
PRIVACY TRADEOFFS IN VERTICAL FEDERATED LEARNING

Linh Tran 1 Timothy Castiglia 1 Stacy Patterson 1 Ana Milanova 1

ABSTRACT
We present VFL-PBM, a communication-efficient Vertical Federated Learning algorithm with Differential Privacy
guarantees. VFL-PBM combines Secure Multi-Party Computation with the recently introduced Poisson Binomial
Mechanism to protect parties’ private datasets during model training. We analyze the end-to-end privacy and
convergence behavior of our algorithm, and we provide the first theoretical characterization of the relationship
between privacy, convergence error, and communication cost in differentially-private VFL. Our experiments show
the VFL model performs well, with negligible decline in accuracy as we increase the privacy parameters.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017) is a ma-
chine learning technique where training data is distributed
across multiple parties, and the goal is to collaboratively
train a global model. The parties execute the training algo-
rithm, facilitated by a central server, without directly sharing
the private data with each other or the server. FL has been
used in various applications such as drug discovery, mobile
keyboard prediction, and ranking browser history suggestion
(Aledhari et al., 2020).

The majority of FL algorithms support Horizontal Feder-
ated Learning (HFL) (e.g., (Yang et al., 2019)), where the
datasets of the parties are distributed horizontally, i.e, all
parties share the same features, but each holds a different
set of data samples. In contrast, Vertical Federated Learning
(VFL) targets the case where all parties share the same set
of data sample IDs but each has a different set of features
(e.g., (Hu et al., 2019; Gu et al., 2021)). An example of
VFL includes a bank, a hospital, and an insurance company
that wish to train a model predicting customer credit scores.
The three institutions have a common set of customers, but
the bank holds information about customers’ transactions,
while the hospital knows about medical records, and the
insurance company has data about customers’ accident re-
ports. Such a scenario must employ VFL to train models on
private vertically distributed data.

*Equal contribution 1Department of Computer Science, Rens-
selaer Polytechnic Institute, Troy, NY, USA. Correspondence to:
Linh Tran <tranl3@rpi.edu>.

Federated Learning Systems (FLSys) workshop, in Conjunction
with the 6 th MLSys Conference, Miami, Florida, USA, 2023.
Copyright 2023 by the author(s).

While FL is designed to address privacy concerns by keeping
data decentralized and on the premises where it is generated,
there is possible information leakage from the messages
exchanged during training (Geiping et al., 2020; Mahendran
& Vedaldi, 2015). Thus, it is important to develop methods
for FL that have provable privacy guarantees. A common
approach for privacy-preservation is Differential Privacy
(DP) (Dwork & Roth, 2014), in which the private data is
protected by adding noise at various stages in the training al-
gorithm. Through careful application of DP, one can protect
the data, not only in a single computation, but throughout
the execution of the training algorithm. A number of works
have studied the end-to-end privacy of DP-based HFL al-
gorithms (e.g., (Truex et al., 2019; Wei et al., 2020; Truex
et al., 2020)). However, there is limited prior work on pri-
vacy analysis in VFL, and none that addresses the interplay
between the convergence of the training algorithm, the end-
to-end privacy, and the communication cost.

We propose PBM-VFL, a new VFL algorithm that combines
the Poisson Binomial Mechanism (PBM) (Chen et al., 2022)
with Secure Multi-Party Computation (MPC) to provide
DP over the private training datasets. In PBM-VFL, as in
other VFL algorithms, each party trains a local network
that transforms their raw features into embeddings. The
server trains a fusion model that produces the predicted
label from these embeddings. To protect data privacy, the
parties quantize their embeddings into differentially private
integer vectors using PBM. The parties then apply MPC
over the integer values so that the server aggregates the
quantized sum without learning anything else. The server
then estimates the embedding sum based on the quantized
sum and uses the estimated value to calculate the loss and
the gradients needed for training.

We analyze the end-to-end privacy and the convergence

Privacy Tradeoffs in Vertical Federated Learning

behavior of PBM-VFL and relate this analysis to the com-
munication cost. Through these analyses, we provide the
first theoretical characterization of the tradeoffs between
privacy, convergence error, and communication cost in VFL.
We note that VFL presents a different privacy problem than
HFL. In HFL, parties share an aggregated gradient over
a minibatch with the server, whereas in VFL, the server
learns the sum of the party embeddings for each sample in a
minibatch individually. This difference requires a different
privacy analysis. Further, the impact of DP noise enters via
the gradient computation in HFL, whereas it enters via an
argument to the loss function in VFL. This change necessi-
tates different convergence analysis.

We summarize our main contributions in this work.

1. We introduce PBM-VFL, a communication efficient
and private VFL algorithm.

2. We provide analysis of the overall privacy budget.
3. We prove the convergence bounds of PBM-VFL and

give the relationship between the privacy budget and
communication cost.

4. We evaluate our algorithm by training on ModelNet-
10 and CIFAR-10 datasets. Our results show that the
VFL model performs well with negligible decline in
accuracy as we increase the privacy parameters.

Related work. Multiple works apply DP in HFL tasks to
protect the data or the model (Truex et al., 2019; Wei et al.,
2020; Truex et al., 2020; Agarwal et al., 2018; Chen et al.,
2022). As discussed above, there are significant differences
in applying DP to VFL. We note that, (Agarwal et al., 2018)
and (Chen et al., 2022) both utilize quantization and MPC to
protect the gradient computations. While PBM-VFL utilizes
the same mechanisms, there are significant differences in
their application and analysis in VFL.

