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Abstract

Transforming recorded videos into concise and001
accurate textual summaries is a growing chal-002
lenge in multimodal learning. This paper intro-003
duces VISTA, a dataset specifically designed004
for video-to-text summarization in scientific005
domains. VISTA contains 18,599 recorded AI006
conference presentations paired with their cor-007
responding paper abstracts. We benchmark the008
performance of state-of-the-art large models009
and apply a plan-based framework to better010
capture the structured nature of abstracts. Both011
human and automated evaluations confirm that012
explicit planning enhances summary quality013
and factual consistency. However, a consider-014
able gap remains between models and human015
performance, highlighting the challenges of016
scientific video summarization.1017

1 Introduction018

Large multimodal models (LMMs), which in-019

tegrate components from different modalities020

through cross-modal alignment training (Koh et al.,021

2023; Cheng et al., 2023; Li et al., 2024a; Ahn022

et al., 2024; Fu et al., 2025; Wu et al., 2025), have023

achieved considerable progress in video-to-text024

summarization tasks for general-purpose content025

such as YouTube, movies, and news videos (Li026

et al., 2020; Lin et al., 2023; Krubiński and Pecina,027

2023; Hua et al., 2024; Chen et al., 2024a; Zhang028

et al., 2024a; Qiu et al., 2024; Patil et al., 2024; Ma-029

hon and Lapata, 2024a,b). However, many recent030

studies have highlighted that these LMMs exhibit031

reduced performance in scientific contexts, partic-032

ularly when processing technical terminology and033

scientific visual elements like figures and tables (Li034

et al., 2024c; Lu et al., 2024; Yue et al., 2024; Hu035

et al., 2024a; Bai et al., 2024; Liang et al., 2024;036

Patil et al., 2024; Huang et al., 2024). This per-037

formance gap might be largely attributed to the038

1Code and dataset are available here.
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Despite their impressive performance on diverse 
tasks, large language models (LMs) [...], implying 
the difficulty of encoding a wealth of world 
knowledge in their parameters. This paper aims to 
understand LMs’ strengths and [...], by [...]. We 
find that LMs struggle with less popular factual 
knowledge, and [...]. Scaling, on the other hand, 
mainly improves memorization of popular 
knowledge, and fails [...]. Based on those findings, 
we devise a new method for retrieval-
augmentation[...] memories when necessary.

Figure 1: An example from VISTA: a video paired
with its abstract. The paper (Mallen et al., 2023) was
presented at ACL 2023 and received the Best Video
Recordings award.

absence of specialized training datasets for multi- 039

modal scientific content (Chen et al., 2024c; Hu 040

et al., 2024b; Pramanick et al., 2024; Zhang et al., 041

2024b). 042

Thus, we introduce VISTA (Video to Scientific 043

Abstract), an English dataset for video-to-text sum- 044

marization in scientific domains. VISTA consists 045

of 18,599 aligned pairs of conference presentation 046

recordings and their corresponding paper abstracts, 047

collected from leading conferences in computa- 048

tional linguistics (ACL Anthology including ACL, 049

EMNLP, NAACL, EACL, Findings of *ACL) and 050

machine learning (ICML and NeurIPS). Figure 1 051

illustrates an example selected from VISTA: a con- 052
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ference presentation video (top) paired with the053

abstract of the corresponding paper (bottom).054

We benchmark VISTA using several state-of-055

the-art (SOTA) large models, including closed-056

source LMMs (Claude 3.5 Sonnet, Gemini057

2.0, GPT-o1), as well as video-specific open-058

source LMMs (Video-LLaMA, Video-ChatGPT,059

mPLUG-Owl3, etc.; Zhang et al., 2023; Maaz060

et al., 2024; Lin et al., 2024a; Ye et al., 2024;061

Li et al., 2024b, 2025). For comparison, we062

also include strong baselines: the text-to-text063

LLaMA-3.1 (Touvron et al., 2023) and the audio-to-064

text Qwen2-Audio (Chu et al., 2024). Experiments065

across zero-shot, QLoRA, and full fine-tuning set-066

tings reveal that in-domain fine-tuning improves067

summarization performance across different large068

models, and video-based models generally outper-069

form text- and audio-based models on our dataset.070

However, simpler end-to-end approaches may of-071

ten struggle to capture the underlying structure of072

scientific abstracts.073

To address this, we explore a plan-based ap-074

proach, which has been shown to improve coher-075

ence and factual grounding through a predefined076

planning component (Liu and Chen, 2021; Narayan077

et al., 2021, 2023). Unlike direct end-to-end gen-078

eration, plan-based method could leverage the fact079

that scientific abstracts often follow a well-defined080

format (Takeshita et al., 2024). By explicitly mod-081

eling the latent structure of the abstract through a082

sequence of intermediate plan questions, the sum-083

mary generation process is better guided. Empiri-084

cal results confirm that the plan-based method out-085

performs existing SOTA models in terms of sum-086

mary quality and factual accuracy. Nevertheless,087

despite these improvements, all candidate models088

still struggle with hallucinations and factual errors.089

In summary, our contributions are as follows:090

• We present VISTA, a novel large-scale multi-091

modal dataset with 18,599 video-abstract pairs,092

tailored for summarizing scientific presentations093

from video recordings.094

• We establish benchmark performance on VISTA095

through a comprehensive evaluation of leading096

large (language/audio/multimodal) models.097

• We apply a plan-based framework that improves098

upon SOTA video LMMs on summary quality099

and factual accuracy.100

• We conduct error analysis, case studies, and hu-101

man evaluations to identify the pivotal issues in102

the model-generated summaries.103

2 Related Work 104

Video-to-Text Summarization generates coher- 105

ent summaries by integrating multimodal infor- 106

mation (Hua et al., 2024), supported by datasets 107

like MSS (Li et al., 2017), VideoXum (Lin 108

et al., 2024b), MMSum (Qiu et al., 2024), Hier- 109

archical3D (Papalampidi and Lapata, 2023), and 110

LfVS-T (Argaw et al., 2024), spanning tasks from 111

instructional videos to general web content (Li 112

et al., 2017; Zhou et al., 2018; Li et al., 2019, 2020; 113

Liu and Wan, 2021; Fu et al., 2021; Krubiński and 114

Pecina, 2023; Han et al., 2023; He et al., 2023; 115

Hua et al., 2024; Islam et al., 2024; Qiu et al., 116

2024). Technical advancements include hierarchi- 117

cal attention models (Sanabria et al., 2018), ex- 118

tractive methods using multimodal features (Cho 119

et al., 2021; Krubiński and Pecina, 2023), and hy- 120

brid extractive-abstractive frameworks (Ramakr- 121

ishnan and Ngan, 2022; Papalampidi and Lapata, 122

2023). Transformer-based systems have further im- 123

proved performance (Krubiński and Pecina, 2023; 124

Li et al., 2020; Shang et al., 2021; Mahon and Lap- 125

ata, 2024a). However, challenges in summarizing 126

academic videos remain under-explored. 127

Scientific Text Summarization condenses com- 128

plex scholarly content into concise formats (Ca- 129

chola et al., 2020; Ju et al., 2021; Sotudeh and Go- 130

harian, 2022; Liu and Demberg, 2023), supported 131

by datasets like TalkSumm (Lev et al., 2019) for 132

academic video transcripts, SumSurvey (Liu et al., 133

2024b) for survey papers, ACLSum (Takeshita 134

et al., 2024) for ACL discourse, and SciNews (Liu 135

et al., 2024a) for simplifying research for broader 136

audiences. M3AV (Chen et al., 2024c) supports 137

tasks like ASR, TTS, and slide-script generation. 138

Methods like HAESum (Zhao et al., 2024) and 139

SAPGraph (Qi et al., 2022) improve discourse and 140

structural summarization, while CiteSum (Mao 141

et al., 2022) and SSR (Fatima and Strube, 2023) fo- 142

cus on scalability and audience-specific customiza- 143

tion. Despite these efforts, scientific summariza- 144

tion remains a challenging domain due to the in- 145

herent complexity and diversity of scholarly texts. 146

Plan-based Summarization employs structured 147

representations to improve summary quality and 148

reduce hallucinations (Narayan et al., 2021; Am- 149

playo et al., 2021; Wang et al., 2022; Narayan 150

et al., 2023). Research focuses on text-only plan- 151

ning with elements like entities (Narayan et al., 152

2021; Liu and Chen, 2021; Huot et al., 2024), key- 153
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word prompts (Creo et al., 2023), and question-154

