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ABSTRACT

Diffusion models excel in content generation by implicitly learning the data mani-
fold, yet they lack a practical method to leverage this manifold—unlike other deep
generative models equipped with latent spaces. This paper introduces a novel
framework that treats the data space of pre-trained diffusion models as a Rieman-
nian manifold, with a metric derived from the score function. Experiments with
MNIST and Stable Diffusion show that this geometry-aware approach yields im-
age interpolations that are more realistic, less noisy, and more faithful to prompts
than existing methods, demonstrating its potential for improved content genera-
tion and editing.

1 INTRODUCTION

Deep generative models (DGMs) have achieved remarkable success in content generation across
various domains (Rombach et al., 2022; Brooks et al., 2024; Tevet et al., 2023; Poole et al., 2023).
They also offer applications such as image attribute editing (Kim et al., 2021), object replacement
(Mokady et al., 2023), and smooth image interpolation (Zheng et al., 2024). This success can be
explained through the lens of the manifold hypothesis, which states that high-dimensional data lie
on lower-dimensional manifolds. DGMs equipped with latent spaces, including variational autoen-
coders (VAEs) (Kingma & Welling, 2014) and generative adversarial networks (GANs) (Goodfellow
et al., 2014), learn to model such manifolds by embedding latent spaces into data spaces (Bengio
et al., 2012; Dahal et al., 2022; Huang et al., 2022; Horvat & Pfister, 2022; Loaiza-Ganem et al.,
2024). Given this ability, recent work has explored insights from differential geometry, e.g., intro-
ducing Riemannian metrics to the latent spaces of pre-trained DGMs and generating semantically
consistent content through traversals based on geodesics (Shao et al., 2017; Chen et al., 2018; Ar-
vanitidis et al., 2018; 2021; Fröhlich et al., 2021; Arvanitidis et al., 2022; Lee et al., 2022).

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021a;b), a class of
DGMs known for state-of-the-art generation quality, are also considered to learn data manifolds.
Some studies estimated their intrinsic dimensionality (Stanczuk et al., 2024; Kamkari et al., 2024;
Horvat & Pfister, 2024; Ventura et al., 2025), and others improved the image quality by projecting
samples onto the data manifolds during the generation (Chung et al., 2022; He et al., 2024; Zirvi
et al., 2025). Nonetheless, they have not fully exploited the underlying Riemannian structures for
tasks beyond naive sampling (Park et al., 2023a).

In this paper, we introduce a Riemannian metric on the data space by leveraging the score function of
diffusion models. We examined a small model trained on MNIST (Deng, 2012) and Stable Diffusion
(Rombach et al., 2022) to demonstrate that our method yields more natural and faithful transitions,
as assessed with CLIP-IQA (Wang et al., 2023), compared with existing methods: linear (Lerp) (Ho
et al., 2020) and spherical linear (Slerp) interpolation (Song et al., 2021a), as well as NAO (Samuel
et al., 2023) and Noise Diffusion (Zheng et al., 2024). We also find that NAO and NoiseDiffusion
suffer from severe reconstruction errors, whereas the other methods do not, as evaluated by mean
squared error (MSE), LPIPS (Zhang et al., 2018), and DreamSim (Fu et al., 2023).
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2 RELATED WORK

Deep Generative Models through Riemannian Geometry Pre-trained VAEs and GANs are
known to be capable of editing generated image attributes (e.g., facial expressions and hair color) by
linearly manipulating latent variables (Härkönen et al., 2020; Voynov & Babenko, 2020; Zhu et al.,
2022; Shen & Zhou, 2021; Zhu et al., 2021). To mitigate the constraint of being linear (Arvanitidis
et al., 2018), some studies treated the latent space as a learned manifold with a Riemannian metric,
improving the edit quality (Arvanitidis et al., 2021; Fröhlich et al., 2021; Arvanitidis et al., 2022).
A typical way defines a metric by pulling back the Euclidean metric from the data space, but it
still assumed a linear data space, not fully capturing the underlying geometric structure (Shao et al.,
2017; Chen et al., 2018; Arvanitidis et al., 2018). Another way learns a metric on the data space
and then pullback it to the latent space (Arvanitidis et al., 2021), but it requires task-specific metric
learning and additional architectures. In diffusion models, the bottleneck layer of the U-Net for
noise-prediction are suggested to serve as a latent space (Kwon et al., 2023). Some studies assume
a Euclidean metric on the bottleneck layer and pullback it to the data space, defining a metric on the
data space (Park et al., 2023a;b). Like the traditional ways for VAEs and GANs, this approach is
however limited by the assumption of a linear latent space.