There are previous papers that provide different private meth-
ods for VFL. (Lu & Ding, 2020) provide an MPC proto-
col for VFL, but they do not use Differential Privacy, and
thus information may leak from the aggregated embeddings.
(Ranbaduge & Ding, 2022) applies a Gaussian DP mecha-
nism on a general VFL algorithm, but their privacy analysis
is incomplete. (Li et al., 2023) uses a Laplace DP mecha-
nism for a VFL k-means algorithm, but their algorithm does
not extend to neural networks. (Xu et al., 2021) proposes a
secure and communication-efficient framework for VFL us-
ing Functional Encryption for secure gradient computation,
but they do not consider privacy for end-to-end training.

Outline. The rest of the paper is organized as follows. In
Section 2, we briefly overview the basic principle of Differ-
ential Privacy, introduce the scalar Poisson Binomial Mech-
anism, and recall the definition of Multi-Party Computation.
We provide the system model, problem formulation with
our assumptions, and threat model in Section 3. Section 4

presents the detail of our algorithm, and Section 5 presents
the analysis. Our experimental results are given in Section
6, and we conclude in Section 7.

2 BACKGROUND

In this section, we present background on Differential Pri-
vacy and the related building blocks we use in our privacy-
preserving VFL algorithm.

2.1 Differential Privacy

Differential privacy provides a strong privacy guarantee that
ensures that an individual’s sensitive information, e.g., the
training data, remains private even if the adversary has ac-
cess to auxiliary information. A standard notion of Differen-
tial Privacy is (ϵ, δ)-DP, which is defined as follows (Dwork
& Roth, 2014).

Definition 2.1. A randomized mechanismM : D → R
with domainD and rangeR satisfies (ϵ, δ)-DP if for any two
adjacent inputs D,D′ ∈ D and for any subset of outputs
S ∈ R it holds that

Pr[M(D) ∈ S] ≤ eϵPr[M(D′) ∈ S] + δ

In this work, we employ a related version of DP called
Rényi Differential Privacy (RDP) (Mironov, 2017), which
is based on the concept of the Rényi divergence. The Rényi
divergence and RDP are defined as follows.

Definition 2.2. For two probability distributions P and Q
defined overR, the Rényi divergence of order α > 1 is

Dα(P,Q) :=
1

α− 1
log

(
Ex∼Q

(
P (x)

Q(x)

)α)
.

Definition 2.3. A randomized mechanismM : D → R
with domain D and rangeR satisfies (α, ϵ)-RDP if for any
two adjacent inputs D,D′ ∈ D, it holds that

Dα(PM(D), PM(D′)) ≤ ϵ

We utilize RDP rather than (ϵ, δ)-DP because it facilitates
calculation of the cumulative privacy loss over the sequence
training iterations in the algorithm execution. The notions
of DP and RDP are closely related as shown in the following
lemma.

Lemma 2.4. (Lemma B.2 (Chen et al., 2022)) IfM satis-
fies (α, ϵ(α))-RDP for all α > 1, then for any δ > 0,M
satisfies (ϵDP (δ), δ)-DP where

ϵDP = Θ

(√
sup
α

ϵ(α))

α
log(1/δ)

)
.

Privacy Tradeoffs in Vertical Federated Learning

Algorithm 1 Scalar Poisson Binomial Mechanism

1: Input: xi ∈ [−C,C], β ∈ [0, 1
4], b ∈ N

2: pi ← 1
2 + β

Cxi

3: qi ← Binom(b, pi)
4: Output: Quantized value qi

2.2 Poisson Binomial Mechanism

A key component of our algorithm (see Section 4) is to pro-
tect the privacy of inputs to a distributed sum computation.
To achieve this, we rely on the combination of RDP and
MPC. We use the Poisson Binomial Mechanism (PBM) de-
veloped in (Chen et al., 2022) to provide RDP. Unlike other
HFL private methods, PBM utilizes RDP guarantee, and
uses the Binomial distribution to generate scalar quantized
values which is suitable for integer-based MPC.

We sketch the process for computing a sum of scalar values.
Suppose each participant m, m = 1, . . . ,M has an input
xm ∈ [−C,C], and the goal is to estimate the sum s =∑M

m=1 xm while protecting the privacy of the inputs. Each
participant first quantizes its value according to Algorithm 1.
The values of β ∈ [0, 1

4] and b ∈ N are chosen to achieve
a desired RDP and accuracy tradeoff. The participants use
MPC to find the sum q̂ =

∑M
m=1 qm. An estimation value

of s is then computed from q̂ as s̃ = C
βb (q̂ −

bM
2). We

provide the theorem for this sum computation, which is a
slight modification from the result in (Chen et al., 2022).

Theorem 2.5. ((Chen et al., 2022)) Let xm ∈ [−C,C],
m = 1, . . . ,M , β ∈ [0, 1

4], and b ∈ N. Then, the sum
computation:

1. satisfies (α, ϵ(α))-RDP for α > 1 and ϵ(α) =
Ω(bβ2α/M)

2. yields an unbiased estimate of s with variance
C2M

4β2b
.

2.3 Multi-Party Computation

While the PBM can be used to provide RDP for a sum, we
must also ensure that the inputs to the sum are not leaked
during the computation. This is achieved via MPC. MPC
is a cryptographic mechanism that allows a set of parties
to jointly compute a function over their secret inputs, so
that only the function output is revealed at the end of the
protocol.

