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ABSTRACT

Despite their immense success and usefulness, current deep learning systems are
still lacking in interpretability, robustness, and out of distribution generalisation. In
this work we propose a method that helps address some of these issues in image
and video data, by exploiting equivariances naturally present in the data. It enables
learning latent representations that are identifiable and interpretable, and that can
be intervened on to visualise counterfactual scenarios. The latent representations
naturally correspond to positions of objects subject to image transformations, and
so our method trains object detectors completely unsupervised, without object
annotations. We prove that the learned latent variables are identifiable up to
permutations and small shifts up to the size of model’s receptive fields, and perform
experiments demonstrating this in practice. We apply it to real world videos of balls
moving in mini pool (translational equivariance), cars driving around a roundabout
(rotational equivariance) and objects approaching the camera on a conveyor belt
(scale equivariance). In all cases, transformation-equivariant representations are
learned unsupervised. We show that intervening on the learned latent space results
in successful generalisation out of the training distribution, and visualise realistic
counterfactual videos never observed at training time. The method has natural
applications in industry, such as inspection and surveillance, with static cameras.

1 INTRODUCTION

Some challenges facing current deep learning systems are interpretability, robustness, and out of
distribution generalisation (Gilpin et al., 2018; Schölkopf et al., 2021). This is especially important in
high-stakes domains such as healthcare and law, where for ML systems to be adopted, they need to
be explainable, interpretable, and have guarantees about how they operate (Davenport & Kalakota,
2019; Bibal et al., 2021).
One way to address this problem is to exploit the knowledge of equivariances naturally present in
the data. For example, in an object detection task, one might want to detect an object regardless of
its position and so one might use a neural network architecture that is equivariant to translation. In
another example, in a system for monitoring traffic at a roundabout, one might exploit the circular
structure of the system and design an architecture that is equivariant to rotation. Or, if for example,
one deals with egocentric footage of highway traffic where vehicles become smaller as they drive
further, one might want to make use of equivariance to scale for recognising the vehicles. In all of
these cases, making a network equivariant to the right transformations has multiple benefits, including
making the latent space more interpretable, obtaining extra guarantees about the structure of the latent
space, and better generalisation to unseen data that obey the same set of equivariances. Additionally,
an equivariant network requires a smaller number of training samples as well as a smaller memory
footprint due to weight sharing, thus reducing the time for data collection and training the network.
In this paper we propose a method to achieve this using an autoencoder-based architecture, where the
encoder and decoder consist of blocks that make the latent representation equivariant to a specified
transformation. This transformation is defined via a warping grid that can encode equivariances
(e.g. to translations, rotations or scaling). The grid only needs to be specified once for each video
scene, thus making it useful for inspection or surveillance applications, where cameras are typically
static. Specifically, the encoder consists of a warping function followed by a standard CNN and a
soft argmax function, and these operations are approximately inverted by the decoder. We prove that
this configuration produces equivariant representations and also prove that the latent representation
recovers the true variables (in this case, the objects’ positions) up to small shifts. After training we
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Work Generative Any equivariance Multiple objects Identifiable

Ours ✓ ✓ ✓ ✓
Henriques & Vedaldi (2017) ✗ ✓ ✗ ✗
Jakab et al. (2018) ✓ ✗ ✓ ✗

Table 1: Comparison between the characteristics of our work and of two relevant related works.

can intervene on the latent variables and decode them into realistic counterfactual images and videos
to visualise hypothetical scenarios never observed at training time.
Making networks equivariant to different transformations has been studied before (e.g. Cohen &
Welling (2014); Sosnovik et al. (2020); Han et al. (2021), and others), however many works achieve
this by focusing on the properties of kernels and on discrete transformations, while we focus on
equivariance to continous transformations via input image warps. Equivariant and invariant networks
were studied in different areas (Dieleman et al., 2015; Han et al., 2021; Lee et al., 2022; Pielawski
et al., 2020; Musallam et al., 2022; Gupta et al., 2020), however most works focus on discriminative
problems (classification or regression), while our focus is to generate counterfactual images and
videos never seen at training time. Further, differently from previous works studying identifiability of
neural networks (Hyvarinen & Morioka, 2016; 2017; Klindt et al., 2021; Khemakhem et al., 2020a;b;
Zimmermann et al., 2021; Gresele et al., 2020), we obtain guarantees for the identifiability of the
learned latent representation by imposing equivariances on the model architecture.
Concretely, our contributions in this paper are:
1. A novel generative, multi-object, equivariance-based method for learning latent representations
of videos that are identifiable, interpretable, generalise out of the training distribution, and can be
intervened on to generate counterfactual videos.
2. A proof of identifiability of the learned latent representation, showing that the latent variables are
identifiable up to translations on the order of the model’s receptive fields.
3. Various experiments demonstrating the method on real world videos, including balls moving in
mini pool (translational equivariance), cars driving around a roundabout (rotational equivariance),
and objects on a conveyor belt under perspective (scale equivariance). The experiments demonstrate
identifiability in practice, as well as the ability to generate realistic counterfactual videos never seen
at training time, by intervening on the learned latent space.
A direct comparison between our work and selected related works is shown in table 1.

