertain
action selection at the current state. The optimal action for
both agents is given by the minimizer of Eqn. (7),

ui∗(z)=argmin
u

Qi(x,u,z) ∀i∈{R,H}. (8)

Intent Prediction. During deployment, the true human
intent z is not observed. However, we assume access to
a model gθ with hyperparameters θ that predicts human
intent based on a sequence x̄t of prior states. Specifically, let
gθ(x̄t,z) produce a confidence score in [0,1] that estimates
the probability of each possible intent z in Z . In general,
gθ will output heuristic and uncalibrated confidence scores,
and need not be trained on the same distribution q.

B. Risk-Calibrated Interactive Planning

Predicted Action Set. We aggregate confidence scores
from gθ into a set Sλ,θ⊆Z of predicted intents via the rule

Sλ,θ(x̄t)={z∈Z :gθ(x̄t,z)≥λ}, (9)

where λ is a confidence threshold (cf. Section IV). Since
human intent uncertainty alone may not alter the optimal
robot plan, we compute a set of predicted actions from the

set of predicted intents as

Tλ,θ(x̄t)={u∈U :∃z∈Sλ,θ s.t. u=u∗(z) and g∗θ(x̄t,z)≥λ},
(10)

where we define g∗θ as the sum of all intent-based
confidence scores that lead to the same action, i.e.,
g∗θ(x̄t, z) :=

∑
z′∈Z gθ(x̄t, z

′)1{uR∗(z) = uR∗(z′)}. To
simplify notation, we define g∗θ(z) :=g∗θ(x̄t,z).

Policy Deployment. We now define our overall robot
policy ΠR. Given the predicted action set Tλ,θ(x̄t) defined
in Eqn. (10), the robot has two behaviors:

1) Autonomy. If Tλ,θ(x̄t) is a singleton, then the robot
is confident in the predicted action, and the action is
executed.

2) Triggering Help. If Tλ,θ(x̄t) is not a singleton, then the
robot triggers human help, and the human reveals their
true intent, z∗. The robot executes the action uR∗(z∗).

If λ and θ are chosen such that Tλ,θ(x̄t) is empty, the task
is failed.

C. Goal: Certifiable Autonomy

Situational ambiguity results in many potentially correct
robot actions arising with potentially no safe external resolu-
tion, save for direct human intervention (see e.g. Fig. 1). Our
goal in this work is to address certifiable autonomy: selecting
a set of model hyper-parameters (θ,λ) that achieves multiple
user-specified levels of risk. As shown in Fig. 2, we formalize
this problem by considering a joint distribution D over
scenarios ξ :=(e,q,l), where e is an environment (a POMDP)
with dynamics fe, q is a stochastic function describing the
human’s intent and partially observed through f , and l is



a cost function encoding the robot’s goal, which is assumed
to be known a-priori by both the human and robot. We do
not assume knowledge of D except for the availability of a
modestly-sized calibration dataset C containing 500 samples
from D. We formalize certifiable autonomy in our context as
(i) risk calibration: the robot must meet a set of user-specified
risk levels (R1,...,RK) with user-specified probability over
new scenarios ξ∼D, and (ii) flexible autonomy: the policy
ΠR should return a set of model hyper-parameters that
control each risk but allow different high-level behaviors.

IV. APPROACH

In this section we present a procedure for guaranteeing
optimal action selection while controlling a user-specified
notion of risk. We introduce statistical risk calibration below,
then present the different practical settings we consider
(single-step, multi-step, and multi-risk).

A. Background: Statistical Risk Calibration

What is a risk? We now present an approach for
controlling the risk of the robot’s multi-modal policy ΠR by
calibrating when the robot should ask for help at inference
time according to a user-specified notion of risk. Our approach
builds on the Learn-then-Test framework for distribution-free
statistical risk control [5]. Let D be an unknown distribution
over i.i.d. scenarios such that ξ∼D. If we fix a policy for
the human and the robot and assume that the robot has
ground-truth knowledge of z, then the distribution over
scenarios induces a distribution over the context-label pairs
(x̄,z), where the context contains a history of the previous
states up to and including the current state at time t.

Assume that we are given a risk signal R that we wish
to control, where R ∈ [0, 1] measures an expected loss
as a function of the prediction threshold λ and model
hyperparameters θ. Here, we let ϕ :=(λ,θ)∈Φ be the pair of
prediction parameters we wish to optimize, where Φ=Λ×Θ.
For fixed parameters ϕ, the expected loss is itself a function
of the context, prediction sets, and true labels over the
unknown distribution D, i.e.

