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ABSTRACT

Despite growing enthusiasm for Multi-Agent LLM Systems (MAS), their per-
formance gains across popular benchmarks often remain minimal compared to
single-agent frameworks. This gap highlights the need to systematically analyze
the challenges hindering MAS effectiveness.
We present MAST (Multi-Agent System Failure Taxonomy), the first empirically
grounded taxonomy designed to understand MAS failures. We analyze five pop-
ular MAS frameworks across over 150 tasks, involving six expert human annota-
tors. Through this process, we identify 14 unique failure modes, organized into
3 overarching categories: (i) specification issues, (ii) inter-agent misalignment,
and (iii) task verification. MAST emerges iteratively from rigorous inter-annotator
agreement studies, achieving a Cohen’s Kappa score of 0.88. To support scal-
able evaluation, we develop a validated LLM-as-a-Judge pipeline integrated with
MAST. We leverage two case studies to demonstrate MAST’s practical utility in
analyzing failures and guiding MAS development. Our findings reveal that iden-
tified failures require more complex solutions, highlighting a clear roadmap for
future research. We open-source our comprehensive dataset and LLM annotator
to facilitate further development of MAS1.

“Happy families are all alike; each unhappy family is unhappy in its own way.” Tolstoy (1878)

“Successful systems all work alike; each failing system has its own problems.” (Berkeley, 2025)

1 INTRODUCTION

Recently, Large Language Model (LLM) based agentic systems have gained significant attention in
the AI community Patil et al. (2023); Packer et al. (2024); Wang et al. (2024a). This growing interest
comes from the ability of agentic systems to handle complex, multi-step tasks while dynamically
interacting with diverse environments, making LLM-based agentic systems well-suited for real-
world problems Li et al. (2023). Building on this characteristic, multi-agent systems are increasingly
explored in various domains, such as software engineering Qian et al. (2023); Wang et al. (2024d),
drug discoveries Gottweis et al. (2025); Swanson et al. (2024), scientific simulations Park et al.
(2023b), and recently general-purpose agent Liang et al. (2025).

Although the formal definition of agents remains a topic of debate Cheng et al. (2024); Xi et al.
(2023); Guo et al. (2024a); Li et al. (2024b); Wang et al. (2024b), in this study, we define a LLM-
based agent as an artificial entity with prompt specifications (initial state), conversation trace (state),
and ability to interact with the environments such as tool usage (action). A multi-agent system
(MAS) is then defined as a collection of agents designed to interact through orchestration, enabling
collective intelligence. MASs are structured to coordinate efforts, enabling task decomposition,
performance parallelization, context isolation, specialized model ensembling, and diverse reasoning
discussions He et al. (2024b); Mandi et al. (2023); Zhang et al. (2024); Du et al. (2023); Park et al.
(2023a); Guo et al. (2024a).

1https://github.com/multi-agent-systems-failure-taxonomy/MAST
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Figure 1: Failure rates of five popular Multi-Agent LLM Systems with GPT-4o and Claude-3.
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Figure 2: A Taxonomy of MAS Failure Modes. The inter-agent conversation stages indicate when
a failure can occur in the end-to-end MAS system. If a failure mode spans multiple stages, it means
the issue involves or can occur at different stages. Detailed definition and example of each failure
mode is available in Appendix A.

Despite increasing adoption of MAS, the gain in accuracy or performance remains minimal com-
pared to single agent frameworks Xia et al. (2024) or even simple baselines such as best-of-N sam-
pling on popular benchmarks Kapoor et al. (2024). Our empirical analysis reveals that the correct-
ness of the state-of-the-art (SOTA) open-source MAS, ChatDev Qian et al. (2023), can be as low
as 25%, as shown in Fig. 1. Furthermore, there is no clear consensus on how to build robust and
reliable MASs. This leads to a fundamental question that we need to answer first: Why do MASs
fail?

To understand MAS failure modes, we conduct the first systematic evaluation of MAS execution
traces using Grounded Theory (Glaser & Strauss, 1967). We analyze five popular open-source
MASs, employing six expert annotators to identify fine-grained issues across 150 conversation
traces, each averaging over 15,000 lines of text. We define failures as cases where the MAS does
not achieve the intended task objectives. To ensure consistency in failure modes and definitions,
three expert annotators independently label 15 traces, achieving an inter-annotator agreement with
a Cohen’s Kappa score of 0.88. From this comprehensive analysis, we identify 14 distinct failure
modes, which we cluster into 3 primary failure categories. We introduce the Multi-Agent System
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Failure Taxonomy (MAST), the first structured failure taxonomy of MAS, as illustrated in Fig. 2. We
do not claim MAST covers every potential failure pattern; rather, it serves as the first step towards
taxonomizing and understanding MAS failures.

To enable scalable automated evaluation, we introduce an LLM-as-a-judge pipeline Zheng et al.
(2023) using OpenAI’s o1. We validate this pipeline against expert annotations, achieving a Cohen’s
Kappa agreement score of 0.77.

To demonstrate MAST’s practical usage in guiding MAS development via failure analysis, we con-
duct case studies involving interventions on improved role specification and architectural changes.
We use our LLM annotator to obtain detailed failure breakdowns before and after these interven-
tions, showcasing how MAST provides actionable insights for debugging and development. While
interventions yield some improvements (e.g., +15.6% for ChatDev), the results show that simple
fixes are still insufficient for achieving reliable MAS performance. Mitigating identified failures
will require more fundamental changes in system design.

These findings suggest that MAST is not merely an artifact of existing multi-agent frameworks, but
rather indicative of fundamental design flaws in MAS. Towards building robust and reliable MAS,
MAST serve as a framework for guiding future research, outlining potential solutions for each of the
14 failure modes. We also open source our annotations for further research on MAS.

While one could simply attribute these failures to limitations of present-day LLM (e.g., hallucina-
tions, misalignment), we conjecture that improvements in the base model capabilities will be insuf-
ficient to address the full MAST. Instead, we argue that good MAS design requires organizational
understanding – even organizations of sophisticated individuals can fail catastrophically (Perrow,
1984) if the organization structure is flawed.

2 RELATED WORK

2.1 CHALLENGES IN AGENTIC SYSTEMS

The promising capabilities of agentic system has inspired research into specific agentic challenges.
For instance, Agent Workflow Memory Wang et al. (2024e) addresses long-horizon web naviga-
tion by introducing workflow memory to enhance agent adaptability and efficiency. DSPy Khattab
et al. (2023) and Agora Wang et al. (2024e) tackle issues in communication flow, and StateFlow Wu
et al. (2024b) focuses on state control within agentic workflows to improve task-solving capabili-
ties. While these works meaningfully contribute towards particular use cases, they do not provide a
comprehensive understanding of why MASs fail or propose a strategy that can be broadly applied
across domains.

Numerous benchmarks have been proposed to evaluate agentic systems Jimenez et al. (2024); Peng
et al. (2024); Wang et al. (2024c); Anne et al. (2024); Bettini et al. (2024); Long et al. (2024). These
evaluations are crucial in identifying challenges and limitations in agentic systems, yet they primar-
ily facilitate a top-down perspective, focusing on higher-level objectives such as task performance,
trustworthiness, security, and privacy Liu et al. (2023b); Yao et al. (2024b).

2.2 DESIGN PRINCIPLE FOR AGENTIC SYSTEMS

Several works highlight the challenges of building robust agentic systems and suggest new strategies,
typically for single-agent designs, to improve reliability. For instance, Anthropic’s blog Anthropic
(2024a) draws the importance of simplicity and modular components, such as prompt chaining and
routing, rather than adopting overly complex frameworks. Similarly, Kapoor et al. (2024) shows that
complexity can hinder real-world adoption for agentic systems. Our work extends these insights by
systematically investigating the failure modes in MASs, offering a taxonomy that demonstrates why
MASs fail, and suggesting solutions that align with these insights for agentic system design.

2.3 FAILURES TAXONOMIZATION IN LLM SYSTEMS

Despite the growing interest in LLM agents, dedicated research on their failure modes is surprisingly
limited. In parallel to Bansal et al. (2024)’ study that identifies and organizes challenges in human-
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Figure 3: Methodological workflow for systematically studying MAS, involving the identification of
failure modes, taxonomy development, and iterative refinement through inter-annotator agreement
studies by achieving a Cohen’s Kappa score of 0.88.

Table 1: Table of MASs studied with at least 30 human-annotated traces. Details and other systems
can be found in Appendix B.

Multi-Agent System Agentic Architecture Purpose of the System

MetaGPT Hong et al. (2023) Assembly Line Simulating the SOPs of different roles in Software
Companies to create open-ended software applications

ChatDev Qian et al. (2023) Hierarchical Workflow Simulating different Software Engineering phases like
(design, code, QA) through simulated roles in a soft-
ware engineering company

HyperAgent Phan et al. (2024) Hierarchical Workflow Simulating a software engineering team with a cen-
tral Planner agent coordinating with specialized child
agents (Navigator, Editor, and Executor)

AppWorld Trivedi et al. (2024) Star Topology Tool-calling agents specialized to utility services (ex:
GMail, Spotify, etc.) being orchestrated by a supervisor
to achieve cross-service tasks

AG2 Wu et al. (2024a) N/A - Agentic Framework An open-source programming framework for building
agents and managing their interactions.

agent interaction in agentic system, our contribution represents a pioneering effort in studying failure
modes in MASs. This highlights the need for future research in developing robust evaluation metrics,
identifying common failure patterns, and designing mitigation strategies to improve the reliability
of LLM agents.

3 STUDY METHODOLOGY

This section describes our methodology for identifying dominant failure patterns in MAS and estab-
lishing a structured taxonomy of failure modes. Figure 3 provides an overview of this workflow.

First, we would like to note that gathering and proposing a taxonomy of failure modes is a highly
nontrivial task that requires significant effort and consideration: the taxonomy should be broad
enough to cover different kinds of failure modes that may arise in diverse MASs and benchmarks,
but also specific and detailed enough to offer insights into the failures observed. Moreover, when
multiple people use the taxonomy to classify the failures in a MAS execution, the different conclu-
sions should largely agree, which means that the taxonomy should yield a crystal clear understanding
of what different failure modes mean.

To systematically uncover failure patterns without bias, we adopt the Grounded Theory (GT) ap-
proach (Glaser & Strauss, 1967), a qualitative research method that constructs theories directly from
empirical data rather than testing predefined hypotheses. The inductive nature of GT allows the
identification of the failure mode to emerge organically. We collect and analyze MAS execution
traces iteratively with theoretical sampling, open coding, constant comparative analysis, memoing,
and theorizing, detailed in Section 3.1. In total, the GT analysis accross 150+ traces require over 20
hours of pure annotation per annotator who has experience with agentic systems.

4



Published at Building Trust Workshop at ICLR 2025

After obtaining the MAS traces and discussing our initial findings, we derive a preliminary tax-
onomy by gathering observed failure modes. To refine the taxonomy, we conduct inter-annotator
agreement studies, iteratively adjusting the failure modes and the failure categories by adding, re-
moving, merging, splitting, or modifying the definition until consensus is reached. This process
mirrors a learning approach, where taxonomy refinement continues until achieving stability, mea-
sured by inter-annotator agreement (IAA) through Cohen’s Kappa score. To that end, we conduct
three rounds of IAA experiments, that require about 10 hours in total, which is solely for resolving
the disagreements between annotations, not counting the annotation time itself.