Data Manifolds of Diffusion Models Diffusion models are considered to learn data distributions
pt(xt) and the underlying manifolds at each diffusion time step t (Pidstrigach, 2022; Loaiza-Ganem
et al., 2024). Several studies have estimated the local dimensionality of a data manifold Mt in
diffusion models by examining the trained score function sθ(xt, t) ≈ ∇x log pt(xt, t), specifically
its Jacobian ∇xsθ(xt, t) (essentially the Hessian of log pt(xt, t)) (Stanczuk et al., 2024; Ventura
et al., 2025) or its divergence (Kamkari et al., 2024). Other works suggest that lower-quality samples
arise when the reverse process drifts away from the manifold. To mitigate this, some studies project
the generated image xt onto the manifold Mt by assuming a linear manifold (Chung et al., 2022),
by using a separate autoencoder (He et al., 2024), or by constructing a subspace via singular value
decomposition (Zirvi et al., 2025).

Beyond naive sampling, some studies have tackled image interpolation (Deschenaux et al., 2024).
Several methods require retraining (Zhang et al., 2023; Yang et al., 2024), depend on specific models
(Preechakul et al., 2022; Kim et al., 2025; Lu et al., 2024), or need additional conditioning (Wang
& Golland, 2023), and hence do not fully leverage the intrinsic manifold structure of pre-trained
diffusion models. The simplest method, Lerp (Ho et al., 2020), linearly interpolates two images
xt, x

′
t after t diffusion steps and then applies the reverse process. This effectively treats the data

space at time t (often called a noise space) as a linear latent space, similar to VAEs or GANs.
Because the norm of a latent variable correlates with semantic richness (Samuel et al., 2023; Alper
& Averbuch-Elor, 2024), Lerp leads to blur or loss of detail by decreasing norms. Slerp (Shoemake,
1985) preserves norms by interpolating along a spherical path. NAO leverages the fact that norms
of samples drawn from a normal distribution follow a chi distribution and maximizes the probability
of the path between two endpoints (Samuel et al., 2023). While these methods often yield smoother
transitions than Lerp, they still lose detail and further generate artifacts because the latent variables
for natural images often deviate from the expected normal distribution. NoiseDiffusion addressed
this by adding extra noise and clipping extreme noise (Zheng et al., 2024), which indeed generates
high-quality images but not necessarily a proper interpolation, as it can inject or remove information.
Ultimately, no existing interpolation method fully exploits the manifold structure in the data space.

3 METHOD: GEODESIC INTERPOLATION

Riemannian Metric based on Score Function For completeness, we provide background details
on diffusion models and Riemannian geometry in Appendix A. Here, we focus on our main proposal.
We propose the metric tensor g in the data space Mt at time t of a diffusion model, which is
represented by a matrix

Gxt
= J⊤

xt
Jxt

for Jxt
= ∇xt

sθ(xt, t). (1)

Since the score function sθ(xt, t) is an approximation of ∇xt
log pt(xt), its Jacobian Jxt

corre-
sponds to the Hessian Hxt

= ∇xt
∇xt

log pt(xt). As long as Jxt
is non-degenerate, Gxt

is positive
definite and thus valid as a Riemannian metric. With this metric, the length of a vector v at xt is
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|v|g =
√

⟨v, v⟩g = ∥Jxt
v∥2. The length of a curve is obtained by integrating local lengths along

the curve. The length-minimizing curve between two points is called a geodesic. Thus, we define an
interpolation between two samples x(0)

t and x(N)

t as the geodesic under the metric g given by Eq. (1).

Interpretation of Proposed Metric The proposed metric is apparently similar to the pullback
metric in prior works (Shao et al., 2017; Chen et al., 2018; Arvanitidis et al., 2018; 2021; Park et al.,
2023a;b). However, these works use the Jacobian of a map from the data space to a latent space (or
vice versa), whereas our metric employs the Jacobian of the score function and never pullbacks any
predefined metric. Note also that it is not the Hessian metric for a Hessian manifold.