There are a variety of MPC methods that can be used for
sum computation. For the purposes of our communication
cost analysis, we fix an MPC protocol, specifically Protocol
0 for Secure Aggregation from (Bonawitz et al., 2016). It
considers M parties, each holding an integer secret value
qm ∈ [0, b) and an honest-but-curious server. The goal is to
compute

∑
qm collaboratively so that the server learns the

sum and nothing else, while the parties learn nothing. 1

In Protocol 0, each pair of parties m1,m2 samples two ran-
dom integers in [0, b), um1,m2

and um2,m1
using a pseudo-

random number generator with a seed known to only parties
m1 and m2. Each party then computes M − 1 perturba-
tions pm,m′ = um,m′ − um′,m and masks its secret value
by computing ym = qm +

∑M
m′=1 pm,m′ (pm,m = 0).

It then sends ym to the server. The server sums all ym:
S =

∑M
m=1 ym+

∑M
m=1

∑M
m′=1 pm,m′ . One can see that S

computes
∑M

m=1 qm because pm1,m2
= um1,m2

− um2,m1

and pm2,m1
= um2,m1

− um1,m2
cancel each other. At

the same time, the protocol is perfectly secure, revealing
nothing about the individual qm’s to the server.

To analyze communication cost, observe that each party
incurs cost by sending ym. Since −(M − 1)b < ym < Mb,
O(log Mb) = O(log M + log b) bits suffice to represent
the range of negative and positive values of ym. Thus, we
need O(log M + log b) per-party bits to send the masked
value.

3 PROBLEM FORMULATION

3.1 System Model

We consider a system consisting of M parties and a server.
There is a dataset X ∈ RN×D partitioned across the M
parties, where N is the number of data samples and D is the
number of features. Let xi denote the ith sample of X. For
each sample xi, each party m holds a disjoint subset, i.e.,
a vertical partition, of the features. We denote this subset
by xim, and note that xi = [xi

1, . . . , xiM]. The entire vertical
partition of X that is held by party m is denoted by Xm,
with X = [X1, . . . ,XM].

Let yi be the label for sample xi, and let y ∈ RN×1 denote
the set of all labels. We assume that the labels are stored
at the server. As it is standard, the dataset is aligned for all
parties in a privacy-preserving manner as a pre-processing
step. This can be done using Private Entity Resolution (Xu
et al., 2021).

3.2 Training Problem

The goal is to train a global model using the data from all
parties and the labels from the server. Each party m trains a
local network hm with parameters θm that takes the vertical
partition of a sample x as input and produces an embedding

1We note that (Bonawitz et al., 2016) and (Bonawitz et al.,
2017) present more robust and more secure versions of Protocol
0. They add an O(M) term to the communication of each party to
maintain additional robustness and security. We fix Protocol 0 for
simplicity and because its cost is precisely the cost of data transfer
influenced by our parameter b; Bonawitz et al. (Bonawitz et al.,
2017) show that data transfer dominates communication.

Privacy Tradeoffs in Vertical Federated Learning

Figure 1. Example global model with neural networks.

of dimension P . The server trains a fusion model h0 with
parameters θ0 that takes a sum of the embeddings for a
sample as input and produces a predicted label ŷ. The
global model f(·) has the form

f(x; Θ) := h0

(
M∑

m=1

hm(θm; xm); θ0

)
(1)

where Θ denotes the set of all model parameters. An exam-
ple of the global model architecture is shown in Figure 1.

To train this model, the parties and the server collaborate to
minimize a loss function of the form

L(Θ;X, y) :=
1

N

N∑
i=1

ℓ
(
θ0, ĥ(θ1, . . . ,θM ; xi); yi

)
(2)

where ℓ(·) is the loss for a single sample (xi, yi), and

ĥ(θ1, . . . ,θM ; xi) =
M∑

m=1

hm(θm; xi
m). (3)

We sometimes omit X and y from the notation when the
context is clear.

Let B := (XB, yB) be a randomly sampled mini-batch of B
samples. We denote the stochastic partial derivative of L
over B with respect to θm, m = 0, . . . ,M , by

∇m LB(Θ) :=

1

B

∑
(xi,yi)∈B

∇θm
ℓ(θ0, ĥ(θ1, . . . ,θM ; xi); yi).

The partial derivatives of L and LB with respect to ĥ are
denoted by ∇ĥ L and ∇ĥ LB, respectively.

We make the following assumptions.

Assumption 3.1. Smoothness:

1. There exists positive constant L <∞ such that for all
Θ1, Θ2:

∥∇L(Θ1)−∇L(Θ2)∥ ≤ L ∥Θ1−Θ2∥ (4)

2. There exist positive constants L0 < ∞ and Lĥ <∞
such that for all server parameters θ0 and θ′

0 and all
embedding sums h and h′:

∥∇θ0
ℓ(θ0,h)−∇θ0

ℓ(θ′
0,h

′)∥ ≤
L0∥[θT

0 ,h
T]T − [θ′T

0 ,h′T]T ∥ (5)
∥∇ĥℓ(θ0,h)−∇ĥℓ(θ

′
0,h

′)∥ ≤
Lĥ∥[θ

T
0 ,h

T]T − [θ′T
0 ,h′T]T ∥. (6)

Assumption 3.2. Unbiased gradients: For every mini-
batch B, the stochastic gradient is unbiased:

EB∇LB(Θ) = ∇L(Θ).