R(ϕ)=E(x̄,z)∼D
[
L(x̄,Tϕ(x̄),z)

]
, (11)

and the loss L is similarly defined on [0,1].
Bounding the Probability of Suboptimal Actions. As

an example, L could be miscoverage, i.e., L = 0 if the
optimal action is in the prediction set, and L=1 otherwise.
In expectation over D, the risk associated with suboptimal
action selection is the miscoverage risk, i.e

Rcov(ϕ)=P(x̄,z)∼D(uR∗(z∗) /∈Tϕ(x̄)
)
. (12)

Remark. Equation (12) is identical to the typical conformal
prediction (CP) setting [41, 42] in which the risk is
miscoverage of the true label in the prediction set. However,
the standard CP framework only allows one to choose λ to
bound the miscoverage rate. In contrast, the formulation we
consider permits the modification of other model parameters
θ (e.g., the temperature of the softmax outputs) in order to
have more fine-grained control of the prediction sets and

bound risks beyond miscoverage. We will demonstrate the
benefits of this flexibility empirically in later sections.

Calibrating the Predicted Action Set. We will assume
access to a calibration set C={(x̄i,zi)}Mi=1 of i.i.d. random
variables drawn from D, which we will use to estimate the
risks. We seek to take the (uncalibrated) prediction model
g∗θ :X t×Z → [0,1] that produces softmax scores for each
intent-conditioned action uR∗(z). As described in Sec. III-B,
we post-process the raw model outputs in [0,1] to generate a
prediction set Tλ,θ(x̄) containing actions; this set is parameter-
ized by a low-dimensional set of parameters λ∈Λ and θ∈Θ,
where Λ is a finite set of prediction thresholds values one
wishes to test, and Θ is a finite set of model hyperparameters,
such as temperature. Then, we use the calibration set in order
to choose the parameter pair (λ,θ) to control a user-specified
risk, regardless of the quality of the predictor g∗θ .

Ahead of calibration, we set a desired risk threshold
α. Our goal is to identify a set Φ̂ ⊆ Φ such that for any
ϕ ∈ Φ̂, R(ϕ)≤ α with some user-defined probability δ. In
particular, the probability δ is with respect to the randomness
in sampling over the calibration dataset C, which itself is
randomly sampled from the unknown distribution D.

Multi-Hypothesis Testing for a Single Risk. Since
the prediction set Tϕ is controlled by low-dimensional
hyperparamters ϕ drawn from the set Φ̂, controlling a single
risk is a multiple-hypothesis testing problem [5]. For each
j ∈ {1, ..., |Φ|}, we consider the hypothesis Hj such that
the risk R(ϕj) is not controlled, where ϕj ∈Φ. Therefore,
rejecting Hj is equivalent to certifying that the risk is
controlled. For a calibration set size M , define the empirical
risk estimate on the calibration set:

R̂j=M−1
M∑
i=1

L(x̄i,Tϕj (x̄i),zi). (13)

Using R̂j , the Hoeffding-Bentkus inequality [39] gives
the jth p-value as

pj=min
(
exp
(
−Mh1(max(R̂j ,α),α)

)
,eΦ̂Bin

α,n(⌈nR̂j⌉)
)
,

(14)
where h1(a, b) = a log(a/b) + (1 − a) log((1−a)/(1−b))
and Φ̂Bin

α,n(y) is the cumulative distribution function of the
binomial distribution with parameter α and number of trials n.

We now have left to construct our set Φ̂ of low-
dimensional parameters ϕj that reject Hj and control the risk
R. Bounding (11) for all ϕ∈ Φ̂ requires that the p-values hold
simultaneously; any nontrivial subset Φ̂⊆Φ that controls the
risk is said to control the family-wise error rate (FWER).
A simple but powerful approach, which we use in the
following analysis, is to apply a union bound over a coarse
grid J of initializations (e.g. each item in J is an equally
spaced grid of indices of Φ ) in an iterative procedure called
fixed-sequence testing [5, 43]. In fixed-sequence testing,
for each j ∈J , the set Φ̂ of valid prediction thresholds is



initialized as the empty set and grown according to the rule

Φ̂←

{
Φ̂∪{ϕl} ϕl /∈ Φ̂ and pl≤δ/|J |, l≥j j∈ [J ]
Φ̂ o.w.

(15)
That is, parameters ϕj are only added to Φ̂ if Hj is rejected,
eliminating the need for a union bound over a large set of
parameters. The set of parameters that satisfy the risk bound
is given by

Φ̂ :={ϕj :pj≤δ/|J |}. (16)

Thus,

P(x̄,z)∼DM

(
sup
ϕ∈Φ̂

{
R(ϕ)

}
≤α

)
≥1−δ, (17)

where the supremum over the empty set is defined as −∞.
The calibration procedure thus yields Φ̂, which is a set of
values ϕj that each control the risk R(ϕj) to the desired
level α (with probability 1−δ over the randomness in the
calibration dataset).

B. Single-Step, Single-Risk Control

We now state our first proposition, which bounds the
action miscoverage rate for single-step settings.