In reality, observational noise prevents the data distribution from forming a perfectly low-
dimensional manifold; the distribution is effectively collapsed (or compressed) along certain di-
rections. Since sθ(xt, t) is the gradient of the log-likelihood log pt(xt), it points in such directions
to the manifold, guiding samples along directions of higher density. Consequently, the directions
corresponding to large eigenvalues of Jxt

indicate collapsed dimensions, whereas those correspond-
ing to small eigenvalues are tangential to the manifold (Stanczuk et al., 2024; Ventura et al., 2025).
Therefore, following directions for which ∥Jxt

v∥ is small can thus be seen as moving within or
parallel to the manifold, providing a smooth transition of images.

Another interpretation follows from the Taylor expansion of sθ around x, which yields ∥sθ(x +
v, t) − sθ(x, t)∥2 = ∥Jxv∥2 + O(∥v∥22). This implies that the proposed geodesic corresponds to a
curve along which sθ(x, t) changes as little as possible. Earlier studies have shown that the gradient
of a log-likelihood (with respect to model parameters) can serve as a robust, semantically meaningful
representation of input (Charpiat et al., 2019; Hanawa et al., 2021; Yeh et al., 2018). In this light,
our metric can be viewed as a measure of the semantic closeness between infinitesimally different
samples, providing transitions that preserve the underlying meaning within the data manifold.

Implementation Let s ∈ [0, 1] be the independent variable parameterizing a curve γ : s(∈
[0, 1]) 7→ γ(s). The curve γ is discretized as a sequence of data points x(0)

t , . . . , x(N)

t , where
γ(si) = x(i), s0 = 0, sN = 1, and si+1 − si = ∆s. The length of the curve, L[γ], is numeri-
cally approximated using the trapezoidal rule:

L[γ] =
∫ 1

0
l(s)ds ≈

∑N−1
i=0

1
2 (l(si+1) + l(si))∆s, (2)

where the local path length l(si) is given by l(si) =
√
γ′(si)⊤Gγ(si)γ

′(si) ≈
√
(v(i)

t )⊤G
x
(i)
t
v(i)

t ,

and v(i)

t denotes the velocity at point x(i)

t . This is easily computed by the Jacobian-vector product.
The velocities v(i)

t are approximated using second-order finite differences.

Given two samples, x(0)

t and x(N)

t , the geodesic path is obtained by minimizing the discrete approx-
imation of L[γ] with respect to the intermediate points x(1)

t , . . . , x(N−1)

t , i.e.,

min
x
(1)
t ,..,x

(N−1)
t

L[γ] s.t. γ(s0) = x(0)

t , γ(sN ) = x(N)

t . (3)

To prevent the intermediate points from collapsing to a single point, we add the variance of the Eu-
clidean distance, Var

[
∥x(i+1)

t − x(i)

t ∥2
]
, as a regularization term to the loss function, multiplied by

hyperparameter λ. This term guides the velocity to be constant. The initial values of x(1)

t , . . . , x(N−1)

t
can be initialized using any reasonable method; in this work, we employed Slerp (Song et al., 2021a).

We observed that directly computing the geodesic in the raw data space at t = 0 leads to poor results
due to the highly rugged landscape of the score function sθ at t = 0, likely because it memorizes
individual training data points. To address this issue, we employed DDIM inversion to map samples
into the data space at a specific time step t = τ > 0, compute the geodesic there, and then apply the
reverse DDIM process to obtain the final image sequence in the original data space at t = 0.

4 EXPERIMENTS AND RESULTS

We evaluated our method with Stable Diffusion (Rombach et al., 2022), as well as Lerp (Ho et al.,
2020), Slerp (Shoemake, 1985), NAO (Samuel et al., 2023), and NoiseDiffusion (Zheng et al., 2024).
We set max forward steps to T = 50 and the number of forward steps before interpolation to τ = 50
for NAO and 30 for others. We set the number of interpolation steps to N = 10. We optimized
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Figure 1: Images generated by Stable Diffusion with prompts shown below, with interpolations
using different methods (CFG: 7.5). Images at both ends are original, adjacent to them are the
reconstructions, and in between are the interpolation results. The sample-wise fidelity is visualized
above each image as a graph.