Assumption 3.3. Bounded variance: There exists positive
constant σ <∞ such that for every mini-batch B (with
| B | = B)

EB∥∇L(Θ)−∇LB(Θ)∥2 ≤ σ2

B
. (7)

Assumption 3.4. Bounded embeddings: There exists pos-
itive constant C <∞ such that for m = 1, . . . ,M , for all
θm and xm, ∥hm(θm; xm)∥∞ ≤ C.

Assumption 3.5. Bounded embedding gradients: There
exists positive constants Hm <∞ for m = 1, . . . ,M such
that for all θm and all samples i, the embedding gradients
are bounded as

∥∇mhm(θm; xim)∥F ≤ Hm (8)

where ∥ · ∥F denotes the Frobenius norm.

Part 1 of Assumption 3.1, Assumption 3.2, and Assump-
tion 3.3 are standard in the analysis of gradient-based al-
gorithms (e.g., Nguyen et al. (2018); Bottou et al. (2018)).
Part 2 of Assumption 3.1 bounds the rate of change of the
partial derivative of ℓ with respect to each of its two argu-
ments. This assumption is needed to ensure convergence
over the noisy embedding sums. Assumption 3.4 bounds
the individual components of the embeddings. This can be
achieved via a standard activation function such as sigmoid
or tanh. Assumption 3.5 bounds the partial derivatives of
the embeddings with respect to a single sample. This bound
is also necessary to analyze the impact of the DP noise on
the algorithm convergence.

3.3 Threat Model

Our privacy goal is to protect the training data Xm of each
party m from the other parties and the server. We assume
that all parties and the server are honest-but-curious. They
correctly follow the training algorithm, but they can try to
infer the data of other parties from information exchanged
in the algorithm. We assume that the parties do not col-
lude and that communication occurs through robust and

Privacy Tradeoffs in Vertical Federated Learning

Algorithm 2 Privacy-Preserving VFL

1: Initialize: Θ0 = [θ0
0,θ

0
1, . . . ,θ

0
M]

2: for t← 0, . . . , T − 1 do
3: Randomly sample Bt from (X, y)
4: for party m← 1, . . . ,M in parallel do
5: /* Generate quantized embeddings for Bt */
6: qtm ← PBM(hm(θt

m;XBt

m), b, β)
7: end for
8: /* At server */
9: q̂t ←

∑M
m=1 q

t
m via MPC

10: h̃t ← C
βb (q̂

t − bM
2)

11: Server sends∇ĥ LB(θ
t
0, h̃

t) to all parties
12: /* server updates its parameters */
13: θt+1

0 ← θt
0−η∇0 LB(θ

t
0, h̃

t)
14: for m← 1, . . . ,M in parallel do
15: /* party m updates its parameters */
16: ∇m LB(Θ

t)←
17: ∇mhm(θt

m;Xt
m)∇hm

h̃t∇ĥ LBt(θt
0, h̃

t)

18: θt+1
m ← θt

m−ηt∇m LB(Θ
t)

19: end for
20: end for

secure channels that ensure no party drops out and no “man-
in-the-middle” attacks occur. (One can easily extend our
system with the more secure and robust MPC protocols
from (Bonawitz et al., 2017)).

4 ALGORITHM

We now present PBM-VFL. Pseudocode is given in Algo-
rithm 2.

Each party m and the server initialize their local parame-
ters θm, m = 0, . . . ,M (line 1). The algorithm runs for
T iterations. In each iteration, a minibatch Bt is chosen
at random from X. Each party m generates an embedding
hm(θt

m; xi) for each sample i in the minibatch. We de-
note the set of party m’s embeddings for the minibatch
by hm(θt

m;XBt

m). Each party m computes the set of noisy
quantized embeddings qtm using PBM component-wise on
each embedding (lines 3-7). The benefit of PBM here is
that it quantizes the embedding components into log2 b-bit
integer vectors that are suitable for the MPC protocol. The
quantization also reduces the communication cost for the
sum computation.

To complete forward propagation, the server needs an esti-
mate of the sum of the embeddings from each party for each
sample in Bt. The parties and the server execute MPC (e.g.,
Protocol 0), which reveals q̂i for each sample i ∈ Bt to the
server. For each i ∈ Bt the server estimates the embedding
sum as h̃i = C

βb (q̂
i − bM

2) (lines 9-10). We let h̃t denote
the set of noisy embedding sums.

The server calculates the gradient ofLB with respect to ĥ for
the minibatch using h̃t, denoted ∇ĥ LB(θ

t
0, h̃

t) and sends
this information to the parties so they can complete their
parameter updates (line 11). Then the server calculates the
stochastic gradient of L with respect to its own parameters,
denoted ∇0 LB(θ

t
0, h̃

t), and uses this gradient to update
its own model parameters with learning rate η (line 13).
Finally, after each party receives the partial derivative from
the server, it computes the partial derivative of LBt with
respect to its local model parameters using the chain rule as:

∇m LBt(Θt) = ∇mhm(θt
m;XBt

m)∇hm h̃t∇ĥ LBt(θt
0, h̃

t).

Note that ∇hm
h̃t is the identity operator. The party then

updates its local parameters (lines 16-18) using this partial
derivative, with learning rate η.

Information Sharing There are two places in Algorithm 2
where information about X is shared. The first is when the
server learns the sum of the embeddings for each sample in
a minibatch (line 9). We protect the inputs to this compu-
tation via PBM and MPC. The second is when the server
sends ∇ĥ LB(θ

t
0, h̃

t) to each party. By the post-processing
property of DP, this gradient retains the same privacy pro-
tection as the sum computation. We give a formal analysis
of the algorithm privacy in Section 5.

