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Abstract

Activation Editing, which involves directly edit-001
ting the internal representations of large lan-002
guage models (LLMs) to alter their behaviors003
and achieve desired properties, has emerged as004
a promising area of research. Existing works005
primarily treat LLMs’ activations as points in006
space and modify them by adding steering vec-007
tors. However, this approach is limited in its008
ability to achieve greater performance improve-009
ment while maintaining the necessary consis-010
tency of activation magnitudes. To overcome011
these issues, we propose a novel editing method012
that views activations in terms of their direc-013
tions and magnitudes. Our method, named014
Householder Pseudo-Rotation (HPR), mimics015
the rotation transformation, thus preserving ac-016
tivation norms and resulting in an improved017
performance on various safety benchmarks.018

1 Introduction019

Building upon the paradigm of pre-training lan-020

guage models on large corpora of raw text using021

next-sentence-prediction objective (Radford and022

Narasimhan, 2018; Radford et al., 2019), Large023

Language Models (LLMs) research has taken a big024

leap and become an essential asset of AI in recent025

years. The latest LLMs can exhibit phenomenal flu-026

ency and reasoning capability, excel in numerous027

NLP benchmarks, while also aligning to human in-028

tent (Wei et al., 2022; Ouyang et al., 2022; Touvron029

et al., 2023a; Jiang et al., 2023; OpenAI, 2024). In030

the midst of the rapid development of LLMs, efforts031

to study and control their societal impacts, includ-032

ing issues such as hallucination, bias, and toxicity033

to name a few, are of the utmost importance. Yet,034

with their ever-growing size, reaching hundreds of035

billions of parameters (Brown et al., 2020; Chowd-036

hery et al., 2022), the popular approach for con-037

trolling and aligning LLMs via fine-tuning proves038

to be very challenging and resource-intensive, ne-039

cessitating the research into alternative solutions to040

adapt the behaviors of LLMs. 041

Among various approaches to efficiently adapt 042

LLMs (Lester et al., 2021; Li and Liang, 2021; Hu 043

et al., 2022; Dong et al., 2023; Wan et al., 2024), 044

Activation Editing, also referred to as “Intervention” 045

or “Representation Engineering” in the literature, 046

has shown promising results. Based on the observa- 047

tion that LLMs form an internal “belief” about facts 048

in their activation space even before the responses 049

are generated (Dai et al., 2022; Li et al., 2023b; 050

Burns et al., 2023; Joshi et al., 2024), this approach 051

aims to draw factual knowledge out of the model by 052

directly editing activation vectors at inference time. 053

Most existing works in this area utilize a steering 054

vector (Li et al., 2023b; Turner et al., 2023, Rimsky 055

et al., 2024; von Rütte et al., 2024), which can be 056

scaled by a scaling factor and added to the original 057

activation. In doing so, activations are viewed as 058

points in space (Figure 1a). Correspondingly, the 059

process of adding a fixed steering vector to acti- 060

vations can be interpreted as moving these points 061

along a vector offset (Mikolov et al., 2013), and the 062

scaling factor tells how far they should be moved. 063

In an experiment with the activation space, we 064

discover an important property that are maintained 065

by powerful LLMs: activations within the same 066

layer tend to have roughly the same vector norm. 067

We refer to this as the Magnitude Consistency 068

property, i.e., Section 4.3. This observation high- 069

lights a key limitation of the points-in-space view, 070

where the steering vector approach cannot simulta- 071

neously maintain activation magnitude consistency 072

and effective activation editing to achieve greater 073

performance improvement for desired behaviors 074

for LLMs. If the scaling factor is too large, the 075

additive edit might drastically alter the activation 076

norms in each layer, violating the norm consistency 077

property of LLMs. In extreme cases, this change 078

can lead to the generation of complete gibberish, 079

undermining the desired behaviors of the LLM’s re- 080

sponses. Conversely, if the scaling factor is set too 081
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low to preserve the activation norms, the steering082