2 RELATED WORK

Equivariances to different transformations in deep learning have been studied before. Cohen &
Welling (2016) generalise CNNs to group equivariant CNNs (G-CNNs), however for many transfor-
mations this may require storing many filters. Gens & Domingos (2014) aims to achieve the same goal
using Symmetry Networks. Cohen & Welling (2017) generalise G-CNNs to steerable CNNs which
removes the memory scaling issue and allows working with infinite element groups. Cohen et al.
(2019) propose gauge equivariant CNNs where the equivariance is to local gauge transformations on
the surface of a sphere. Weiler & Cesa (2019) use E(2)-equivariant convolutions with steerable CNNs.
Henriques & Vedaldi (2017) propose warped convolutions which achieve equivariance by warping
the input image before passing it through a CNN. Focusing on specific transformations, Marcos
et al. (2016; 2017); Li et al. (2018); Dieleman et al. (2015; 2016); Han et al. (2021); Pielawski et al.
(2020); Gupta et al. (2020); Worrall et al. (2017) deal with equivariance and invariance to rotations
and Kanazawa et al. (2014); Sosnovik et al. (2020) deal with equivariance and invariance to scale.
In our work we deal with equivariances to continuous transformations (i.e. equivariance to a group
with infinite number of elements), but we achieve this by warping the images, unlike for example
steerable CNNs Cohen & Welling (2017) which achieves this using kernel properties. The closest
work to ours is probably Henriques & Vedaldi (2017), however our method is generative while theirs
is discriminative, and it has no guarantees of identifiability.
Equivariant networks have been applied to different areas. For example, Dieleman et al. (2015) use
rotational invariance for galaxy classification, Han et al. (2021) use rotational equivariance for aerial
object detection, Lee et al. (2022) use equivariance for keypoint detection in images, Pielawski et al.
(2020) use rotational equivariance for image registration, Musallam et al. (2022) use equivariant
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Figure 1: Network architecture, described from left to right. Encoder: (1) an image x is warped
using a function fw to obtain w, (2) it is then passed through a CNN ψ to obtain n embedding maps
e1, ..., en, (3) a maximum of each map is found using softargmax to obtain [z1,x, z1,y, ..., zn,x, zn,y].
Decoder: (1) Gaussians ê1, ..., ên are rendered at the positions given by the latent variables, (2) the
Gaussian maps are concatenated with positional encodings and passed through a CNN ϕ to obtain
the predicted warped image ŵ, (3) the image is unwarped by f−1

w to obtain the predicted image x̂.
Finally, x and x̂ are used to compute the reconstruction loss.

features for pose regresssion, and Gupta et al. (2020) use rotation equivariance for tracking. While
most of the applications of equivariances have been discriminative (i.e. classification, regression),
in this work we focus on generative modeling where we use equivariances to generate realistic data
never observed at training time (counterfactuals).
Identifiability of learned representations has been studied in the field of causal representation learning
Schölkopf et al. (2021). Locatello et al. (2019) have shown that learning identifiable latent variables
is not possible in general without making assumptions about the model and the data. Thus, different
works have made different assumptions about the distribution of the latent variables and about the
mechanisms relating them (Hyvarinen & Morioka, 2016; 2017; Klindt et al., 2021; Khemakhem et al.,
2020a;b; Zimmermann et al., 2021; Gresele et al., 2020); for an overview of identifiability assumptions
in different works see Ahuja et al. (2022). Unlike previous works, we achieve identifiability by
imposing grid-based spatial equivariances on the encoder and decoder architectures.

3 METHOD

In this section we present our method, which is based on an autoencoder architecture whose latent
representation is equivariant to different transformations of the input images (fig. 1). We start with a
brief discussion of translational equivariance in CNNs (sec. 3.1), followed by the description of the
warping process we use to obtain different types of equivariances (sec. 3.2) and finally describing the
representational bottleneck (sec. 3.3).

3.1 CNNS AND TRANSLATIONAL EQUIVARIANCE

Depending on the data, one might want to choose different parametrisations for the encoder and
the decoder of an autoencoder. For example, without any prior knowledge one might parametrise
ψ and ϕ by MLPs, as they have been shown to be universal function approximators (Hornik et al.,
1989). However, if one knows that e.g. translating an input image xt should result in a proportional
shift in the latent variables zt, one might choose to parametrise ψ and ϕ by CNNs. This is referred
to as translational equivariance and it can be generalised to a broader class of transformations such
as rotations or scaling. In general, a network ψ is equivariant to transformation T if applying the
transformation T to the data before passing it through the network is equivalent to passing the data
through the network and applying a transformation T ′ afterwards, i.e.

ψ(T ◦ x) = T ′ ◦ ψ(x) (1)

where T and T ′ may or may not be the same. CNNs consist of layers computing the convolution
between a feature map x and a filter F , defined in one dimension as

(x ⋆ F )[i] =
∑

j
x[j]F [j − i] (2)

Intuitively, this corresponds to sliding the filter F across the feature map x and at each position of the
filter i computing the dot product between the feature map x and the filter F . Convolutional layers
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Experiment Inverse Warp Forward Warp

Translation x = u1, y = u2 u1 = x, u2 = y

Rotation x = a1 + b1 · cu1 cos(u2) u1 = 1
2 log(c)

−1 log([x−a1b1
]2 + [y−a2b2

]2)

y = a2 + b2 · cu1 sin(u2) u2 = arctan2(
y−a2
b2

, x−a1b1
)

Scale x = a1 + b1 · cu1
1 u1 = log(c1)

−1 log(x−a1b1
)

y = a2 + b2 · cu2
2 u2 = log(c2)

−1 log(y−a2b2
)

Table 2: Summary of expressions used to perform forward and inverse warp for different experiments,
expressed in terms of the original image coordinates x, y and warped image coordinates u1, u2.

are equivariant to translations, i.e.

((τ ◦ x) ⋆ F )[i] =
∑
j

x[j − t]F [j − i] =
∑
j

x[j]F [j − (i− t)] = τ ◦ (x ⋆ F )[i] (3)

where τ is the translation operator that translates a feature map by t pixels, and we have used the
substitution j → j + t at the second equality. However, CNNs are not equivariant to other types of
transformations such as rotations or scaling. We will now discuss one solution, using warping.

3.2 GENERALISED EQUIVARIANCES VIA WARPING

In order to achieve equivariance to a broader class of transformations, we can change the variables of
the data from cartesian coordinates to a new set of coordinates that achieves the desired equivariance
when shifted (similar to Henriques & Vedaldi (2017)). Formally, we define the forward warp fw
as the invertible transformation that is applied to an image to change its coordinates to a new set
of coordinates (u1, u2) in which translation τ corresponds to the desired transformation T in the
original space (table 2, third column), and we define the inverse warp f−1

w as the inverse of this
transformation (table 2, second column), i.e.