Table 1: Mean Reconstruction Errors and CLIP-IQA Assessment for Four Examples in Figure 1

Reconstruction Errors CLIP-IQA

Method MSE [×10−3] LPIPS [×10−1] DreamSim [×10−2] Reality Noisiness Fidelity

Lerp 7.89 1.71 5.34 0.389 0.406 0.686
Slerp 7.89 1.71 5.34 0.704 0.765 0.784
NAO 64.04 6.03 32.82 0.617 0.766 0.815
NoiseDiff 14.13 2.35 6.93 0.600 0.646 0.783
Proposed 7.89 1.71 5.34 0.716 0.818 0.810

the path using Adam (Kingma & Ba, 2015) for 5,000 iterations. The learning rate was initialized at
10−2 and decayed to zero using cosine annealing (Loshchilov & Hutter, 2017).

Figure 1 and Table 1 summarize the results. As previous works have shown, Lerp produces blurry
images with a notable loss of detail. Slerp yields smoother transitions, but sometimes objects appear
doubled, like houses or trees. NAO and NoiseDiffusion suffer from severe reconstruction errors
because of a long diffusion process and added or clipped noise, as evaluated by MSE, LPIPS (Zhang
et al., 2018), and DreamSim (Fu et al., 2023). In contrast, the proposed method demonstrates the
most realistic and faithful transitions, gradually adjusting objects, color, and lighting while avoiding
noise, as assessed with CLIP-IQA. See Appendix C for additional explanations and results.

5 CONCLUSION

This paper introduces a Riemannian metric derived from the score function of pre-trained diffusion
models. The metric yields geodesic paths that naturally follow the learned data manifold, providing
a geometry-aware framework for image interpolation. Experiments on MNIST and Stable Diffu-
sion show smooth, natural, and faithful transitions than existing methods. The proposed geometric
framework has broader potential applications, such as video editing by treating a video as a curve
on the manifold and using parallel transport to modify all frames simultaneously.
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A BACKGROUND THEORY

This section provides the foundational concepts necessary for our proposed method. We begin with
an overview of diffusion models, describing their forward and reverse processes and the link between
noise prediction and the score function. We then introduce key elements of Riemannian geometry,
focusing on how Riemannian metrics induce distances and paths on manifolds.

A.1 DIFFUSION MODELS

Diffusion models are a class of DGMs inspired by non-equilibrium thermodynamics (Sohl-Dickstein
et al., 2015; Ho et al., 2020). The model consists of two processes: a forward process that adds noise
to the data and a reverse process that removes the noise. Their core idea is to model the underlying
data distribution by denoising noisy samples.

Forward Process Let x0 ∈ RD be a data sample. The forward process is defined as a Markov
chain in which Gaussian noise is added at each time step t = 1, . . . , T :

q(xt|xt−1) = N
(
xt;
√

1− βtxt−1, βtI
)
= N

(√
αt

αt−1
xt−1,

(
1− αt

αt−1

)
I

)
, (4)

where {βt}Tt=1 is a variance schedule, I is the identity matrix in RD, and αt =
∏t

s=1(1 − βs).
As t increases, xt becomes progressively more corrupted by noise until xT is nearly an isotropic
Gaussian distribution.

Reverse Process To invert this forward process, a reverse Markov chain pθ(xt−1|xt) from xT ∼
N (0, I) is constructed as

xt−1 =
1√

1− βt

(
xt −

βt√
1− αt

ϵθ(xt, t)

)
+ σtzt, (5)

with trainable noise predictor ϵθ, where zt ∼ N (0, I) and σ2
t = βt is a variance. The noise predictor

ϵθ(xt, t) is trained by minimizing the objective:

L(θ) = Ex,ϵt,t

[
∥ϵt − ϵθ(xt, t)∥22

]
, (6)

where ϵt ∼ N (0, I) is the noise added during the forward process at time step t.