vector may have limited abilities to shift an acti-083

vation toward new behavior, thus also hindering084

editing performance for desired behaviors. More-085

over, the steering vector approach does not align086

with the commonly used cosine similarity metric,087

which emphasizes directional alignment between088

vectors rather than their absolute positions.089

We argue that activation vectors should instead090

be understood in terms of their directions and mag-091

nitudes. We call this the direction-magnitude view092

(Figure 1b). In this regard, the semantic informa-093

tion of activations is reflected in their directions094

from the origin, while their magnitude represents095

the intensity of such information. This view also096

facilitates cosine similarity better since it measures097

the relationship between activations via the angle098

between their directions. Furthermore, while the099

points-in-space view struggles to achieve activation100

norm consistency, the direction-magnitude view101

can conveniently interpret the activation space in102

each layer as a (d − 1)-dimensional hypersphere103

centered at the origin. As such, the activations can104

have a “stable” norm via the sphere’s radius.105

In this work, we introduce a novel editing106

method based on the direction-magnitude view. In-107

stead of trying to move points, our method aims to108

alter a LLM’s behavior by rotating activation vec-109

tors around the origin to their designated directions110

(Figure 1b). For example, rotating from untruthful111

region into truthful region. Usually, computing a112

matrix for vector rotation is non-trivial, especially113

in high-dimensional space. Therefore, we propose114

to relax the problem and resort to an approximated115

rotation transformation instead (Figure 1c). To116

this end, we first determine a hyperplane going117

through the origin that separates the two regions118

of interest. We then reflect undesirable activations119

about this hyperplane to make them land on the120

desirable region. Having an unique hyperplane121

for each individual activation vector is infeasible122

computationally as it would cost substantial GPU123

memory to store them at runtime. We thus learn a124

global hyperplane separating the activation vectors125

for each edited layer. Finally, for each reflection126

of an undersriable activation, we adjust it to the127

corresponding desired activation. In this way, our128

solution is more efficient as the adjustment for each129

activation only involves scalar angles, whose learn-130

ing is less expensive than a rotation matrix for each131

edited vector. We name this method Householder132

Pseudo-Rotation (HPR), based on the Householder133

transformation (Householder, 1958) at its core. 134

We evaluate our editing method HPR on elicit- 135

ing truthfulness from LLMs. Experiment results on 136

the TruthfulQA dataset (Lin et al., 2022) demon- 137

strate a significant boost in performance compared 138

to Steering Vector editing. We further show that 139

HPR can improve LLMs’ performance for other 140

behavior-related problems, including bias, ethics, 141

and toxicity. Finally, we conduct extensive analysis 142

to provide deeper insights for the advantages of 143

HPR for activation editing. 144

2 Prerequisites 145

2.1 Problem Statement 146

Let M = {M(l)|0 ≤ l < L} be a L-layers pre- 147

trained LLM whose behavior needs to be altered. 148

Assume that the outputs of M exhibit either of 149

the two contrasting qualities: a positive behavior 150

p or a negative behavior n. For instance, p can be 151

truthfulness and n is untruthfulness. We denote: 152

• xi = {xi,j |0 ≤ j < Sx} : An input sequence 153

of length Sx. 154

• ypi = {ypi,j |0 ≤ j < Sp} : The positive (i.e. 155

desirable) output sequence with length Sp. 156

• yni = {yni,j |0 ≤ j < Sn} : The negative (i.e. 157

undesirable) output sequence with length Sn. 158

When the label of the output, i.e. positive or 159

negative, is unknown, we refer to its length as Sy. 160

In this work, unless specified otherwise, a “vec- 161

tor” is understood as a column vector of size d× 1. 162

Let us further use a
p,(l)
i,j ∈ Ap,(l) to denote the d- 163

dimensional positive activation vector at the jth 164

token of the lth layer in M, where Ap,(l) ⊂ Rd is 165

the positive region in the activation space of M(l). 166

Similarly, the corresponding negative activation is 167

denoted as a
n,(l)
i,j ∈ An,(l). These are obtained 168

by forwarding the concatenation of the input and 169

the corresponding output sequence, i.e. xi∥ypi or 170

xi∥yni , through M. Since the question part xi is 171

the same for each data pair, we only use the activa- 172

tion vectors at the token positions of the responses. 173

Without loss of generality, we omit the layer no- 174

tation (l) and the quality notation (p or n) when 175

referring to an arbitrary item. 176

The general framework of Activation Editing uti- 177

lizes an editing function f(·|θ) with parameter θ 178

for activation vectors ai,j such that f(ai,j |θ) ∈ Ap. 179

The design of an Activation Editing method can 180

thus be broken down to the the design of such a 181

function and how to find the optimal θ. For exam- 182

ple, in Steering Vector methods (Li et al., 2023b), 183

2



(a) Points-in-space view (b) Direction-magnitude view (c) Our approach

Figure 1: Comparison of points-in-space view (a) and direction-magnitude view (b). Positive activations are colored
green and negative activations are colored red. The editing methods are depicted in in blue. Our proposed method
(c) approximates the rotation transformation by first reflecting negative activations through a learned separating
hyperplane and then adjusting the reflections to reach the right angle.