[f−1
w ◦ τ ◦ fw](x) = T (x) (4)

For example, to obtain translational equivariance, T = τ , one can set fw = I which means that
the warped coordinates are identical to the original ones (table 2, first row; fig. 2, left column). To
achieve equivariance to rotation transformations T , one can change the variables to polar coordinates
using a polar warp fw, where shifts along the angular dimension correspond to rotations in the
original space (table 2, rows 2-3; fig. 2, middle column). Similarly, to achieve equivariance to
scaling transformations T , one can use a logarithmic warping map fw to change the variables to log
coordinates where the shifts correspond to scaling in the original space (table 2, rows 4-5; fig. 2, right
column). Using this definition, we can prove that the warp fw post-composed with the encoder CNN
ψ is equivariant to the desired transformation T on the input and to the translation τ on the output as

ψ ◦ fw(T ◦ x) = ψ ◦ fw ◦ (f−1
w ◦ τ ◦ fw) ◦ x = ψ ◦ τ ◦ fw ◦ x = τ ◦ (ψ ◦ fw ◦ x) (5)

where at the first equality we have used the definition of T (eq. 4), at the second equality we have
used the fact that fw ◦ f−1

w = I as fw is invertible, and at the third equality we have used the fact
that the CNN ψ is equivariant to translations τ (eq. 3). Note that Henriques & Vedaldi (2017) prove
this equivariance only for exponential maps fw, while our assumption is weaker, namely that fw has
to be an invertible function that obeys f−1

w ◦ τ ◦ fw = T (eq. 4), or equivalently, τ ◦ fw = fw ◦ T ,
thus generalising their proof.1 We can prove a similar equivariance result for the decoder, namely
that the decoder CNN ϕ post-composed with the inverse warp f−1

w is equivariant to the translation τ
on the input and to the desired transformation T on the output, i.e.

f−1
w ◦ ϕ ◦ (τ ◦ x) = f−1

w ◦ τ ◦ ϕ ◦ x = f−1
w ◦ τ ◦ (fw ◦ f−1

w ) ◦ ϕ ◦ x = T ◦ (f−1
w ◦ ϕ ◦ x) (6)

where at the first equality we have used the fact that the CNN ϕ is equivariant to translations τ (eq.
3), at the second equality we have inserted the identity fw ◦ f−1

w = I , and at the third equality we

1For example, we can let fw be both a polar coordinate warp (x = u1 cosu2, y = u1 sinu2) and a log-polar
coordinate warp (x = eu1 cosu2, y = eu1 sinu2), while the results of Henriques & Vedaldi (2017) only apply
to the log-polar warp because it is an exponential map, and not to the standard polar warp.
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Figure 2: Warping grids overlayed over an image from each dataset (top row) and a corresponding
warped image (bottom row) for translational, rotational and scale experiments (columns).

have used the definition of T (eq. 4). In practice, we implement the forward and inverse warps fw
and f−1

w by computing the forward and inverse warping grids Gw and G−1
w offline by

Gw = {f−1
w (u1, u2) : (u1, u2) ∈ {0, 1, ..., U1} × {0, 1, ..., U2}} (7)

G−1
w = {fw(x, y) : (x, y) ∈ {0, 1, ..., X} × {0, 1, ..., Y }} (8)

where fw and f−1
w are obtained from table 2 (columns 2-3), X,Y are the image dimensions, and

U1, U2 are the dimensions of the warped space (Henriques & Vedaldi, 2017). Note the correspondence
of inverses between Gw and f−1

w , and between G−1
w and fw. These grids are then used online to warp

the images as fw(x) = x[Gw] and f−1
w (x) = x[G−1

w ] where x[G] denotes sampling an image x at
the points defined by the grid G using bilinear interpolation, which is a fast operation. Note that the
warping grids only need to be defined once for every video scene, making it practical for applications
where the camera is static. In the next section we discuss how these equivariances of feature maps
relate to the learned latent representation.

3.3 FROM FEATURE MAPS TO VARIABLES

So far we have only worked with images and feature maps, but ultimately we would like to obtain
scalar latent variables that are equivariant to transformations applied to the images. This is because
dealing with scalars is more natural and interpretable than dealing with feature maps – for example, it
is natural to think about an object’s position in terms of its coordinates instead of a feature map. To
do this, we first define a translation τ of a (1D) feature map x and a translation τ ′ of a scalar z as

τ(x)[i] = x[i− t], τ ′(z) = z + t (9)

where i is the position in the feature map x, τ shifts an image by t pixels, and τ ′ shifts a scalar by t
units. To relate translations in feature maps to translations in latent variables, we can use a function
that computes a scalar property of a feature map x, such as argmax, defined as argmax(x) = {i :
x[j] ≤ x[i] ∀j}. Using these definitions we can now prove the equivariance of argmax, i.e. that
shifting the feature map x by τ corresponds to shifting the latent variable argmax(x) by τ ′:

argmax(τ ◦ x) = {i : τ ◦ x[j] ≤ τ ◦ x[i] ∀j} = {i : x[j − t] ≤ x[i− t] ∀j}
= {i+ t : x[j] ≤ x[i] ∀j} = argmax(x) + t = τ ′ ◦ argmax(x) (10)

where at the first equality we have used the definition of argmax, at the second equality we have
used the definition of τ (eq. 9, left), at the third equality we have used the substitution i → i + t,
at the fourth equality we have used the definition of argmax, and at the last equality we have used
the definition of τ ′ (eq. 9, right). Similarly, to now relate shifts in latent variables z to shifts of
feature maps x, we can invert the action of the argmax operation. Because argmax is a many-to-one
function, finding an exact inverse is not possible, but we can obtain a pseudo-inverse using the delta
function defined as delta(z)[i] = δ(i−z) where δ is the Dirac delta function. We can show that delta
is a pseudo-inverse of argmax because argmax◦delta◦z = {i : δ(x−z)[j] ≤ δ(x−z)[i] ∀j} = z.
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Now, similar to the argmax function, we can prove that the delta function is equivariant to the latent
variable shift τ ′ on the input and the feature map shift τ on the output, i.e.