Proposition 1. Consider a single-step setting (T = 1)
where we use risk calibration parameters ϕ∈ Φ̂ to generate
predicted action sets and seek help whenever the prediction
set is not a singleton (cf. Sec. III-B). If the FWER-controlling
parameter set Φ̂ is non-empty, then with probability 1−δ over
the sampling of the calibration set, the new scenarios drawn
from D incur at most α1 rate of optimal action miscoverage.

Proof. The proof follows immediately from application of
fixed-sequence testing to the p-values obtained from the
Hoeffding-Bentkus inequality, as given in [5], and is identical
to the conformal prediction setting [36].

C. Single-Step, Multi-Risk Control

We now introduce two key risks that will play a significant
role in determining the robot’s level of autonomy. The first
relates to suboptimal action selection and is defined in
Eqn. (12), and the second relates to the level of human help.

While typical conformal prediction guarantees a minimal
average prediction set size, we are interested in minimizing
the human help rate, introduced here.

Bounding the Human Help Rate. We now seek to
provide an additional bound on the probability of asking for
human help, i.e.,

Rhelp(ϕ)=P(x̄,z)∼D(|Tϕ(x̄)|>1
)
. (18)

Eqn. (18) is the fraction of scenarios where the prediction set
is not a singleton, which is exactly the fraction of scenarios
where help is needed. Hence, optimizing for action miscover-
age alone may result in the robot asking for help an excessive
amount of times and over-burdening the human. Instead, we
apply the risk control procedure again to the help-rate risk. As
before, define risk thresholds α1 and α2 and null hypotheses

Hj
k : Rk(ϕ

j)≥αk k∈{cov, help} (19)

for j∈ [|Φ̂|]. We now present a bound on the probability that
both risks are controlled simultaneously by using the p-value
pj :=maxk pj,k.

Proposition 2. Consider a single-step setting where we use
risk calibration parameters ϕ∈ Φ̂ to generate prediction sets
and seek help whenever the prediction set is not a singleton.
Let the upper bound on the help rate (18) be set to α2. If the
FWER-controlling parameter set Φ̂ is non-empty, then with
probability 1−δ over the sampling of the calibration set, the
new scenarios drawn from D incur at most α1 rate of optimal
action miscoverage and at most α2 rate of human help.

Proof. Follows directly from Proposition 6 of [5].

We provide in the Appendix an extension of our approach
for the multi-step, multi-risk setting.

V. EXPERIMENTS

Environments. We demonstrate RCIP in three multi-step,
interactive domains, which exhibit three ways in which a
robot planner can be integrated with an intent predictor. First,
we consider a multi-hallway setting in which an autonomous
vehicle and a human-driven vehicle must coordinate to reach
opposite ends of a room by navigating a set of hallways
that are only one vehicle-width wide (see Fig. 4). The
human vehicle randomly selects one of the hallways in
advance but does not communicate the hallway to the robot.
Next, we investigate human-robot cooperative navigation in
close-quarters, cluttered household settings in the Habitat 3.0
[44] simulator (see Fig. 3). Finally, we show simulation and
hardware experiments for zero-shot cooperative manipulation,
in which the robot aids the human in sorting common
household objects (e.g. books, toys, and fruit) by a mixture
of size, shape, and color (see Fig. 1). Since the environment
dynamics (1) may evolve at a much faster time scale than the
human’s intent dynamics (2), the human’s intent is updated
once every Tz timesteps and is constant otherwise.

Scenario Distribution and Calibration Dataset. RCIP
can be used to obtain risk guarantees for an unknown
scenario distribution — that is, of environments and human
partners — if can can collect i.i.d. samples from it for
calibration. We envision that RCIP will enable a robot to
interact with an end user (or set of users) through interactive
data collection. Then, using the set of FWER-controlling
parameters obtained from calibration (cf. section IV), the
user may set a level of autonomy for the robot depending
on the risk limits of the task. The scenario distribution for
each environment is described in the following subsections.
Each calibration dataset is generated by random sampling
from the environment distribution and from the distribution
over human intents. For the simulation environments, we use
a pre-trained prediction model using 10k random scenarios.
For the hallway and cooperative navigation environments, the
prediction models are trained on a single NVIDIA GeForce
RTX 2080 Ti GPU. Pre-training the prediction model takes
about 4 hours per environment. For calibration on hardware,
data collection takes about 8 hours. For all environments, we



fix δ=0.01 and use a calibration dataset of size M=500. In
all experiments, we evaluate thresholds λ∈ [0,1] with a step
size of 0.001 and model temperature θ∈{0.2,0.4,0.6,0.8,1}.