Communication Cost We now discuss the communica-
tion cost of Algorithm 2. Each party sends its masked quan-
tized embedding at a cost of O(P (log M + log b)) bits,
as detailed in 2 and the cumulative cost for M parties and
mini-batch of size B becomes O(BMP (log M + log b)).
In the back propagation, the server sends the partial deriva-
tives without quantization to each party, which is the most
costly message exchanging step. Nevertheless, we save
a significant number of bits when the parties send their
masked quantized embedding to the server. Let F be the
number of bits to represent a floating point number. Then
the cost of sending these partial derivatives to M parties is
O(BMPF). The total communication cost for Algorithm 2
is O(TBMP (log M + log b+ F)).

5 ANALYSIS

We now present our theoretical results with respect to the
privacy and convergence of PBM-VFL, and we provide a
discussion of the tradeoffs between them.

5.1 Privacy

Our method makes use of DP that aims to provide a measure
of indistinguishability between adjacent datasets consisting
of multiple data samples. We say that two datasets are
adjacent if they differ by a single party’s feature set for a

Privacy Tradeoffs in Vertical Federated Learning

single sample. We give an accounting of the privacy budget
across T iterations of Algorithm 2.

Theorem 5.1. Let Assumption 3.4 hold, and assume
β ∈ [0, 1

4] and b ∈ N. Algorithm 2 after T iterations sat-
isfies (α, ϵfinal(α))-RDP where α > 1 and ϵfinal(α) =

O(TBbβ2α
MN).

Proof. The proof is an adaptation of the steps in (Chen et al.,
2022). To account for the privacy budget ϵfinal(α), we begin
by applying Theorem 2.5. It states that, for a sample i, the
computation of the sum h̃t

i is (α, ϵ(α))-RDP for any α > 1
and ϵ(α) = Ω(bβ2α/M). To compute ∇ĥ LB(θ

t
0, h̃

t), the
server applies a deterministic function on h̃. By standard
post-processing arguments, it follows that this computation
provides (α, ϵ(α))-RDP with the same ϵ(α).

We now consider privacy loss across all T iterations. At each
iteration, the algorithm processes a sample at a rate B/N ,
leading to an expected TB/N number of times that each
sample is used over T iterations. Accounting for privacy loss
across all T iterations leads to ϵfinal(α) = O(TBbβ2α

MN).

5.2 Convergence

We next present our theoretical result on the convergence of
Algorithm 2. The proof is provided in Appendix A.

Theorem 5.2. Convergence: Under Assumptions 3.1-3.5, if
η < 1

2L , then the average squared gradient over T iterations
of Algorithm 2 satisfies:

1

T

T−1∑
t=0

E
(
∥∇L(Θt)∥2

)
≤

2(L(Θ0)− E(L(ΘT))

ηT
+ 2Lη

σ2

B

+ (1 + 2Lη)

(
C2MP (L2

0 + L2
ĥ

∑M
m=1 H

2
m)

4β2b

)
. (9)

The first term in the bound in (9) is determined by the dif-
ference between the loss of the initial model and the model
after T training iterations. This term vanishes as T goes to
infinity. The second term is the convergence error associated
with variance of the stochastic gradients and the Lipschitz
constant L. The third term is the convergence error arises
from the DP noise in the sums of the embeddings. This
error depends on the inverse of b, the number of embedding
quantization bins, and the inverse square of β, which con-
trols the degree of privacy. As b or β increases, this error
decreases.

Remark 5.3. Asymptotic convergence If η = 1√
T

and B is

independent of T then

1

T

T−1∑
t=0

∥∇L(Θt)∥2 = O(
√
T + E) (10)

where E = O(1
β2b) is the error due to the PBM. We note

that if the embedding sums are computed exactly, giving up
privacy, the algorithm reduces to standard SGD; the third
term in (9) becomes 0, giving a convergence rate of O(1√

T
).

5.3 Tradeoffs

We observe that there is a connection between the algorithm
privacy, communication cost, and convergence behavior.
Let us consider a fixed value for the privacy parameter β.
We can reduce the convergence error in Theorem 5.2 by in-
creasing b, but this results in less privacy guarantee. Higher
b also enlarges the algorithm communication cost, but so
long as log b < F , this increase is negligible.

Similarly, if we fix the communication cost of the algorithm
over T iterations, we can increase the privacy by decreasing
β. This, in turn, leads to an increase in the convergence
error on the order of 1

β2 .

The number of parties M also affects the privacy budget
and convergence error. With larger M , each party gets more
protection for their data but with larger convergence error.

6 EXPERIMENTS

We present experiments to examine the privacy and accuracy
tradeoff of Algorithm 2. We study how different values of
the PBM parameters b and β affect the performance of the
model as well as the RDP privacy budget. We conducted our
experiments on two datasets ModelNet-10 and CIFAR-10.

ModelNet-10: ModelNet-10 is a set of images generated
from CAD models, where each model produces images
for 12 different angles, with 10 different object classes for
image classification. We performed experiments with 6 and
12 parties, where each party holds 2 or 1 view(s) of the
model, respectively. Each party’s local model is a neural
network with two convolutional layers and a fully-connected
layer, and the server model consists of a fully-connected
layer that uses a cross-entropy loss. We use a fixed batch size
of 64 with learning rate of 0.01 and train for 250 epochs.