In addition, to enable automated failure identification, we develop an LLM-based annotator and
validate its reliability.

3.1 DATA COLLECTION AND ANALYSIS

We employ theoretical sampling (Draucker et al., 2007) to ensure diversity in the identified MASs,
and the set of tasks on which to collect data (MAS execution traces). This approach guided the
selection of MASs based on variations in their objectives, organizational structures, implementation
methodologies, and underlying agent personas. For each MAS, tasks were chosen to represent
the system’s intended capabilities rather than artificially challenging scenarios. For instance, if a
system reported performance on specific benchmarks or datasets, we selected tasks directly from
these benchmarks. The MASs analyzed here span multiple domains and are the first five MAS
frameworks in Table 1 and Appendix B. This diversity guided by theoretical sampling ensured a
comprehensive exploration of MAS behaviors across contexts.

Upon collecting the MAS traces, we apply open coding Khandkar (2009) to analyze the traces we
collected for agent–agent and agent–environment interactions. Open coding breaks qualitative data
into labeled segments, allowing annotators to create new codes and document observations through
memos, which enable iterative reflection and collaboration among annotators. During open coding,
we engage in constant comparative analysis, systematically comparing new codes with existing
ones to refine our understanding. This iterative process continues until we reached theoretical
saturation, the point at which no new insights emerged from additional data. Through this process,
the annotators annotated 150+ traces spanning 5 MASs. Next, we apply axial coding Vollstedt &
Rezat (2019), grouping related open codes to reveal the fine-grained failure modes in MAST. Finally,
we identify patterns and link failure modes, ultimately forming a taxonomy of error categories shown
in Figure 2.

3.2 INTERANNOTATOR AGREEMENT STUDY AND ITERATIVE REFINEMENT

Inter-annotator studies mainly target validating a given test or rubric, such that when multiple dif-
ferent annotators annotate the same set of test cases based on the same rubric, they should arrive
at the same conclusions. Even though we initially derive a taxonomy as a result of our theoretical
sampling and open coding as explained in the previous section, there still exists the need to validate
the non-ambiguity of this taxonomy.

For the inter-annotator agreement (IAA) study, we conduct three major rounds of discussions on
top of the initial derivation of taxonomy. In Round 1, we sample 5 different MAS traces from over
150 traces we obtained with theoretical sampling as explained in the previous section, and the three
annotators annotate these traces using the failure modes and definitions in the initial taxonomy. We
observe that the agreement reached at Round 1 is very weak between annotators, with a Cohen’s
Kappa score of 0.24. Next, these annotators work on the taxonomy to refine it. This involves
iteratively changing the taxonomy until we converge to a consensus regarding whether each and
every failure mode existed in a certain failure mode or not in all 5 of the collected traces. In iterative
refinement, we change the definitions of failure modes, break them down into multiple fine grained
failure modes, merge different failure modes into a new failure mode, add new failure modes or
erase the failure modes from the taxonomy, as needed.

This process can be likened to a learning study where different agents (this time human annotators)
independently collect observations from a shared state space and share their findings with each other
to reach a consensus Lalitha et al. (2018). Moreover, in order not to fall into the fallacy of using
training data as test data, when we do the refinement studies at the end of Round 1, we test the new
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inter-annotator agreement and the performance of the taxonomy in a different set of traces, in Round
2. In the next stage (Round 2), we sample another set of 5 traces, each from a different MAS. Then,
the annotators agred substantially well on the first try, attaining an average Cohen’s Kappa score of
0.92 among each other. Motivated by this, we proceed to Round 3, where we sampled another set of
5 traces and again annotated using the same finalized taxonomy, where achieved an average Cohen’s
Kappa score of 0.84. Note that Cohen’s Kappa score of more than 0.8 is considered strong and more
than 0.9 is considered almost perfect alignment McHugh (2012).

Motivated by the reliability of our taxonomy, we ask the following question: can we come up with an
automated way to annotate traces such that developers or users can use this automated pipeline with
our taxonomy to understand the failure reasons of their models? Thus, we developed an automated
MAST annotator using an LLM-as-a-judge pipeline, which we describe in Section 3.3.

Table 2: Performance of LLM-as-a-judge pipeline

Model Accuracy Recall Precision F1 Cohen’s κ

o1 0.89 0.62 0.68 0.64 0.58
o1 (few shot) 0.94 0.77 0.833 0.80 0.77

3.3 LLM ANNOTATOR

After developing our taxonomy, MAST and completing the inter-annotator agreement studies, we aim
to come up with an automated way to discover and diagnoze the failure modes in MAS traces using
our taxonomy. To that end, we develop an LLM-as-a-judge pipeline. In this strategy, we provide a
system prompt to LLMs where we include the failure modes in our MAST, their detailed explanation,
as shown in Appendix A, and some examples of these failure modes as shown in Appendix D. In that
strategy, we decide to use OpenAI’s o1 model, and we experiment with both the cases where we do
not provide the aforementioned examples (called o1 in Table 2) and where we provide the examples
(called o1 few-shot in Table 2. Based on the results of Round 3 of inter-annotator agreement study
mentioned in Section 3.2, we test the success of the LLM annotator, as shown in Table 2. As we
achieve an accuracy of 94% and a Cohen’s Kappa value of 77%, we deem that the LLM annotator,
with in context examples provided, to be a reliable annotator. Motivated by this result, we let the
LLM annotator annotate the rest of the traces in the 150+ trace corpora we gathered, the result of
which are shown in Figure 4, and the final taxonomy with the distribution of failure modes is shown
in Figure 2.

4 STUDY FINDINGS
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different tasks, the results are not directly comparable across MASs in a quantitative sense. However,
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We present the Multi-Agent System Failure Taxonomy (MAST), shown in Figure 2. We develop the
taxonomy through empirical analysis of 150 MAS execution traces across 5 task domains, using
Grounded Theory and iterative refinement via inter-annotator agreement studies.

MAST identifies 14 fine-grained failure modes, mapping them to execution stages (Pre-Execution,
Execution, Post-Execution) where their root causes typically emerge. It organizes these modes into
3 overarching categories based on the fundamental nature of failures.

We propose MAST as the first foundational framework for unifying MAS failures. We recognize
that prior works have observed some individual modes and do not claim exhaustive coverage, rather,
MAST offers precise definitions, clear boundaries between failure patterns, and serves a structured
approach to understanding challenges in MAS.

4.1 MULTI-AGENT SYSTEM FAILURE TAXONOMY

This section presents the failure categories (FC) in MAST and discusses their implications. Ap-
pendix A provides detailed definitions for each of the 14 fine-grained failure modes (FM), while
Appendix D presents concrete examples for each mode.

FC1. Specification Issues. Failures originate from system design decisions, and poor or ambigu-
ous prompt specifications.

Failures in FC1 often manifest during execution but reflect flaws in pre-execution design choices
regarding system architecture, prompt instructions, or state management. Failure modes include fail
to follow task requirements (FM-1.1, 10.98%) or agent roles (FM-1.2, 0.5%), step repetitions (FM-
1.3, 17.14%) due to rigid turn configurations, context loss (FM-1.4, 3.33%), or failing to recognize
task completion (FM-1.5, 9.82%).

Failures to follow specifications (FM-1.1 and FM-1.2) are two commonly observed failure modes
in MAST. Although it may fall under the broad umbrella of a well-known challenges, instruction
following, in LLM-based MAS applications, we believe that there exist deeper underlying causes
of failure, with different potential fixes: (1) flaws in MAS designs with agent roles and workflow
phases, (2) poor user prompt specifications, (3) limitation of the underlying LLM in understand-
ing the instructions, (4) the LLM understanding the instruction but failing to follow the instruction.
We posit that a well-designed MAS should be able to interpret task objective from high-level spec-
ification containing reasonably inferable details, reducing the need for long-run user prompt via
improvement on MAS as a core goal of agentic systems is agency.

For example, a task for ChatDev is to create a Wordle game with the prompt a standard
wordle game by providing a daily 5-letter...}. The generated program uses
a small, fixed word dictionary, failing to infer the daily changing word requirement implied by
“standard” and “daily”. To demonstrate this extends beyond user prompt ambiguity, we provide
a more explicit prompt: ... without having a fixed word bank, and randomly
select a new 5-letter word each day . Despite this clarification, ChatDev still pro-
duces code with a fixed word list and introduces new errors (e.g., accept error inputs). Thus, this
suggests failures stem from the MAS’s inherent design for interpreting specifications.

Despite challenges for LLM in instruction following, we show promising headroom for improving
MAS via better system design. We conduct intervention studies to improve agent role specifications
(Appendix F). Our studies yield a notable +9.4% increase in success rate for ChatDev, when running
on the same user prompt and base LLM (GPT-4o).

FC2. Inter-Agent Misalignment. Failures arise from breakdowns in inter-agent interaction and
coordination during execution.

FC2 covers failures in agent coordination that prevent effective agent-agent alignment towards a
common goal. Failure modes include unexpected conversation resets (FM-2.1, 2.33%), proceeding
with wrong assumptions instead of seeking clarification (FM-2.2, 11.65%), task derailment (FM-
2.3, 7.15%), withholding crucial information (FM-2.4, 1.66%), ignoring inputs from other agents
(FM-2.5, 0.17%), or mismatches between reasoning and action (FM-2.6, 13.98%). Figure 5 shows
an example of information withholding (FM-2.4), where an agent identifies necessary information
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Figure 5: Example of FM-2.4 Information Withholding. The Phone Agent fails to communicate
API requirements (username format) to the Supervisor Agent. The Supervisor also fails to seek
clarification. Repeated failed login attempts lead to task failure.

(correct username format) but fails to communicate it, leading to repeated failed attempts by another
agent, and ultimate failing to complete the task.

Diagnosing FC2 failures can be complex, as different root causes may produce similar surface be-
haviors. For example, missing information might result from withholding (FM-2.4), ignoring input
(FM-2.5), long context length Liu et al. (2023a) or context mismanagement (FM-1.4). Distinguish-
ing these necessitates the fine-grained modes in MAST.

FC3. Task Verification. Failures involve inadequate verification processes that fail to detect or
correct errors, or premature termination of tasks.

FC3 failures relate to final output quality control. These include premature termination (FM-3.1,
7.82%), no or incomplete verification (FM-3.2, 6.82%), or incorrect verification (FM-3.3, 6.66%).
FC3 highlight challenges in ensuring the final output’s correctness and reliability. As an example of
FM-3.2, a ChatDev-generated chess program passes all rounds of verifications but contains runtime
bugs (e.g., accepting invalid moves) because the verifier performs only superficial checks such as
code compilation or comments, failing to validate against actual game rules or available online
knowledge. This inadequacy persists despite explicit review phases, making the generation output
unusable.

4.2 MAST EFFECTIVENESS EVALUATION

We evaluate MAST’s effectiveness based on three key aspects: its generalization to unseen systems
and datasets, the balanced distribution of identified failures, and the distinctiveness of its failure
categories.