Denoising Diffusion Implicit Models Denoising diffusion implicit models (DDIMs) (Song
et al., 2021a) modified Eq. (4) as a non-Markovian process q(xt−1|xt, x0) = N (

√
αt−1x0 +√

1− αt−1 − σ2
t , σ

2
t I). Then the reverse process becomes

xt−1 =
√
αt−1

(
xt −

√
1− αtϵθ(xt, t)√

αt

)
+
√

1− αt−1 − σ2
t · ϵθ(xt, t) + σtzt, (7)

where σt = η
√

(1− αt−1)/(1− αt)
√
1− αt/αt−1. Here, η ∈ [0, 1] determines the stochasticity:

η = 1 recovers the DDPM, while η = 0 yields a deterministic update.

Formulation as Stochastic Differential Equations Diffusion models can also be formulated us-
ing stochastic differential equations (SDEs) (Song et al., 2021b). In that viewpoint, the forward
process is governed by a continuous-time SDE, and its time-reversal is defined through the cor-
responding reverse-time SDE, which depends on the score function ∇xt log pt(xt), where pt(·)
denotes the distribution of xt at time t. Notably, the noise-prediction network ϵθ is closely tied to
the score function (Luo, 2022) as:

∇xt log pt(xt) ≈ − 1√
1− αt

ϵθ(xt, t). (8)

Hence, learning ϵθ for noise prediction is equivalent to learning the score function.

Conditional Generation

ϵ̃t(xt, t, C) = ϵt(xt, t, ∅) + γ · (ϵt(xt, t, C)− ϵt(xt, t, ∅)) (9)

9



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

A.2 RIEMANNIAN GEOMETRY

We adopt the presentation in Lee. (2019). Let M be a smooth manifold. A Riemannian metric g
on M is a smooth (0, 2)-tensor field such that at every point p ∈ M, the tensor gp defines an inner
product on the tangent space TpM. Concretely, gp is symmetric and positive-definite:

gp(v, v) ≥ 0 for all v ∈ TpM and gp(v, v) = 0 ⇔ v = 0.

By identifying gp with an inner product, we write

⟨v, w⟩g := gp(v, w) for v, w ∈ TpM.

A Riemannian manifold is then the pair (M, g).

Let (x1, . . . , xn) be local coordinates near p ∈ M. Then, the basis for TpM is
(

∂
∂x1

∣∣
p
, . . . , ∂

∂xn

∣∣
p

)
.

Tangent vectors v, w ∈ TpM are expressed as v =
∑n

i=1 v
i ∂

∂xi

∣∣
p

and w =
∑n

i=1 w
i ∂

∂xi

∣∣
p
,

respectively. The matrix notation Gp of g at p consists of (i, j)-elements

gij(p) = gp

(
∂

∂xi

∣∣∣∣
p

,
∂

∂xj

∣∣∣∣
p

)
=

〈
∂

∂xi

∣∣∣∣
p

,
∂

∂xj

∣∣∣∣
p

〉
g

(10)

for i, j = 1, 2, ..., n. The Euclidean metric is written as an identity matrix I . The inner product of v
and w with respect to the Riemannian metric gp can be expressed as:

gp(v, w) =

n∑
i,j=1

gij(p)v
iwj = vTGpw. (11)

Lengths of Tangent Vectors and Curves. Given ⟨v, v⟩g , the length of a tangent vector v ∈ TpM
is given by |v|g :=

√
⟨v, v⟩g . For a smooth curve γ : [0, 1] → M, its length is defined by

L(γ) :=

∫ 1

0

|γ′(t)|gdt =
∫ 1

0

√
⟨γ′(t), γ′(t)⟩gdt =

∫ 1

0

√
γ′(t)⊤Gγ(t)γ′(t)dt. (12)

For convenience, we denote this integrand of Eq. (12) as:

l(t) :=
√
γ′(t)⊤Gγ(t)γ′(t). (13)

B COMPARISON METHODS

B.1 DDIM INVERSION

Naive encoding of an original image is simply adding Gaussian noise as in the forward process
q(xt|xt−1), which is stochastic and often yields poor reconstructions. To accurately invert the re-
verse process and recover the specific noise map associated with a given image, DDIM Inversion
(Mokady et al., 2023) is widely used. The key insight is that, in the limit of infinitesimally small
time steps, the ODE formulation of DDIM is invertible.