CIFAR-10: CIFAR-10 is another image dataset with 10
object classes for classification task. We train the model
with 4 parties, each holds a different quadrant (16× 16) of
the images. Each party uses a ResNet18 neural network
model, and the server model consists of a fully-connected
layer with a cross-entropy loss. We use a fixed batch size of
100 with learning rate of 0.01 and train for 600 epochs.

We consider different PBM parameters for the two datasets

Privacy Tradeoffs in Vertical Federated Learning

(a) β = 0.05 (b) β = 0.15 (c) β = 0.25

Figure 2. The accuracy of CIFAR-10 by epochs for various values of b and β.

to show the privacy-accuracy tradeoff. We choose the same
set of β ∈ {0.05, 0.15, 0.25} for both datasets, and we pick
b ∈ {4, 16, 64} for ModelNet-10 and b ∈ {16, 64, 256} for
CIFAR-10. The nature of the CIFAR-10 dataset permits
less noise in the raw data and typically requires a smaller
learning rate for convergence. To bound the embedding
values into the range [−C,C] as required for Algorithm 1,
we use the tanh activation function to scale the embedding
values into the range [−1, 1] for each party model of both
datasets.

Figure 2 shows the results of experiments for the CIFAR-10
dataset with three different values of β = {0.05, 0.15, 0.25}.
Each figure shows how b affects the test accuracy. We get a
moderate decrease in accuracy with b = 16 and β = 0.05 in
Figure 2a. Nevertheless, with the same β value, b = 64 and
b = 256 yield almost the same accuracy as the case without
any quantization. There is also an insignificant loss in the
test accuracy for β = 0.15 and β = 0.25 with different b
values, as illustrated in Figures 2b and 2c.

As discussed in the previous section, the privacy bound of
PBM-VFL is O(TBbβ2α

MN), which indicates that we get more
privacy by reducing the value of b and β. There is tradeoff
between privacy and accuracy, and smaller b and β lead to
less accuracy in the model performance.

The result of the experiments for the ModelNet-10 dataset
with 6 parties and 12 parties are shown in Figures 3
and 4, respectively. In these figures, we fix the value
for b = {4, 16, 64} to illustrate the influence of β =
{0.05, 0.15, 0.25} on the model performance. The privacy-
accuracy tradeoff is more prevalent in the ModelNet-10
experiments. With 6 parties, the model performs relatively
well even when b = 4 (Figure 3a). There is no significant
difference between different β values for b = 4, however
we do see a clear increase in accuracy for higher β values
in Figures 3b and 3c.

The results for the ModelNet-10 dataset with 12 parties in
Figure 4 show a similar trend as the graphs for 6 parties. The
accuracy for different values of b are very close to the case

without any quantization and DP noise. In addition, there
is a growth in the model performance when β increases,
specially in Figure 4b and 4c. We also see a slight decline in
the test accuracy when the number of parties increases from
6 to 12 in the ModelNet-10 tests (Figure 3a vs. Figure 4a,
etc). However, this drop is negligible, and the model still
performs well with larger number of parties.

In conclusion, our results support the privacy-accuracy trade-
off summarized in Section 5. Notably, even higher-privacy
values of b, such as b = 16 achieve high accuracy, which
entails fewer bits of communication per round.

7 CONCLUSION

We presented PBM-VFL, a privacy-preserving and
communication-efficient algorithm for training models with
vertically partitioned data. We analyzed privacy and con-
vergence behavior and proved an end-to-end privacy bound
as well as a convergence bound. In future work, we seek
to develop new analytical techniques to achieve a tighter
bound on the privacy budget for specific model architectures
and loss functions, and to design new methods to improve
the privacy/accuracy tradeoff in VFL.

ACKNOWLEDGEMENTS

This work was supported by NSF grants CNS-1814898 and
CNS-1553340, and by the Rensselaer-IBM AI Research Col-
laboration (http://airc.rpi.edu), part of the IBM
AI Horizons Network.

REFERENCES

Agarwal, N., Suresh, A. T., Yu, F., Kumar, S., and
Mcmahan, H. B. cpSGD: Communication-efficient and
differentially-private distributed SGD, 2018.

Aledhari, M., Razzak, R., Parizi, R. M., and Saeed, F. Fed-
erated learning: A survey on enabling technologies, pro-
tocols, and applications. IEEE Access, 8:140699–140725,

http://airc.rpi.edu

Privacy Tradeoffs in Vertical Federated Learning

(a) b = 4 (b) b = 16 (c) b = 64

Figure 3. The accuracy of ModelNet-10 with 6 parties by epochs for various values of b and β.

(a) b = 4 (b) b = 16 (c) b = 64

Figure 4. The accuracy of ModelNet-10 with 12 parties by epochs for various values of b and β.

2020.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A.,
McMahan, H. B., Patel, S., Ramage, D., Segal, A., and
Seth, K. Practical secure aggregation for federated learn-
ing on user-held data. arXiv prepring arXiv:1611.04482,
2016.

Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A.,
McMahan, H. B., Patel, S., Ramage, D., Segal, A.,
and Seth, K. Practical secure aggregation for privacy-
preserving machine learning. In Proc. ACM SIGSAC Conf.
Computer and Communications Security, pp. 1175–1191,
2017.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. SIAM Review,
60(2):223–311, 2018.

Chen, W., Özgür, A., and Kairouz, P. The poisson binomial
mechanism for unbiased federated learning with secure
aggregation. In Proc. Int. Conf. Machine Learning, pp.
3490–3506, 2022.