answer pairs (Narayan et al., 2023). Examples155

include PlanVerb (Canal et al., 2022), which con-156

verts task plans into natural language via semantic157

tagging, and domain-specific approaches in dia-158

logue summarization that align with knowledge159

structures for improved quality (Srivastava et al.,160

2024). Blueprint-based frameworks utilize inter-161

mediate plans such as question-answer pairs to cre-162

ate coherent narratives for visual storytelling (Liu163

et al., 2023). However, plan-based strategies for164

multimodal tasks, particularly video-to-text sum-165

marization, have received limited attention.166

3 VISTA Dataset167

Data Acquisition and Cleaning VISTA is de-168

rived from computational linguistics and machine169

learning conferences, including ACL Anthology170

(ACL, EMNLP, NAACL, EACL, Findings of171

*ACL), ICML, and NeurIPS, covering content172

from 2020 to 2024. All materials (paper abstracts173

and video recordings) are contributed by the respec-174

tive paper authors, ensuring narrative consistency.175

Since these metadata are stored in XML/JSON176

files on their respective websites, no further pre-177

processing (e.g. extracting abstracts from PDFs) is178

required. We collect paper titles, author lists, paper179

abstracts, links to papers, and presentation videos,180

in accordance with platform terms for academic re-181

search purposes (or obtain written confirmation).2182

To maintain one-to-one video-to-text alignments,183

we exclude samples that may cover multiple papers184

(e.g., tutorials, invited talks) and videos shorter185

than one minute or longer than 30 minutes.186

Quality Control The data are sourced directly187

from official proceedings websites, including188

textual summaries and presentation videos au-189

thored/recorded by corresponding researchers,190

eliminating the need for additional annotations.191

We verify the data quality through both human192

and automated checks. We discuss quality control193

guidelines and results in Appendix Figure 11 and194

Appendix B, respectively.195

Data Splits After quality control, our dataset196

comprises 18,599 samples, with venue distribu-197

tions shown in Figure 2. To ensure balanced do-198

main coverage in each subset, we proportionally199

sample to split the dataset into training (80%), val-200

idation (10%), and test (10%) sets. All subsequent201

2We discuss copyright in Appendix A.
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Figure 2: Venue distribution of the VISTA dataset.

experiments are conducted using these splits. 202

Dataset Comparison and Statistics Table 1 203

compares VISTA with several existing video-to- 204

text summarization datasets. While many focus on 205

open-domain (e.g., MMSum, Instruct-V2Xum) or 206

focus on specific areas like news (MLASK, MM- 207

AVS) and activities (VideoXum), VISTA is tailored 208

for summarizing scientific presentations, address- 209

ing a distinct niche in video-to-text summariza- 210

tion. On average, it features longer inputs (6.8 211

minutes) than VideoXum (2.1 minutes) and MSS 212

(3.4 minutes), as well as longer summaries (192.6 213

tokens), compared to YouCook2 (67.8 tokens) and 214

VideoXum (49.9 tokens). 215

Table 2 summarizes the dataset statistics: videos 216

average 6.76 minutes and 16.36 shots (we use 217

PySceneDetect with ContentDetector to cal- 218

culate video shots), while summaries contain 219

192.62 tokens on average across 7.19 sentences. 220

The average dependency tree depth (Avg. Depth of 221

Dep Tree) is 6.02, indicating the syntactic complex- 222

ity of the summaries. Meanwhile, the Type-Token 223

Ratio (TTR) is 0.62, reflecting lexical diversity. 224

Both metrics are calculated using spaCy. Diversity 225

metrics (Li et al., 2016), which measure the vari- 226

ety of unique n-grams, yield Distinct-1, Distinct-2, 227

and Distinct-3 scores of 0.62, 0.93, and 0.97, re- 228

spectively. Figure 3 visualizes key attributes: most 229

summaries remain under 250 tokens and 10 sen- 230

tences, and most videos last fewer than 10 minutes 231

with under 30 shots. In Appendix C, we present 232

two random samples from the VISTA dataset. 233
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Dataset Language Domain #Videos VideoLen SummaryLen

MSS (Li et al., 2017) English, Chinese News 50 3.4 —
YouCook2 (Zhou et al., 2018) English Cooking 2.0K 5.3 67.8
VideoStorytelling (Li et al., 2019) English Open 105 12.6 162.6
VMSMO (Li et al., 2020) Chinese Social Media 184.9K 1.0 11.2
MM-AVS (Fu et al., 2021) English News 2.2K 1.8 56.8
MLASK (Krubiński and Pecina, 2023) Czech News 41.2K 1.4 33.4
VideoXum (Lin et al., 2023) English Activities 14.0K 2.1 49.9
Shot2Story20K (Han et al., 2023) English Open 20.0K 0.3 201.8
BLiSS (He et al., 2023) English Livestream 13.3K 5.0 49.0
SummScreen3D (Papalampidi and Lapata, 2023) English Open 4.5K 40.0 290.0
Ego4D-HCap (Islam et al., 2024) English Open 8.3K 28.5 25.6
Instruct-V2Xum (Hua et al., 2024) English Open 30.0K 3.1 239.0
MMSum (Qiu et al., 2024) English Open 5.1K 14.5 21.7
LfVS-T (Argaw et al., 2024) English YouTube 1.2K 12.2 —
VISTA (ours) English Academic 18.6K 6.8 192.6

Table 1: Comprison of video-to-text summarization datasets. #Videos = the number of videos, whereas VideoLen
and SummaryLen refer to the mean video duration (in minutes) and the average number of summary tokens.
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Figure 3: Distribution of summary sentences, summary tokens, video durations, and video shots in VISTA.

Training / Validation / Test Set 14,881 / 1,859 / 1,859

Avg. Video Length (mins) / Shots 6.76 / 16.36

Avg. #Summary Sent / Tokens 7.19 / 192.62
Avg. Depth of Dep Tree 6.02
Type-Token Ratio 0.62
Distinct-1 / -2 / -3 0.62 / 0.93 / 0.97

Table 2: Key statistics of the VISTA dataset, showcas-
ing the average video length and shot count, summary
characteristics (sentence and token counts), syntactic
complexity (dependency tree depth), and lexical diver-
sity (Type-Token Ratio and Distinct n-gram scores).

