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Improved Low-cost 3D Reconstruction Pipeline by Merging Data From
Different Color and Depth Cameras
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ABSTRACT

The performance of traditional 3D capture methods directly influ-
ences the quality of digitally reconstructed 3D models. To obtain
complete and well-detailed low-cost three-dimensional models, this
paper proposes a 3D reconstruction pipeline using point clouds from
different sensors, combining captures of a low-cost depth sensor
post-processed by Super-Resolution techniques with high-resolution
RGB images from an external camera using Structure-from-Motion
and Multi-View Stereo output data. The main contribution of this
work includes the description of a complete pipeline that improves
the stage of information acquisition and makes the data merging
from different sensors. Several phases of the 3D reconstruction
pipeline were also specialized to improve the model’s visual quality.
The experimental evaluation demonstrates that the developed method
produces good and reliable results for low-cost 3D reconstruction of
an object.
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1 INTRODUCTION

3D reconstruction makes it possible to capture the geometry and
appearance of an object or scene allowing us to inspect details with-
out risk of damaging, measure properties, and reproduce 3D models
in different material [21]. In recent years, numerous advances in
3D digitization have been observed, mainly by applying pipelines
for three-dimensional reconstruction using costly high-precision 3D
scanners. In addition, recent researches have sought to reconstruct
objects or scenes using depth images from low-cost acquisition de-
vices (e.g., the Microsoft Kinect sensor [17]) or using Structure from
Motion (SFM) [24] combined with Multi-View Stereo (MVS) [5]
from RGB-images.

Good quality 3D reconstructions require a large number of finan-
cial resources, as they require state-of-the-art equipment to capture
object data in high precision and detail. On the other hand, low-
resolution equipment implies a lower quality capture, even being
financially more viable. Even with the ease of operation, lightweight,
and portability, low-cost approaches must consider the limitations
of the scanning equipment used [20].

The acquisition step of a 3D reconstruction pipeline refers to the
use of devices to capture data from objects in a scene such as their
geometry and color [22]. One result of 3D geometry capture is the
production of discrete points collection that demonstrates the model
shape. We call it point clouds. The data obtained by this step will be
used in all other phases of the 3D reconstruction process [2].

Active capture methods use equipment such as scanners to in-
fer objects geometry through a beam of light, inside or outside the
visible spectrum. The scanner sensor has the advantages of fast
measuring speed, robustness regarding external factors, and ease of
acquiring information. Active sensors also have good performance
in reconstructing texture-less and featureless surfaces [6,22]. The
sensors need to be sensitive to small variations in the information
acquired, since for small differences in distance, the variation in the
time it takes to reach two different points is very low, requiring low
equipment latency and good response time. For this reason, these

systems tend to be slightly noisy [21]. Considering low-cost recon-
struction approaches difficulties to capture color in high precision
are disadvantage [10].

Passive methods are based on optical imaging techniques. They
are highly flexible and work well with any modern digital camera.
Image-based 3D reconstruction is practical, non-intrusive, low-cost
and easily deployable outdoors. Various properties of the images
can be used to retrieve the target shape, such as material, viewpoints
and illumination. As opposed to active techniques, image-based
techniques provide an efficient and easy way to acquire the color of
a target object [10]. Although passive reconstructions mainly using
SFM and MVS produce excellent results, they have limitations like
the difficulty of distinguishing the target object from the background
[25] and require the target object to have detailed geometry [6]. A
controlled environment is needed to obtain better reconstruction
results [12,24].

Considering the limitations imposed by the presented approaches,
it is important to note that a target whose geometry has been de-
scribed by only a low-cost capture method has a real challenge in
expressing its completeness, with rich and small details [6].

This paper proposes a hybrid pipeline from a low-cost depth cam-
era (low-resolution images) and an external color capture camera
(digital camera with high-resolution RGB images) to estimate and
reconstruct the surface of an object and apply a high-quality tex-
ture. Such limitations of each data acquisition approach are bypass,
generating a complete and well-detailed replica of the target model
with high visual quality. To achieve this effect, this project uses a
variation and combination of Structure from Motion, Multi-View
Stereo and depth camera capture techniques.