Baselines. We compare RCIP against similar set-valued
prediction approaches. A simple but naive approach for
approximated 1−α1 coverage of optimal actions is Simple
Set, which ranks actions according to a 1−α1 threshold using
the predictor’s raw confidence scores. Actions are sorted by
greatest to least confidence, and actions are added to the pre-
diction set in order of the sorted action set until the threshold
is reached. To measure the effect of overall uncertainty rather
than individual scores, we compare against Entropy Set,
which includes the highest overall prediction if the entropy of
the distribution predicted actions is below a threshold; if not,
then all actions are included in the prediction set, and the
robot must ask for help. To evaluate the performance of vanilla
conformal prediction against the richer hypothesis space of
RCIP, we report results for KnowNo [36]. Similar in spirit but
different from our work, KnowNo seeks to maximize coverage
of optimal actions but without any guarantees on the human
help rate, and assumes model parameters are fixed. Instead
of maximizing coverage outright, RCIP balances prediction
of optimal actions with limits on the human help rate, pro-
viding flexible performance guarantees depending on model
parameters. Lastly, we consider No Help as an option, where
the predicted action set always contains the predictor’s most-
confident action, and the human help rate is identically zero.

Metrics. For all environments, we report the task-level
risks of (i) plan success rate and (ii) human help rate, on the
test set. We also report the instantaneous risks — measured
as an average over time — of plan success and human help.

A. Simulation: Cooperative Navigation in Habitat

Habitat [44] is a photo-realistic simulator containing a
diverse set of scenes, objects, and humans models for human
robotics tasks. In this experiment, a Boston Dynamics Spot
robot and human are jointly tasked with navigating to a set
of goal objects in sequence, to simulate cleaning up a house
(i.e., grabbing various items, such as crackers, cans of soup,
etc. as shown in Fig. 3). Each scene contains 5−10 objects of
interest. Although the human may initially be out of view of
the robot, the robot must find the human and maintain a safe
distance of one meter at all times. We simulate the human’s
decision making by choosing a high-level intent from the set
of objects; here, Z=[No], where No is the number of objects
in the scene. The confidence scores for each intended object
are computed by taking the temperature-weighted softmax
scores for each goal object. The final action probabilities
are computed according to Eqn. (10). The robot interacts
with the human over T = 600 environment time steps and
selects a new goal object every Tz=100 time steps.

Since the human’s goal object is not observed by the
robot, one naive strategy is to navigate to the human first,
then follow the human around the house. However, since
the scene is cluttered, remaining too close to the human
could impede their progress (e.g. getting in the way) or
block the robot, resulting in suboptimal, unsafe behavior. By

Method 1−α1 Plan Succ.↑ Plan Help↓ Step Succ.↑ Step Help↓
RCIP 0.85 0.85 0.95 0.98 0.65

KnowNo [36] 0.85 0.85 0.96 0.98 0.66
Simple Set 0.97 0.85 1.00 1.00 1.00
Entropy Set − 0.66 0.46 0.45 0.06

No Help − 0.62 0 0.94 0

TABLE I: Results for Cooperative Manipulation. The
optimal action miscoverage rate is held fixed between RCIP,
KnowNo, and Simple Set for comparing the other metrics.

predicting the human’s motion, the robot is able to better
accommodate the human’s task while remaining safe (with
high probability) with respect to unsafe interactions. We
present results for cooperative navigation in Table II.

B. Hardware: Cooperative Manipulation

In this example (Fig. 1), each scenario tasks the robot
with helping a human to sort a set of objects by inferring the
sorting category for each object. Since the human may have
a preference for how the robot sorts the objects, the robot is
additionally tasked with exactly matching the human’s sorting
preferences (e.g. if the human wants the objects sorted by
color, then the robot cannot add a conflicting color to the pile).
We assume that the human’s intent set Z is represented in
the (high-dimensional) space of natural language descriptions,
such as “the color orange”, “children’s toys”, and “vegetables”,
and that intents and actions are one-to-one. The robot interacts
with the human over T =8 environment time steps, and the
human selects a new sorting plan every Tz=1 time step.

To simplify the planning task, we assume that the
robot takes in an image observation of the table and
has access to a (vision) language model to process the
semantic features of the image. We first use GPT-4V
(gpt-4-vision-preview) [3] to process the image by
asking for a description of each bin and the item to be
sorted (e.g. the carrot in Fig. 1), commenting on possible
sorting criteria for each bin. Then, using the bin descriptions,
we prompt a language-only model (gpt-3.5-turbo) to
rank a set of possible plans via multiple-choice question
and answering (MCQA) [45, 46]. The temperature-weighted
softmax scores for each bin give the final action probabilities.