4 Benchmarking VISTA234

Task Overview We formalize the task of235

summarizing recorded scientific videos as fol-236

lows: Let v and s denote a video (or its tran-237

script/audio) and its paired summary from dataset238

D = {(v1, s1), (v2, s2), . . . , (vn, sn)}, where n239

signifies the number of video-abstract pairs. The240

objective is to train a (multimodal) model M241

to learn the conditional probability distribution242

P (s | v). Given a new video, the trained model M243

is expected to generate an appropriate summary.244

A challenge in video-to-text summarization is 245

structuring the generated summaries in a coherent 246

and faithful manner. Directly learning the mapping 247

from v to s could lead to inadequate outputs, as 248

the model lacks explicit guidance on how to orga- 249

nize and present the extracted information. Scien- 250

tific abstracts often follow a relatively well-defined 251

structure, making them suitable for a more struc- 252

tured generation approach (Takeshita et al., 2024). 253

We follow previous work (Narayan et al., 2021; 254

Liu et al., 2023; Narayan et al., 2023) in adopt- 255

ing a plan-based framework that introduces an in- 256

termediate representation to capture latent struc- 257

ture more effectively than simpler end-to-end ap- 258

proaches. Specifically, given input video v, we first 259

generate plan p, which consists of a sequence of au- 260

tomatically generated questions {q1, q2, . . . , qm}, 261

each corresponding to a sentence to be verbalized 262

in the summary. The plan explicitly controls the 263

structure of the summary as a whole and the con- 264

tent of each of its sentences (which are meant to 265

answer the questions in the plan). The model is 266

then trained to learn the extended conditional prob- 267

ability distribution P (s | v, p), ensuring that the 268

4



q1:What challenge do large language models face despite their impressive performance on diverse tasks?
q2:What is the aim of this paper regarding large language models?
q3:What is one key finding about LMs' performance with less popular factual knowledge?
q4:How does scaling impact LMs’ ability to memorize factual knowledge?
q5:What is the proposed method based on the findings of this paper?
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[Despite their impressive performance on diverse tasks, large language models (LMs) still struggle with 
tasks requiring rich world knowledge, implying the difficulty of encoding a wealth of world knowledge in 
their parameters.] [This paper aims to understand LMs’ strengths and limitations in memorizing factual     
knowledge, by conducting large-scale knowledge probing experiments on two open-domain entity-centric 
QA datasets: PopQA, our new dataset with 14k questions about long-tail entities, and EntityQuestions, a 
widely used open-domain QA dataset.] [We find that LMs struggle with less popular factual knowledge,     
and that retrieval augmentation helps significantly in these cases.] [Scaling, on the other hand, mainly     
improves memorization of popular knowledge, and fails to appreciably improve memorization of factual 
knowledge in the tail.] [Based on those findings, we devise a new method for retrieval-augmentation that     
improves performance and reduces inference costs by only retrieving non-parametric memories when 
necessary.]

Planning questions

Summary

t1

t2
t3

t4

t5

Figure 4: GPT-o1 generates plans based on reference summaries. Each question qi corresponds to summary
sentence ti which we assume constitutes its answer. Index i ranges from 1 to the number of summary sentences.

generated summaries follow the structure and flow269

of plan p.270

Plan Generation We hypothesize that summary271

sentences can be viewed as responses to plan ques-272

tions directly associated with them. This idea is273

inspired by the theory of Questions Under Dis-274

cussion (QUD) (Roberts, 2012; Wu et al., 2023b;275

Suvarna et al., 2024), which posits that discourse276

often revolves around a set of questions that guide277

the structure and interpretation of the conversation.278

We leverage GPT-o1 (Achiam et al., 2023) to279

generate silver-standard plans based on reference280

summary sentences and their preceding context.281

As shown in Figure 4, for example, question q3282

is generated based on target sentence t3 and the283

summary sentences preceding it (i.e., t1 and t2),284

and so on. As a result, the question sequence pre-285

serves the order of sentences in the reference sum-286

maries, ensuring that the plan maintains a natural287

and coherent flow consistent with the structure of288

reference summaries. The prompt used to generate289

plan questions is provided in Appendix Figure 13.290

Summarization Model We train two indepen-291

dent models corresponding to Plan Generation292

(PG) and Summary Generation (SG). The PG mod-293

ule is trained on pairs of (v, p) samples, where294

v represents the input and p is the silver-standard295

plan. The SG module is trained on tuples ([v; p], s),296

where [v; p] is the concatenation of the input v and297

its plan p. During inference, the trained PG module298

predicts plan p̂ for input v, and the tuple [v; p̂] is299

fed into the SG module to generate the final sum-300

mary. Both modules have the same backbone but301

are trained independently. 302

5 Experiments 303

Baseline Models We benchmark our dataset us- 304

ing three settings: zero-shot learning, QLoRA fine- 305

tuning (Dettmers et al., 2024), and full-parameter 306

fine-tuning. For zero-shot, we test closed- 307

source multimodal models, including GPT-o1 308

(Achiam et al., 2023), Gemini 2.0 (Team 309

et al., 2023), Claude 3.5 Sonnet (An- 310

thropic, 2024), as well as open-source video 311

LMMs such as Video-LLaMA (Zhang et al., 2023), 312

Video-ChatGPT (Maaz et al., 2024), Video-LLaVA 313

(Lin et al., 2024a), LLaMA-VID (Li et al., 2025), 314

LLaVA-NeXT-Interleave (Li et al., 2024b), and 315

mPLUG-Owl3 (Ye et al., 2024). These open-source 316

video LMMs process videos by extracting multi- 317

modal features, such as visual and/or audio compo- 318

nents, using cross-modal attention mechanisms to 319

align and integrate information across modalities. 320

We also assess LLaMA-3.1 and Qwen2-Audio to 321

examine if text- or audio-based models can accom- 322

plish the summarization task without taking video 323

information into account. For LLaMA-3.1, we ex- 324

plore two variants: in LLaMA-3.1transcript, we ex- 325

tract audio from video files using moviepy and 326

transcribe it with OpenAI’s Whisper-1 to generate 327

text input for the model. In LLaMA-3.1OCR, we 328

apply EasyOCR to extract on-screen text from video 329

frames and use the OCR-generated text as input for 330

summarization. Similarly, for Qwen2-Audio, we 331

use moviepy to convert video files into audio and 332

treat the audio as input. Exact model versions are 333

provided in Appendix D. Based on our benchmark- 334
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Method Model R1 R2 RLsum SacreBLEU Meteor BERTscore CIDEr-D VideoScore FactVC

Z
er

o-
sh

ot
L

ea
rn

in
g

Claude 3.5 Sonnet 27.71 5.59 24.14 3.14 17.53 82.57 1.32 1.91 50.11
Gemini 2.0 27.82 5.66 24.29 4.22 17.83 82.64 1.47 2.02 52.02
GPT-o1 27.90 5.69 24.37 4.38 17.90 82.63 1.61 2.17 51.36
LLaMA-3.1transcript 23.68 4.22 21.39 2.70 14.62 80.93 1.17 1.53 34.32
LLaMA-3.1OCR 24.02 4.37 21.42 2.63 14.59 80.33 1.19 1.50 34.06
Qwen2-Audio 23.52 4.29 21.53 2.49 14.77 80.62 1.15 1.59 34.31
Video-LLaMA 20.18 3.19 21.24 1.76 13.73 81.31 1.08 1.63 32.25
Video-ChatGPT 20.36 3.52 21.43 1.79 14.01 81.35 1.11 1.63 33.21
Video-LLaVA 25.29 4.50 22.52 2.82 15.13 81.39 1.17 1.65 36.45
LLaMA-VID 25.31 4.77 22.53 2.88 15.27 81.32 1.14 1.64 36.39
LLaVA-NeXT-Interleave 25.41 4.82 22.68 2.92 15.25 81.40 1.18 1.73 40.12
mPLUG-Owl3 25.57 4.82 22.84 2.99 15.33 81.39 1.21 1.77 42.07
Plan-mPlug-Owl3 ♣ 25.62† 4.95†‡ 22.97†‡ 3.14†‡ 15.39†‡ 81.45‡ 1.27†‡ 1.86†‡ 47.37†‡