Although there are mature projects aimed at low-cost 3D recon-
struction, few are those who describing step-by-step how to over-
come the limitations from low-cost three-dimensional data capture
using the best features in all phases of the pipeline to obtain the
model as realistic as possible. The main contribution of this work
is the description of a complete pipeline that makes use of post-
processed depth captures and merging data from different sensors,
in which depth sensor data and high-resolution color images do not
need to be synchronized.

As it is a post-processed task (after capture/estimate depth data),
this work also includes the detection of the region of interest, based
on the average distance of the scene, removing points not belonging
to the target object and allows the inclusion of new images containing
regions of the target object not previously photographed to improve
the texturing step results.

In addition to this introductory section, this work is organized
as follows: Section 2 presents related works, while section 3 de-
scribes the proposed pipeline. The experiments and evaluation of
the pipeline are presented in section 4. Finally, section 5 discusses
the final considerations and results achieved by this research.

2 RELATED WORK

Prokos et al. [19] proposed a hybrid approach combining shape from
stereo (with additional geometric constraints) and laser scanning
techniques. Using two cameras and a portable laser beam, they
achieved accuracy as good as some high-end laser triangulation
scanners. Although, they do not include automatically detecting
outliers in their results.
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The KinectFusion system [17] tracks the pose of portable depth
cameras (Kinect) as they move through space and perform good
three-dimensional surface reconstructions in real-time. The Kinect
sensor has considerable limitations, including temporal inconsis-
tency and the low resolution of the captured color and depth im-
ages [22]. Real-time reconstruction is not a requirement for well-
detailed, accurate, and complete reconstructions.

Silva et al. [26] provides a guided reconstruction process using
Super-Resolution (SR) techniques, helping to increase the quality of
the low-resolution data captured with a low-cost sensor. The method
of data acquisition using low-cost depth cameras and SR is also
improved by Raimundo [22]. Even with depth image improvements,
a poor registration of captures can affect the final model’s shape.

Falkingham [9] demonstrates the potential applications of low-
cost technology in the field of paleontology. The Microsoft Kinect
was used to digitalize specimens of various sizes, and the resulting
digital models were compared with models produced using SFM
and MVS. The work pointed out that although Kinect generally
registers morphology at a lower resolution capturing less detail than
photogrammetry techniques, it offers advantages in the speed of data
acquisition and generation of the 3D mesh completed in real-time
during data capture. Also, they did not use Super-Resolution to
improve captures from low-cost devices and the models produced
by the Kinect lack any color information.

Zollhofer et al. [28] used a Kinect sensor to capture the geometry
of an excavation site and took advantage of a topographic map to dis-
tort the reconstructed model, significantly increasing the quality of
the scene. The global distortion, with Super-Resolution techniques
applied to raw scans, significantly increased the fidelity and realism
of its results but is too specialized for large scales scenes.

Paola and Inzerillo [8] in order to digitally produce the Egyptian
stone from Palermo, proposed a method with a structured light scan-
ner, smartphones and SFM to apply texture in the highly accurate
mesh generated by the scanner. The main challenges were the dark
color of the material and the superficiality of the groove of the hi-
eroglyphs that some capture approaches have difficulty recognizing.
The level of detail of the texture application showed up quite accu-
rately. This reference work used a high-resolution 3D scanner, not
aiming at low-cost reconstruction.

Jo and Hong [13] use a combination of terrestrial laser scanning
and Unmanned Aerial Vehicle (UAV) photogrammetry to establish
a three-dimensional model of the Magoksa Temple in Korea. The
scans were used to acquire the perpendicular geometry of buildings
and locations, being aligned and merged with the photogrammetry
output, producing a hybrid point cloud. The photogrammetry adds
value to the 3D model, complementing the point cloud with the
upper parts of buildings, which are difficult to acquire through laser
scanning.