the editing function is a simple vector addition:184

f(ai,j |θ) = ai,j +αθ where α is a hyperparameter185

for scaling factor.186

2.2 Householder Transformation187

The idea of Householder transformation stemmed188

from an important lemma in Householder (1958)189

which stated: For any vector a ̸= 0, and any unit190

vector v, there exists a unit vector u such that:191

(I − 2uuT )a = ∥a∥v (1)192

In this case, ∥a∥v is the reflection of a about a193

hyperplane which passes through the origin and has194

u as its normal vector. Since v is a unit vector, a and195

∥a∥v have the same vector norm. Therefore, we196

can extend the problem to a more general case: For197

any pair of vectors (a, b) of the same magnitude, it198

is possible to find a vector c ̸= 0 such that:199

b = (I − 2ccT

cT c
)a (2)200

The orthogonal matrix H = (I − 2ccT

cT c
) is called201

the Householder Matrix.202

3 Householder Pseudo-Rotation (HPR)203

As discussed in the introduction, our goal is to204

find an editing function f to alter the behavior of205

LLMs that can: 1) transform any vector in the acti-206

vation spaces into one invoking positive behavior;207

2) closely mimic the rotation transformation to pre-208

serve norm of the activations. The usual calculation209

of a rotation matrix between two d-dimensional210

vectors consists of several computationally ex-211

pensive steps such as the Gram-Schmidt process,212

whose complexity is O(d3). The Householder 213

transformation (Equation 2) can be a cheaper alter- 214

native since it also retains the vector norm. How- 215

ever, in the context of Activation Editing, having a 216

Householder matrix of size d×d for each activation 217

vector would introduce too much extra data to be 218

stored on GPU RAM, thus limiting applicability. 219

To alleviate these problems, we propose House- 220

holder Pseudo-Rotation (HPR), a pseudo-rotation 221

method that reflect negative activations in each 222

layer about a global separating hyperplane and then 223

adjust the resulting vectors to achieve the desired 224

angle. The original problem is essentially broken 225

down into two sub-problems: finding the separat- 226

ing hyperplane, and finding the rotating angle. We 227

tackle them by incorporating into each edited layer 228

a linear probe and an angle prediction module. 229

3.1 Linear Probe 230

In the first step, we train a linear probe to dis- 231

criminate the positive and negative activations of 232

LLMs in each layer. The non-trivial accuracy of 233

this probe, as can be seen in Figure 2, suggests 234

that it can effectively form a separating hyperplane 235

between the positive and negative regions, and its 236

weight vector serves as the normal vector of this 237

hyperplane. We can then utilize the Householder 238

matrix corresponding to this hyperplane as a means 239

to reflect activations from one region to the other. 240

More concretely, the linear probe corresponding 241

to a LLM layer can be defined as: 242

fprobe(a, θprobe) = σ(θTprobea) (3) 243

where σ(·) denotes the sigmoid function and θprobe 244
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Figure 2: Probe accuracy of HPR-edited Llama2-7B-
Chat on TruthfulQA. A linear probe is trained for each
layer using positive-negative pairs of the training data
and then evaluated on the validation data.

is the weight vector of the probe. Readers may no-245

tice that Equation 3 resembles a linear feedforward246

layer with no bias term. This is to ensure that the247

normal vector of the separating hyperplane passes248

through the origin, consistent with the direction-249

magnitude view.250

At inference time, the probe weight vector is251

used to calculate a Householder matrix.252

H = I −
2θprobeθ

T
probe

θTprobeθprobe
(4)253

The linear probe is trained using the Binary254

Cross Entropy (BCE) loss.255

Lprobe =
1

NSy

N∑
i=1

Sy∑
j=1

[
BCE(σ(θTprobea

p
i,j), 1)256

+BCE(σ(θTprobea
n
i,j), 0)

]
(5)257

3.2 Angle Prediction258

Given the separating hyperplane for a layer, we259

seek to predict a rotating angle that helps transform260

the reflection of each negative activation into the261

desirable positive activation. As such, our key as-262

sumption considers the desirable positive activation263

vector to lie on the 2-D plane formed by the origi-264

nal negative activation and its reflection, allowing265

us to efficiently perform the rotation of the negative266

activation vector. To this end, we employ a feedfor-267

ward neural network MLP to predict the rotating268

angle fangle(a, θangle) for an input vector a:269

fangle(a, θangle) = π × σ(MLP (a, θangle)) (6)270

where θangle represents the model parameters. The271

output of fangle is a scalar value in the range [0, π]272

radians.273

Among several possible implementations, given 274

a negative activation ani,j , we train fangle to pre- 275

dict the angle between the corresponding desired 276

positive activation api,j and ani,j for rotation. In con- 277

trast, if the input vector is a positive activation api,j , 278

fangle should return zero (i.e., no rotation). Our 279

training loss for fangle is thus: 280

g(api,j , a
n
i,j) = arccos

(
(api,j)

Tani,j

∥api,j∥∥ani,j∥

)
(7) 281

282

Langle =
1

NSy

N∑
i=1

Sy∑
j=1

[(
fangle(a

n
i,j , θangle) 283

− g(api,j , a
n
i,j)
)2

284

+ fangle(a
p
i,j , θangle)

2

]
(8) 285

where g(·, ·) computes the angle between two vec- 286

tors using the inverse of cosine arccos. For training, 287

the linear probe and angle prediction modules are 288

optimized jointly via: L = Lprobe + Langle. 289

3.3 Computing the Final Activation 290

At inference time, let a be an activation in a layer of 291

LLMs, we first forward it through the correspond- 292

ing linear probe and the angle prediction module. 293

σ̂ = ⌊fprobe(a, θprobe)⌉ (9) 294

295
γ1 = fangle(a, θangle) (10) 296

σ̂ is rounded to the nearest integer, 0 or 1 to be 297

specific, and predict whether the given activation 298

a is positive or negative. If a is predicted as a 299

negative activation, we edit it by first reflecting a 300

about the separating hyperplane θprobe to obtain the 301

reflected vector ȧ in the positive region. Afterward, 302

we calculate a new activation by rotating a within 303

the 2-D plan formed by a and ȧ by an angle of γ1 304

radians. The resulting vector â will serve as our 305

predicted positive activation for a. 306

In particular, a Householder matrix is computed 307

from the probe’s weight following Equation 4. 308

With this we can reflect a to obtain the reflected 309

activation ȧ and the angle γ2 between a and ȧ: 310

ȧ = Ha, γ2 = g(ȧ, a) (11) 311

The Householder reflection and rotation trans- 312

formation preserve vector norm. Thus, the norm of 313
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a, ȧ and â are identical. Combined with the com-314