For safety, we restrict the robot and human to work in
separate workspaces, such that the human only places objects
inside the human workspace and the robot only places block
in the robot workspace (i.e., there is no shared workspace).
To warm-start the predictor, we allow the human to initially
place 3−10 objects, with eight more to place, for a total
of up to 30 objects per task. We show in Table I that RCIP
reduces the plan-wise help rate by 5% and the step-wise help
rate by 35% in cooperative manipulation. We use a Franka
Emika Panda arm for the robotic manipulation portion of the
task. Images of the scene (for both perception and planning)
are obtained from an Azure Kinect RGB-D camera.

VI. LIMITATIONS AND FUTURE WORK

The primary limitation of our work is a lack of guarantee
on the low-level execution of the controller. Concretely,



Fig. 3: Multi-step RCIP is applied in Social Navigation. The human and robot are tasked with finding and collecting a
series of objects (e.g. cans of soup, crackers) around a close-quarters living space. The robot must recognize the human’s
intent and either follow or evade the human depending on the human’s desired object. The robot must minimize action
miscoverage across a variety of human intents and environments.

if the correct optimal action is predicted by the robot, but
the controller fails to execute the computed command, then
the robot will execute a suboptimal action and encounter
a distribution shift, invalidating the results from RCIP. In
the future, we are looking to incorporate low-level control
failures as part of the risk calibration procedure. Additionally,
our work fundamentally assumes that the human’s intent is
drawn from a finite set, and moreover that the human’s intent
is verbalizable or clarifiable (i.e. the human is able to provide
meaningful clarifications when the robot asks for help).

In the future, we hope that RCIP can be combined with
active preference learning [47]–[49] to better incorporate the
human’s preferences in determining the appropriate level of
robot autonomy (e.g. choosing from the valid set of RCIP
parameters). We also plan to study RCIP’s ability to capture
higher levels of interactivity in a system, such as when the
robot must operate around more than one human, or when
some humans are non-cooperative.

VII. CONCLUSION

We propose Risk-Calibrated Interactive Planning (RCIP), a
framework that applies statistical multi-hypothesis risk control
to address the problem of risk calibration for interactive robot
tasks. We formalize RCIP as providing a statistical guarantee
on an arbitrary number of user-specified risks, such as predic-
tion failures and the amount of human help, subject to a bound
on the rate at which the robot fails to predict the optimal
actions. By optimizing preferences over a small number of

model parameters, RCIP is able to achieve higher flexibility
in aligning to user preferences than fixed-paramter methods.
Experiments across a variety of simulated and hardware setups
demonstrate that RCIP does not exceed user-specified risk
levels. Moreover, RCIP reduces user help 5− 30% when
compared to baseline approaches that lack formal assurances.
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APPENDIX

A. Multi-Step, Single-Risk Control

We now extend SRC to settings where a robot applies
set-valued prediction in multiple time steps. This setting
is useful for settings where the robot receives feedback
from the human between steps. However, we cannot directly
apply the above procedure because the help from the human
changes the distribution D of state-intent pairs, and the i.i.d.
assumption is no longer valid. We give an extension of the
Learn-then-Test procedure to multi-step settings.

Sequence-Level Risk Calibration. Similar to [36], the
key idea is to (i) lift the data to sequences and (ii) perform
the LTT procedure using a carefully designed score function
that allows for causal reconstruction of the prediction set at
test time. We now consider a distribution D̄ of lifted contexts
induced by D, where each lifted context contains a state-
intent pair (x̃,z̄)∼D̄. The lifted state-intent pairs are given
as x̃=(x̄1,...,x̄T ) and z̄=(z1,...,zT ) respectively. Here, x̃
arises from the robot having performed the correct action in
previous steps. Using the robot policy specified in Section
IIIB, there are three cases to consider: the robot will (i) take
the only available (and optimal) action if Tϕ(x̃) is a singleton,
or (ii) ask for clarification of the human’s intent z if the action
set Tϕ(x̃) is not a singleton. We bound the risk associated
with case (iii): the optimal action is not in the prediction set
as follows. Let ūR∗(z̄) :=(uR∗(z1),...,u

R∗(zT )) denote the
sequence of optimal robot actions. Let the sequence-level con-
fidence be given as the lowest confidence over the timesteps

ḡ∗θ(x̃,z̄)= min
t∈[T ]

g∗θ(x̄t,z), (20)

where the corresponding sequence-level prediction set is given
as T̄ϕ(x̃)={ū∈UT :∃z̄∈ZT s.t. ū= ūR∗(z̄) and ḡ∗θ(x̃,z̄)≥
λ)}.