Q
L

oR
A

Fi
ne

-t
un

in
g

LLaMA-3.1transcript 32.24 11.38 30.39 8.03 21.57 82.39 3.86 2.81 53.22
LLaMA-3.1OCR 33.01 12.11 30.52 8.04 21.55 82.41 3.92 2.77 53.19
Qwen2-Audio 32.17 12.05 30.77 7.87 21.86 82.36 4.11 2.80 54.27
Video-LLaMA 30.74 9.44 28.33 6.45 22.49 82.61 3.99 2.77 52.05
Video-ChatGPT 31.68 10.50 30.40 7.63 23.67 82.62 4.02 2.78 55.02
Video-LLaVA 33.16 12.64 30.37 8.17 23.92 82.81 4.26 2.83 59.13
LLaMA-VID 33.31 12.73 30.49 8.22 23.90 83.01 4.31 2.88 62.20
LLaVA-NeXT-Interleave 33.37 12.77 30.56 8.30 23.95 83.47 4.47 2.93 66.14
mPLUG-Owl3 33.40 12.82 30.66 8.29 23.97 83.49 4.47 2.92 70.08
Plan-mPlug-Owl3 33.52†‡ 13.01†‡ 31.10†‡ 8.33 24.11†‡ 83.53† 4.52 3.11†‡ 73.11†‡

Fu
ll

Fi
ne

-t
un

in
g

LLaMA-3.1transcript 33.37 11.93 30.86 8.27 25.12 83.71 4.87 3.21 63.38
LLaMA-3.1OCR 34.02 12.42 31.72 8.51 15.11 84.09 4.89 3.32 65.84
Qwen2-Audio 33.82 12.37 31.63 8.33 25.09 83.62 4.83 3.22 66.62
Video-LLaMA 32.19 11.86 31.68 8.41 24.99 83.83 4.77 3.04 64.21
Video-ChatGPT 32.47 12.11 32.21 8.72 25.09 83.91 4.82 3.11 66.09
Video-LLaVA 33.28 13.39 32.78 9.10 25.42 83.97 4.87 3.13 66.12
LLaMA-VID 33.47 13.53 32.80 9.21 25.41 84.03 4.91 3.17 68.30
LLaVA-NeXT-Interleave 33.75 13.61 32.88 9.26 25.63 84.11 5.01 3.23 73.42
mPLUG-Owl3 34.22 13.62 32.91 9.32 25.72 84.22 5.03 3.28 71.94
Plan-mPlug-Owl3 34.53†‡ 13.74†‡ 33.25†‡ 9.56†‡ 25.88†‡ 84.37†‡ 5.15†‡ 3.33†‡ 75.41†‡

Table 3: Model performance on VISTA dataset. In Plan-mPlug-Owl3 ♣, only the Plan Generation (PG) module
is trained. Plans generated by the PG module on the test set serve as input to the Summary Generation (SG)
module for zero-shot inference (no training is applied to the SG module). Symbols † and ‡ indicate that the
performance of Plan-mPlug-Owl3 is significantly (p < 0.05) different from LLaVA-NeXT-Interleave (third best)
and mPLUG-Owl3 (second best), when using a paired t-test.

ing results, we select the best-performing model as335

the backbone for the plan-based strategy and evalu-336

ate its performance. Prompts for the above models337

are provided in Appendix J (Figures 12–15).338

Experimental Setup To ensure a fair compar-339

ison, all models, including baselines, plan-based340

models, and ablation models, are evaluated under341

identical hyperparameter settings unless explicitly342

stated otherwise. All models are tested using identi-343

cal prompt instructions. Detailed hyper-parameter344

configurations are provided in Appendix E.345

Evaluation Metrics We report a set of evalu-346

ation metrics to measure informativeness, align-347

ment, and factual consistency in summaries. For348

informativeness, we use ROUGE (Lin, 2004),349

SacreBLEU (Post, 2018), METEOR (Banerjee and350

Lavie, 2005), BERTScore (Zhang et al., 2020), and351

CIDEr-D (Vedantam et al., 2015). Specifically, we352

provide the F1 scores for Rouge-1 (R1), Rouge-2353

(R2), and Rouge-LSum (RLSUM). Alignment to354

the input video is evaluated with VideoScore (He 355

et al., 2024), and factual consistency with FactVC 356

(Liu and Wan, 2023). Detailed descriptions of 357

these metrics are given in Appendix F. 358

6 Results and Analysis 359

General Results Table 3 illustrates the per- 360

formance differences between closed-source and 361

open-source models. In the zero-shot setting, 362

closed-source models generally outperform their 363

open-source counterparts. Among open-source 364

models, mPLUG-Owl3 stands out, particularly in 365

semantic alignment (BERTScore) and video-text 366

consistency (VideoScore). Fine-tuning on in- 367

domain data yields noticeable improvements for 368

open-source models with both QLoRA and full- 369

parameter fine-tuning. QLoRA shows overall 370

lower performance than full parameter fine-tuning. 371

LLaMA-3.1transcript, LLaMA-3.1OCR, and 372

Qwen2-Audio perform similarly on our dataset. 373

While both text- and audio-based models 374
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achieve competitive results, video-based LMMs375

demonstrate overall superior performance, with376

mPLUG-Owl3 achieving SOTA results across377

most metrics. This result further underlines the378

importance of video for our summarization task.379

Plan-mPlug-Owl3 is the plan-based approach380

built on mPLUG-Owl3, outperforming all open-381

source baselines in both zero-shot and fine-382

tuned settings. For zero-shot inference, the383

Plan-mPlug-Owl3 ♣ variant, which fine-tunes384

only the Plan Generation (PG) module, surpasses385

other models in summary quality, factual con-386

sistency, and semantic alignment. With full-387

parameter fine-tuning, Plan-mPlug-Owl3 achieves388

the highest overall scores across models, show-389

ing improvements in factual accuracy (+3.47 in390

FactVC) and quality (+0.34 in RLsum) compared391

to mPLUG-Owl3. However, all models (includ-392

ing the plan-based method) exhibit hallucinations393

(FactVC) and alignment (VideoScore) issues, and394

there are still significant differences (p-value of the395

paired t-test is less than 0.05) between the human396

performance in this task, with reference abstracts397

scoring 88.54 on FactVC and 4.62 on VideoScore.398

Impact of Plan Generation Strategy We ana-399

lyze the plan generation ablation strategy by com-400

paring it with simpler baselines: Lead-3Q, Tail-3Q,401

and Random-3Q. In these ablation baselines, plans402

are generated by selecting the first three, last three,403

or three randomly chosen summary sentences, re-404

spectively. Each selected sentence serves as a tar-405

get for generating a question, with its preceding406

sentences providing the context. For instance, in407

the Lead-3Q setting, the first sentence is used as408

the target (without any preceding context), prompt-409

ing the first question in the plan, while subsequent410

sentences incorporate earlier ones as context. Ad-411

ditionally, we compare the case where QUD is not412

considered. That is, we directly let GPT-o1 gener-413

ate all planning questions at once only based on414

the reference summary (NoQUD).415

Table 4 underlines the performance differences416

across different plan generation ablation strate-417

gies. NoQUD is also a plan-based approach. It has418

lower data processing overhead than our original419

method and performs better than the end-to-end420

method. However, it still falls short to some extent421

compared to our approach. The Lead-3Q strategy422

performs better overall compared to Tail-3Q and423

Random-3Q, indicating that initial sentences of-424

fer stronger contextual continuity for generating425

Model R2 RLsum VideoScore FactVC
Plan-mPlug-Owl3 13.74 33.25 3.33 75.41
NoQUD 13.66 33.02 3.28 73.32
Lead-3Q 12.87 30.64 2.95 71.26
Tail-3Q 11.62 30.51 2.88 63.82
Random-3Q 11.57 30.48 2.87 64.28

Table 4: Performance comparison of different plan gen-
eration strategies under full fine-tuning settings. Textual
content at the start of the summary is more helpful for
generating plans.