delta(τ ′ ◦ z)[i] = δ(i− τ ′ ◦ z) = δ(i− z − t) = delta(z)[i− t] = τ ◦ delta(z)[i] (11)

where at the first equality we have used the definition of delta, at the second equality we have used
the definition of τ ′ (eq. 9, right), at the third equality we have used the definition of delta, and at the
last equality we have used the definition of τ (eq. 9, left). Now we have the tools to convert between
equivariances in feature maps and latent variables via the functions argmax and delta. However,
because these operations are not differentiable, for neural network training we approximate argmax
via a differentiable function softargmax, defined in two dimensions as

softargmax(x) =

(
1

I

I∑
i=0

J∑
j=0

i σ1

( x
Θ

)
[i, j],

1

J

I∑
i=0

J∑
j=0

j σ2

( x
Θ

)
[i, j]

)
(12)

where σ is the softmax function defined in one dimension as σ(x)[i] = exp(x[i])/
∑
j exp(x[j]),

σ1(x) and σ2(x) is the softmax function evaluated along the first and second dimensions of x, Θ is a
temperature hyperparameter, [i, j] is the image index, I is the image width, and J is the image height.
As the temperature Θ in 12 approaches zero, softargmax reduces to the classical argmax function.
Similarly, we can approximate the hard delta function using a differentiable render function as

render(z)[i] = N (i− z, σ2) (13)

where N (i− z, σ2) is a normal distribution evaluated at i− z with variance given by the hyperpa-
rameter σ2. As the variance σ2 in eq. 13 approaches zero, the render function reduces to the hard
delta function. Therefore, now we have all the elements we need to create an equivariant architecture
where the encoder and decoder are defined, respectively, by

zt = softargmax ◦ ψ ◦ fw ◦ xt, x̂t = f−1
w ◦ ϕ ◦ render ◦ zt. (14)

This is illustrated in fig. 1. In the next section we prove identifiability of the learned latent variables.

4 THEORETICAL RESULTS

In this section we show that the learned latent variables are identifiable with respect to the ground
truth physical variables, up to permutations and small shifts.
Theorem 1 (Identifiability of latent representation). Consider an image xt with objects of size sO,
warping map fw, CNN encoder ψ with receptive field size sψ, CNN decoder ϕ with receptive field
size sϕ, soft argmax function softargmax, Gaussian rendering function render, and latent variables
zt, composed as zt = softargmax ◦ ψ ◦ fw ◦ xt and x̂t = f−1

w ◦ ϕ ◦ render ◦ zt (fig. 1). Assuming
(A1) The reconstruction loss is minimised, minψ,ϕ L(x̂, x).
(A2) Each object has at least two distinct positions in the training set.
(A3) The warping map fw is a diffeomorphism.
(A4) There are no two identical objects in any image xt.
(A5) Each image xt has the same background.
(A6) The Gaussian rendered by the render function is a delta function.
Then the latent variables zt are identified up to permutations and maximum shifts of min(sψ +
fw(sO), sϕ)/2. For the special case that sψ = sϕ = sRF , the shifts reduce to sRF /2.

Here we present a proof sketch; for a full proof see Appendix A. First, minimising the reconstruction
loss (A1) means that the objects in the predicted image have to be reconstructed at the same positions
as in the original image. Then, the dataset having each object present at a minimum of 2 different po-
sitions (A2) ensures that the latent variables used by the decoder must contain information about each
object, and thus the encoder must learn to match all objects. Next, the warp being a diffeomorphism
(A3), the encoder being equivariant to the transformation that generated the data (eq. 5), and each
image containing distinct objects (A4) on a static background (A5) ensure that each different object
is mapped to a unique latent variable. This variable is correct up to a small shift, because any part of
the receptive field of the encoder can match any part of the (warped) object, (sψ + fw(sO))/2, not
just the center. Similarly, when decoding there is possibly another small shift because any part of
the decoder filter may be convolved with the rendered delta function (A6), i.e. sϕ/2. Because the
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MLP CNN Keypoint CNN Proposed Method
MSE Acc. MSE Acc. MSE Acc. MSE Acc.

Translation 2.05 98.3% 1.6 · 105 99.0% − − 8.2 · 10−3 99.6%
Rotation 1.92 97.3% 9.6 · 103 95.5% 0.197 96.9% 1.7 · 10−2 97.3%
Scale 7.25 96.9% 4.3 · 104 92.2% 0.192 97.1% 1.9 · 10−2 97.5%

Table 3: Results showing the mean squared error of the predicted latent variables w.r.t. estimated
ground truth physical variables (MSE, lower is better) and the image reconstruction accuracy of the
decoded video frames w.r.t. input video frames (Acc., higher is better). Results are reported for the
proposed method and for MLP, CNN, and keypoint CNN baselines for each experiment.

predicted and original objects must have the same position (A1), the shifts from the encoder and the
decoder have to cancel each other, and thus the latent variables are shifted by a maximum amount of
min((sψ + fw(sO))/2, sϕ/2). Additionally, because the objects can be mapped to the variables in
an arbitrary order, there is additional non-identifiability due to object permutations.

5 EXPERIMENTS

In this section we present 3 experiments validating our method from sec. 3: one using translational
equivariance (sec. 5.1), one using rotational equivariance (sec. 5.2), and one using scale equivariance
(sec. 5.3). In each experiment we demonstrate that making the network architecture equivariant to
a transformation naturally present in each dataset allows one to identifiably learn latent variables
corresponding to the ground truth physical variables (table 3, MSE), and to intervene on the learned
latent variables (fig. 3) to generate realistic counterfactual videos never seen at training time (fig.
4). We implement the method described in sec. 3 using the architecture in fig. 1, with the warps
summarised in table 2. For comparison, in each experiment we also train 3 analogous baseline models:
MLP, CNN and keypoint CNN (Jakab et al., 2018). For implementation details see appendix B.

5.1 TRANSLATION

Setup. The training and test sets for this experiment consist of 15 and 11 frames respectively from a
video of two balls moving on a mini pool table, visualised in fig. 4, upper left plot. Because the table
naturally extends horizontally and vertically, we seek to employ an autoencoder architecture that is
equivariant to horizontal and vertical translations. Because a standard CNN is already translationally
equivariant, we use a standard CNN encoder and decoder with an identity warp (table 2, first row)
visualised in fig. 2 (first column).