Causal Reconstruction of Sequence-Level T̄ϕ. The
sequence-level prediction set T̄ϕ is constructed with the full
sequence z̄ as labels, which depend causally on the sequence
x̄. Hence, we do not have the entire sequence z̄ a-priori;
the robot must instead construct the prediction set at each
time-step in a causal manner (i.e., relying only on current
and past observations). Let T t

ϕ (x̄t) :={u∈U :∃z∈Z s.t. u=
uR∗(z) and g∗θ(x̄t,zt)≥λ)} be the instantaneous action pre-
diction set at time t. We construct T̄ϕ in a causal manner using

Tϕ(x̃) :=T 1
ϕ (x̄1)×T 2

ϕ (x̄2)×...×T T−1
ϕ (x̄T−1). (21)

Proposition 3. Consider a multi-step setting where we use
risk calibration parameters ϕ ∈ Φ̂ and the sequence-level
confidence (20) to generate sequence-level prediction sets
and seek help whenever the prediction set is not a singleton.
If the FWER-controlling parameter set Φ̂ is non-empty, then
with probability 1−δ over the sampling of the calibration
set, the new scenarios drawn from D̄ under ΠR and using

the causally reconstructed predicted action set (21) incur
at most α1 rate of action miscoverage.

Proof. Let ϕ ∈ Φ̂, where Φ̂ controls the sequence-level
FWER for the non-causal set T̄ϕ(x̃) at level α1. We first show
that ūR∗(z̄)∈T̄ϕ(x̃)⇐⇒ ūR∗(z̄)∈Tϕ(x̃). For any z̄∈T̄ϕ(x̃),

ūR∗(z̄)∈T̄ϕ(x̃)⇐⇒min
t∈[T ]

g∗θ(x̄t,zt)≥λ

⇐⇒g∗θ(x̄t,zt)≥λ ∀t
⇐⇒uR∗(zt)∈T t

ϕ (x̄t) ∀t
⇐⇒ ūR∗(z̄)∈Tϕ(x̃).

(22)

Since the causally constructed prediction set is the same
as the sequence-level prediction set, and since bound
the risk associated with the sequence-level sets, we also
bound the risk for the causally constructed sets. Applying
the expectation definition of the risk (11) shows that the
risks are the same. Applying fixed-sequence testing to the
Hoeffding-Bentkus p-values completes the proof.

We now state our most general proposition for the
multi-risk, multi-step setting.

B. Multi-Step, Multi-Risk Control

In the multi-step, multi-risk setting, we seek to bound
multiple risks simultaneously over the rollout of the robot
policy ΠR over D̄. However, the risk guarantee only holds for
the lifted contexts in D̄ and are invalid if any distribution shift
occurs from taking the wrong action. In RCIP, distribution
shift from D̄ (to some other distribution induced by taking
suboptimal actions) may occur with the following probability,

P(x̃,z̄)∼D̄(OOD)=P(x̃,z̄)∼D̄
(
uR∗(z) /∈Tϕ(x̄)∧|Tϕ(x̄)|≤1

)
,

(23)
i.e., when the optimal action is not covered by the prediction
set and the prediction set is a singleton or empty, and thus
the robot takes a non-optimal action. Here, we assume that
the robot cannot take a suboptimal action if it asks for help.
Eqn. (23) may be upper bounded by the action miscoverage
rate Rcov because it is the union of two events, but when
Rcov is large, distribution shift could be frequent.

In the multi-step, multi-risk setting, we consider a set
of sequence-level risk signals (R1, ...,Rk) for contexts in
D̄ bounded at nominal levels (α1, ...,αk) by all ϕ ∈ Φ̂ as
before. We assume that each risk models an event Ek, and
the loss for each risk Lk is an indicator function 1[Ek]. We
assume that R1=Rcov. In addition, since any OOD sequence
incurs a task failure, we seek to bound the probability of Ek

occurring subject to an R1 probability of distribution shift
(in which case Ek can also happen).

Proposition 4. Consider a multi-step setting where we
use risk calibration with threshold level ϕ ∈ Φ̂ and the
sequence-level score function (20) to generate sequence-level
prediction sets and seek help whenever the prediction set
is not a singleton. Consider a set of sequence-level risks
(R1,...,Rk) bounded at nominal levels (α1,...,αk), where R1

is the miscoverage risk Rcov. If the action miscoverage rate



is bounded at level α1 over the sampling of the calibration
set, the new scenarios drawn from D̄ under ΠR and using
the causally reconstructed predicted action set (21) incur
at most α1 and αk+α1 rate of risk for k≥ 2 with failure
rate 1−δ over the sampling of the calibration set.

Proof. For k=1, risk Rcov already provides a bound on the
OOD rate. For k≥2, the remainder of the proof follows a
union bound argument. If the OOD rate is large, then the
OOD-aware bound αk will be much larger than the nominal
bound. Therefore, the OOD rate must be controlled to have
a non-trivial limit on the other risks. Using the definition
of each risk and the linearity of expectation, we have that

α1+αk≥R1(ϕ)+Rk(ϕ)

=E(x̃,z̄)∼D̄
[
L1(x̃,Tϕ(x̃),z̄)+Lk(x̃,Tϕ(x̃),z̄)

]
=E(x̃,z̄)∼D̄

[
1[E1]+1[Ek]

]
=E(x̃,z̄)∼D̄

[
1[E1]

]
+E(x̃,z̄)∼D

[
1[Ek]

]
=P(x̃,z̄)∼D̄(E1)+P(x̃,z̄)∼D̄(Ek)

≥P(x̃,z̄)∼D̄(E1∨Ek).