Dwork, C. and Roth, A. The algorithmic foundations of
differential privacy. Found. Trends Theor. Comput. Sci.,
9(3–4):211–407, Aug 2014.

Geiping, J., Bauermeister, H., Dröge, H., and Moeller, M.
Inverting gradients - how easy is it to break privacy in
federated learning? Adv. Neural Inf. Process. Syst., 2020.

Gu, B., Xu, A., Huo, Z., Deng, C., and Huang, H. Privacy-
preserving asynchronous vertical federated learning algo-
rithms for multiparty collaborative learning. IEEE Trans.
on Neural Netw. Learn. Syst., pp. 1–13, 2021.

Hu, Y., Niu, D., Yang, J., and Zhou, S. FDML: A col-
laborative machine learning framework for distributed
features. Proc. ACM Int. Conf. Knowl. Discov. Data Min.,
pp. 2232–2240, 2019.

Li, Z., Wang, T., and Li, N. Differentially private ver-
tical federated clustering. Proc. VLDB Endow., 16(6):
1277–1290, Apr 2023.

Lu, L. and Ding, N. Multi-party private set intersection in
vertical federated learning. In Proc. IEEE 19th Int. Conf.
Trust, Security and Privacy in Computing and Communi-
cations, pp. 707–714, 2020.

Mahendran, A. and Vedaldi, A. Understanding deep image
representations by inverting them. Proc. IEEE Int. Conf.
Comput. Vis., pp. 5188–5196, 2015.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep

Privacy Tradeoffs in Vertical Federated Learning

networks from decentralized data. Proc. 20th Int. Conf.
on Artif. Intell., pp. 1273–1282, 2017.

Mironov, I. Rényi differential privacy. In Proc. IEEE 30th
Computer Security Foundations Symp., 2017.

Nguyen, L. M., Nguyen, P. H., van Dijk, M., Richtárik,
P., Scheinberg, K., and Takác, M. SGD and Hogwild!
convergence without the bounded gradients assumption.
Proc. Int. Conf. on Machine Learn., 80:3747–3755, 2018.

Ranbaduge, T. and Ding, M. Differentially private vertical
federated learning. arXiv preprint arXiv:2211.06782,
2022.

Truex, S., Baracaldo, N., Anwar, A., Steinke, T., Ludwig,
H., Zhang, R., and Zhou, Y. A hybrid approach to privacy-
preserving federated learning. In Proc. 12th ACM Work-
shop Artificial Intelligence and Security, pp. 1–11, 2019.

Truex, S., Liu, L., Chow, K.-H., Gursoy, M. E., and Wei,
W. Ldp-fed: Federated learning with local differential
privacy. In Proc. Third ACM Int. Workshop Edge Systems,
Analytics and Networking, pp. 61––66, 2020.

Wei, K., Li, J., Ding, M., Ma, C., Yang, H. H., Farokhi, F.,
Jin, S., Quek, T. Q. S., and Vincent Poor, H. Federated
learning with differential privacy: Algorithms and perfor-
mance analysis. IEEE Trans. Inf. Forensics Secur., 15:
3454–3469, 2020.

Xu, R., Baracaldo, N., Zhou, Y., Anwar, A., Joshi, J., and
Ludwig, H. Fedv: Privacy-preserving federated learning
over vertically partitioned data. In Proc. 14th ACM Work-
shop Artificial Intelligence and Security, pp. 181–192,
2021.

Yang, Q., Liu, Y., Chen, T., and Tong, Y. Federated machine
learning: Concept and applications. ACM Trans. Intell.
Syst. Technol., 10(2):12:1–12:19, 2019.

A PROOF OF THEOREM 5.2
Let Θt be the set of model parameters in iteration t. For
brevity, we let ĥt

i denote ĥ(θt
1, . . . ,θ

t
M ; xi). We can write

the update rule for Θ as

Θt+1 = Θt−ηGt (11)

with

Gt :=
1

B

∑
i∈Bt

∇ℓ(θt
0, ĥ

t
i + εti) (12)

where εti is the P -vector of noise resulting from the PBM
for the embedding sum of sample i in iteration t.

With some abuse of notation, we let ĥt denote concatenation
of the embedding sums for the minibatch Bt (without noise)
and let∇LBt(θt

0, ĥ
t) denote the average stochastic gradient

of L over minibatch Bt.

We first bound the difference between Gt and∇LBt(θt
0, ĥ

t)
in the following lemma.

Lemma A.1. It holds that

EBt∥Gt −∇LBt(θt
0, ĥ

t)∥2 ≤

C2MP (L2
0 + L2

ĥ

∑M
m=1 H

2
m)

4β2b
. (13)

Proof. We first note that

EBt∥Gt −∇LBt(θt
0, ĥ

t)∥2

=

M∑
m=0

EBt∥Gt
m −∇m LBt(θt

0, ĥ
t)∥2 (14)

where Gt
m is the block of Gt corresponding to party m.