Identifiability results. The latent variables corresponding to the training data are visualised in
fig. 3 (left plot) in blue and purple for the first and second balls respectively, resulting in straight
lines for the moving balls as expected. When compared to the estimated ground truth variables
describing the balls’ position, the latent variables mean squared error on the test set is very small,
orders of magnitude smaller than the baselines (table 3, MSE, top row). This is to be expected
as an MLP architecture does not exhibit any equivariances and so performs poorly on the test set,
where the balls are now at positions never encountered at training time. Similarly, the CNN baseline
achieves a comparably poor performance, because while the network contains convolutional layers,
the translational equivariance is broken by the linear layer mapping features to latent variables. In this
case, the keypoint CNN baseline is equivalent to our method due to the warp being an identity, and so
is not included in table 3. Our method also achieves the best test set reconstruction accuracy (table 3,
Acc., top row) as the translational equivariance allows it to successfully generalise to the test set.

Counterfactual results. Once the mapping between the images and the latent space has been
learned, we can use the translational equivariance property of the network to intervene on the latent
variables and generate videos of counterfactual scenarios that were never observed at training time.
For example, one can visualise the balls moving in opposite directions at a constant speed (fig. 3,
left plot, red and orange; fig. 4, upper middle plot) and the white ball bouncing off one of the table
edges while slowing down (fig. 3, left plot, green; fig. 4, upper right plot). Note that none of these
scenarios were observed at training time, demonstrating that the model successfully generalises out
of the training distribution. It also allows controlled generation with interpretable latent variables.
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Translation Rotation Scale

Figure 3: Latent space showing the training data and two different counterfactuals for each experiment
that are out of the training distribution. zx and zy denotes the horizontal and vertical position, zθ
and zlog r are the angular and (log) radial position, and z10x and z10y are the horizontal and vertical
position on a log scale. The colour intensity denotes the arrow of time (light to dark).

5.2 ROTATION

Setup. The training and test sets consist of 35 and 15 frames each from a video of two cars driving
around a quarter of a roundabout, visualised in fig. 4, middle left plot. Because the cars at the
roundabout can move in an angular (forward or backward) or radial (change lanes) direction, we
would like to employ an autoencoder architecture which is equivariant to rotation and radial shifts
around the center of the roundabout. We achieve this by using a log-polar warp (table 2, middle row),
visualised in fig. 2 (second column), together with a standard CNN autoencoder.

Identifiability results. The latent variables corresponding to the training data are visualised in fig.
3, middle plot, in blue and purple for the two cars respectively. The data forms two approximately
straight lines with a steadily increasing angular position (and a slightly increasing radial position),
as expected. When compared to the estimated ground truth variables describing the car’s position,
the latent variables’ mean squared error on the test set is an order of magnitude smaller than the
best baseline (table 3, MSE, middle row), which reflects the fact that none of the baselines exhibit
equivariance to rotation and radial position. Consequently, our method also achieves the best
test set reconstruction accuracy (table 3, Acc., middle row) as the rotational equivariance allows
it to generalise successfully to the test set. Although the MLP baseline achieves a comparable
reconstruction accuracy to our method, this is misleading because the MLP renders the objects
at incorrect positions and the high accuracy arises due to better reconstruction of the background,
whereas our method reconstructs the cars at the correct positions albeit with slightly more noise.

Counterfactual results. Once the encoder and decoder have been learned, we can use the rotational
and radial equivariance property of the network to intervene on the latent variables and generate
videos of counterfactual scenarios that were never observed at training time. For example, one can
make the first latent variable have a constant radial distance and an increasing angular position (fig. 3,
middle plot, red) to visualise the white car continuing to drive around the whole roundabout (fig. 4,
center plot), or have the second variable increase its angular position and decrease its radial position
(fig. 3, middle plot, yellow) to visualise the blue car moving forward while changing lanes at the
same time (fig. 4, top right plot). Because none of these scenarios were observed at training time, this
demonstrates that the model successfully generalises out of the training distribution.

5.3 SCALE

Setup. The training and test sets consist of 79 and 40 frames respectively from a video of two sushi
bowls moving closer to the camera on a conveyor belt (visualised in fig. 4, bottom left plot). Because
the bowls have a different scale depending on their position, we would like to employ an autoencoder
architecture that is equivariant to scale. We achieve this by using a scale warp (table 2, bottom row)
visualised in fig. 2 (right column), together with a standard CNN autoencoder.

Identifiability results. The latent variables corresponding to the training data are visualised in fig. 3
(right plot, blue and purple for the two bowls respectively). The data forms a diagonal line in the
latent space in logarithmic coordinates, showing an approximately exponential relationship between

8
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Figure 4: Training data (left column) and two different counterfactuals (middle and right columns)
for each experiment (rows). Our method learns to detect the objects unsupervised, with no object
annotations. Additionally, it can generate images and extrapolate them to new situations. The
counterfactuals are obtained by intervening on and decoding the latent variables to obtain out-of-
distribution data never seen during training.

the bowls’ position and scale. When compared to the estimated ground truth variables describing
the bowls’ position, the latent variables’ mean squared error on the test set is an order of magnitude
smaller than the best baseline (table 3, MSE, bottom row), which is to be expected as none of the
baselines exhibit scale equivariance. Our method also achieves the best reconstruction accuracy (table
3, Acc., bottom row) as the scale equivariance allows it to successfully generalise to the test set.

Counterfactual results. Once the encoder and decoder have been learned, we can use the scale
equivariance property of the network to intervene on the latent variables and generate videos of
counterfactual scenarios that were never observed at training time. For example, one can extrapolate
the latent variables for the first object (fig. 3, right plot, orange) to visualise where the orange bowl
has been in the past (fig. 4, bottom middle plot), or extrapolate the variables for the second object in
both directions (fig. 3, right plot, green) to visualise where the blue bowl was in the past and where
it will be in the future, assuming constant speed (fig. 4, bottom right plot). Because none of these
scenarios were observed at training time this demonstrates the model successfully generalising out of
the training distribution. We note that it is naturally easier to extrapolate from larger to smaller scales
(orange bowl, fig. 4, bottom middle plot) than it is to extrapolate in the opposite direction (blue bowl,
fig. 4, bottom right plot) since more details are required to extrapolate to larger than smaller scales.