Chen [6] proposes a registration method to combine the data of a
laser scanner and photogrammetry to reconstruct the real outdoor
3D scene. They managed greatly increasing the accuracy and conve-
nience of operation. The two sensors can work independently, the
method fuses their data even if in different scales. Mesh reconstruc-
tion and texturing were not explored by this work.

Raimundo et al. [21] point out in their bibliographic review sev-
eral studies that successfully used advanced rendering techniques
such as global illumination, ambient occlusion, normal mapping,
shadow baking, per-vertex lighting, and level of detail. These ren-
dering techniques also improve the final presentation of 3D recon-
structions.

3 PIPELINE PROPOSAL

To overcome limitations of the low-cost three-dimensional data
acquisition process, the following pipeline is proposed: capturing
depth and color images (using a low-cost depth sensor and a digital
camera); generation of point clouds from low-cost RGB-D camera

Generation of point
clouds from low-cost
RGB-D camera depth

Capturing depth and
color images (using low-

cost depth sensor ; .
oy images (using SR
and digital camera) .
techniques)

-1

Fusion of data from
these different capture
techniques

Shape estimation from
RGB images (using SFM
and MVS)

" R

Mesh generation using
Screened Poisson
Surface Reconstruction

Figure 1: Schematic diagram for the proposed pipeline and the 3D
reconstruction processes of an object.

Texturing with high
quality photos

depth images (using SR techniques [22]); shape estimation from
RGB images (using SFM [24] and MVS [5]); merging of data from
these different capture techniques; mesh generation; and texturing
with high quality photos (Fig. 1). Several phases of the pipeline
were specialized to achieve better accuracy and visual quality of 3D
reconstructions of small and medium scale objects. The proposed
pipeline works offline.

3.1 Data acquisition

For capture using a low-cost depth sensor is established the fol-
lowing acquisition protocol: take several depths captures, moving
the sensor around the object, and defining the limits of the capture
volume. Furthermore, a turntable can also be used, obtaining a more
controlled capture and align process. The number of views captured
is less than that of real-time approaches due to the additional process-
ing required to ensure the quality of each capture. Considering the
quality requirements for this proposed work, an interactive tool [20]
is used to acquire the raw data from the depth sensor (Fig. 2).

The depth capture method will present results proportional to the
better the captures by the device, that is, the lower the incidence of
noise and the better the accuracy of the inferred depth. With this
in mind, each depth image goes through a filtering step with the
application of Super-Resolution [22]. To provide high-resolution
information beyond what is possible with a specific sensor, several
low-resolution captures are merging, recreating as much detail as
possible.

To add 3D information in greater detail and to apply a simple
high-quality texturing process, photographs are taken from a digital
camera around the target object. In our pipeline, these captures
are independent of the depth sensor, we need just to take pictures
with the fixed object, in a free movement of the camera. The set
of images must be sufficient to cover most of the object’s surface
and the images must portray, in pairs, common parts of it. The color
images will be used in the SFM pipeline.

The SFM pipeline detects characteristics in the images (feature de-
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Figure 2: Software to acquire and process depth images. The slider
controls the capture limits (in millimeters) and the cut limits (in pixels),
effectively determining the capture volume.

tection), mapping these characteristics between images and finding
descriptors capable of representing a distinguishable region (feature
matching). These descriptors represent vertices of the reconstruction
of the 3D scene (sparse reconstruction). The greater the number of
matches found between the images, the greater the degree of accu-
racy of calculating a 3D transformation matrix between the images,
providing the estimation of the relative position between camera
poses [3,10].

Photographs with good resolution and objects with a higher level
of detail tend to bring greater precision to the photogrammetry algo-
rithms. For objects with fewer details and features, the environment
can be used to achieve better results [24]. In addition to the estimated
structure to improve the depth sensor captured geometry, we use
these cameras’ pose estimation to apply easily and directly texture
over the final model surface.