13.60 13.65 13.70 13.75
R2

GPT-o1
LLaMA-3.1

RAST
RR

FRR

13.74

13.70

13.66

13.64

12.71

LLaVA-NeXT-Interleave mPLUG-Owl3

Figure 5: Noise in plan generation impacts summariza-
tion performance. FRR is a shorthand for Full Random
Replacement and RR for Random Replacement. RAST
is a SOTA question generation method.

plan questions. Nonetheless, these heuristic strate- 426

gies fail to match the performance of the original 427

planning method. 428

Impact of Plan Quality We assess how the qual- 429

ity of the plan questions affects model performance. 430

We applied GPT-o1 as a question generator in a 431

zero-shot setting in our previous experiments. For 432

comparative analysis, we additionally incorporate 433

Llama-3.1 and a state-of-the-art question genera- 434

tion algorithm (RAST) from Gou et al. (2023) to 435

generate the plan questions. In addition, we apply 436

a Random Replacement (RR) method, where ques- 437

tions generated by GPT-o1 are randomly replaced 438

with irrelevant ones. The number of replaced ques- 439

tions per summary ranges from one to the entire 440

set. We also introduce full random replacement 441

(FRR), where questions generated by GPT-o1 are 442

all replaced with randomly irrelevant questions.3 443

Figure 5 reveals that the quality of plan questions 444

does influence the summarization performance: us- 445

ing GPT-o1 to generate questions outperforms the 446

rest. The FRR method performs worst, as irrele- 447

vant questions disrupt the alignment between the 448

plan and summary content. We also find that the 449

plan-based method exhibits a certain degree of ro- 450

bustness, as it performs reasonably well even when 451

3The prompt for generating irrelevant questions is given
in Appendix Figure 16.
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the plans contain some degree of noise (RR vs.452

FRR). These findings emphasize the importance453

of question relevance and quality in structuring454

the output summaries. In Appendix G, we further455

explore the effect of video content on our summa-456

rization task, varying the length of the video given457

as input to the model. We also perform experi-458

ments with different textual contexts for generat-459

ing plan questions, and with controlled generation.460

Additionally, we present an error analysis of model461

output in Appendix H, which highlights the gap462

between model-generated summaries and human-463

written references.464

7 Human Evaluation465

We conduct a human evaluation on 50 ran-466

domly selected instances from the VISTA test467

set. Annotators include master’s and doctoral468

students in computer science or computational469

linguistics with advanced English proficiency.470

They receive compensation per our university’s471

standard rate and are blind to the source of472

each summary to ensure impartial assessment.473

We compare Plan-mPlug-Owl3, mPLUG-Ow13,474

LLAVA-NeXT-Interleave, and GPT-o1 against hu-475

man reference summaries/abstracts. Three inde-476

pendent annotators are asked to review the source477

video and evaluate corresponding model sum-478

maries (and the human upper bound) on a 1–5 Lik-479

ert scale for Faithfulness, Relevance, Informative-480

ness, Conciseness, and Coherence (higher scores481

indicate better quality). They are also asked to482

provide an overall ranking. In total, participants483

rated 750 samples (50× 5× 3). Appendix K con-484

tains the full annotation instructions.485

Figure 6 presents the performance of each486

model, along with the proportion of instances487

where models are rated best or worst. Fleiss’488

Kappa scores for Faithfulness (κ = 0.767), Rele-489

vance (κ = 0.842), Informativeness (κ = 0.721),490

Conciseness, and Coherence (κ = 0.813) indicate491

a substantial level of agreement, with an average492

agreement score of κ = 0.787. Overall, human-493

written summaries outperform all neural summa-494

rization models in quality, as they are perceived495

as substantially more faithful, coherent, concise,496

and informative. Human-written summaries are497

81.7% more likely to be rated as best compared to498

model-generated summaries.499

Among the four neural models, GPT-o1 per-500

forms worst, being rated as worst 63.2% of the501

Faithfulness

Relevance

InformativenessConciseness

Coherence

4.84

4.86

4.764.77

4.84

4.84
4.80

4.83

4.69

4.77

4.82

4.80
4.77

4.83

4.65

4.73

4.77

4.77

4.72

4.76

4.63

4.69

4.73

4.72

4.91

4.90

4.83
4.86

4.91

4.91

Models (best/worst)
Human (81.7%/0.1%)
Plan-mPLUG-Owl (12.4%/6.6%)

mPLUG-Owl3 (3.3%/12.3%)
LLAVA-NeXT-Interleave (2.2%/17.8%)

GPT-o1 (0.4%/63.2%)

Figure 6: Human evaluation results. Human-written
summaries consistently outperform all neural models.

time. LLAVA-NeXT-Interleave follows suit, with 502

a 17.8% chance of receiving the worst ranking. 503

The plan-based model, Plan-mPLUG-Owl3, outper- 504

forms mPLUG-Owl3 and demonstrates superior per- 505

formance across all metrics. Additionally, it stands 506

out among neural summarization systems for its 507

higher likelihood of generating high-quality sum- 508

maries. Paired t-tests show that human answers 509

are considered significantly better than all neural 510

models in all metrics (p < 0.05), revealing a clear 511

gap between automatic systems and human per- 512

formance on the VISTA dataset. The plan-based 513

method is significantly better (p < 0.05) than other 514

neural models in faithfulness, coherence, and in- 515

formativeness, although it falls short of human 516

performance. We also evaluate all samples of the 517

test set with an LMM-as-Judge and obtain results 518

that are broadly consistent with human evaluation. 519

We describe the details of this study in Appendix I. 520

8 Conclusion 521

This paper introduces VISTA, a dataset for sum- 522

marizing scientific video presentations into con- 523

cise textual summaries. Comprehensive evalua- 524

tions across multiple large models demonstrate that 525

the summarization task is challenging, relying on 526

the interplay of multiple modalities (video, text, 527

and audio). We further introduce a plan-based ap- 528

proach, which yields improvements in summary 529

quality and factual accuracy. Beyond dataset cre- 530

ation, our work also confirms that current leading 531

large models still exhibit a noticeable gap com- 532

pared to human performance. 533
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Ethical Considerations534