Balanced Distribution. The distribution of failures across MAST’s categories is relatively balanced
(FC1: 41.77%, FC2: 36.94%, FC3: 21.30%, Figure 2). The absence of a single dominant cat-
egory suggests MAST provides balanced coverage and captures diverse failure types, rather than
reflecting biases from specific system designs. Furthermore, the distinct failure profiles observed
across different MAS (Figure 4) highlight MAST’s ability to capture system-specific characteristics,
such as AppWorld suffers with premature terminations (FM-3.1) and OpenManus suffers from step
repetition (FM-1.3).

Distinct Failure Categories. Correlation analysis between the main failure categories (Figure 6)
shows low correlations (0.17-0.32). This suggests that the categories capture distinct aspects of
MAS failures with limited overlap, supporting the taxonomy’s structure. This distinctiveness is
crucial because, as noted in Insight 2, failures with similar surface behaviors can stem from different
root causes (e.g., memory management vs. agent coordination).

Although MAST’s fine-grained nature helps differentiate root cause, it also poses a challenge for
our LLM annotator. Analyzing correlations between specific failure modes (see Appendix C for
Figure 7) shows moderate correlations (max of 0.63) between modes with similar symptoms might
lead automated evaluators to conflate distinct root causes.

8



Published at Building Trust Workshop at ICLR 2025

Specific
ation

Issu
es

Inter-Agent

Misalignment
Task

Verific
ation

Specification
Issues

Inter-Agent
Misalignment

Task
Verification

1 0.32 0.17

0.32 1 0.28

0.17 0.28 1

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 6: MAS failure categories correlation matrix.

4.3 OPEN CHALLENGES BEYOND CORRECTNESS

While developing MAST, we focused primarily on failures related to task correctness and com-
pletion, as this is a fundamental prerequisite for usable MAS. However, we observe a significant
prevalence of inefficiencies in MAS traces, which MAST currently does not include by design.

Agents often engage in unnecessarily long conversations or take circuitous routes to achieve a goal.
For example, in one AppWorld trace, the task was to retrieve the first 10 songs from a playlist. The
orchestrator and Spotify agent engaged in 10 rounds of conversation, retrieving one song at a time,
even though the Spotify agent’s capability allowed retrieving all 10 songs in a single, valid action.
Such inefficiencies can lead to dramatically increased costs (token usage) and latency (runtime),
sometimes by factors of 10x or more. Addressing this requires optimizing not just for correctness
but also for efficiency, cost, and speed.

We deliberately pruned non-correctness metrics like efficiency during MAST’s iterative refinement
(Section 3 ) to maintain focus. However, we recognize that efficiency, along with other important
dimensions like cost, robustness, scalability, and security, are critical for real-world MAS deploy-
ment. Developing taxonomies and evaluation methods for these aspects remains important future
work.

5 TOWARDS BETTER MULTI-AGENT LLM SYSTEMS

Having presented MAST, we now discuss its broader implications and utility. MAST is not merely
a list of definitions; it serves as a foundational framework and practical tool for understanding,
debugging, and ultimately improving MAS. By concretely defining failure modes, MAST outlines
the challenges in building reliable MAS, thereby opening up targeted research problems for the
community. This section highlights how MAST aids agentic system development, suggesting that
progress requires focusing on system design alongside model capabilities.

5.1 MAST AS A PRACTICAL DEVELOPMENT TOOL

Developing robust MAS presents significant challenges. When a system exhibits a high failure
rate on a benchmark (e.g., 75% failure for ChatDev on ProgramDev, Figure 1), pinpointing the
underlying causes is difficult, especially if failure manifestations vary widely. Without a systematic
framework, developers often resort to ad-hoc debugging of individual failed traces Fritzson et al.
(1992). Furthermore, evaluating the impact of interventions is complex; a modest improvement
in overall success rate (e.g., +10%) might obscure whether the fix addressed the intended issues,
introduced new problems, or only work for specific cases.

Here, MAST offers practical value. By providing a structured vocabulary and clear definitions for
distinct failure modes, it enables systematic diagnosis. When combined with automated analysis
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tools, such as our LLM annotator, developers can obtain a breakdown of failure types occurring
in their system across many traces. This quantitative overview pinpoints the most frequent failure
modes, guiding debugging efforts towards the highest-impact areas. For example, Fig. 4 suggests
that HyperAgent could benefit significantly from addressing its dominant failure modes: step repe-
tition (FM-1.3) and incorrect verification (FM-3.3).

Moreover, MAST facilitates rigorous evaluation of improvements. Instead of relying solely on ag-
gregate success rates, developers can perform before-and-after comparisons using MAST. Our case
studies (Appendix F) illustrate this: applying interventions to ChatDev and AG2 resulted in overall
performance gains (Table 4), but a MAST-based analysis (detailed in Appendix F.3) reveals which
specific failure modes were mitigated and whether any trade-offs occurred (e.g., reducing one failure
type while inadvertently increasing another). This detailed view is crucial for understanding why an
intervention works and for iterating effectively towards more robust systems.

5.2 BEYOND MODEL CAPABILITIES: THE PRIMACY OF SYSTEM DESIGN

While one might attribute the observed errors in MAST solely to model incapability, a key finding
from our intervention studies highlights that many MAS failures came from system design, not
just limitations of the underlying LLMs (e.g., hallucination or basic prompt following). Although
improved models are beneficial, our results suggest that they are insufficient alone to guarantee
reliable MAS performance.

In our intervention case studies (Appendix F), we apply two strategies, architectural (i.e. targeting
underlying the topology of the MAS) and prompt modifications inspired by MAST’s failure patterns,
to improve role adherence and verification, shown in Table 4. To have a fair evaluation, we evaluate
MAS with the same LLM and user prompt before and after interventions. The improvement strongly
suggests that improvement to the MAS system design itself can reduce failures, independent of base
model improvements, underscoring that observed failures are not solely due to model limitations -
just like humans can make mistake and have organizational issues with human-level intelligence.

However, these improvements also demonstrate a deeper challenge. While the interventions cause a
statistically significant improvement in results, not all failure modes are eradicated, and task com-
pletion rates either marginally improved on the tasks that were already good or still remain lowindi-
cating that non-trivial improvements are needed. Achieving high reliability likely requires more
fundamental changes to agent organization, communication protocols, context management, and
verification integration, concepts echoed in studies of complex systems and high-reliability human
organizations and more detailed in Table 3. MAST provides the necessary framework to identify
where these structural weaknesses lie and guide the design and evaluation of more sophisticated
MAS architectures. Understanding the root causes pinpointed by MAST is essential for designing
effective interventions, moving beyond treating symptoms towards addressing core design flaws.

6 CONCLUSION

In this study, we present the first systematic investigation of failure modes of LLM based Multi-
Agent Systems, where we collect and analyze more than 150+ traces with the guidance of Grounded
Theory. We identify 14 fine-grained failure modes, and group them under 3 different failure cat-
egories, providing a rubric for future research in MAS. We also provide an automated annotator
to diagnose the failure modes in a MAS given our taxonomy, and show the utility of MAST as a
debugging tool.
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ORGANIZATION OF APPENDIX

The appendix is organized as follows: in Section A further details about failure categories and
failure modes are given, in Section B we provide some details about the multi-agent systems we
have annotated and studied, in Section C we plot the correlations between MAS failure modes, in
Section D examples of every failure mode are reported and commented, in Section E we discuss
some tactical approaches and structural strategies to make MASs more robust to failures, in Section
F we present two case studies where we show that tactical approaches can get only limited results,
in Sections G and H there are prompt interventions we tested on AG2 and ChatDev case studies.

A MAST FAILURE CATEGORIES: DEEP DIVE

A.1 FC1. SPECIFICATION ISSUES

This category includes failures that arise from deficiencies in the design of the system architecture,
poor conversation management, unclear task specifications or violation of constraints, and inade-
quate definition or adherence to the roles and responsibilities of the agents.
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We identify five failure modes under this category:

• FM-1.1: Disobey task specification - Failure to adhere to the specified constraints or re-
quirements of a given task, leading to suboptimal or incorrect outcomes.

• FM-1.2: Disobey role specification - Failure to adhere to the defined responsibilities and
constraints of an assigned role, potentially leading to an agent behaving like another.

• FM-1.3: Step repetition - Unnecessary reiteration of previously completed steps in a pro-
cess, potentially causing delays or errors in task completion.

• FM-1.4: Loss of conversation history - Unexpected context truncation, disregarding re-
cent interaction history and reverting to an antecedent conversational state.

• FM-1.5: Unaware of termination conditions - Lack of recognition or understanding of
the criteria that should trigger the termination of the agents’ interaction, potentially leading
to unnecessary continuation.

A.2 FC2. INTER-AGENT MISALIGNMENT

This category includes failures arising from ineffective communication, poor collaboration, conflict-
ing behaviors among agents, and gradual derailment from the initial task.

We identify six failure modes under this category:

• FM-2.1: Conversation reset - Unexpected or unwarranted restarting of a dialogue, poten-
tially losing context and progress made in the interaction.

• FM-2.2: Fail to ask for clarification - Inability to request additional information when
faced with unclear or incomplete data, potentially resulting in incorrect actions.

• FM-2.3: Task derailment - Deviation from the intended objective or focus of a given task,
potentially resulting in irrelevant or unproductive actions.

• FM-2.4: Information withholding - Failure to share or communicate important data or
insights that an agent possess and could impact decision-making of other agents if shared.

• FM-2.5: Ignored other agent’s input - Disregarding or failing to adequately consider
input or recommendations provided by other agents in the system, potentially leading to
suboptimal decisions or missed opportunities for collaboration.

• FM-2.6: Reasoning-action mismatch - Discrepancy between the logical reasoning process
and the actual actions taken by the agent, potentially resulting in unexpected or undesired
behaviors.

A.3 FC3. TASK VERIFICATION

This category includes failures resulting from premature execution termination, as well as insuffi-
cient mechanisms to guarantee the accuracy, completeness, and reliability of interactions, decisions,
and outcomes.

We identify three failure modes under this category:

• FM-3.1: Premature termination - Ending a dialogue, interaction or task before all neces-
sary information has been exchanged or objectives have been met, potentially resulting in
incomplete or incorrect outcomes.

• FM-3.3: No or incomplete verification - (partial) omission of proper checking or confir-
mation of task outcomes or system outputs, potentially allowing errors or inconsistencies
to propagate undetected.

• FM-3.3: Incorrect verification - Failure to adequately validate or cross-check crucial in-
formation or decisions during the iterations, potentially leading to errors or vulnerabilities
in the system.

16



Published at Building Trust Workshop at ICLR 2025

B MULTI-AGENT SYSTEMS STUDIED WITH HUMAN-ANNOTATED TRACES

In this section, we provide some more details on MAS we annotated during our study.

B.1 MAS WITH AT LEAST 30 HUMAN ANNOTATED TRACES

MetaGPT. MetaGPT Hong et al. (2023) is a multi-agent system that simulates a software engi-
neering company and involves agents such as a Coder and a Verifier. The goal is to have agents
with domain-expertise (achieved by encoding Standard Operating Procedures of different roles into
agents prompts) collaborativelty solve a programming task, specified in natural language.