The Multi-View Stereo process is used to improve the point cloud
obtained by SFM, resulting in a dense reconstruction. As the camera
parameters such as position, rotation, and focal length are already
known from SFM, the MVS computes 3D vertices in regions not
detected by the descriptors. Multi-View Stereo algorithms generally
have good accuracy, even with few images [10].

For this image-based point cloud result, to highlight the target
object, a method of detecting the region of interest can be used. A
simple algorithm is used to detect the centroid of the set of 3D points
and remove points based on a radius from it. If the floor below the
object is discernible, it is also possible to use a planar segmentation
algorithm to remove the plane. A statistical removal algorithm
can also be used to remove outliers. If even more accurate outlier
removal is required, a manual process using a user interface tool can
be performed. Most of the discrepancies and the background are
removed using the proposed steps, minimizing working time.

Although image-based 3D reconstructions get greater detail than
using low-cost depth sensors [9], this approach may not be able to

(b) RGB photo of porcelain horse

Figure 3: Some parts of the surface may not be estimated by the
photogrammetry process. In (a) the white and smooth painting of
the object (b) prevents the MVS algorithm from obtaining a greater
number of points that define this part of the structure of the model,
leaving this featureless surface region with a fewer density of points
than others.

estimate the completeness of the object (Fig. 3). This is a common
result when the captures do not fully describe the target model, or it
does not have a very distinguishable texture or detail.

The algorithms used in the next steps require a guided set of data,
thus, the normals of the point clouds are estimated before performing
the alignment step. A normal estimation k-neighbor algorithm is
used for this task.

3.2 Alignhment

To deal with the problem of aligning the point clouds of the acqui-
sition phase, transformations are applied to place all captures in a
global coordinate system. This alignment is usually performed in a
coarse and fine alignment step.

To perform the initial alignment between the point clouds ob-
tained by the depth sensor we use global alignment algorithms where
the pairs of three-dimensional captures are roughly aligned [15].
Given the initial alignment between the captured views, the Itera-
tive Closest Point (ICP) algorithm [11] is executed to obtain a fine
alignment. After pairwise incremental registration, an algorithm for
global minimization of the accumulated error is run.

The initial alignment step may not produce good alignment results
due to the nature of the depth data utilized, as the low amount of
discernible points between two point clouds [20], so the registration
may present drifts. With this in mind, we use the point cloud ob-
tained by photogrammetry as an auxiliary to apply a new alignment
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(d) SFM shape and camera pose estimation

(g) Improved initial alignment and cleaning

(b) Initial point clouds alignment (Kinect)

(h) Merged point cloud

(c) High definition photo capture

(f) MVS point cloud output after filtering and
down-sampling

(i) Poisson generated mesh

Figure 4: Porcelain horse. With the richness of details that this object has, as in the head and saddle, we use the photogrammetry method for
distinguishing them with the highest level of detail. At the same time it has a low number of characteristics in predominantly smoothness regions,
as the base of the structure and the body of the animal, we use the depth sensor capture approach where this factor does not influence the 3D
acquisition process. The data captured by the low-cost depth sensor aggregated information where there are few visible features, as can be seen

at the base and legs of the horse.

over the depth sensors point clouds, distorting the transformation,
propagating the accumulation of errors between consecutive align-
ments and the loop closure, improving the global registration and
the quality of the aligned point cloud.

The point cloud generated by the image-based 3D reconstruction
pipeline and the one obtained with the depth sensor captures are
created from different image spectrum and are very common to have
different scales. The point clouds obtained using the depth sensor
must be aligned with the corresponding points of the object in the
photogrammetry point cloud.