puted angles γ1 and γ2, the rotation on 2-D plane315

to obtain the predicted positive activation â can be316

calculated via a and ȧ as follows:317

â =
sin(γ1)

sin(γ2)
ȧ+

sin(γ2 − γ1)

sin(γ2)
a (12)318

The proof for Equation 12 is in Appendix A.319

Finally, HPR’s editing function can be written320

as follows: f(a|θprobe, θangle) = σ̂a+ (1− σ̂)â.321

4 Experiments322

4.1 Experimental Setup323

Datasets: Following previous activation editing324

work (Li et al., 2023b), we first evaluate the mod-325

els on the TruthfulQA dataset (Lin et al., 2022).326

TruthfulQA includes 817 questions, each of which327

is coupled with factually correct and incorrect an-328

swers. We split the dataset into subsets with ratios329

45 / 5 / 50 for training, validation and testing re-330

spectively.331

Aside from truthfulness, we also demonstrate332

the proposed method on other societal issues re-333

lated to LLMs, more specifically, bias, ethics, and334

toxicity. These are reflected in BigBench’s Bias335

Benchmark for QA (BBQ) (Srivastava et al., 2023;336

Parrish et al., 2022), BigBench’s Simple Ethical337

Questions (SEQ), and Toxigen (Hartvigsen et al.,338

2022), respectively. These datasets are already split339

into a training set and a validation set. We use the340

validation sets to test the models, while splitting341

their training sets further with ratios 90 / 10 to make342

new training and validation sets.343

All four datasets are multiple choice tasks, thus344

the main evaluation metrics is multiple choice ac-345

curacy. The correct and incorrect answers for each346

question can be used handily to create ypi / yni pairs.347

Base Models and Baselines: We conduct ex-348

periments with three recent popular open source349

LLMs: Llama2-7B-Chat (Touvron et al., 2023b),350

Mistral-7B-Instruct (Jiang et al., 2023), and351

Llama3-8B-Instruct (AI@Meta, 2024). We352

compare our method with the following baselines:353

• Base: The unaltered base LLMs.354

• LoRA (Hu et al., 2022): We fine-tune the base355

LLM with LoRA adapter on the same training data356

as activation editing methods for a fair comparison.357

• Diff: Given a positive or negative activation358

ai,j , this baseline employs a feedforward network359

to directly predict the difference vector api,j − ai,j360

with the corresponding positive activation api,j . At361

inference time, we utilize the sum of the original 362

activation vector ai,j and its predicted difference 363

vector to obtain the predicted positive activation. 364

• ITI (Li et al., 2023b): A representative Activa- 365

tion Editing method for the aforementioned points- 366

in-space view that shifts the outputs of a set of 367

attention heads in each layer by a fixed steering di- 368

rection. The steering vector in ITI is the Mass Mean 369

Shift vector (i.e. the difference between the centers 370

of the positive and negative regions) of activations 371

in training data (i.e., not learnable). We employ 372

the source code published by the original authors. 373

However, their code is implemented only for Llama 374

models and TruthfulQA dataset specifically. Thus 375

we only report results of ITI with Llama2-7B-Chat 376

and Llama3-8B-Instruct on TruthfulQA. 377

Evaluation Framework: We utilize EleutherAI’s 378

Language Model Evaluation Harness (Gao et al., 379

2023), a reliable evaluation framework used in 380

numerous works including HuggingFace’s Open 381

LLM Leaderboard. This framework supports auto- 382

matic evaluation of various benchmark datasets for 383

LLM. Our experiments involve evaluating mulit- 384

ple choice accuracy on various datasets. This is 385

done by calculating the aggregated log-likelihood 386

of each choice given the input prompt and then pick 387

the top one. 388

Hyperparameters: In our model, the linear probe 389

is a vector of the same dimensions as the LLMs’ 390

hidden dimensions. The angle prediction module 391

is a feedforward neural network with 4 layers and 392

one output unit. We train each module for 5 epochs 393

with batch size 16, AdamW optimizer (Loshchilov 394

and Hutter, 2019), learning rate 5× 10−4, cosine 395

learning rate scheduler and warmup. For editing, 396

we apply HPR to the top k = 5 layers with the high- 397

est probe accuracy. Appendix C presents model 398

performance with different values of k. We also 399

provide a reproducibility checklist in Appendix D. 400

4.2 Results 401

TruthfulQA: Table 1 presents the performance of 402

our method HPR and the baselines on TruthfulQA. 403

The results include both MC1, multiple choices 404

with only 1 correct answer per question, and MC2, 405

which is multiple choices with more than 1 cor- 406

rect answer for each question. The first observa- 407

tion from the table is that fine-tuning LLMs with 408

LoRA does not produce consistent performance 409

improvement for TruthfulQA over different mod- 410

els. In contrast, activation editing methods, i.e., ITI 411

and HPR, consistently outperform the base LLM 412
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Method
Model