(24)

Then, either event Ek or the event of distribution shift E1

occurs at a rate no more than α1+αk.

Corollary 1. As a direct consequence of Eqn. (24), if one
wishes to calibrate risks other than the optimal action miscov-
erage rate, such as the user help rate (18), then it is sufficient
to calibrate at level αk=max(α′

k−α1,0), where α′
k is the

desired overall risk that incorporates distribution shift and
the maximum is due to the constraint that the risk be in [0,1].

C. Additional Experiments: Hallway Navigation

Autonomous navigation around other autonomous
decision-making agents, including humans, requires the robot
to recognize scenario uncertainty (whether another agent
will turn right or left) with task efficiency (energy spent
braking or taking detours). While safety can almost always
be guaranteed if each vehicle declares their intent at all times,
such communication can be costly, especially if human
prompting is involved. In this example (Fig. 4), the robot
is asked to navigate to the human vehicle’s initial condition
without colliding while the human does the same. The set
of intents is Z={1,2,3,4,5}, where each intent corresponds
to one of the five hallways. The confidence scores for each
intent are computed by taking the temperature-weighted
softmax scores for each hallway. The final action probabilities
are computed according to Eqn. (10). The robot interacts
with the human over T = 200 environment time steps and
predicts the human’s intent every Tz=20 time steps.

To ensure that the robot reaches its goal state in a minimal
amount of time, we permit the robot to prompt the human
for their chosen hallway if its optimal action set is not a
singleton. We jointly learn the robot and human policies
using proximal policy optimizatio (PPO) [50, 51]. The
human and robot PPO policies are trained jointly using 256
environments and take about 4 hours to train.

Method 1−α1 Plan Succ.↑ Plan Help↓ Step Succ.↑ Step Help↓
RCIP 0.85 0.86 0.34 0.95 0.24

KnowNo [36] 0.85 0.86 0.48 0.92 0.42
Simple Set 0.98 0.85 0.48 0.92 0.42
Entropy Set − 0.75 0.07 0.86 0.02

No Help − 0.73 0 0.86 0

TABLE II: Results for Cooperative Navigation. The
optimal action miscoverage rate is held fixed between RCIP,
KnowNo, and Simple Set for comparing the other metrics.

Fig. 5 provides a comparison between RCIP and other
baseline approaches that employ set-valued prediction. While
entropy and simple-set can be used to provide (respectively)
static and dynamic thresholds for heuristic uncertainty
quantification, these uncalibrated methods often ask for too
much help and scale poorly as the desired plan success rate
increases.

Fig. 6 provides an ablation study on the effect of the bounds
on miscoverage and the human help rate on the size of the
FWER-controlling parameter set |Φ̂| in the multi-risk, multi-
step setting. As the miscoverage rate bound becomes lower,
lowering the human help rate provides fewer valid parameters,
until |Φ̂|=0, and controlling both risks is infeasible.

D. Additional Task Details for Hallway Navigation

1) Environment: As shown in Fig. 4, the blue car (“robot”)
and red car( “human”) are tasked with navigating to opposite
ends of a room 16 meters long and 9 meters wide. Each
car is controlled by a two-dimensional vector that sets
the desired velocity and turning rate. Each hallway is one
meter wide, and two cars cannot pass in a single hallway.
The human car’s intent is selected from a uniform random
distribution over each of the five hallways and does not
change over time. The interaction is constrained such that if
the robot car collides with the walls, boundary, or human car,
the episode automatically terminates. Each car’s goal region
is 2 meters long and 4 meters wide. Each car’s goal is to
maximize the forward progress at each time set, and the loss
in Eqn. (4) is the negative forward progress. Agent’s initial
positions are drawn randomly from the other agent’s goal set.

2) Policy: We train a PPO policy to maximize the forward
progress jointly for both cars. To ensure satisfaction of
the collision constraints, we terminate the episode for both
cars if either car violates a collision constraint. We train a
three-layer PPO policy using 256 parallel environments and
a hidden dimension of 64, learning rate of 0.0001, batch
size of 4096, and 32 gradient steps per rollout.

3) Prediction Model: To predict the human car’s intent,
we train a transformer-based prediction model similar to
[4, 52] to predict a probability distribution over the hallway in
addition to the future position of the human car. We encode the
position histories for both agents using a three layer MLP with
hidden dimension 256. We process the encoded input using six
transformer encoder layers and six transformer decoder layers,
each with a hidden dimension of 256. For the state prediction
task, we predict with a time horizon of up to 100 time steps.