As the depth sensor captures are already in a global coordinate
system, to carry out this alignment, it is sufficient just to scale
and transform a single capture to fit the cloud obtained by MVS
and apply the same transformation to the others, speeding up the
registration process. After that, the ICP algorithm can be reapplied,
including the photogrammetry output point cloud. This last point
cloud is not to be transformed, only the rest of the captures is aligned
to it because the camera positions that we will utilize for texturing
will use this model’s coordinate system.

The merging of point clouds from both data capture approaches
will increase the information that defines the object geometry. This

resulting point cloud is used on the next steps of the pipeline.

3.3 Surface reconstruction

The mesh generation step is characterized by the reconstruction of
the surface, a process in which a 3D continuous surface is inferred
from a collection of discrete points that prove its shape [1].

For this step, we use the algorithm Screened Poisson Surface
Reconstruction [14]. This algorithm seeks to find a surface in which
the gradient of its points is the closest to the normals of the vertices
of the input point cloud. The choice of a parametric method for
the surface reconstruction is justified by the robustness and the
possibility of using numerical methods to improve the results. Also,
the resulting meshes are almost regular and smooth.

3.4 Texture synthesis

Applying textures to reconstructed 3D models is one of the keys to
realism [27]. High-quality texture mapping aims to avoid seams,
smoothing the transition of an image used for applying texture and
its adjacent one [16].

The texture synthesis phase of the proposed pipeline comprises
the combination of the high-resolution pictures captured with an
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(b) Initial point clouds alignment (Kinect)

(d) SFM shape and camera pose estimation

(e) MVS point cloud output before filtering

(f) MVS point cloud output after filtering and
down-sampling

(g) Improved initial alignment and cleaning

(h) Merged point cloud

(i) Poisson generated mesh

Figure 5: Jaguar pan replica. Even with some visual characteristics generated by the 3D printing process, the object has very few distinguishable
features because of its predominantly white texture. This factor makes difficult the reconstruction process by SFM and MVS. With this, we use the
environment to assist in detecting the positions and orientation of the cameras. The captures with the depth sensor added information in the legs

of the jaguar and the belly (bottom) not acquired by photogrammetry.

external digital camera with the integrated model obtained from the
previous step of the pipeline.

The high-resolution photos taken with a digital camera with the
poses calculated using SFM, will be used to perform the genera-
tion of texture coordinates and atlas of the model, avoiding a time-
consuming manual process.

The images with respective poses from SFM may not be able
to apply a texture on faces not visible by any image used for the
reconstruction, causing non-textured mesh surfaces in the three-
dimensional model. To overcome this limitation, we post-apply
the texture, merging camera relative poses result from SFM with
new photos, calculating the new poses using photogrammetry result
relative coordinate system.

4 EXPERIMENTS AND EVALUATION

For evaluation, we run the proposed pipeline on some objects vary-
ing size and complexity: a porcelain horse-shaped object (“Porce-
lain horse”, Fig. 4), a jaguar and a turtle-shaped clay pan replicas
(“Jaguar pan”, Fig. 5 and “Turtle pan”, Fig. 6 respectively). The
remnant objects used in this study are replicas of cultural objects
from the Waurd tribe and belong to the collection of Federal Uni-
versity of Bahia Brazilian Museum of Archaeology and Ethnology
(MAE/UFBA). The replicas were three-dimensionally reconstructed

by Raimundo [20] and 3D printed. In addition, the turtle replica was
colored by hydrographic printing.

In our experiments we used Microsoft Kinect version 1, however,
any other low-cost sensor can be used to capture depth images. This
sensor is affordable and captures color and depth information with a
resolution of 640x480 pixels. To produce point clouds from the low-
cost 3D scanner, we used the Super-Resolution approach proposed
by Raimundo [22] with 16 Low-Resolution (LR) depth frames.

The photos used as input to the passive 3D reconstruction method
were taken with a Redmi Note 8 camera for all evaluated models.
The number of photos was arbitrarily chosen to maximize coverage
of the object. For the SEM pipeline, the RGB images were processed
using COLMAP [24] to calculate camera poses and sparse shape
reconstruction. OpenMVS [5] was used for dense reconstruction.
For the texturing stage, we used the algorithm proposed by Waechter
et al. [27].