All data in our dataset are sourced from publicly535

accessible resources, strictly adhering to relevant536

copyright regulations. Each data sample explicitly537

includes the corresponding source URL and au-538

thor attribution. Throughout the processes of data539

processing, experimental analysis, model training,540

and evaluation, no instances of privacy infringe-541

ment were identified. In human evaluations, all542

participants volunteered willingly and were fairly543

compensated. We provided a safe and comfortable544

environment for our participants and complied with545

ACL’s Policy on Publication Ethics throughout our546

studies.547

Limitations548

Data All the summary and video data used in this549

study are open source. While our sources are gen-550

erally of high quality and exhibit a broad range of551

diversity, we have not investigated inherent biases552

in the data. Moreover, as these data represent only553

a small fraction of real-world data, our findings554

may not extend to all video-to-text summarization555

scenarios. In addition, our dataset is restricted to556

English, which limits its generalizability to other557

languages.558

Task In our task, we consider the paper abstract559

as the summary of the corresponding video. This560

hypothesis has been supported by our two-stage561

quality control process, which ensures a strong562

alignment. However, we acknowledge that there563

may be nuanced differences between the abstract564

and a textual summary derived solely from the565

video. That said, authors often present the abstract566

as a summary of the video, as it conveys the key567

contributions, objectives, and findings of the re-568

search, which are typically central to the content569

discussed.570

Model We use several state-of-the-art large571

models in our experiments and select the best-572

performing model, mPLUG-Owl3, to demonstrate573

the effectiveness of the planning strategy. These574

large models may carry biases introduced during575

pretraining. We have not assessed the extent of576

these biases, as they lie beyond the scope of this577

study. Furthermore, we have not tested the plan-578

based approach on all model variants presented in579

our experiments (e.g., text-based large models and580

audio-based large models). Our work does not aim581

to prove that the plan-based method is effective582

in all models of different modalities, but rather to 583

demonstrate that the plan-based method can im- 584

prove the performance of video-based models on 585

our dataset. Moreover, plan-based methods can 586

take many different forms, and our work does not 587

aim to identify the optimal planning approach for 588

our dataset. Future work could examine how the 589

plan-based method performs across a wider range 590

of models and modalities. 591

Modality In our experiments, we explore the 592

performance of individual modalities on the down- 593

stream summarization task (e.g., text-to-text model 594

and audio-to-text model). However, we do not con- 595

duct an in-depth analysis of how different modality 596

combinations impact the final summarization re- 597

sults. For instance, combining video transcripts 598

with their visual content (transcript + video-to- 599

text) or with their audio (transcript + audio-to- 600

text) could yield different outcomes. Moreover, 601

most video LMMs do not incorporate audio com- 602

ponents; we also do not investigate how the inte- 603

gration of different modality components within 604

video LMMs affects summarization results. The 605

exploration of such modality combinations and 606

their influence on summarization is left for future 607

work. 608

Data Contamination and Prompt Selection It 609

is worth noting that we have not found evidence 610

in the original papers describing the open-source 611

models we use to suggest that the contents of the 612

VISTA dataset are included in their pretraining 613

stage. However, for closed-source models, such 614

verification is not possible due to the lack of trans- 615

parency in their pretraining datasets. Additionally, 616

for the sake of consistency and fairness, we uti- 617

lize the same prompts throughout our experiments, 618

chosen primarily based on human judgment. How- 619

ever, since the number of possible prompts is limit- 620

less, other prompts could yield different outcomes. 621

These factors represent potential directions for fu- 622

ture research. 623

Scope Our study focuses on video-to-text sum- 624

marization within scientific domains. We have 625

not investigated applying the plan-based method 626

to other natural language processing (NLP) tasks, 627

such as multimodal machine translation, multi- 628

modal question answering, or multimodal reason- 629

ing. Although the plan-based approach could likely 630

be adapted to these tasks with minimal effort, such 631

possibilities remain unexplored and warrant future 632

9
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investigation.633

Automated Evaluation While we employ a suite634

of automated metrics and hallucination detection635

methods to assess model performance on the test636

set, these metrics have inherent limitations and may637

fail to capture all aspects of model quality.638

Human Evaluation Similar to many earlier stud-639

ies (Papalampidi and Lapata, 2023; Krubiński and640

Pecina, 2023, 2024; Patil et al., 2024), we only eval-641

uate 50 video-summary pairs, a subset that may not642

represent the entire dataset. Additionally, while all643

evaluators are graduate students, they are not nec-644

essarily experts in video-to-text summarization and645

possess varying levels of reading and assessment646

skills. Consequently, although their evaluations647

are valuable, they should not be treated as the only648

indicator of performance.649

LMM-as-Judge Evaluation Although the650

LMM-based judge paradigm (GPT-o1) enables651

large-scale and relatively consistent evaluations, it652

may inherit biases from its pretraining data, and its653

black-box nature makes the rating process difficult654

to interpret. Data contamination also remains655

a concern if GPT-o1 is trained on overlapping656

data. We validate GPT-o1’s ratings with human657

evaluations on a small subset of samples, but658

this may not fully capture the model’s reliability659

across diverse topics, domains, or summary styles.660

Therefore, results should be interpreted with661

caution and supplemented by human judgment662

where possible.663
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B Quality Control 1287

Manual Control: We randomly select 500 video- 1288

summary pairs to assess whether the summaries 1289

provide accurate descriptions of the videos. Two 1290

Ph.D. candidates in Computer Science or Com- 1291

putational Linguistics perform binary judgments 1292

on these pairs. Across all 500 samples, neither 1293

evaluator rejected any sample. 1294

Automated Control: To go beyond the limited 1295

scope of manual checks, we employ GPT-o1 for au- 1296

tomated assessment using the same binary criteria 1297

across all data samples. The model initially flagged 1298

39 pairs as potentially invalid. These flags were 1299

likely caused by difficulties in interpreting domain- 1300

specific terms or rare expressions and sensitivity to 1301

variations in summary length. After further manual 1302

review, all 39 samples were confirmed as valid and 1303

retained in the dataset. 1304
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C Data Sample1305

The VISTA dataset contains carefully curated1306

video-text pairs, predominantly sourced from pub-1307

lished papers, aiming to ensure a high standard of1308

quality and relevance. The accompanying texts are1309

designed to function as summaries of their respec-1310

tive videos, offering a concise representation of1311

their content (see Figure 7 and Figure 8). Addi-1312

tionally, our dataset focuses on topics within the1313

field of artificial intelligence, making it a good1314

resource for research in AI-related video-to-text1315

summarization and comprehension.1316

D Model Version Details1317

Table 5 provides the detailed version identifiers for1318

the models evaluated in our study, showing both1319

model names as referenced in the main text and1320

the specific versions used in our experiments.1321

E Hyper-parameters Settings1322

For all fine-tuning experiments, we utilize the1323

AdamW optimizer (Loshchilov and Hutter, 2019)1324

with β1 = 0.9, β2 = 0.999, ϵ = 10−9, and a weight1325

decay of 0.1, combined with a warm-up ratio1326

of 0.15. The initial learning rate is set to 5e-5,1327

with cosine learning rate scheduling. DeepSpeed1328

is configured with ZeRO-3 Offload. We set the ran-1329

dom seed to 2025 and apply a dropout rate of 0.1.1330

In the QLoRA setting, the rank r is set to 32, the1331

scaling factor α is set to 64, and the dropout rate1332

for the low-rank matrices is 0.1. All other parame-1333

ters follow the default settings of the Transformers1334

library.1335

During training, we save the checkpoint with1336

the highest Rouge-2 F1 score on the validation set1337

as the final model. All experiments are conducted1338

over 16 epochs with a batch size of 16 and early1339

stopping (all models converged before 16 epochs).1340

For model inference (including zero-shot learning),1341

we employ a beam search with a beam of size 4, a1342

length penalty of 3.0, a no-repeat n-gram size of 3,1343

and the maximum number of new tokens generated1344

is limited to 256. For video-based LMMs, the1345

sampling rate is set to 0.1 fps, and the number of1346

extracted frames is set to 32.1347

For closed-source models, results are obtained1348

via API requests during the experimental pe-1349

riod from 01/09/2024 to 10/02/2025. The hyper-1350

parameter settings for these API requests include a1351

temperature of 1, top_p of 1, a frequency penalty1352

of 0.2, and a presence penalty of 0.2. All other1353

parameters adhere to the default settings specified 1354

by their respective platforms. 1355

F Automatic Evaluation Metrics 1356

In line with common practice in video-to-text 1357

summarization research, we evaluate the model- 1358

generated summaries using the following metrics: 1359

• ROUGE (Lin, 2004): measures n-gram overlap 1360

between machine-generated and human refer- 1361

ence texts. We report F1 scores for Rouge-1 (R1), 1362

Rouge-2 (R2), and Rouge-Lsum (RLSUM). 1363

• SacreBLEU (Post, 2018): assesses linguistic con- 1364

sistency and fluency between generated and ref- 1365

erence texts. 1366

• METEOR (Banerjee and Lavie, 2005): calcu- 1367

lates the harmonic mean of unigram precision 1368

and recall, placing greater emphasis on recall for 1369

a balanced evaluation. 1370

• BERTScore (Zhang et al., 2020): uses contextual 1371

embeddings from BERT to evaluate semantic 1372

similarity and word overlap between texts. 1373

• CIDEr-D (Vedantam et al., 2015): evaluates the 1374

consensus between generated summaries and ref- 1375

erences by using TF-IDF weighting combined 1376

with a decay factor to reduce the impact of re- 1377

peated terms. 1378

• VideoScore (He et al., 2024): focuses on text- 1379

to-video alignment, evaluating how accurately 1380

video content matches the given text prompts 1381

using fine-grained multi-aspect scoring. 1382

• FactVC (Liu and Wan, 2023): calculates the fac- 1383

tual consistency of text with video content by 1384

aligning coarse-grained video-text similarity and 1385

precision-based fine-grained matching. The val- 1386

ues of FactVC range from 0 to 1, and in our 1387

experiments, we scale them by 100 to convert 1388

them into percentages. 1389

G Additional Analyses 1390

Impact of Video Context on Summary Gener- 1391

ation We examine the impact of different video 1392

context configurations on summary generation, 1393

comparing mPLUG-Owl3 with Plan-mPlug-Owl3. 1394

Unlike earlier experiments that use the full video 1395

as input, here only the first or last 10% or 30% of 1396

the video is provided as input. We report results 1397

with R2, BERTScore, VideoScore, and FactVC in 1398

the full fine-tuning setting. 1399

The results in Table 6 indicate that partial video 1400

context consistently underperforms compared to 1401
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Although proper handling of discourse significantly contributes to the quality of machine translation (MT), these