Fig. 4: Multi-step RCIP is applied in Hallway Navigation. The robot car (blue) and human car (red) are tasked with
navigating to their respective goal states (large blue and red rectangles). The human car is constrained via its intent to pass
through one of the five hallways (highlighted in red). The blue car does not observe the human’s intent during evaluation.

Fig. 5: Baseline comparison for RCIP verus other set-valued
predictors for Hallway Navigation. RCIP provides a frame-
work for tuning model parameters to achieve risk control, ver-
sus other methods that assume that model parameters are held
fixed: KnowNo [36], Simple Set, Entropy Set, and No Help.

Fig. 6: Ablation study on the effect of action miscoverage and
help rate risk limits versus FWER-controlling parameter set
size for RCIP on Hallway Navigation using αcov∈ [0,0.45]
and αhelp ∈ [0,1]. The color denotes the size of the set of
FWER-controlling parameters Φ̂, with empty (infeasible)
sets taking a size of zero.

To train the model, we use the following loss:

L=LCE+λLMSE (25)

where LCE is the cross entropy of the predicted intent
distribution versus the true ground truth label, LMSE is the
mean square error from the human car’s ground truth state,
and λ is a scalar that controls the relative weight of the state



Fig. 7: Full object set for cooperative manipulation.

prediction task. We find the training to be relatively insensitive
to λ, but that λ=1 works well in practice. We do not use
knowledge of the human’s static intent in the prediction task.

E. Additional Task Details for Social Navigation

1) Environment: As shown in Fig. 3, the Spot robot must
navigate around a shared living space with the human. The
Spot robot is tasked with meeting the human at a series of goal
objects (e.g. box of crackers, can of soup) while avoiding the
human. Each environment requires the robot to make roughly
15 meters of forward progress to meet the human while
navigating between tight walls. Before the environment is ini-
tialized, a random set of up to 10 objects is sampled from the
YCB dataset [53]. The human’s intended object changes every
100 time steps. We use a total episode length of 600 time steps
(i.e. 5 goal objects per episode). To constrain the robot to
maintain a safe distance of at least 1 meter from the human at
all times and terminate the episode if this distance is violated.

2) Policy: To accommodate the close-quarters, constrained
motion planning needed for social navigation, we use Habi-
tat’s [44] built-in shortest-path navigation algorithm. During
the contingency planning phase, the robot plans a shortest
path for each of possible objects intended by the human. To
ensure that the human and robot do not collide, we augment
the robot’s path planning dynamics with an additional
artificial potential term that repels the robot from the human
with force proportional to the inverse distance to the human.

3) Prediction Model: We use an identical prediction
architecture and training procedure as that of the social
navigation task. Since the number of objects may change
across the environments, we use the object locations as
anchors for the transformer decoder task.

F. Additional Task Details for Cooperative Manipulation

1) Environment: As shown in Fig. 1, the robot is tasked
with sorting a set of objects using a limited demonstration
from the human. The full set of objects is shown in Fig. 7.
Eight objects are sorted per rollout. We preselect 10 bins

of objects sorted with a preset criteria and randomly select
3 bins for each trial, giving various levels of situational
ambiguity. After the fourth time step, two additional objects
are added for additional context; in practice, we find that
this addition has little effect on prediction accuracy.

2) Policy: Since the human’s intent is evaluated per-object
at each time step, no dynamic programming is needed; the
optimal policy is to place the object in the correct bin.

3) Prediction Model: At each time step, we use the
GPT-4V vision language model to compare four images:
the three bins containing the robot-human pair’s example,
and the object to be sorted. We use GPT-3.5 to generate
the softmax scores using a MCQA to select one of the three
bins or “not sure”.


	Introduction
	Related Work
	Contingency Planning and Priviledged Learning
	Human Intent Prediction
	Conformal Prediction and Empirical Risk Control

	Problem Formulation
	Dynamic Programming with Intent Uncertainty
	Risk-Calibrated Interactive Planning
	Goal: Certifiable Autonomy

	Approach
	Background: Statistical Risk Calibration
	Single-Step, Single-Risk Control
	Single-Step, Multi-Risk Control

	Experiments
	Simulation: Cooperative Navigation in Habitat
	Hardware: Cooperative Manipulation

	Limitations and Future Work
	Conclusion
	References
	Appendix
	Multi-Step, Single-Risk Control
	Multi-Step, Multi-Risk Control
	Additional Experiments: Hallway Navigation
	Additional Task Details for Hallway Navigation
	Environment
	Policy
	Prediction Model

	Additional Task Details for Social Navigation
	Environment
	Policy
	Prediction Model

	Additional Task Details for Cooperative Manipulation
	Environment
	Policy
	Prediction Model