ChatDev. ChatDev is a generalist multi-agent framework that initializes different agents, each as-
suming common roles in a software-development company Qian et al. (2024). The framework
breaks down the process of software development into 3 phases: design, coding and testing. Each
phase is divided into sub-tasks, for example, testing is divided into code review (static) and sys-
tem testing (dynamic). In every sub-task, two agents collaborate where one of the agents acts as
the orchestrator and initiates the interaction and the other acts as an assistant to help the orches-
trator achieve the task. The 2 agents then hold a multi-turn conversation to achieve the goal stated
by the orchestrator ultimately leading to the completion of the task, marked by a specific sentinel
by either agents. ChatDev has the following agent roles: CEO, CTO, Programmer, Reviewer and
Tester. ChatDev introduces “Communicative Dehallucination”, which encourages the assistant to
seek further details about the task over multiple-turns, instead of responding immediately.

HyperAgent. HyperAgent Phan et al. (2024) is a framework for software engineering tasks orga-
nized around four primary agents: Planner, Navigator, Code Editor, and Executor. These agents are
enhanced by specialized tools, designed to provide LLM-interpretable output. The Planner commu-
nicates with child agents via a standardized message format with two fields: Context (background
and rationale) and Request (actionable instructions). Tasks are broken down into subtasks and pub-
lished to specific queues. Child agents, such as Navigator, Editor, and Executor instances, monitor
these queues and process tasks asynchronously, enabling parallel execution and significantly im-
proving scalability and efficiency. For example, multiple Navigator instances can explore different
parts of a large codebase in parallel, the Editor can apply changes across multiple files simultane-
ously, and the Executor can run tests concurrently, accelerating validation.

AppWorld. AppWorld is a benchmark, that provides an environment with elaborate mocks of var-
ious everyday services like eShopping Website, Music Player, Contacts, Cost-sharing app, e-mail,
etc Trivedi et al. (2024). The benchmark consists of tasks that require executing APIs from mul-
tiple services to achieve the end-users tasks. The AppWorld benchmark provides a ReAct based
agent over GPT-4o as a strong baseline. We create a multi-agent system over AppWorld derived
from the baseline ReAct agent, where each agent specializes in using one of the services mocked
in AppWorld, with detailed instructions about the APIs available in that service, and access to the
documentation for that specific service. A supervisor agent receives the task instruction to be com-
pleted, and can hold one-on-one multi-turn conversations with each of the service-specific agents.
The service-agents are instructed to seek clarification with the supervisor, whenever required. The
supervisor agent holds access to various information about the human-user, for example, credentials
to access various services, name, email-id and contact of the user, etc, which the service-agents need
to access the services, and must clarify with the supervisor agent.

AG2. AG2 (formerly AutoGen) Wu et al. (2023) is an open-source programming framework for
building agents and managing their interactions. With this framework, it is possible to build various
flexible conversation patterns, integrating tools usage and customizing the termination strategy.

B.2 MAS WITH AT LEAST 5 HUMAN ANNOTATED TRACES

AutoKaggle. AutoKaggle is a multi-agent framework designed to solve data science competitions,
popularly held on Kaggle, autonomously Li et al. (2024c). Similar to ChatDev above, AutoKaggle
has a phase-based workflow. It divides the data science competition process into six key phases:
background understanding, preliminary exploratory data analysis, data cleaning (DC), in-depth ex-
ploratory data analysis, feature engineering (FE), and model building, validation, and prediction
(MBVP). AutoKaggle consists of 5 specialized agents: Reader, Planner, Developer, Reviewer and
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Summarizer. In each phase, a subset of these agents are active and work in sequence to complete
the phase. The reader agent finds information relevant to the task, by reading the summary from the
previous phase and makes observations about the current phase and includes them in an overview.
The planner uses the overview to generate a plan to complete the current phase. Next, the developer
agent uses tools like code execution, debugger and unit tests to write the code. AutoKaggle also pro-
vides a comprehensive set of machine learning tools, abstracting away complex code that would be
required to perform compound data processing tasks like “FillMissingValues” into simple API calls
that AutoKaggle agents can generate. The reviewer then provides feedback. Finally, the summarizer
agent writes a detailed summary of the phase execution including changes (addition/deletions) to
the data, and this summary is then passed to the next phase.

Multi-Agent Peer Review. Multi-Agent Peer Review Xu et al. (2023) is a collaboration strategy
where each agent independently constructs its own solution, peer-reviews the solutions of others,
and assigns confidence levels to its reviews. Upon receiving peer reviews, agents revise their initial
solutions, and the final prediction is determined through a majority vote among the n participating
agents.

MA-ToT. Multi-Agent Tree of Thoughts leverage the strengths of both multi-agent reasoning and
Tree of Thoughts (ToT) strategies. In this system, multiple Reasoner agents operate in parallel,
employing ToT to explore diverse reasoning paths. Then, a Thought Validator verifies these paths
and promotes valid reasonings.
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C MAS FAILURE MODES CORRELATION
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Figure 7: MAS failure modes correlation matrix
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D EXAMPLES OF DIFFERENT FAILURE MODES

D.1 EXAMPLE FOR FM-1.3 STEP REPETITION, FM-2.1 CONVERSATION RESET, FM-1.2
DISOBEY ROLE SPECIFICATION

• MAS: Hyperagent

• Task: Matplotlib visualization code bug fix.

• What happened: The Navigator internally proposes a solution without communicating it
to the Planner. They did not manage to replicate the issue described and started to unrelated
steps to find something to edit. At the end the Planner decided to ’Wait for the user’s
response’.

• Where it went wrong:

[...]
HyperAgent_matplotlib__matplotlib-23563 - INFO - Planner’s

Response: Thought: To address this issue, we need to understand
the root cause of the ’Line3D’ object not having the ’_verts3d

’ attribute. This error typically occurs when the data passed
to the plot function is invalid or when there’s an issue with
the 3D rendering. Let’s start by examining the code and
reproducing the issue.

[...]
HyperAgent_matplotlib__matplotlib-23563 - INFO - Planner’s

Response: Thought: To address this issue, we need to understand
the root cause of the ’Line3D’ object not having the ’_verts3d

’ attribute. This error typically occurs when the data passed
to the plot function is invalid or when there’s an issue with
the 3D rendering. Let’s start by examining the code and
reproducing the issue.

[...]
Intern Name: Codebase Editor
Subgoal: Please prepare a response for the user with the following

content:
1. Explain the identified issue and recommend updating matplotlib

to version 3.5.1 or later.
2. Provide a modified version of their code that attempts to work

around the issue.
3. Suggest an alternative plotting method using scatter plots

instead of lines.
[...]
HyperAgent_matplotlib__matplotlib-23563 - INFO - Inner-Navigator-

Assistant’s Response: Thought: To find the implementation of
the ‘Line3D‘ class and understand how the ‘_verts3d‘ attribute
is set and used, I will take the following steps:

1. Search for the ‘Line3D‘ class in the matplotlib codebase using
the ‘code_search‘ tool. [...]

HyperAgent_matplotlib__matplotlib-23563 - INFO - Inner-Navigator-
Assistant’s Response: Thought: To find the implementation of
the ‘Line3D‘ class and understand how the ‘_verts3d‘ attribute
is set and used, I will take the following steps:

1. Search for the ‘Line3D‘ class in the matplotlib codebase using
the ‘code_search‘ tool.

[...]

D.2 EXAMPLE FOR FM-1.5 UNAWARE OF STOPPING CONDITIONS

• MAS: AG2
• Task: Solving a mathematical problem
• What happened: The solution is correct. The mathproxyagent keeps asking to continue

even if it was clear that the problem was unsolvable.
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• Where it went wrong:
[...]
[Assistant] This problem is a reasoning problem. The information

provided in the problem statement does not give any specifics
about the amount of ribbon Monica has or the size of the gift
bows. Therefore, this problem cannot be solved with the
information provided. More context or information is needed,
such as \"Monica has 120 inches of ribbon\" or \"Each bow uses
X inches of ribbon\"."

[mathproxyagent] Continue. Please keep solving the problem until
you need to query. (If you get to the answer, put it in \\boxed
{}.)

[Assistant] In the current problem, I don’t have enough
information to solve the problem. [...]

[mathproxyagent] Continue. Please keep solving the problem until
you need to query. (If you get to the answer, put it in \\boxed
{}.)

[Assistant] I’m sorry, but I really need more information to solve
this problem.

[mathproxyagent] Continue. Please keep solving the problem until
you need to query. (If you get to the answer, put it in \\boxed
{}.)

[...]

D.3 EXAMPLE FOR FM-2.3 TASK DERAILMENT

• MAS: AG2
• Task: Solving a mathematical problem.
• What happened: The answer was given the the question. The agents solved another

problem.
• Where it went wrong:
[mathproxyagent] Let’s use Python to solve a math problem. [...]

Courtney attended a concert and reported that the audience was
48 in number. However, Kelly went to the same concert and said
that Courtney had made the mistake of overstating the number of
people in attendance by 20%. If Kelly was right, 40 people

really attended the concert. What was the audience size
according to Courtney?"

[assistant] First, the key idea here is calculating [...]
‘‘‘python
import sympy as sp
C = 48 # Courtney’s estimation
R = sp.Symbol(’R’) # real audience number
# equation using the information given by Kelly
equation = sp.Eq(C, R + 0.2 * R)
real_audience = sp.solve(equation, R)[0]
print(f\"The real audience was: {real_audience}\")
‘‘‘
We subtract the estimated audience size from the real audience

size to find the number of people Courtney overstated.
‘‘‘python
overstated = C - real_audience
print(f\"The number of people Courtney overstated is: {overstated

}\")
‘‘‘
[...]
[assistant] [...] So, the final answer is \\boxed{8}.

D.4 EXAMPLE FOR FM-2.2 FAIL TO ASK FOR CLARIFICATION

• MAS: AppWorld
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• Task: Give a 5-star rating to all songs in my Spotify playlists.

• What happened: The agent used the password as token.

• Where it went wrong:

[...]
[Spotify Agent] Please provide the access token to retrieve your

playlists.
[Supervisor Agent] I need to get the Spotify access token from the

supervisor app. Let’s retrieve the account credentials to find
the access token. print(apis.supervisor.show_account_passwords

())
[...]

D.5 EXAMPLE FOR FM-3.2 NO OR INCOMPLETE VERIFICATION,

• MAS: AG2

• Task: Mathematical problem solving

• What happened: Confused the number of fish with the cost of them.

• Where it went wrong:

[mathproxyagent] [...] Scarlett found an aquarium for $10.00 at a
yard sale. At the pet store, she bought 2 bags of rocks for $2
.50 each and 3 pieces of coral at $2.00 apiece. She bought 20
fish and she needed fish food that cost $2.00. How much did she
spend?

[assistant] [... ] fish_cost = 20.00 [...] total_cost =
aquarium_cost + 2*rock_cost + 3*coral_cost + fish_cost +
fish_food_cost [...] print(total_cost)

[mathproxyagent] 43.0
[assistant] So, Scarlett spent a total of $43.00. So, the answer

is \\boxed{43}.

D.6 EXAMPLE FOR FM-2.3 TASK DERAILMENT, FM-3.2 NO OR INCOMPLETE
VERIFICATION.

• MAS: AG2

• Task: Solving a mathematical problem.