Some software tools were developed from third-party libraries for
various purposes. For instance, OpenCV [4] and PCL [23] were used
to handle and process depth images and point clouds, libfreenect [18]
was used on the depth acquisition application to access and retrieve
data from the Microsoft Kinect. Meshlab system [7] has been used
for Poisson reconstruction and adjustments in 3D point clouds and
meshes when necessary.
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Table 1: Algorithms and main components of each experiment.

Object  Porcelain horse Jaguar pan Turtle pan
Dimensions (cm) 35x12x 31 21.5x 15x7 9x6.5%x3.5
Texture Handmade Predominantly white  Hydrographic printing
Num. of RGB images 108 65 29
RGB images resolution 8000 x 6000px 4000 x1844px 8000 x 6000px
SFM algorithm COLMAP [24] COLMAP [24] COLMAP [24]
MYVS algorithm  OpenMVS [5] OpenMVS [5] OpenMVS [5]
Depth sensor Kinect V1 Kinect V1 Kinect V1
LR frames per capture 16 16 16
SR point clouds 26 22 20

The Figures 4 and 5 show the acquisition, merging, and recon-
struction steps proposed by this pipeline for the Porcelain Horse
and Jaguar Pan. The figures also bring the discussion of the main
challenges for each reconstruction and how they were handled by the
pipeline. The algorithms and main components of each experiment
are described in Table 1.

The resolution of clouds obtained by the low-cost sensor with SR
is considerably lower than in clouds obtained by photogrammetry.
This is evident in the turtle’s captures and reconstructions (Fig. 6(b)).
In such figure, is shown that the low-cost sensor presented a scale
limitation. However, it has the advantage of making new captures of
the object even if it has moved in the scene. The photogrammetry
also presented limitations when it try to describe featureless regions
of any object (as shown in Fig. 3 and Fig. 5(f)). However, this
does not happen with the depth sensor since the coloring does not
influence on capture. The resolution of the images used on the
SFM pipeline is also a factor that directly influences the quality
and details of the 3D reconstruction. The point clouds obtained by
photogrammetry were capable of representing, with good quality,
distinguishable details on a millimeter scale. The merging of point
clouds was helpful to express in greater detail the objects that were
reconstructed, taking the advantages of both captures.

The merged point clouds have been down-sampled to facilitate vi-
sualization and meshing generation since the aligned and combined
point clouds may have an excessive and redundant number of ver-
tices and there is no guarantee that the sampling density is sufficient
for proper reconstruction [2]. Point clouds were meshed using the
Screened Poisson Surface Reconstruction feature in Meshlab [7]
using reconstruction depth 7 and 3 as the minimum number of sam-
ples. It is important to note that the production of a mesh is a highly
dependent process on the variables used to generate the surface. We
will consider as standard for all reconstructions the Poisson Surface
Reconstruction the parameters defined in this paragraph.

For quantitative validation, the 3D surfaces reconstructions of
the Turtle (Fig. 6) were compared with the model used for 3D
printing (ground truth in Fig. 6(d)). For this comparison, we used
the Hausdorff Distance tool of Meshlab [7]. The results are discussed
on Table 2 and graphically represented on Fig. 7.

The same quantitative validation was carried out with the recon-
structions of the Jaguar’s 3D surfaces and its respective model used
for 3D printing. The results are presented in Table 3 and as like the
turtle’s Hausdorff Distances, the reconstruction of the jaguar with
this pipeline achieves better mean and lower values of maximum
and minimum when compared with individual approaches.

All objects studied benefited from the merging of point clouds as
Poisson’s surface reconstruction identifies and differentiates nearby
geometric details, some of them are added by the merging. It was
noticed that, when the points are linearly spaced, the resulting mesh
is smoother and more accurate.