Llama2 Llama3 Mistral
MC1 MC2 MC1 MC2 MC1 MC2

Base
29.58 43.00 36.43 50.73 54.28 67.45
± 2.26 ± 2.17 ± 2.38 ± 2.13 ± 2.47 ± 2.14

LoRA
29.10 43.40 38.63 55.84 54.77 70.45
± 2.25 ± 2.15 ± 2.41 ± 2.11 ± 2.46 ± 2.06

Diff
33.74 48.87 29.34 52.53 50.61 68.68
± 2.47 ± 2.24 ± 2.25 ± 2.25 ± 2.48 ± 2.11

ITI
33.74 50.67 39.85 56.58 - -
± 2.34 ± 2.20 ± 2.42 ± 2.18 - -

HPR 51.83 70.95 52.32 71.70 55.01 72.14
± 2.47 ± 2.12 ± 2.47 ± 2.13 ± 2.46 ± 2.07

-AnglePred
30.07 43.36 35.94 49.77 53.79 67.31
± 2.27 ± 2.18 ± 2.375 ± 2.12 ± 2.47 ± 2.14

Table 1: Model performance (in %) on TruthfulQA
multiple choice tasks. ± indicates standard errors.

Model Dataset
BBQ SEQ Toxigen

Llama2-7B-Chat 33.27 21.74 51.38
+ HPR 38.38 60.87 52.34

Llama3-8B-Instruct 60.44 47.83 45.32
+ HPR 67.10 52.17 46.81

Mistral-7B-Instruct 61.62 69.57 55.00
+ HPR 73.24 86.96 61.60

Table 2: HPR performance for bias, ethics, and toxicity.
We report multiple choice accuracy in %.