• What happened: Found the solution correctly, then it decides to answer to another prob-
lem.

• Where it went wrong:

[mathproxyagent] [...] John goes to the market with $10,000 in his
pocket. He buys 3 goats for $500 each and 2 cows for $1500
each. He also considers buying a horse for $2000 but decides
against it. How much money did he spend at the market?

[...]
[assistant] Great, the total spent by John on buying goats and

cows is $4500. To find the remaining money John had after his
purchases, we subtract the total spent from the initial amount
of money he had. [...] This code will output how much money
John had left after he made his purchases at the market.

[...]
[assistant] So, John has $\\boxed{5500}$ left after he made his

purchases at the market.

D.7 EXAMPLE FOR FM-3.2 NO OR INCOMPLETE VERIFICATION

• MAS: AG2
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• Task: Solving a mathematical problem.

• What happened: They did not verify the answer. They counted one number more even if
the numbers were listed. They did not verify the result even if it was straightforward.

• Where it went wrong:
[mathproxyagent] [...] Sally received the following scores on her

math quizzes: 50, 80, 80, 60, 40, 90, 100, 70, and another
score that is forgotten. If the mean score is 70, what’s the
forgortten score?

[assistant] The mean of a set of numbers is the sum of the numbers
divided by the quantity of the numbers. In this case, the mean
score is 70, this means that the total sum of the scores,

including the forgotten one, divided by the total quantity of
the quizzes (which is 9 + 1 = 10), is 70. [...] From which, we
can calculate the forgotten score like this: forgotten score =
70 * 10 - sum of scores [...]

[mathproxyagent] Continue. Please keep solving the problem until
you need to query. (If you get to the answer, put it in \\boxed
{}.)

[...]
[assistant] Therefore, the forgotten score is \\boxed{130}.

D.8 EXAMPLE FOR FM-1.2 DISOBEY ROLE SPECIFICATION, FM-2.4 INFORMATION
WITHHOLDING

• MAS: HyperAgent

• Task: Solving a bug of matplotlib.

• What happened: The Navigator thinks also about possible solutions (not required) but
then it does not communicate it to the Planner. At certain point the Executor states ’The
above output is just an example’ but the Planner thinks that the test are passed ’Thank you
for running the test and providing the results’.

• Where it went wrong:
[...]
HyperAgent_matplotlib__matplotlib-25433 - INFO - Inner-Navigator-

Assistant’s Response: Thought: [...] To work around this issue,
a possible solution is to update [...] Here’s an example of
how you can modify the code to achieve this: [...] In this
modified code, the ‘onchanged‘ function updates the slider
value and then calls ‘pyplot.draw()‘ to redraw the figure. This
should prevent the input to the widgets from being blocked.

HyperAgent_matplotlib__matplotlib-25433 - INFO - Navigator->
Planner: Here are the code snippets for the RangeSlider and
Button classes from the ‘lib/matplotlib/widgets.py‘ file: [...]

D.9 EXAMPLE FOR FM-1.1 DISOBEY TASK SPECIFICATION, FM-3.3 INCORRECT
VERIFICATION

• MAS: MetaGPT

• Task: Implementing chess.

• What happened: Missing coverage of movement restrictions for non-pawn pieces in initial
tests, and lack of verification for complete chess rules.

• Where it went wrong:
2025-01-12 14:46:45.578 | INFO | metagpt.roles.role:_act:391 -

Alice(SimpleCoder): to do SimpleWriteCode(SimpleWriteCode)
‘‘‘python
def main():

import itertools
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class ChessPiece:
def __init__(self, color, name):

self.color = color
self.name = name

def __str__(self):
return f"{self.color[0]}{self.name[0]}"

def valid_moves(self, position, board):
moves = []
if self.name == "Pawn":

direction = 1 if self.color == "White" else -1
forward = (position[0] + direction, position[1])
if 0 <= forward[0] <= 7 and board[forward[0]][forward

[1]] is None:
moves.append(forward)

if position[0] == (6 if self.color == "White" else 1):
# Starting position

double_forward = (position[0] + 2 * direction,
position[1])

if board[double_forward[0]][double_forward[1]] is
None:
moves.append(double_forward)

# Add more piece logic here
return moves

[...]
def test_knight_valid_moves(setup_board):

board = setup_board
# Place a knight on the board
board.board[0][1] = ChessPiece("White", "Knight")
# Test if knight can move to a valid position
assert board.move_piece(get_position(’b1’), get_position(’c3’))

== True
def test_bishop_valid_moves(setup_board):

board = setup_board
# Place a bishop on the board
board.board[0][2] = ChessPiece("White", "Bishop")
# Test if bishop can move diagonally
assert board.move_piece(get_position(’c1’), get_position(’a3’))

== True
def test_rook_valid_moves(setup_board):

board = setup_board
# Place a rook on the board
board.board[0][0] = ChessPiece("White", "Rook")
# Test if rook can move vertically
assert board.move_piece(get_position(’a1’), get_position(’a4’))

== True
def test_queen_valid_moves(setup_board):

board = setup_board
# Place a queen on the board
board.board[0][3] = ChessPiece("White", "Queen")
# Test if queen can move diagonally
assert board.move_piece(get_position(’d1’), get_position(’f3’))

== True
def test_king_valid_moves(setup_board):

board = setup_board
# Place a king on the board
board.board[0][4] = ChessPiece("White", "King")
# Test if king can move one square in any direction
assert board.move_piece(get_position(’e1’), get_position(’e2’))

== True
[...]

D.10 EXAMPLE FOR FM-2.6 REASONING-ACTION MISMATCH

• MAS: HyperAgent
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• Task: Solving a bug of pylint.

• What happened: Initially, the navigator has already found the solution but it tells other
things to planner.

• Where it went wrong:

[...]
HyperAgent_pylint-dev__pylint-6506 - INFO - Inner-Navigator-

Assistant’s Response: Thought: The ‘_config_initialization‘
function in ‘pylint/config/config_initialization.py‘ is
responsible for parsing the command-line arguments and
configuration files for Pylint. It looks like the unrecognized
‘-Q‘ option is being handled in the following section:

‘‘‘python
# Check if there are any options that we do not recognize
unrecognized_options: list[str] = []
for opt in parsed_args_list:

if opt.startswith(\"--\"):
unrecognized_options.append(opt[2:])

elif opt.startswith(\"-\"):
unrecognized_options.append(opt[1:])

if unrecognized_options:
msg = \", \".join(unrecognized_options)
linter.add_message(\"unrecognized-option\", line=0, args=msg)
raise _UnrecognizedOptionError(options=unrecognized_options)

‘‘‘

This code checks the parsed command-line arguments for any
unrecognized options, and if found, it adds a message to the
linter and raises an ‘_UnrecognizedOptionError‘ exception.

The issue mentioned in the GitHub report is that the traceback is
being printed, which is not the expected behavior. The expected
behavior should be to print a more user-friendly error message

, similar to what the top part of the output already provides.

To resolve this issue, I would suggest modifying the exception
handling in the ‘_config_initialization‘ function to catch the
‘_UnrecognizedOptionError‘ exception and print a more user-
friendly error message instead of the full traceback.

Final Answer:
The root cause of the issue is in the ‘pylint/config/

config_initialization.py‘ file, where the ‘
_config_initialization‘ function is responsible for parsing the
command-line arguments and configuration files. When an

unrecognized option is found, the function raises an ‘
_UnrecognizedOptionError‘ exception, which is causing the full
traceback to be printed.

To resolve this issue, the ‘_config_initialization‘ function
should be modified to catch the ‘_UnrecognizedOptionError‘
exception and print a more user-friendly error message instead
of the full traceback. Here’s an example of how the code could
be updated:

‘‘‘python
try:

linter._parse_configuration_file(config_args)
except _UnrecognizedOptionError as exc:

msg = \"Unrecognized option(s) found: {}\\nUsage: pylint [
options] modules_or_packages\".format(\", \".join(exc.
options))

print(msg, file=sys.stderr)
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sys.exit(2)
‘‘‘

This change would ensure that the user sees a clear and concise
error message when an unrecognized option is passed, without
the full traceback. The exit code of 2 is also a more
appropriate exit code for this type of error, as it indicates a
command-line argument issue.

HyperAgent_pylint-dev__pylint-6506 - INFO - Navigator->Planner:
The file responsible for handling command-line arguments in
Pylint is ‘pylint/config/config_initialization.py‘. The
function responsible for handling command-line arguments is ‘
_config_initialization‘ in this file.

Here’s the key code snippet from this function:

‘‘‘python
def _config_initialization(

linter: PyLinter,
args_list: list[str],
reporter: reporters.BaseReporter | reporters.MultiReporter |

None = None,
config_file: None | str | Path = None,
verbose_mode: bool = False,

) -> list[str]:
# ...
# Now we parse any options from the command line, so they can

override
# the configuration file
parsed_args_list = linter._parse_command_line_configuration(

args_list)
# ...

‘‘‘

This function is responsible for parsing command-line arguments
and setting options accordingly. It calls the ‘
_parse_command_line_configuration‘ method of the ‘PyLinter‘
class to parse the command-line arguments.

The ‘_parse_command_line_configuration‘ method is not shown in the
provided code snippet, but it is likely defined in the ‘pylint

/lint/pylinter.py‘ file.

Here’s the key code snippet from the ‘pylint/lint/pylinter.py‘
file:

‘‘‘python
class PyLinter:

# ...
def _parse_command_line_configuration(self, args_list: list[str

]) -> list[str]:
# implementation of command line argument parsing
pass

‘‘‘

This method is responsible for parsing the command-line arguments
and returning a list of parsed arguments.

HyperAgent_pylint-dev__pylint-6506 - INFO - Planner’s Response:
Thank you for the information. Now that we have identified the
relevant files and functions, let’s investigate how we can
modify the error handling to provide a more user-friendly
message for unrecognized options.

[...]
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D.11 EXAMPLE FOR FM-2.5 IGNORED OTHER AGENT’S INPUT, FM-3.3 INCORRECT
VERIFICATION,

• MAS: Multi-Agent Peer Review

• Task: Solving a mathematical problem.

• What happened: The solution presented by another agent is correct. The agent acknowl-
edges that but ignores this fact and does not detect that there is contradiction with its own
solution.

• Where it went wrong:

[...]
[user] Can you solve the following math problem? A painter needed

to paint 12 rooms in a building. Each room takes 7 hours to
paint. If he already painted 5 rooms, how much longer will he
take to paint the rest? Explain your reasoning. Your final
answer should be a single numerical number, in the form \\boxed
{answer}, at the end of your response.