Table 2: Hausdorff Distances for 3D surface reconstructions of the
Turtle pan. Each vertex sampled from the source mesh is searched
to the closest vertex on ground truth. Values in the mesh units and
concerning the diagonal of the bounding box of the mesh.

Mesh MVS (Filtered) Kinect (SR) Merged
Samples 17928 pts 20639 pts 20455 pts
Minimum 0.000000 0.000003 0.000000
Maximum 0.687741 0.172765 0.124484
Mean 0.026021 0.028209 0.012780
RMS 0.082436 0.038791 0.023629
Reference Fig. 6(a) Fig. 6(b) Fig. 6(c)

Table 3: Hausdorff Distances for 3D surface reconstructions of the
Jaguar pan.

Mesh MVS (Filtered) Kinect (SR) Merged
Samples 12513 pts 13034 pts 13147 pts
Minimum 0.000005 0.000002 0.000001
Maximum 0.750001 0.173569 0.139575
Mean 0.051147 0.017597 0.019753
RMS 0.091608 0.028266 0.026867

Texturing results using surfaces from merged point clouds are
shown in Fig. 8. This stage is satisfactory due to the high quality
of the images used and from the camera positions correctly aligned
and undistorted with the target object from SFM results.

The images with respective poses used by the SFM system did not
be able to apply a texture on the bottom of the objects since bottom
view was not visible. A new camera pose was manually added with
the image of the bottom view on the SFM output, re-applying the
texturing on this uncovered angle.

Every procedure described in this section was performed on a
notebook Avell G1550 MUYV, Intel Core i7-9750H CPU @ 2.60GHz
x 12, 16GB of RAM, GeForce RTX 2070 graphics card, on Ubuntu
16.04 64-bits.

5 CONCLUSION

With the proposed pipeline, it is possible to add 3D capture informa-
tion, reconstructing details beyond what a single low-cost capture
method initially provides. A low-cost depth sensor allows prelimi-
nary verification of data during acquisition. The Super-Resolution
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(a) Reconstruction from MVS output (b) Reconstruction from SR Kinect (c) Reconstruction from merged point
clouds

after filtering and down-sampling captures with improved alignment

(d) Ground truth mesh

Figure 6: Screened Poisson Surface Reconstruction results for the Turtle pan point clouds. The reconstruction depth is 7, while the minimum
number of samples is 3 for all experiments. In (a) the limiting factor was the bottom part of the object that is not inferred by the photogrammetry
process. (b) shows that the low-cost depth sensor was unable to identify details of the model, this is due to the small size of the object, making it
difficult to obtain details, however, this mesh was able to represent the model in all directions, including the bottom. The merged mesh (c) was
able to reproduce all the small details found by photogrammetry and include regions that were represented only by depth sensor captures. For

comparison (d) presents the model’s ground truth used for 3D printing.

Figure 7: Hausdorff Distance of Turtle pan mesh result using the proposed pipeline (Fig. 6(c)). 20455 sampled vertices were searched to the
closest vertices on ground truth. Minimum of 0.0 (red), maximum of 0.124484 (blue), mean of 0.012780 and RMS 0.023629. Values in the mesh
units and concerning the diagonal of the bounding box of the mesh. The main limitation of the results was the bottom part, which was inferred only

by the depth sensor.

methodology reduces the incidence of noise and mitigates the low
amount of details from depth maps acquired using low-cost RGB-D
hardware. Photogrammetry despite capturing a higher level of de-
tail has certain limitations related to the number of resources, like
geometric and feature details.

The texturing process using high definition images from SFM
output, adding possible missing parts, if needed, also helps to achieve
greater visual realism to the reconstructed 3D model.

Future research involves a quantitative analysis of the 3D recon-
struction after the texturing step. It is also projected an automation
to align point clouds using the scale-based iterative closest point
algorithm (scaled PCA-ICP) and the application of this pipeline
to digital preservation of artifacts from the cultural heritage of the
MAE/UFBA.
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