improvements are not adequately measured in common translation quality metrics. Recent works in context-aware MT

attempt to target a small set of discourse phenomena during evaluation, however not in a fully systematic way. In this

paper, we develop the Multilingual Discourse-Aware (MuDA) benchmark, a series of taggers that identify and evaluate

model performance on discourse phenomena in any given dataset. The choice of phenomena is inspired by a novel

methodology to systematically identify translations that require context. This methodology confirms the difficulty of

previously studied phenomena while uncovering others which were not previously addressed. We find that commonly

studied context-aware MT models make only marginal improvements over context-agnostic models, which suggests

these models do not handle these ambiguities effectively. We release code and data for 14 language pairs to encourage

the MT community to focus on accurately capturing discourse phenomena.

Figure 7: A random sample from the VISTA dataset, originating from Fernandes et al. (2023).

using the full video. Using the last part of the1402

video generally produces better results than using1403

the first part, as concluding sections often summa-1404

rize key findings while opening sections primar-1405

ily introduce background information. Addition-1406

ally, utilizing 30% of the video outperforms using1407

only 10%, highlighting that more content generally1408

yields better outputs. Across all configurations,1409

the Plan-mPlug-Owl3 model consistently outper-1410

forms mPLUG-Owl3.1411

Impact of Text Context on Plan Generation1412

The generation of plan questions in our experi-1413

ments is influenced by the target sentence and its1414

context. In our main experiments, plan questions1415

are generated based on the target sentence and1416

its preceding summary text (Previous-Context), in1417

line with the original Questions Under Discussion1418

(QUD) requirements (Wu et al., 2023a,b). We now1419

assess configurations that generate questions only 1420

based on the target sentence (No-Context) or the 1421

entire summary (All-Context). 1422

As shown in Figure 9, performance differences 1423

between different context configurations are rela- 1424

tively small (yet superior to models without plan- 1425

ning components shown as red and blue dashed 1426

lines). No-Context shows the lowest performance 1427

but is the most cost-effective, as it requires the 1428

shortest input length for GPT-o1 during question 1429

generation. All-Context achieves slightly better 1430

results but at the highest computational cost due to 1431

the long input length. Previous-Context is aligned 1432

with QUD and strikes a good balance, achieving 1433

the best performance for a moderate cost. 1434

Controllable Generation An advantage of plan- 1435

based models is their ability to control the output 1436

summaries by modifying the plans used for gen- 1437
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An emerging solution for explaining Transformer-based models is to use vector-based analysis on how the
representations are formed. However, providing a faithful vector-based explanation for a multi-layer model could be
challenging in three aspects: (1) Incorporating all components into the analysis, (2) Aggregating the layer dynamics to
determine the information flow and mixture throughout the entire model, and (3) Identifying the connection between
the vector-based analysis and the model’s predictions. In this paper, we present DecompX to tackle these challenges.
DecompX is based on the construction of decomposed token representations and their successive propagation
throughout the model without mixing them in between layers. Additionally, our proposal provides multiple advantages
over existing solutions for its inclusion of all encoder components (especially nonlinear feed-forward networks) and the
classification head. The former allows acquiring precise vectors while the latter transforms the decomposition into
meaningful prediction-based values, eliminating the need for norm- or summation-based vector aggregation.
According to the standard faithfulness evaluations, DecompX consistently outperforms existing gradient-based and
vector-based approaches on various datasets.

Figure 8: A random sample from the VISTA dataset, originating from Modarressi et al. (2023).
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Figure 9: Impact of context for plan generation.

eration. We investigate how modifying the struc-1438

ture and composition of these plans impacts the1439

generated summaries, specifically comparing their1440

performance against direct summary generation1441

control through instructions. To this end, we de-1442

sign two controlled experiments:1443

• Summary Readability: How question complex-1444

ity affects readability, tailored for lay readers or1445

expert readers.1446

• Summary Length: How the number of questions1447

influences summary length, by removing 10%,1448

30%, and 60% of questions. 1449

We note that the plan-based method employs 1450

an explicit planning component where each sen- 1451

tence is guided by a corresponding question that 1452

facilitates fine-grained control over the summary’s 1453

style or content. Specifically, after PG produces the 1454

plan, we use GPT-o1 to edit it and then feed the 1455

edited questions back to SG for the final output. For 1456

GPT-o1, which operates in a zero-shot manner, we 1457

prepend constraints directly in the prompt. Specifi- 1458

cally, GPT-o1 generates an initial summary in one 1459

pass and then applies additional prompt-based in- 1460

structions during a secondary rewriting step to con- 1461

trol the output. Both control experiments (Table 7) 1462

(Table 8) reveal similar trends: while performance 1463

declines for both models, the plan-based method is 1464

more robust and controllable. 1465

In the readability control experiment (Ta- 1466

ble 7), both models show reductions in R2, but 1467

Plan-mPlug-Owl3 declines less, averaging an R2 1468
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Model Version Model Size

GPT-o1 (Achiam et al., 2023) o1-2024-12-17 Unknown
Gemini 2.0 (Team et al., 2023) Gemini 2.0 Flash Unknown
Claude 3.5 Sonnet (Anthropic, 2024) claude-3-5-sonnet-20241022 Unknown
LLaMA-3.1 (Touvron et al., 2023) LLaMA-3.1-8B-Instruct 8B
Qwen2-Audio (Chu et al., 2024) Qwen2-Audio-7B-Instruct 7B
Video-LLaMA (Zhang et al., 2023) VideoLLaMA2-7B-16F 7B
Video-ChatGPT (Maaz et al., 2024) Video-ChatGPT-7B 7B
Video-LLaVA (Lin et al., 2024a) Video-LLaVA-7B-hf 7B
LLaMA-VID (Li et al., 2025) LLaMA-VID-7B-Full-224-Long-Video 7B
LLaVA-NeXT-Interleave (Li et al., 2024b) LLaVA-NeXT-Interleave-Qwen-7B 7B
mPLUG-Owl3 (Ye et al., 2024) mPLUG-Owl3-7B-241101 7B

Table 5: Model version details.

Context Model R2 RLsum VideoScore FactVC

All
mPLUG-Owl3 13.62 32.91 3.28 71.94
Plan-mPlug-Owl3 13.74 33.25 3.33 75.41

First 10%
mPLUG-Owl3 6.31 25.44 2.37 51.02
Plan-mPlug-Owl3 7.37 27.38 2.52 52.39

First 30%
mPLUG-Owl3 9.42 28.88 2.78 54.10
Plan-mPlug-Owl3 10.59 30.13 2.78 55.37

Last 10%
mPLUG-Owl3 6.53 27.34 2.51 53.64
Plan-mPlug-Owl3 7.62 29.73 2.77 55.93

Last 30%
mPLUG-Owl3 7.32 29.17 2.82 57.36
Plan-mPlug-Owl3 10.72 31.29 2.98 62.05

Table 6: Model performance under different video con-
text configurations (full fine-tuning). The video content
at the end is more helpful for summary generation.