6 CONCLUSION

In this work we presented a method for learning an identifiable and interpretable latent representation
of images and videos by exploiting equivariances naturally present in the data. We achieved this
using an autoencoder architecture where the image is warped by a map corresponding to a specified
equivariance before being passed through a CNN and a softargmax operation, and it is reconstructed
by inverting this process. We proved that the learned latent representation is identifiable with respect
to the ground truth variables and demonstrated this experimentally. We then applied the method to
real world videos with multiple objects and different naturally present equivariances, and showed
that by intervening on the latent representation we can generate realistic counterfactual videos that
were never observed at training time. It also works as an unsupervised object detector, trained
using raw video footage. In future work we would like to expand the current class of equivariance
transformations and consider dealing with non-static backgrounds.

Reproducibility Statement: we will make all source code available upon publication.
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A PROOF OF IDENTIFIABILITY

Here we present a proof of Theorem 1, which we reproduce for ease of reference.

Theorem 2 (Identifiability of latent representation). Consider an image xt with objects of size sO,
warping map fw, CNN encoder ψ with receptive field size sψ, CNN decoder ϕ with receptive field
size sϕ, soft argmax function softargmax, Gaussian rendering function render, and latent variables
zt, composed as zt = softargmax ◦ ψ ◦ fw ◦ xt and x̂t = f−1

w ◦ ϕ ◦ render ◦ zt (fig. 1). Assuming
(A1) The reconstruction loss is minimised, minψ,ϕ L(x̂, x).
(A2) Each object has at least two distinct positions in the training set.
(A3) The warping map fw is a diffeomorphism.
(A4) There are no two identical objects in any image xt.
(A5) Each image xt has the same background.
(A6) The Gaussian rendered by the render function is a delta function.
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Figure 5: Left: uncertainty in object position due to any part of the encoder filter (blue) matching
any part of the warped object (orange), with a maximum magnitude of (sψ + fw(sO))/2. Right:
uncertainty of the rendered image position due to any part of the decoder filter (green) matching any
part of the rendered Gaussian (red), with a maximum magnitude of sψ/2.

Then the latent variables zt are identified up to permutations and maximum shifts of min(sψ +
fw(sO), sϕ)/2. For the special case that sψ = sϕ = sRF , the shifts reduce to sRF /2.

Proof. By assumption (A1), the reconstruction loss L(x̂t, xt) being minimised results in x̂t = xt.
This is valid for any loss function that is differentiable and whose minimum occurs when the
reconstructed image is the same as the original image, i.e. when minx̂t

L(x̂t, xt) = xt (for example,
the mean squared error loss function or the binary cross-entropy loss function). Therefore, the
positions of the objects in the original image have to be the same as the positions of the objects in the
reconstructed image.
By assumption (A2) (each object appears at minimum 2 different positions), the latent variables
used by the decoder have to contain some information about each object, and thus the encoder
has to learn to match all the objects. This is because the decoder CNN ϕ takes as its input the
rendered Gaussians êt = render ◦ zt concatenated with positional encodings (fig. 1), and if
some object in the dataset only appeared at a single position the model could achieve perfect
reconstruction solely by using the positional encodings without having to use the Gaussian maps
êt. However, because the dataset contains each object at minimum 2 positions, relying purely on
positional encodings is now not sufficient, as without any information about the object passed to
the decoder, the decoder wouldn’t be able to know where to render the object. Formally, because
x̂t = f−1

w ◦ ϕ ◦ render ◦ softargmax ◦ ψ ◦ fw ◦ xt, this means that for x̂t = x (A1), the encoder ψ
needs to learn to match some part of each object in xt.
Next, assumption (A3) (the warping function fw being a diffeomorphism) means that there is a
one-to-one mapping between the original image xt and the warped image wt, so that an original
image xt with an object at position (x, y) is mapped to a warped image wt = fw ◦ xt with an object
at position (u1, u2) = fw(x, y), where fw is the forward warp (sec. 3.2).
Because zt = softargmax ◦ ψ ◦ wt is equivariant to translations of wt (sec. 3.1, 3.3), and because
the encoder ψ has to match some part of each object in wt (as stated previously), and also each image
consists of distinct objects (A4) on a static background (A5), the warped image wt with an object at
the position (u1, u2) is encoded by softargmax ◦ ψ to the latent variables

zt = (u1 +∆ψ1, u2 +∆ψ2), |∆ψ1|, |∆ψ2| ≤
sψ
2

+
fw(sO)

2
(15)

where the shifts ∆ψ1 and ∆ψ2 arise because any part of the encoder filter (of size sψ) can match any
part of the object in the warped image (of size fw(sO)). See fig. 5 (left) for an illustration.
Next, because ŵt = ϕ ◦ render ◦ zt is equivariant to translations of zt, the latent variables zt =
(u1 +∆ψ1, u2 +∆ψ2) are mapped to a predicted warped image ŵt = ϕ ◦ render ◦ zt with an object
at position

(u1 +∆ψ1 +∆ϕ1, u2 +∆ψ2 +∆ϕ2), |∆ϕ1|, |∆ϕ2| ≤
sϕ
2

(16)

where the shifts ∆ϕ1 and ∆ϕ2 arise because any part of the decoder filter (of size sϕ) can match
the rendered Gaussian êt = render ◦ zt, assumed to be a delta function (A6). See fig. 5 (right) for
illustration.
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Since, by assumption (A3), fw is a diffeomorphism, there is a one-to-one mapping from the predicted
warped image ŵt to the predicted image x̂t = f−1

w ◦ ŵt. Therefore, the predicted warped image
ŵt with an object at position (u1 +∆ψ1 +∆ϕ1, u2 +∆ψ2 +∆ϕ2) is mapped to a predicted image
x̂t = f−1

w ◦ ŵt with an object at the position

f−1
w (u1 +∆ψ1 +∆ϕ1, u2 +∆ψ2 +∆ϕ2) (17)

Finally, by assumption (A1) (x̂t = xt), the position of each object in the original image xt has to be
equal to the position of the object in the reconstructed image, i.e.