[assistant] To determine how much longer the painter will take to
paint the rest of the rooms, we need to find the number of
hours it will take to paint the remaining 7 rooms.\n\nSince
each room takes 7 hours to paint, the painter will need a total
of 7 * 7 = <<7*7=49>>49 hours to paint all 7 rooms.\n\nHowever

, the painter has already painted 5 rooms, which means he has
completed 5 * 7 = <<5*7=35>>35 hours of work.\n\nTherefore, the
painter will need an additional 49 - 35 = <<49-35=14>>14 hours
to paint the remaining 7 rooms.\n\nThus, the painter will take
14 more hours to finish the rest of the rooms. \n\nThe answer

is therefore \\boxed{14}.
[user] Here is a solution from another agent: \n\n Since each room

takes 7 hours to paint, the painter needs a total of 7 x 12 =
<<7*12=84>>84 hours to paint all 12 rooms.\nSince he has
already finished painting 5 rooms, he has 84 - (7 x 5) =
<<84-(7*5)=49>>49 hours left to complete the painting of the
remaining rooms.\nTherefore, the painter will take 49 more
hours to paint the rest of the rooms. \n\n\\boxed{49}.\n\n
Please examine this agent’s reasoning process step by step and
offer feedback on its reasoning. You can rate your confidence
in your feedback on a scale from 1-10, where 10 indicates the
highest level of confidence.

[assistant] I would rate my confidence in my feedback as a 10.\n\
nFeedback on the other agent’s reasoning process:\n1. The agent
correctly starts by determining the total number of hours

required to paint all 12 rooms. Each room takes 7 hours to
paint, so 7 x 12 = 84 hours is the correct total.\n2. The agent
acknowledges that the painter has already finished painting 5

rooms and calculates the total number of hours spent on those 5
rooms as 7 x 5 = 35. This calculation is correct.\n3. However,
the agent makes a calculation error when subtracting the hours
already spent from the total hours required. The correct

calculation should be 84 - 35 = 49, not 84 - (7 x 5) = 49. \n4.
The agent correctly concludes that the painter will take 49

more hours to paint the rest of the rooms.\n\nOverall, the
agent’s reasoning process is mostly correct, but there is a
calculation error in subtracting the hours already spent from
the total hours required.

[...]
[assistant] Based on the given information and considering the

correct solutions and feedback provided by the other agents,
the answer to the math problem is that the painter will take an
additional 14 hours to paint the rest of the rooms.\n\

nTherefore, the final answer is \\boxed{14}.
[...]
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D.12 EXAMPLE FOR FM-1.4 LOSS OF CONVERSATION HISTORY

• MAS: HyperAgent
• Task: Solving a scikit-learn bug.
• What happened: The example code provided at the beginning requires lightgbm. The

agents decides to substitute this with a model inside scikit-learn. But then the agent comes
back to lightgbm as the last interactions do not exist.

• Where it went wrong:
[...]
HyperAgent_scikit-learn__scikit-learn-25570 - INFO - Inner-

Executor-Assistant’s Response: Thought: Let’s run the provided
code snippet to test the modified ‘ColumnTransformer‘
implementation.

Action:
‘‘‘bash
python -c \"
import numpy as np
import pandas as pd
from lightgbm import LGBMClassifier
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import RobustScaler
[...]
HyperAgent_scikit-learn__scikit-learn-25570 - INFO - Inner-

Executor-Assistant’s Response: Ah, I see the issue - the code
you provided requires the ‘lightgbm‘ library, which is not
installed in the current environment. Let me modify the code to
use a library that is more readily available.

[...]
import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import RobustScaler
[...]
HyperAgent_scikit-learn__scikit-learn-25570 - INFO - Inner-

Executor-Assistant’s Response: It seems there is an issue with
the scikit-learn installation in the current environment. The
error message indicates that the ‘sklearn.__check_build.
_check_build‘ module is not found, which suggests that the
scikit-learn package has not been built correctly.

[...]
‘‘‘bash
pip uninstall scikit-learn -y
pip install scikit-learn
‘‘‘
[...]
HyperAgent_scikit-learn__scikit-learn-25570 - INFO - Inner-

Executor-Assistant’s Response: Excellent, the scikit-learn
package has been successfully reinstalled. Let’s now try
running the modified test code again.

Action:
‘‘‘bash
python -c \"
import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
from sklearn.pipeline import Pipeline
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from sklearn.preprocessing import RobustScaler
[...]
‘‘‘
HyperAgent_scikit-learn__scikit-learn-25570 - INFO - Executor->

Planner: The issue here is that the ‘lightgbm‘ library is not
installed, and the ‘scikit-learn‘ installation was not built
correctly. We have already resolved the ‘scikit-learn‘ issue by
reinstalling it. However, we still need to install the ‘

lightgbm‘ library.
Here’s the modified code snippet to install ‘lightgbm‘:
‘‘‘bash
pip install lightgbm
‘‘‘
[...]

D.13 EXAMPLE FOR FM-3.1 PREMATURE TERMINATION

• MAS: HyperAgent
• Task: Solving a Flask bug.
• What happened: The editor claimed an edit that was not made.
• Where it went wrong:
[...]
HyperAgent_pallets__flask-4992 - INFO - Inner-Editor-Assistant’s

Response: Thought: Now that I have located the ‘from_file()‘
method, I can proceed with making the requested modifications.
I’ll use the editor function to replace the entire method with
the updated version.

Action:
‘‘‘python
patch = ’’’

def from_file(
self,
filename: str,
load: t.Callable[[t.IO[t.Any]], t.Mapping],
silent: bool = False,
mode: str = \"r\",

) -> bool:
[...]
HyperAgent_pallets__flask-4992 - INFO - Inner-Editor-Assistant’s

Response: Thought: The modification has been successfully
applied to the ‘from_file()‘ method in the ‘src/flask/config.py
‘ file. The changes include [...]

[...]
HyperAgent_pallets__flask-4992 - INFO - Inner-Executor-Assistant’s

Response: Thought: The test script failed because the ‘
from_file()‘ method does not recognize the ‘mode‘ parameter,
indicating that the modification to the method has not been
applied yet. We need to ensure that the method has been updated
correctly before running the test script again.

[...]
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E APPROACHES AND STRATEGIES TO IMPROVE MASS

In this section, we discuss some approaches to make MASs more robust to failures. We categorize
these strategies into two main groups: (i) tactical approaches, (ii) structural strategies. Tactical
approaches involve straightforward modifications tailored for specific failure modes, such as im-
proving the prompts, topology of the network of agents, and conversation management. In Section
F, we experiment with such approaches in two case studies, and demonstrate that the effectiveness
of these methods is not consistent. This leads us to consider a second category of strategies that are
more comprehensive methods with system-wide impacts: strong verification, enhanced communi-
cation protocols, uncertainty quantification, and memory and state management. These strategies
require more in-depth study and meticulous implementation, and remain open research topics for
future exploration. See Table 3 for our proposed mapping between different solution strategies and
the failure categories.

E.1 TACTICAL APPROACHES

This category includes strategies related to improving prompts and optimizing agent organization
and interactions. The prompts of MAS agents should provide clear description of instructions,
and the role of each agent should be clearly specified (see G.2 as an example) He et al. (2024a);
Talebirad & Nadiri (2023). Prompts can also clarify roles and tasks while encouraging proactive
dialogue. Agents can re-engage or retry if inconsistencies arise, as shown in Appendix G.5 Chan
et al. (2023). After completing a complex multi-step task, add a self-verification step to the prompt
to retrace the reasoning by restating solutions, checking conditions, and testing for errors Weng et al.
(2023). However, it may miss flaws, rely on vague conditions, or be impractical Stoica et al. (2024).
Moreover, clear role specifications can be reinforced by defining conversation patterns and setting
termination conditions Wu et al. (2024a); LangChain (2024). A modular approach with simple,
well-defined agents, rather than complex, multitasked ones, enhances performance and simplifies
debugging Anthropic (2024b). The group dynamics also enable other interesting possibilities of
multi-agent systems: different agents can propose various solutions Yao et al. (2024a), discuss their
assumptions, and findings (cross-verifications) Haji et al. (2024). For instance, in Xu et al. (2023),
a multi-agent strategy simulates the academic peer review process to catch deeper inconsistencies.
Another set of tactical approaches for cross verifications consist in multiple LLM calls with ma-
jority voting or resampling until verification Stroebl et al. (2024); Chen et al. (2024a). However,
these seemingly straightforward solutions often prove inconsistent, echoing our case studies’ find-
ings. This underscores the need for more robust, structural strategies, as discussed in the following
sections.

E.2 STRUCTURAL STRATEGIES

Apart from the tactical approaches we discussed above, there exist a need for more involved solu-
tions that will shape the structure of the MAS at hand. We first observe the critical role of verification
processes and verifier agents in multi-agent systems. Our annotations reveal that weak or inadequate
verification mechanisms were a significant contributor to system failures. While unit test generation
aids verification in software engineering Jain et al. (2024), creating a universal verification mech-
anism remains challenging. Even in coding, covering all edge cases is complex, even for experts.
Verification varies by domain: coding requires thorough test coverage, QA demands certified data
checks Peng et al. (2023), and reasoning benefits from symbolic validation Kapanipathi et al. (2020).
Adapting verification across domains remains an ongoing research challenge.

A complementary strategy to verification is establishing a standardized communication protocol Li
et al. (2024b). LLM-based agents mainly communicate via unstructured text, leading to ambiguities.
Clearly defining intentions and parameters enhances alignment and enables formal coherence checks
during and after interactions. Niu et al. (2021) introduce Multi-Agent Graph Attention, leveraging a
graph attention mechanism to model agent interactions and enhance coordination. Similarly, Jiang
& Lu (2018) propose Attentional Communication, enabling agents to selectively focus on relevant
information. Likewise, Singh et al. (2018) develop a learned selective communication protocol to
improve cooperation efficiency.
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Another important research direction is fine-tuning MAS agents with reinforcement learning.
Agents can be trained with role-specific algorithms, rewarding task-aligned actions and penaliz-
ing inefficiencies. MAPPO Yu et al. (2022) optimizes agents’ adherence to defined roles. Similarly,
SHPPO Guo et al. (2024b) uses a latent network to learn strategies before applying a heterogeneous
decision layer. Optima Chen et al. (2024b) further enhances communication efficiency and task
effectiveness through iterative reinforcement learning.

On a different note, incorporating probabilistic confidence measures into agent interactions can sig-
nificantly enhance decision-making and communication reliability. Drawing inspiration from the
framework proposed by Horvitz et al. Horvitz (1999), agents can be designed to take action only
when their confidence exceeds a predefined threshold. Conversely, when confidence is low, agents
can pause to gather additional information. Furthermore, the system could benefit from adaptive
thresholding, where confidence thresholds are dynamically adjusted.

Although often seen as a single-agent property, memory and state management are crucial for multi-
agent interactions, which can enhance context understanding and reduces ambiguity in communi-
cation. However, most research focuses on single-agent systems. MemGPT Packer et al. (2023)
introduces OS-inspired context management for an extended context window, while TapeAgents
Chakraborty & Purkayastha (2023) use a structured, replayable log (“tape”) to iteratively document
and refine agent actions, facilitating dynamic task decomposition and continuous improvement.

Table 3: Solution Strategies vs. Failure Category in Multi-Agent Systems

Failure Category Tactical Approaches Structural Strategies

Specification Issues Clear role/task definitions, Engage in
further discussions, Self-verification,
Conversation pattern design

Comprehensive verification, Confi-
dence quantification

Inter-Agent
Misalignment

Cross-verification, Conversation pat-
tern design, Mutual disambiguation,
Modular agents design

Standardized communication protocols,
Probabilistic confidence measures

Task Verification Self-verification, Cross-verification,
Topology redesign for verification

Comprehensive verification & unit test
generation

F INTERVENTION CASE STUDIES

In this section, we present the two case studies where we apply some of the tactical approaches.
We also present the usage of MAST as a debugging tool, where we measure the failure modes in the
system before applying any of the interventions, and then after applying the interventions we discuss
below, and show that MAST can guide the intervention process as well as capture the improvements
of augmentations.