models, achieving greater margins than LoRA fine-413

tuning. It thus highlights the effectiveness of ac-414

tivation editing for altering LLMs for desirable415

behaviors. When comparing Diff and ITI, ITI’s su-416

perior overall performance indicates that learning417

negative-positive difference vectors for activations,418

as done in Diff, is ineffective and cannot ensure419

optimal aligning performance for LLMs. Most im-420

portantly, the proposed model HPR is significantly421

better than all the baselines with substantial mar-422

gins across all base LLMs. These results clearly423

testify to the advantages of HPR, demonstrating424

the benefits of our new direction-magnitude view425

for activation editing with reflection and rotation426

for negative activation transformation.427

Ablation Study: The last row in Table 1 further428

shows the performance of HPR when the angle429

prediction module is excluded from the full model.430

As can be seen, this exclusion leads to significant431

performance drops across all base LLMs for HPR,432

thereby justifying the importance of angle predic-433

tion to adjust reflected activations for our model.434

We also note that the linear probe module cannot435

be removed from HPR for ablation study as it is436

essential for finding the positive-negative separat-437

ing hyperplane and rotating plane in our model.438

Finally, the superior performance of HPR for dif- 439

ferent LLMs confirms the advantages of our as- 440

sumption on the shared 2-D plane of a, ȧ, and â. 441

BBQ, SEQ, and Toxigen: To further illustrate the 442

effectiveness of HPR in eliciting desirable behav- 443

ior, Table 2 shows HPR’s performance on the BBQ, 444

SEQ, and Toxigen datasets. These datasets evaluate 445

the abilities of LLMs to generate unbiased (BBQ), 446

ethically acceptable (SEQ), and non-toxic (Toxi- 447

gen) responses. Across various base LLMs, in- 448

corporating HPR can significantly enhance perfor- 449

mance on all these datasets. These results highlight 450

the benefits of HPR in improving important safety 451

criteria for LLMs, leading to unbiased, ethical, and 452

non-toxic responses for responsible models. 453

4.3 Analysis of Activation Space 454

In this section, we examine the activation norms of 455

the selected LLMs to gain a better understanding of 456

the activation space. We first look into base LLMs. 457

In Figure 3 we plot the activation norms in each 458

layer, positive vectors and negative vectors side- 459

by-side. From these box plots, we can observe the 460

Magnitude Consistency property: activations of 461

the same layer have roughly the same vector norm 462

for all considered LLMs. This observation holds 463

true regardless of the activations being positive or 464

negative. The gap between the whiskers of each 465

box is very narrow, suggesting a low variance. This 466

gap seems to become narrower for more power- 467

ful models, as can be seen in Figures 3b, 3c for 468

LLaMa3 and Mistral. Due to this universality, we 469

consider activation norm consistency as a neces- 470

sary condition that should be maintained by editing 471

methods to achieve desired LLMs. 472

Considering this property, we demonstrate how 473

the steering vector approach in ITI (Li et al., 2023b) 474

struggles to simultaneously maintain activation 475

magnitude consistency and effectively alter their ac- 476

tivations for greater improvement on desired behav- 477

iors. First, Figures 4a and 4b show the distributions 478

of activation norms in LLMs before and after edit- 479

ing with ITI. In Figure 4a, the scaling factor α is set 480

to 15 (i.e., ITI15), as recommended in the original 481

ITI paper, while in Figure 4b, α is set to 200 (i.e., 482

ITI200). As can be seen, the smaller scaling factor 483

α = 15 in ITI15 leads to less divergence of acti- 484

vation norms than ITI200 from the original LLMs 485

(i.e., better preservation of activation norms). 486

What is the implication of such slight norm di- 487

vergence from base LLMs for ITI? In Table 3, we 488

present the behavior shift rates of ITI15 and ITI200 489
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Figure 3: The activation norms in log10 scale across 32 transformer blocks of three popular LLMs. Each box plot
represents the norm distribution in a layer of the LLMs.
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Figure 4: Activation norm distributions of the 14th layer of Llama2 before and after being edited. We use the 14th

layer as it has the highest probe accuracy in Figure 2. Similar trends can be seen for other layers and models.

compared to the original Llama2-7B-Chat model490

in TruthfulQA. Specifically, we show how often491

each editing method can flip the LLM’s predictions492

of examples from true to false and vice versa. From493

the table, we observe that the slight divergence of494

activation norms in ITI15 results in a more limited 495

ability to change the base model’s behavior, with 496

a behavior shift rate of only 8.56% compared to 497

34.23% for ITI200. As the behavior shift rate is the 498

upper bound of the overall performance improve- 499
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ment in TruthfulQA for ITI, this limited ability to500

alter LLM behavior will hinder further improve-501

ment with a small scaling factor in ITI.502

Model False to True to Remains Remains Overall
True↑ False↓ True↑ False↓ Acc.↑

Base model - - 29.58 70.42 29.58
ITI, α = 15 6.36 2.20 27.38 64.06 33.74
ITI, α = 200 14.18 20.05 9.54 56.23 23.72
HPR 28.85 6.60 22.98 41.56 51.83

Table 3: Behavior shift rate (in %) of activation editing
methods on TruthfulQA MC1 task compared to the base
model. The base LLM is Llama2-7B-Chat. ↑ means
greater is better and ↓ means lower is better.