For m = 0, using Assumption 3.1, we can bound the first
term in the summation in (14) as

EBt∥Gt
0 −∇0 LBt(θ0, ĥ)∥2

≤ 1

B

∑
i∈Bt

EBt∥∇ℓ(θt
0, ĥ

t
i + εti)−∇ℓ(θ

t
0, ĥ

t
i)∥2 (15)

≤ L2
0

B

∑
i∈Bt

EBt∥εti∥2. (16)

For m = 1, . . .M , by the chain rule, we have

Gt
m =

1

B

∑
i∈B
∇mhm(θt

m; xi)∇hm
ĥt
i∇ĥℓ(θ

t
0, ĥ

t
i + εti) (17)

∇m LBt(θt0, ĥ
t) =

1

B

∑
i∈B
∇mhm(θt

m; xi)∇hm ĥt
i∇ĥℓ(θ

t
0, ĥ

t
i). (18)

It follows that

EBt∥Gt
m −∇m LB(θ

t
0, ĥ

t)∥2 =

EBt

(
1

B2

∑
i∈Bt

∥∇mhm(θt
m; xi)∇hm

ĥt
i

(
∇ĥℓ(θ

t
0, ĥ

t
i + εti)−∇ĥℓ(θ

t
0, ĥ

t
i)
)
∥2
)
. (19)

Privacy Tradeoffs in Vertical Federated Learning

Noting that∇ĥĥ
t
i = I , we have

EBt∥Gt
m −∇m LB(θ

t
0, ĥ

t)∥2

≤ 1

B

∑
i∈Bt

EBt∥∇mhm(θt
m; xi)∥2F∥∇ĥℓ(θ

t
0, ĥ

t
i + εti)

−∇ĥℓ(θ
t
0, ĥ

t
i)∥2 (20)

≤
H2

mL2
ĥ

B

∑
i∈Bt

EBt∥εti∥2 (21)

where (21) follows from (20) by Assumptions 3.1 and 3.5.

Combining (16) and (21), we obtain

EBt∥Gt −∇LBt(θ0, ĥ
t)∥2 ≤ (22)(

L2
0 + L2

ĥ

M∑
m=1

H2
m

)
1

B

∑
i∈Bt

EBt∥εti∥2 (23)

≤
C2MP (L2

0 + L2
ĥ

∑M
m=1 H

2
m)

4β2b
(24)

where (24) follows from (23) by Theorem 2.5.

We now prove Theorem 5.2.

Proof. By Assumption 3.1, we have

L(Θt+1)− L(Θt)

≤ −⟨∇L(Θt),Θt+1−Θt⟩+ L

2
∥Θt+1−Θt ∥2 (25)

= −η⟨∇L(Θt), Gt⟩+ Lη2

2
∥Gt∥2 (26)

= −η⟨∇L(Θt), Gt −∇LBt(Θt)⟩
− η⟨∇L(Θt),∇LBt(Θt)⟩

+
Lη2

2
∥Gt −∇LBt(Θt) +∇LBt(Θt)∥2 (27)

≤ −η⟨∇L(Θt), Gt −∇LBt(Θt)⟩
− η⟨∇L(Θt),∇LBt(Θt)⟩
+ Lη2∥Gt −∇LBt(Θt)∥2 + Lη2∥∇LBt(Θt)∥2.

(28)

Taking expectation with respect to t, conditioned on Θt:

Et

(
L(Θt+1)

)
− L(Θt)

≤ η

2
∥∇L(Θt)∥2 + η

2
Et∥Gt −∇LBt(Θt)∥2

− η⟨∇L(Θt),Et

(
∇LBt(Θt)

)
⟩

+ Lη2Et∥Gt −∇LBt(Θt)∥2

+ Lη2Et∥∇LBt(Θt)∥2 (29)

= −η

2
∥∇L(Θt)∥2

η

2
(1 + 2Lη)Et∥Gt −∇LBt(Θt)∥2

+ Lη2Et∥∇LBt(Θt)∥2 (30)

= −η

2
∥∇L(Θt)∥2

η

2
(1 + 2Lη)Et∥Gt −∇LBt(Θt)∥2

+ Lη2Et∥∇LBt(Θt)−∇L(Θt)∥2

+ Lη2Et∥∇L(Θt)∥2 (31)

≤ −η

2
(1− 2Lη) ∥∇L(Θt)∥2

+
η

2
(1 + 2Lη)Et∥Gt −∇LBt(Θt)∥2

+ Lη2Et∥∇LBt(Θt)−∇L(Θt)∥2 (32)

where (29) follows from (28) by the fact that A · B =
1
2A

2 + 1
2B

2 − 1
2 (A − B)2, (30) follows from (29) by As-

sumption 3.2, and (31) also follows from (30) by Assump-
tion 3.2.

We apply Assumption 3.3 and Lemma A.1 to (32):

Et

(
L(Θt+1)

)
− L(Θt) ≤ −η

2
(1− 2Lη) ∥∇L(Θt)∥2

+
η

2
(1 + 2Lη)

(
C2MP (L2

0 + L2
ĥ

∑M
m=1 H

2
m)

4β2b

)

+
Lη2σ2

B
. (33)

We next apply the assumption that η < 1
2L and rearrange

(33) to obtain

∥∇L(Θt)∥2 ≤ 2(L(Θt)− Et(L(Θt+1))

η

+ (1 + 2Lη)

(
C2MP (L2

0 + L2
ĥ

∑M
m=1 H

2
m)

4β2b

)

+ 2Lη
σ2

B
. (34)

Averaging over T iterations and taking total expectation
give

1

T

T−1∑
t=0

E
(
∥∇L(Θt)∥2

)
≤ 2(L(Θ0)− E(L(ΘT))

ηT

+ (1 + 2Lη)

(
C2MP (L2

0 + L2
ĥ

∑M
m=1 H

2
m)

4β2b

)

+ 2Lη
σ2

B
. (35)