F.1 CASE STUDY 1: AG2 - MATHCHAT

In this case study, we use the MathChat scenario implementation in AG2 Wu et al. (2023) as our
baseline, where a Student agent collaborates with an Assistant agent capable of Python code execu-
tion to solve problems. For benchmarking, we randomly select 200 exercises from the GSM-Plus
dataset Li et al. (2024a), an augmented version of GSM8K Cobbe et al. (2021) with various adver-
sarial perturbations. The first strategy is to improve the original prompt with a clear structure and
a new section dedicated to the verification. The detailed prompts are provided in Appendices G.1
and G.2. The second strategy refines the agent configuration into a more specialized system with
three distinct roles: a Problem Solver who solves the problem using a chain-of-thought approach
without tools (see Appendix G.3); a Coder who writes and executes Python code to derive the final
answer (see Appendix G.4); a Verifier who reviews the discussion and critically evaluate the solu-
tions, either confirming the answer or prompting further debate (see Appendix G.5). In this setting,
only the Verifier can terminate the conversation once a solution is found. See Appendix G.6 for an
example of conversation in this setting. To assess the effectiveness of these strategies, we conduct
benchmarking experiments across three configurations (baseline, improved prompt, and new topol-
ogy) using two different LLMs (GPT-4 and GPT-4o). We also perform six repetitions to evaluate the
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consistency of the results. Table 4 summarizes the results. The second column of Table 4 show that
with GPT-4, the improved prompt with verification significantly outperforms the baseline. However,
the new topology does not yield the same improvement. A Wilcoxon test returned a p-value of 0.4,
indicating the small gain is not statistically significant. With GPT-4o (the third column of Table 4),
the Wilcoxon test yields a p-value of 0.03 when comparing the baseline to both the improved prompt
and the new topology, indicating statistically significant improvements. These results suggest that
refining prompts and defining clear agent roles can reduce failures. However, these strategies are not
universal, and their effectiveness varies based on factors such as the underlying LLM.

F.2 CASE STUDY 2: CHATDEV

ChatDev Qian et al. (2023) simulates a multiagent software company where different agents have
different role specifications, such as a CEO, a CTO, a software engineer and a reviewer, who try to
collaboratively solve a software generation task. In an attempt to address the challenges we observed
frequently in the traces, we implement two different interventions. Our first solution is refining role-
specific prompts to enforce hierarchy and role adherence. For instance, we observed cases where the
CPO prematurely ended discussions with the CEO without fully addressing constraints. To prevent
this, we ensured that only superior agents can finalize conversations. Additionally, we enhanced
verifier role specifications to focus on task-specific edge cases. Details of these interventions are in
Section H. The second solution attempt involved a fundamental change to the framework’s topology.
We modified the framework’s topology from a directed acyclic graph (DAG) to a cyclic graph. The
process now terminates only when the CTO agent confirms that all reviews are properly satisfied,
with a maximum iteration cutoff to prevent infinite loops. This approach enables iterative refinement
and more comprehensive quality assurance. We test our interventions in two different benchmarks.
The first one of them is a custom generated set of 32 different tasks (which we call as ProgramDev-
v0, which consists of slightly different questions than the ProgamDev dataset we discussed in the
main body of the paper) where we ask the framework to generate programs ranging from “Write
me a two-player chess game playable in the terminal” to ”Write me a BMI calculator”. The other
benchmark is the HumanEval task of OpenAI. We report our results in Table 4. Notice that even
though our interventions are successful in improving the performance of the framework in different
tasks, they do not constitute substantial improvements, and more comprehensive solutions as we lay
out in Section E.2 are required.

Table 4: Case Studies Accuracy Comparison. This table presents the performance accuracies (in
percentages) for various scenarios in our case studies. The header rows group results by strategy:
AG2 and ChatDev. Under AG2, GSM-Plus results are reported using GPT-4 and GPT-4o; under
ChatDev, results for ProgramDev and HumanEval are reported. Each row represents a particular
configuration: baseline implementation, improved prompts, and a redesigned agent topology.

Configuration AG2 ChatDev

GSM-Plus (w/ GPT-4) GSM-Plus (w/ GPT-4o) ProgramDev-v0 HumanEval

Baseline 84.75 ± 1.94 84.25 ± 1.86 25.0 89.6
Improved prompt 89.75 ± 1.44 89.00 ± 1.38 34.4 90.3
New topology 85.50 ± 1.18 88.83 ± 1.51 40.6 91.5

F.3 EFFECT OF THE INTERVENTIONS ON MAST

After carrying out the aforementioned interventions, we initially inspect the task completion rates
as in Table 4. However, MAST offers us the opportunity to look beyond the task completion rates,
and we can investigate the effects of these interventions on the failure mode distribution on these
MASs (AG2 and ChatDev). As illustrated in Figures 8 and 9, we observe that both of these inter-
ventions cause a decrease across the different failure modes observed, and it is possible to conclude
that topology-based changes are more effective than prompt-based changes for both systems. More-
over, this displays another usage of MAST, which is as well as an analysis tool after execution, it
can serve as a debugging tool for future improvements as it shows which failure modes particular
augmentations to the system can solve or miss, guiding future intervention decisions.
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Figure 8: Effect of prompt and topology interventions on AG2 as captured by MAST using the
automated LLM-as-a-Judge

Figure 9: Effect of prompt and topology interventions on ChatDev as captured by MAST using the
automated LLM-as-a-Judge

G AG2 - MATHCHAT SCENARIO

G.1 INITIAL PROMPT

Let’s use Python to solve a math problem.

Query requirements:
You should always use the ’print’ function for the output and use

fractions/radical forms instead of decimals.
You can use packages like sympy to help you.
You must follow the formats below to write your code:

‘‘‘python
# your code
‘‘‘

First state the key idea to solve the problem. You may choose from three
ways to solve the problem:

Case 1: If the problem can be solved with Python code directly, please
write a program to solve it. You can enumerate all possible
arrangements if needed.

Case 2: If the problem is mostly reasoning, you can solve it by yourself
directly.

Case 3: If the problem cannot be handled in the above two ways, please
follow this process:

1. Solve the problem step by step (do not over-divide the steps).
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2. Take out any queries that can be asked through Python (for example,
any calculations or equations that can be calculated).

3. Wait for me to give the results.
4. Continue if you think the result is correct. If the result is invalid

or unexpected, please correct your query or reasoning.

After all the queries are run and you get the answer, put the answer in
\\boxed{}.

Problem:

G.2 STRUCTURED PROMPT WITH VERIFICATION SECTION

Let’s use Python to tackle a math problem effectively.

Query Requirements:
1. Output Format: Always utilize the print function for displaying

results. Use fractions or radical forms instead of decimal numbers.
2. Libraries: You are encouraged to use packages such as sympy to

facilitate calculations.

Code Formatting:
Please adhere to the following format when writing your code:
‘‘‘python
# your code
‘‘‘

Problem-Solving Approach:
First, articulate the key idea or concept necessary to solve the problem.

You can choose from the following three approaches:
Case 1: Direct Python Solution. If the problem can be solved directly

using Python code, write a program to solve it. Feel free to
enumerate all possible arrangements if necessary.

Case 2: Reasoning-Based Solution. If the problem primarily involves
reasoning, solve it directly without coding.

Case 3: Step-by-Step Process. If the problem cannot be addressed using
the above methods, follow this structured approach:

1. Break down the problem into manageable steps (avoid excessive
granularity).

2. Identify any queries that can be computed using Python (e.g.,
calculations or equations).

3. Await my input for any results obtained.
4. If the results are valid and expected, proceed with your solution. If

not, revise your query or reasoning accordingly.

Handling Missing Data:
If a problem is deemed unsolvable due to missing data, return \boxed{’

None’}.
Ensure that only numerical values are placed inside the \boxed{}; any

accompanying words should be outside.

Verification Steps:
Before presenting your final answer, please complete the following steps:
1. Take a moment to breathe deeply and ensure clarity of thought.
2. Verify your solution step by step, documenting each part of the

verification process in a designated VERIFICATION section.
3. Once you are confident in your verification and certain of your answer

, present your final result in the format \boxed{_you_answer_},
ensuring only numbers are inside.

Problem Statement:

G.3 AGENT PROBLEM SOLVER’S SYSTEM PROMPT
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You are Agent Problem Solver, and your role is to collaborate with other
agents to address various challenges.

For each problem, please follow these steps:
1. **Document Your Solution**: Write your solution step by step, ensuring

it is independent of the solutions provided by other agents.
2. **Engage in Discussion**: Once you have outlined your solution,

discuss your approach and findings with the other agents.

G.4 AGENT CODER’S SYSTEM PROMPT

You are Agent Code Executor. You can solve problems only writing
commented Python code.

For each problem, please follow these steps:
1. **Develop Your Solution**: Write your solution in Python code,

detailing each step independently from the solutions provided by
other agents.

2. **Utilize SymPy**: Feel free to use the SymPy package to facilitate
calculations and enhance your code’s efficiency.

3. **Display Results**: Ensure that you **print the final result at the
end of your Python code** (e.g., ‘print(_result_)‘).

4. **Engage in Discussion**: After obtaining the result from your Python
code, discuss your findings with the other agents.

Always format your Python code within:
‘‘‘python
# your code here
print(_result_)
‘‘‘

If you wish to execute your code, please indicate this by stating "
SUGGESTED NEXT SPEAKER: Agent Code Executor" at the end of your
message.

G.5 AGENT VERIFIER’S SYSTEM PROMPT

You are Agent Verifier.

Your role is to critically evaluate the solutions proposed by other
agents step by step and provide a final solution.

1. **Solution Requirement**: Before making any decisions, ensure you have
received solutions from both Agent Code Executor and Agent Problem

Solver. If either proposed solution is missing, do not draw any
conclusions; instead, suggest the next speaker by stating: SUGGESTED
NEXT SPEAKER: _suggested_agent_name_.

2. **Avoid Assumptions**: Pay attention to the variables provided in the
original problem statement versus those assumed by the agents. **
Assumed values are not valid for the solution** and can lead to
inaccuracies. Never base your solution on assumed values. Always base
your solution on the explicitly given variables to ensure

correctness. If a problem is deemed unsolvable due to missing
information, return: **SOLUTION_FOUND \\boxed{’None’}**.

3. **Evaluating Conflicting Solutions**: If different answers are
presented during the discussion, choose the most appropriate solution
based on your evidence or initiate further discussion to clarify.

4. **Final Solution Declaration**: When you are confident about the final
solution, return it as follows: **SOLUTION_FOUND \\boxed{

_solution_value_here_}**. Ensure that only numerical values are
placed inside the \\boxed{}; any accompanying text should be outside.
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G.6 AG2 - MATHCHAT: AN EXAMPLE OF CONVERSATION WITH THREE SPECIALIZED
AGENTS

[Agent Verifier]
Sara wants to buy herself a new jacket and 2 pairs of shoes. The jacket

she wants costs $120 and each pair of shoes cost $100. Sara babysits
the neighbor’s kids 10 times, earning $5 each time she babysits them.
Her parents pay her $10 each time she mows the lawn. If Sara already
had $100 saved before she started babysitting, how many times must

she mow the lawn before she can afford the jacket and shoes?