Furthermore, with a larger scaling factor of503

α = 200, the greater behavior shift rate in ITI200504

might suggest that ITI200 can better boost truthful505

performance for ITI. However, a closer examina-506

tion at Table 3 reveals that the significant norm507

change in ITI200 promotes both “good” False-to-508

True and “bad” True-to-False prediction flips from509

the base LLM. While ITI200 is more effective at510

correcting false predictions, increasing the “False-511

to-True” flip rate from 6.36% in ITI15 to 14.18%, it512

also introduces more “bad” edits, changing 20.05%513

of examples with True predictions in the base LLM514

to False, compared to just 2.2% for ITI15. Over-515

all, the bad edits significantly dominate the good516

edits in the ITI model with more extensive norm517

change, ITI200, leading to its poorer performance in518

producing truthful responses. To this end, our anal-519

ysis demonstrates the fundamental limitations of520

steering vector approach on boosting truthful per-521

formance for LLMs, regardless of efforts to tune522

the scaling factor.523

In contrast, Figure 4c highlights the inherent524

ability of the proposed HPR method to preserve525

activation norms through its activation rotation526

mechanisms. In addition, HPR offers substantially527

stronger editing capabilities for achieving desired528

behaviors in LLMs as shown in Table 3. It signif-529

icantly improves the False-to-True prediction flip530

rate while minimizing undesirable True-to-False531

edits for the base LLM, demonstrating the effec-532

tiveness of our method for activation editing.533

5 Related Work534

Concerning the societal risks of LLMs, various ap-535

proaches have been explored to control and align536

their behavior post-pretraining. Unlike resource-537

intensive methods for LLM alignment such as in-538

struction tuning and reinforcement learning from539

human feedback (Ouyang et al., 2022; Bai et al., 540

2022), our work falls into the category of resource- 541

efficient methods for controlling LLMs. Several 542

resource-efficient approaches exist in this area. 543

First, parameter-efficient fine-tuning aims to fine- 544

tune LLMs with safety data while minimizing the 545

number of learnable parameters, such as prompt- 546

tuning (Lester et al., 2021), prefix-tuning (Li and 547

Liang, 2021), and LoRA (Hu et al., 2022). How- 548

ever, fine-tuning might also compromise the safety 549

of LLMs (Qi et al., 2023). Additionally, model 550

editing attempts to locate and edit model param- 551

eters associated with safety issues using minimal 552

invasions for efficiency (Meng et al., 2022; Ilharco 553

et al., 2023). However, model editing might im- 554

pact the general robustness of the models (Brown 555

et al., 2023). Our work belongs to the third di- 556

rection for efficient LLM control, i.e., activation 557

editing, which involves editing their inner repre- 558

sentations towards a desired behavior at inference 559

time (Li et al., 2023a; Hernandez et al., 2023) and 560

can be traced back to plug-and-play controllable 561

text generation research (Dathathri et al., 2020; 562

Krause et al., 2021). Accordingly, activation edit- 563

ing can preserve the pretrained LLMs to achieve 564

better robustness while still offering adjustable and 565

minimally invasive benefits. 566

In one approach to activation editing, Liu et al. 567

(2021), Li et al. (2023c), and Liu et al. (2024) 568

contrast the behavior of an expert and an amateur 569

model. Additionally, vector steering edits inner 570

representations by adding steering vectors (Burns 571

et al., 2023; Li et al., 2023b; Turner et al., 2023; 572

Rimsky et al., 2024; von Rütte et al., 2024). How- 573

ever, none of these work explores the direction- 574

magnitude perspective with activation rotations. 575

6 Conclusion 576

This work proposes a new activation editing ap- 577

proach based on the direction-maginitude view. By 578

rotating negative activations instead of adding to 579

them a fixed steering vector, our proposed method 580

effectively addresses the shortcomings of existing 581

work, as evidenced by the improved performance 582

on various benchmarks. Our analyses highlight 583

the magnitude consistency property of LLMs, pro- 584

viding insights into the operations of our editing 585

method. In the future, we plan to extend our re- 586

search to study how the activation space evolves 587

during fine-tuning and how the proposed method 588

scales to larger models and other architectures. 589
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Limitations590

As an empirical study, our work is not without591

limitations. Acknowledging this, we would like to592

discuss them as follows:593

• Due to limited computational resources, we594

only employ open-source LLMs of size 7-8B595

parameters. However, we show that the pro-596

posed method can effectively alter the behav-597

iors of LLMs for diverse base models and598

tasks. We leave further research on the scala-599

bility of HPR as well as its impact on models600

of larger sizes for future work.601

• Although our method exhibits strong edit-602

ing performance for desired behaviors, the603

method itself, like all other Activation Edit-604

ing methods, only serves to alter LLMs’ be-605

havior and elicit knowledge embedded into606

them during pre-training, not to introduce any607

new knowledge. Combining activation editing608

with knowledge updates can be a promising609

area for future research.610

• Though HPR outperforms our baselines by a611

significant margin (i.e., over 15% better than612

the second best baseline ITI with LLama3),613

there is still room for improvement. For exam-614

ple, the best MC1 accuracy of HPR on Truth-615

fulQA is currently only about 55% with the616

base model Mistral. As such, future work617

can expand our method to develop stronger618

alignment methods and address safety con-619

cerns for LLMs.620

• HPR has been shown to perform well on a621

variety of behavior-related tasks. However,622

our experiments involves only English data,623

thus not fully reflecting the capability of the624

proposed method for multilingual LLMs and625

data. Future work can explore the effective-626

ness of our method for multilingual settings,627

aiming for more robust methods for diverse628

languages and multilingual LLMs.629

Ethics Statement630

Our work utilize open-source LLMs, i.e.,631

Llama2-7B-Chat (Touvron et al., 2023b),632

Mistral-7B-Instruct (Jiang et al., 2023), and633

Llama3-8B-Instruct (AI@Meta, 2024), as the634

base models, thus potentially inheriting their635

inherent societal issues like bias, hallucination,636

privacy, etc. Simultaneously, we propose a novel 637

activation editing method aiming at altering 638

LLMs’ behaviour for the better, contributing to 639

the on-going efforts to advance LLM safety. As 640

activation and model editing for LLMs has been 641

studied in recent published work (Li et al., 2023b; 642

Liu et al., 2021; Ilharco et al., 2023), we do not 643

believe our work poses greater societal risks than 644

such studies and open-source LLMs. Finally, we 645

confirm that we follow all the ethical guideline 646

from ACL ARR to the best of our knowledge when 647

performing this research. 648
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A Derivation of Equation 12930

In this section we describe the process of deriving931

Equation 12. Since the rotation of interest occurs932

on a 2-D plane, and ∥â∥ = ∥ȧ∥ = ∥a∥, we can933

calculate â by combining a and ȧ. If γ1 = γ2,934

Equation 12 trivially holds: â = ȧ. If not, there are935

two cases that can occur: γ1 < γ2, and γ1 > γ2.936

We illustrate both of them in Figure 5 to make the937

derivation easier to follow. In this figure, we color938

the original negative activation a in red, the target939

positive activation â in green, and the intermediate940

vector ȧ in orange.941

Say, we have942

â = β1ȧ+ β2a (13)943

In the first case (Figure 5a), applying the law of944

sines in trigonometry, we obtain945

∥â∥
sin(π − γ2)

=
β1∥ȧ∥
sin(γ1)

=
β2∥a∥

sin(γ2 − γ1)
(14)946

This is equivalent to947

1

sin(γ2)
=

β1
sin(γ1)

=
β2

sin(γ2 − γ1)
(15)948

Thus,949

β1 =
sin(γ1)

sin(γ2)
(16)950

951

β2 =
sin(γ2 − γ1)

sin(γ2)
(17)952

Similarly for the second case (Figure 5b), we953

have954

1

sin(γ2)
=

β1
sin(π − γ1)