(x, y) = f−1
w (u1 +∆ψ1 +∆ϕ1, u2 +∆ψ2 +∆ϕ2) (18)

Applying fw from the left to both sides of the equation and using fw(x, y) = (u1, u2) and fw◦f−1
w =

I (A3) results in the conditions

∆ψ1 +∆ϕ1 = 0, ∆ψ2 +∆ϕ2 = 0 (19)

and therefore
|∆ψ1| = |∆ϕ1|, |∆ψ2| = |∆ϕ2| (20)

In words, this means that the shift in the latent variables acquired from the encoder ∆ψ has to be
balanced by an opposite the shift of the same magnitude in the decoder ∆ϕ in order to reconstruct
the object at the same position. Because the shift due to the encoder is of maximum magnitude of
(sψ + fw(sO))/2 and the shift due to the decoder is of maximum magnitude of sϕ/2, this means
that the maximum magnitude of the shift of the latent variables has to be the minimum of these two
expressions, i.e. the learned latent variables (u1, u2) are identifiable with respect to the ground truth
latent variables (uGT1 , uGT2 ) up to

(u1, u2) = (uGT1 +∆1, u
GT
2 +∆2), |∆1|, |∆2| ≤

min(sψ + fw(sO), sϕ)

2
(21)

For the common case that the encoder and decoder receptive fields are the same, i.e. sψ = sϕ = sRF ,
this simplifies to

(u1, u2) = (uGT1 +∆1, u
GT
2 +∆2), |∆1|, |∆2| ≤

sRF
2

(22)

Additionally, because the order in which the objects get mapped to each latent variable is arbitrary,
there is an additional non-identifiability arising due to variable permutations (for example, for two
objects, z1 can correspond to the first object’s position and z2 to the second object’s position, or vice
versa).

B IMPLEMENTATION DETAILS

B.1 MAIN EXPERIMENTS

We implement the method described in sec. 3 using the architecture in fig. 1. The forward and
inverse warps fw and f−1

w are performed according to the expressions in table 2. The encoder ψ and
decoder ϕ are both 5-layer convolutional neural networks (CNNs) with 32 channels, kernel size 7,
stride 1, and padding 3, and with Batch Normalization Ioffe & Szegedy (2015) and ReLU activations
between each layer. Additionally, the first convolutional layer of the encoder has 3 channels and the
last one has n (where n is the number of variables), and the first convolutional layer of the decoder
has 32+n channels and the last one has 3. The positional encodings have 32 channels and have the
dimensions of the images in each dataset. The reconstruction loss is a binary cross-entropy loss with
logits applied to the input image xt and the predicted image x̂t which are masked such that they only
contain pixels that are inside the warping grid. We optimise the reconstruction loss using the Adam
optimiser Kingma & Ba (2015) with learning rates α ∈ {10−3, 3 · 10−4} and batch size 128 until
convergence, and select the run with the best test set reconstruction accuracy. Image dimensions
are 3 × 100 × 163 px for the translation experiment (sec. 5.1), 3 × 100 × 100 px for the rotation
experiment (sec. 5.2), and 3× 100× 177 px for the scale experiment (sec. 5.3).

14



Under review as a conference paper at ICLR 2024

MLP CNN Keypoint CNN Proposed Method
MSE Acc. MSE Acc. MSE Acc. MSE Acc.

Translation 46.2 97.2% 1.06 92.8% − − 7.2 · 10−5 98.6%
Rotation 4.02 96.9% 2.59 85.6% 0.489 96.5% 3.4 · 10−3 97.6%
Scale 36.7 98.7% 1.0 · 1010 99.3% 0.112 99.3% 1.5 · 10−2 98.9%

Table 4: Results showing the mean squared error of the predicted latent variables w.r.t. estimated
ground truth physical variables (MSE, lower is better) and the image reconstruction accuracy of the
decoded video frames w.r.t. input video frames (Acc., higher is better). Results are reported for the
proposed method and for MLP, CNN, and keypoint CNN baselines for each experiment.

B.2 BASELINES

For each experiment we also train 3 baseline models: MLP, CNN and keypoint CNN. The MLP
baseline is an autoencoder where the encoder and decoder are both 5-layer MLPs with 32 hidden
units, and with Batch Normalization Ioffe & Szegedy (2015) and ReLU activations between each
layer. The CNN baseline is an autoencoder where the encoder and decoder are both 5-layer CNNs
analogous to our model but the last convolutional layer of the encoder has 3 channels and is followed
by Batch Normalization, ReLU, and a linear layer, and the decoder is a linear layer followed by Batch
Normalization, ReLU, and an identical CNN, where the first convolutional layer has 3 channels.
Finally, the keypoint CNN baseline (similar to Jakab et al. (2018)) is equivalent to our model but
without warping.

C ADDITIONAL EXPERIMENTS

In this section we present 3 additional experiments validating our method from sec. 3: one using
translational equivariance (sec. C.1), one using rotational equivariance (sec. C.2), and one using scale
equivariance (sec. C.3). In each experiment we demonstrate that making the network architecture
equivariant to a transformation naturally present in each dataset allows one to identifiably learn latent
variables corresponding to the ground truth physical variables (table 4, MSE) and to intervene on the
learned latent variables (fig. 7) to generate realistic counterfactual videos never seen at training time
(fig. 8).

C.1 TRANSLATION

Setup. The training and test set for this experiment consists of 25 frames each from a video of
a car moving for a short distance in a single lane, visualised in fig. 8, upper left plot. Because
the car can move forward or backward and also change lanes (left or right), we seek to employ an
encoder-decoder architecture which is equivariant to horizontal and vertical translations. Because a
standard CNN is already translationally equivariant, we use a standard CNN encoder and decoder
with an identity warp (table 2, first row) visualised in fig. 6 (first column).