[Agent Problem Solver]
First, let’s break down the problem:,
- The costs are: $120 for the jacket, $100 for each pair of shoes, and

she wants 2 pairs. So the total cost is $120 + 2*$100 = $320,
- Sara earns $5 each time she babysits, and she has done this 10 times,

so she has earned $5*10 = $50 from babysitting.
- Sara also has $100 saved from before.
- The amount Sara has after babysitting and her savings is $100 + $50 =

$150.
- The amount Sara still needs is the total cost minus what she has, which

is $320 - $150 = $170.
- Sara earns $10 for every time she mows the lawn, to determine how many

times she must do this, we divide the amount she needs by the amount
she earns each time: $170 / $10 = 17 times.

So, Sara must mow the lawn 17 times to afford the jacket and shoes.

[Agent Verifier]
SUGGESTED NEXT SPEAKER: Agent_Code_Executor

[Agent Coder]
Sure, I’ll write a Python code for the calculation.
‘‘‘python
# cost of items
jacket_cost = 120
shoes_cost = 100 * 2 # since she wants 2 pairs of shoes
# total cost of items
total_cost = jacket_cost + shoes_cost
# earnings from babysitting
babysitting_earning = 5 * 10 # $5 each time, done 10 times
# initial money
initial_money = 100
# total money after babysitting
total_money_after_babysitting = initial_money + babysitting_earning
# amount still needed
amount_needed = total_cost - total_money_after_babysitting
# how much sara earns from mowing each time
mowing_earning = 10
# calculate how many times she needs to mow the lawn
num_times_mowing = amount_needed // mowing_earning # using integer

division for whole number of times
# print result
print(num_times_mowing)
‘‘‘
When you execute this, the result should be 17, confirming Agent Problem

Solver’s solution.

[Agent Verifier]
exitcode: 0 (execution succeeded)
Code output: 17

[Agent Problem Solver]
Agent Code Executor’s Python program has provided the solution - Sara

must mow the lawn 17 times to afford the jacket and shoes, which
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supports Agent Problem Solver’s proposal. Both paths lead us to the
same conclusion, which approves the accuracy of our solution.

Great team work, Agents.

[Agent Verifier]
SOLUTION_FOUND \\boxed{17}
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H CHATDEV PROMPT INTERVENTIONS

H.1 INITIAL PROMPT

H.1.1 PROGRAMMER

"{chatdev_prompt}",
"You are Programmer. we are both working at ChatDev. We share a common

interest in collaborating to successfully complete a task
assigned by a new customer.",

"You can write/create computer software or applications by providing a
specific programming language to the computer. You have extensive
computing and coding experience in many varieties of programming
languages and platforms, such as Python, Java, C, C++, HTML, CSS,
JavaScript, XML, SQL, PHP, etc,.",

"Here is a new customer’s task: {task}.",
"To complete the task, you must write a response that appropriately

solves the requested instruction based on your expertise and
customer’s needs."

H.1.2 CODE REVIEWER

"{chatdev_prompt}",
"You are Code Reviewer. we are both working at ChatDev. We share a

common interest in collaborating to successfully complete a task
assigned by a new customer.",

"You can help programmers to assess source codes for software
troubleshooting, fix bugs to increase code quality and robustness,
and offer proposals to improve the source codes.",

"Here is a new customer’s task: {task}.",
"To complete the task, you must write a response that appropriately

solves the requested instruction based on your expertise and
customer’s needs."

H.1.3 SOFTWARE TEST ENGINEER

"{chatdev_prompt}",
"You are Software Test Engineer. we are both working at ChatDev. We

share a common interest in collaborating to successfully complete
a task assigned by a new customer.",

"You can use the software as intended to analyze its functional
properties, design manual and automated test procedures to
evaluate each software product, build and implement software
evaluation test programs, and run test programs to ensure that
testing protocols evaluate the software correctly.",

"Here is a new customer’s task: {task}.",
"To complete the task, you must write a response that appropriately

solves the requested instruction based on your expertise and
customer’s needs."

H.1.4 CHIEF EXECUTIVE OFFICER

"{chatdev_prompt}",
"You are Chief Executive Officer. Now, we are both working at ChatDev

and we share a common interest in collaborating to successfully
complete a task assigned by a new customer.",

"Your main responsibilities include being an active decision-maker on
users’ demands and other key policy issues, leader, manager, and
executor. Your decision-making role involves high-level decisions
about policy and strategy; and your communicator role can involve
speaking to the organization’s management and employees.",

"Here is a new customer’s task: {task}.",

38



Published at Building Trust Workshop at ICLR 2025

"To complete the task, I will give you one or more instructions, and
you must help me to write a specific solution that appropriately
solves the requested instruction based on your expertise and my
needs."

H.1.5 CHIEF TECHNOLOGY OFFICER

"{chatdev_prompt}",
"You are Chief Technology Officer. we are both working at ChatDev. We

share a common interest in collaborating to successfully complete
a task assigned by a new customer.",

"You are very familiar to information technology. You will make high-
level decisions for the overarching technology infrastructure that
closely align with the organization’s goals, while you work
alongside the organization’s information technology (\"IT\") staff
members to perform everyday operations.",

"Here is a new customer’s task: {task}.",
"To complete the task, You must write a response that appropriately

solves the requested instruction based on your expertise and
customer’s needs."

H.2 MODIFIED SYSTEM PROMPTS

H.2.1 PROGRAMMER

"{chatdev_prompt}",
"You are a Programmer at ChatDev. Your primary responsibility is to

develop software applications by writing code in various
programming languages. You have extensive experience in languages
such as Python, Java, C++, JavaScript, and others. You translate
project requirements into functional and efficient code.",

"You report to the technical lead or CTO and collaborate with other
programmers and team members.",

"Here is a new customer’s task: {task}.",
"To complete the task, you will write code to implement the required

functionality, ensuring it meets the customer’s specifications
and quality standards."

H.2.2 SOFTWARE TEST ENGINEER

"{chatdev_prompt}",
"You are a Software Test Engineer at ChatDev. Your primary

responsibility is to design and execute tests to ensure the
quality and functionality of software products. You develop test
plans, create test cases, and report on software performance. You
identify defects and collaborate with the development team to

resolve them.",
"You need to ensure that the software is working as expected and

meets the customer’s requirements.",
"Check the edge cases and special cases and instances for the task we

are doing. Do not miss any cases. Do not suffice with generic
and superficial cases.",

"You report to the technical lead or CTO and collaborate with
programmers and code reviewers.",

"Here is a new customer’s task: {task}.",
"To complete the task, you will design and implement test procedures,

report issues found, and verify that the software meets the
customer’s requirements."

H.2.3 CODE REVIEWER
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"{chatdev_prompt}",
"You are a Code Reviewer at ChatDev. Your primary responsibility is

to review and assess source code written by programmers. You
ensure code quality by identifying bugs, optimizing performance,
and enforcing coding standards. You provide constructive feedback
to improve software robustness.",

"You report to the technical lead or CTO and work closely with
programmers.",

"Here is a new customer’s task: {task}.",
"To complete the task, you will review the code submitted by

programmers, identify issues, and suggest improvements to meet
quality standards."

H.2.4 CHIEF EXECUTIVE OFFICER

"{chatdev_prompt}",
"You are the Chief Executive Officer (CEO) of ChatDev. Your primary

responsibilities include making high-level decisions about policy
and strategy, overseeing the overall operations and resources of
ChatDev, and acting as the main point of communication between

the board and corporate operations.",
"As the CEO, you have the authority to make final decisions and

terminate conversations when appropriate.",
"Here is a new customer’s task: {task}.",
"To complete the task, you will provide strategic guidance and

instructions to your team, ensuring that the solution meets the
customer’s needs and aligns with the company’s objectives."

H.2.5 CHIEF TECHNOLOGY OFFICER

"{chatdev_prompt}",
"You are the Chief Technology Officer (CTO) of ChatDev. Your primary

responsibilities include overseeing all technical aspects of the
company. You establish the company’s technical vision and lead
technological development, ensuring that technology resources
align with the company’s business needs.",

"You report to the CEO and collaborate with other executives to
integrate technology into the company’s strategy.",

"Here is a new customer’s task: {task}.",
"To complete the task, you will develop the technical strategy and

guide your team to ensure the solution meets the customer’s needs
and adheres to technological standards."

40


	Introduction
	Related Work
	Challenges in Agentic Systems
	Design Principle for Agentic Systems
	Failures Taxonomization in LLM Systems

	Study Methodology
	Data Collection and Analysis
	Interannotator Agreement Study and Iterative Refinement
	LLM Annotator

	Study Findings
	Multi-Agent System Failure Taxonomy
	MAST Effectiveness Evaluation
	Open Challenges Beyond Correctness

	Towards better Multi-Agent LLM Systems
	MAST as a Practical Development Tool
	Beyond Model Capabilities: The Primacy of System Design

	Conclusion
	MAST Failure Categories: Deep Dive
	FC1. Specification Issues
	FC2. Inter-Agent Misalignment
	FC3. Task Verification

	Multi-Agent Systems studied with human-annotated traces
	MAS with at least 30 human annotated traces
	MAS with at least 5 human annotated traces

	MAS Failure Modes Correlation
	Examples of Different Failure Modes
	Example for FM-1.3 Step repetition, FM-2.1 Conversation reset, FM-1.2 Disobey role specification
	Example for FM-1.5 Unaware of stopping conditions
	Example for FM-2.3 Task derailment
	Example for FM-2.2 Fail to ask for clarification
	Example for FM-3.2 No or incomplete verification, 
	Example for FM-2.3 Task derailment, FM-3.2 No or incomplete verification.
	Example for FM-3.2 No or incomplete verification
	Example for FM-1.2 Disobey role specification, FM-2.4 Information withholding
	Example for FM-1.1 Disobey task specification, FM-3.3 Incorrect verification
	Example for FM-2.6 Reasoning-action mismatch
	Example for FM-2.5 Ignored other agent's input, FM-3.3 Incorrect verification, 
	Example for FM-1.4 Loss of conversation history
	Example for FM-3.1 Premature termination 

	Approaches and strategies to improve MASs
	Tactical Approaches
	Structural Strategies

	Intervention Case Studies
	Case Study 1: AG2 - MathChat
	Case Study 2: ChatDev
	Effect of the interventions on MAST

	AG2 - MathChat Scenario
	Initial prompt
	Structured prompt with verification section
	Agent Problem Solver's System Prompt
	Agent Coder's System Prompt
	Agent Verifier's System Prompt
	AG2 - MathChat: an example of conversation with three specialized agents

	ChatDev Prompt Interventions
	Initial Prompt
	Programmer
	Code Reviewer
	Software Test Engineer
	Chief Executive Officer
	Chief Technology Officer

	Modified System Prompts
	Programmer
	Software Test Engineer
	Code Reviewer
	Chief Executive Officer
	Chief Technology Officer