=
−β2

sin(γ1 − γ2)
(18)955

956

=⇒ 1

sin(γ2)
=

β1
sin(γ1)

=
β2

sin(γ2 − γ1)
(19)957

958

=⇒

{
β1 =

sin(γ1)
sin(γ2)

β2 =
sin(γ2−γ1)
sin(γ2)

(20)959

Combining both cases, we arrive at a general960

formula for calculating the target activation vector:961

â =
sin(γ1)

sin(γ2)
ȧ+

sin(γ2 − γ1)

sin(γ2)
a (21)962

B Additional Details about Experiments 963

Aside from the major details for the experiments 964

described in Section 4.1, we would like to discuss 965

some additional details here. 966

• Training efficieny: During the training phase, 967

we use a
(l),p
i,j / a

(l),n
i,j pairs to form the in- 968

puts and labels for the linear probe and angle 969

prediction modules in each layer. Generally, 970

these are computed by passing training data 971

samples x∥ypi and x∥yni through the model 972

M and record the activations at each layer and 973

token position. However, since our method 974

does not update the parameters of M, its ac- 975

tivation vectors can be treated as constants. 976

Thus, before training we pre-compute all acti- 977

vations on the training data to make a dataset 978

of a(l),pi,j / a(l),ni,j pairs for each layer. These 979

can then be used to train the linear probe and 980

angle prediction modules independently of the 981

base model. In this way, the base LLM does 982

not need to be loaded into GPU RAM, saving 983

more space for training the HPR modules. 984

• Data splits for TruthfulQA: The TruthfulQA 985

dataset only has a validation set of 817 exam- 986

ples. We split this dataset into train, validation, 987

and test set with ratios 45 / 5 / 50. We include 988

the specific indices for these data splits with 989

the submission of this paper. 990

C Evaluating Different Numbers of 991

Editted Layers 992

Motivated by the varying linear probing accuracy 993

across different layers in LLMs for positive and 994

negative activations in Figure 2, our method HPR 995

choose the top k layers with highest probe accuracy 996

in LLMs for activation editing. Figure 6 illustrates 997

the performance of HPR using different values of k 998

for all the three base LLMs. The bars depict MC1 999

(blue) and MC2 (orange) accuracy. We also add 1000

the performance of the respective base LLM and 1001

illustrate them with horizontal lines for comparison. 1002

It is clear from the figure that editing only the top 1003

5 layers yields the best performance across mod- 1004

els. As we increase the number of edited layers, 1005

multiple choice accuracy decreases, even falling be- 1006

low baseline in the case of Mistral-7B-Instruct. 1007

This can be partly attributed to aggregated error 1008

from imperfect linear probes (Figure 2). 1009
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(a) First case: γ1 < γ2 (b) Second case: γ1 > γ2

Figure 5: Illustration of the two cases when rotating vector in 2-D plane.
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(a) Llama2-7B-Chat
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(b) Llama3-8B-Instruct
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(c) Mistral-7B-Instruct

Figure 6: HPR’s performance on TruthfulQA with different numbers of edited layers.

D Reproducibility Checklist1010

• Data and source code with specification1011

of all dependencies, including external li-1012

braries: Our source code, along with a1013

README file detailing all configurations,1014

dependencies and external libraries, will be1015

made publicly available upon acceptance of1016

the paper. We utilize public datasets, i.e.,1017

TruthfulQA, BBQ, SEQ, and Toxigen. for1018

the experiments. We include the data splits in1019

the submission to facilitate future research on1020

this area.1021

• Description of computing infrastructure 1022

used: Experiments were conducted on a 1023

single NVIDIA A100 GPU with 40GB of 1024

memory. We utilized PyTorch 2.0.1 and the 1025

Hugging Face Transformers library (version 1026

4.37.2) for model implementation and train- 1027

ing. 1028

• Average runtime: Jointly training the linear 1029

probe and angle prediction modules for all 32 1030

layers of a 7− 8B model in a single run takes 1031

roughly 3 hours. 1032
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• Number of parameters in the model: We1033

utilized LLMs of sizes 7B and 8B parameters.1034

The computing resources required for these1035

two model sizes are roughly the same.1036

• Explanation of evaluation metrics1037

used, with links to code: We employed1038

EleutherAI’s Language Model Evaluation1039

Harness framework (Gao et al., 2023) for1040

evaluation. The metrics of choice is multiple1041

choice accuracy. Please refer to Section 4.11042

for more information.1043

• The method of choosing hyper-parameter1044

values and the criterion used to select1045

among them: We performced hyperparam-1046

eter search to find the optimal value of: The1047

number of each angle prediction module’s lay-1048

ers from the list [1, 2, 3, 4, 5]; The learning1049

rate from [1× 10−5, 5× 10−5, 1× 10−4, 5×1050

10−4, 1 × 10−3, 5 × 10−3]; The number of1051

edited layers from [5, 10, 15, 20, 25, 30]. The1052

selection of the hyper-parameters was based1053

on the linear probe accuracy on the validation1054

set, using a random search.1055

• Hyperparameter configurations for best-1056

performing models: Please refer to Section1057

4.1.1058
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