Identifiability results. The latent variables corresponding to the training and test data are visualised
in fig. 7 (left plot) in blue and red respectively, resulting in an approximately straight line as expected.
When compared to the estimated ground truth variables describing the car’s position, the latent
variables mean squared error on the test set is very small, 5 orders of magnitude smaller than the
baselines (table 4, MSE, top row). This is to be expected as an MLP architecture does not exhibit
any equivariances and so performs poorly on the test set where the car is now at a position never
encountered at training time. Similarly, the CNN baseline achieves a comparably poor performance
because while the network contains convolutional layers, the translational equivariance of the former
is broken by the linear layer at the end of the encoder. In this case the keypoint CNN baseline
is equivalent to our method due to the warp being an identity and so is not included in table 4.
Our method also achieves the best test set reconstruction accuracy (table 4, Acc., top row) as the
translational equivariance allows it to successfully generalise to the test set.

Counterfactual results. Once the mapping between the images and the latent space has been
learned, we can use the translational equivariance property of the network to intervene on the latent
variables and generate videos of counterfactual scenarios that were never observed at training time.
For example, one can visualise the car driving in a different lane (fig. 7, left plot, orange; fig. 8, upper
middle plot) and the car accelerating while changing lanes (fig. 7, left plot, green; fig. 8, upper right
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Figure 6: Warping grids overlayed over an image from each dataset (top row) and a corresponding
warped image (bottom row) for translational, rotational and scale experiments (columns).

plot). Note that none of these scenarios were observed at training time, demonstrating that the model
successfully generalises out of the training distribution.

C.2 ROTATION

Setup. The training and test sets consist of 40 frames each from a video of a car driving around a
small portion of a roundabout, visualised in fig. 8, middle left plot. Because the car at the roundabout
can move in an angular (forward or backward) or radial (change lanes) direction, we would like to
employ an encoder-decoder architecture which is equivariant to rotation and radial shifts around the
center of the roundabout. We achieve this by using a log-polar warp (table 2, middle row), visualised
in fig. 6 (second column), together with a standard CNN encoder/decoder.

Identifiability results. The latent variables corresponding to the training and test data are visualised
in fig. 7, middle plot, in blue and red respectively. The data forms an approximately straight line with
a constant radial distance and a steadily increasing angular position, as expected. When compared to
the estimated ground truth variables describing the car’s position, the latent variables mean squared
error on the test set is 2 orders of magnitude smaller than the best baseline (table 4, MSE, middle
row), which is to be expected as none of the baselines exhibit equivariance to rotation and radial
position. Consequently, our method also achieves the best test set reconstruction accuracy (table 4,
Acc., middle row) as the rotational equivariance allows it to generalise successfully to the test set.

Counterfactual results. Once the encoder and decoder have been learned, we can use the rotational
and radial equivariance property of the network to intervene on the latent variables and generate
videos of counterfactual scenarios that were never observed at training time. For example, one can
make the variables to have a greater constant radial distance and an increasing angular position (fig.
7, left plot, orange colour) to visualise the car driving in a different lane (fig. 8, center plot), or have a
non-linear relationship between the radial and angular positions (fig. 7, left plot, green colour) to
visualise a car accelerating while changing lanes at the same time (fig. 8, middle right plot). Because
none of these scenarios were observed at training time, this demonstrates that the model successfully
generalises out of the training distribution.

C.3 SCALE

Setup. The training and test sets consist of 13 and 27 frames from a video of a car driving on a
highway and becoming visually smaller the further it is (visualised in fig. 8, bottom left plot). Because
the car has a different scale depending on its position, we would like to employ an encoder-decoder
architecture which is equivariant to scale. We achieve this by using a scale warp (table 2, bottom row)
visualised in fig. 6 (right column), together with a standard CNN encoder-decoder.

Identifiability results. The latent variables corresponding to the training and test data are visualised
in fig. 7 (middle plot, blue and red colours respectively). The data forms a diagonal line in the latent
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Translation Rotation Scale

Figure 7: Latent space showing the training data (blue), test data (red), and two different counterfac-
tuals for each experiment (orange, green, purple) that are out of the training distribution. The arrow
of time is denoted by the colour intensity, from light to dark.

space in logarithmic coordinates, showing an approximately exponential relationship between the
car’s position and scale. When compared to the estimated ground truth variables describing the car’s
position, the latent variables’ mean squared error on the test set is an order of magnitude smaller than
the best baseline (table 4, MSE, bottom row), which is to be expected as none of the baselines exhibit
scale equivariance. Although the reconstruction accuracy for our method is very good (table 4, Acc.,
bottom row), the CNN and keypoint CNN baseline achieve a slightly higher accuracy. However,
for this experiment the reconstruction accuracy is a slightly misleading metric as the cars in the
test set are very small, which means the baselines erroneously predicting background where the car
should be achieves a better accuracy than our method, which predicts a car at the correct position but
imperfectly rendered. Therefore, although our method achieves a very slightly lower reconstruction
accuracy than the baselines, the latent mean squared error is still much better than the baselines,
showing that the scale equivariance allows the network to generalise successfully to the test set.

Counterfactual results. Once the encoder and decoder have been learned, we can use the scale
equivariance property of the network to intervene on the latent variables and generate videos of
counterfactual scenarios that were never observed at training time. For example, one can extrapolate
the latent variables from the training set into the future (fig. 7, right plot, purple colour) to visualise
where the car will be in the future assuming constant speed (fig. 8, middle bottom plot), or one can
shift the latent variables diagonally (fig. 7, right plot, orange colour) to visualise a car driving in a
different lane (fig. 8, bottom right plot). Because none of these scenarios were observed at training
time this demonstrates that the model successfully generalises out of the training distribution.
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Figure 8: Training data (left column) and two different counterfactuals (middle and right columns)
for each experiment (rows). The counterfactuals are obtained by intervening on and decoding the
latent variables to obtain out-of-distribution data never seen during training.
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