Concretely, setting σt = 0 in Eq. (7) gives

xt−1 = atxt + btϵθ(xt, t), (14)

where at =
√

αt−1/αt and bt = −
√

αt−1(1− αt)/αt +
√
1− αt−1. With a sufficiently small

time step size,

xt =
xt−1 − btϵθ(xt, t)

at
≈ xt−1 − btϵθ(xt−1, t)

at
, (15)

as ϵθ(xt, t) ≈ ϵθ(xt−1, t). Iteratively applying the update rule in Eq. (15) to a sample x0 from t = 1
to τ recovers the noisy image xτ that would generate the original x0. This inversion procedure
substantially improves the fidelity of reconstructions and subsequent interpolations.
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B.2 LINEAR INTERPOLATION

Once the noisy images are recovered via DDIM Inversion, one can perform straightforward linear
interpolation (Lerp) (Song et al., 2021a), by treating the noise space (the data space with t > 0) as
a linear latent space. In particular, let x(0)

τ and x(1)
τ denote the noisy versions of x(0)

0 and x(1)

0 in the
noise space at t = τ , respectively. A linear interpolation in that space is given by

x(s)

τ = (1− s)x(0)

τ + sx(1)

τ , (16)

where s ∈ [0, 1] is the interpolation parameter. Then, one then applies the reverse process from
t = τ back to t = 0 to obtain the interpolated images x(s)

0 in the data space.

B.3 SPHERICAL LINEAR INTERPOLATION

An alternative is spherical linear interpolation (Slerp) (Shoemake, 1985), which finds the shortest
path on the unit sphere in the noise space:

x(s)

τ =
sin ((1− s)θ)

sin (θ)
x(0)

τ +
sin (sθ)

sin (θ)
x(1)

τ (17)

where θ = arccos
(

(x(0)
τ )⊤x(1)

τ

∥x(0)
τ ∥∥x(0)

τ ∥

)
. Because this procedure preserves the norms of the noisy images

x(s)
τ , it often yields natural interpolations than Lerp. Note that, Slerp assumes that x(0)

τ and x(1)
τ are

drawn from a normal distribution, which holds only for a sufficiently large τ . Nonetheless, Slerp
typically performs better with moderate τ .

B.4 PROPOSED METHOD

The velocities v(i)

t are approximated using second-order finite differences:

v(i)

t =


−3x

(0)
t +4x

(1)
t −x

(2)
t

2∆s (i = 0)
x
(i+1)
t −x

(i−1)
t

2∆s (0 < i < N)
3x

(N)
t −4x

(N−1)
t +x

(N−2)
t

2∆s (i = N)

(18)

C ADDITIONAL EXPERIMENTS AND RESULTS

C.1 CLIP-IQA

CLIP-IQA (Wang et al., 2023) is a metric that evaluates the quality of images generated by genera-
tive models. It is based on a pre-trained language-image model, CLIP (Radford et al., 2021), which
predicts the similarity between images and text. For evaluating the reality of images, CLIP-IQA
uses a pair of prompts: “Real photo” and “Abstract photo,” and evaluate how similar the generated
images are to the prompts. If it is close to the “Real photo” prompt, the score approaches 1.0, and
the image is considered realistic. For noisiness, the prompts are “Clean photo” and “Noisy photo”.

While this goes beyond CLIP-IQA’s original scope, we used the prompts “A photo of [object]” and
“A photo of something that is not [object]” to evaluate the fidelity of interpolated images to the
prompt.

C.2 EXPERIMENTS WITH MNIST

We also evaluated our method with MNIST (Deng, 2012), as well as Lerp (Song et al., 2021a), Slerp
(Shoemake, 1985). We set the maximum number of forward steps to T = 1000 and the number of
forward steps before interpolation to τ = 400. We set the number of interpolation steps to N = 10.
We optimized the geodesic path using Adam (Kingma & Ba, 2015) for 5,000 iterations. The learning
rate was initialized at 10−3.

Unlike the results from Stable Diffusion (Figure 1), Lerp produces interpolated results with less
noisy than Slerp. This suggests that the MNIST data manifold is relatively locally linear. However,
Lerp exhibits discontinuous changes in digits; for example, a sudden appearance of a “9” during
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Figure 2: Interpolation results by a diffusion model trained on MNIST.

the transition from “3” to “7”. This is likely because Lerp ignores the underlying metric of the data
manifold. In contrast, the proposed method shows gradual transitions compared to both Lerp and
Slerp, achieving geometrically consistent transitions.
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