Condition
Plan-mPlug-Owl3 GPT-o1

R2 FRE R2 FRE

No change 13.74 30.62 5.69 26.37
Lay questions 13.38 35.17 4.26 28.94
Expert questions 13.24 23.54 4.13 24.33

Table 7: Control experiment for summary readability.
FRE = Flesch Reading Ease.

loss of 0.43 compared to 1.50 for GPT-o1. Fur-1469

thermore, Plan-mPlug-Owl3 controls readability1470

more effectively, achieving a higher Flesch Read-1471

ing Ease (FRE) score4 of 35.17 for lay questions,1472

compared to 28.94 for GPT-o1, and a lower FRE1473

score of 23.54 for expert questions.1474

In the length control experiment (Table 8), R21475

scores decline as content is removed, but plan-1476

based model aligns more closely with target com-1477

pression ratios, producing summaries averaging1478

100.32 tokens under 60% deletion, while GPT-o11479

4The FRE score, which ranges from 0 to 100, measures
text readability, with higher scores indicating easier-to-read
content, and lower scores reflecting greater complexity.

Condition
Plan-mPlug-Owl3 GPT-o1

R2 Avg. #Tokens R2 Avg. #Tokens

No deletion 13.74 202.39 5.69 267.32
Delete 10% 11.05 178.47 4.32 220.49
Delete 30% 10.41 137.72 3.17 192.42
Delete 60% 8.01 100.32 2.98 185.28

Table 8: Control experiment for summary length.

generates longer summaries (185.28 tokens). 1480

H Case Study and Error Analysis 1481

For our case study, we randomly select a sample 1482

(Kübler et al., 2020) from the test split. The analy- 1483

sis in Table 9 reveals differences in summary qual- 1484

ity across models, and against the human-written 1485

text. Specifically, GPT-o1 often produces concise 1486

summaries but at the cost of precision. For exam- 1487

ple, it incorrectly claims that “data splitting helps 1488

control test thresholds,” which is a hallucination — 1489

while data splitting ensures a tractable null distri- 1490

bution, it does not explicitly control test thresholds. 1491

Furthermore, its summaries frequently oversim- 1492

plify complex concepts, reducing the depth of ex- 1493

planations and omitting crucial distinctions, such 1494

as the role of dependency calibration in the pro- 1495

posed method. Similarly, mPLUG-Owl3 introduces 1496

factual inaccuracies, such as stating that data split- 1497

ting “ensures a reliable null distribution.” This 1498

phrasing misleadingly implies that reliability is 1499

an inherent property of data splitting, whereas the 1500

correct point is that it makes the null distribution 1501

tractable rather than necessarily more reliable. 1502

Plan-mPlug-Owl3 is more factually accurate 1503

than the other models. It correctly captures the 1504

main idea of full-sample hyperparameter learn- 1505
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ing and testing without data splitting. However,1506

it still introduces subtle distortions, such as falsely1507

suggesting a “trade-off” between test power and1508

tractability, which misrepresents the actual rela-1509

tionship. These inaccuracies, while less severe1510

than those in GPT-o1 and mPLUG-Owl3, highlight1511

the model’s tendency to infer unstated causal links,1512

leading to potential misinterpretations. Despite the1513

relative strengths of Plan-mPlug-Owl3, all gener-1514

ated summaries fall short of human-written text.1515

The model-generated outputs consistently struggle1516

with informativeness, coherence, and factual accu-1517

racy. These shortcomings underscore the ongoing1518

challenge of improving automated summarization1519

systems to better align with human standards in1520

both accuracy and clarity.1521

Controlled generation experiments also reveal1522

that hallucination issues are further amplified when1523

imposing constraints on readability and length. Un-1524

der readability control (Table 10), GPT-o1 is more1525

likely to introduce fabricated or misleading con-1526

tent when forced to generate more complex outputs.1527

This occurs because it lacks an explicit mechanism1528

to ensure factual consistency while adapting to1529

varying readability demands. Rather than relying1530

on implicit internal heuristics, Plan-mPlug-Owl31531

has an explicit planning mechanism which makes1532

it less likely to introduce unsupported claims. Plan-1533

ning provides an additional layer of control, help-1534

ing the model maintain factual alignment even as1535

readability demands change.1536

A similar trend is observed in length control1537

experiments (Table 11). As the compression ra-1538

tio increases, GPT-o1 struggles to balance concise-1539

ness and informativeness, sometimes hallucinating1540

missing details to compensate for omitted content.1541

This suggests that purely instruction-based control1542

(i.e., prompting the model to shorten outputs) does1543

not effectively enforce content retention, leading to1544

greater inconsistencies. In contrast, the plan allows1545

Plan-mPlug-Owl3 to selectively retain essential1546

elements, reducing the risk of generating mislead-1547

ing content; it can also avoid answering deleted1548

questions, to a certain extent.1549

These findings reinforce the advantages of plan-1550

based control over instruction-based prompting.1551

While neither approach fully eliminates hallucina-1552

tions, planning provides a structured mechanism to1553

manage content selection, ensuring greater align-1554

ment with the input source compared to freeform1555

generative adjustments.1556
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Figure 10: LMM-as-Judge evaluation results showing
that human-written summaries consistently outperform
neural models.

I LMM-as-Judge Evaluation 1557

To facilitate large-scale comparisons of model out- 1558

puts, we adopt a method inspired by LLM-as- 1559

Judge (Liusie et al., 2024; Liu et al., 2024c; Zheng 1560

et al., 2024), extending it to use a large multimodal 1561

model (Chen et al., 2024b). The proposed LMM- 1562

based evaluator incorporates both textual and video 1563

modalities and assesses the same summary quality 1564

dimensions used in our human evaluation. Specif- 1565

ically, we use GPT-o1 as the evaluator, following 1566

the hyperparameter settings in Appendix E. To 1567

minimize potential bias from prior queries, the con- 1568

versation history is reset before each evaluation. 1569

We validate the agreement between GPT-o1 and 1570

human ratings by comparing its ratings with hu- 1571

man evaluations on the same 50 samples from the 1572

VISTA test set. We calculate Fleiss’ Kappa be- 1573

tween GPT-o1 and mean human ratings across the 1574

dimensions of Faithfulness (κ=0.732), Relevance 1575

(κ=0.803), Informativeness (κ=0.730), Concise- 1576

ness (κ=0.792) and Coherence (κ=0.721) at in- 1577

stance level. These results indicate that human 1578

evaluators and GPT-o1 achieve substantial levels 1579

of agreement across these dimensions. Following 1580

this, we expand the evaluation to include all sam- 1581

ples in our test set. 1582

Compared to fine-tuned models, GPT-o1 assigns 1583

the lowest scores to its own responses (see Fig- 1584

ure 10). Human-written summaries consistently re- 1585

ceive the highest scores and are generally regarded 1586

as the best. Aligning with our human evaluations, 1587
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Model Output

Reference Modern large-scale kernel-based tests such as maximum mean discrepancy (MMD) and kernelized Stein discrepancy (KSD) optimize
kernel hyperparameters on a held-out sample via data splitting to obtain the most powerful test statistics. While data splitting results
in a tractable null distribution, it suffers from a reduction in test power due to a smaller test sample size. Inspired by the selective
inference framework, we propose an approach that enables learning the hyperparameters and testing on the full sample without data
splitting. Our approach can correctly calibrate the test in the presence of such dependency, and yield a test threshold in closed form. At
the same significance level, our approach’s test power is empirically larger than that of the data-splitting approach, regardless of its
split proportion.

GPT-o1 Modern kernel-based tests like MMD and KSD use data splitting to tune hyperparameters. This splitting helps control test thresholds
but reduces power because it splits the data into smaller parts. We propose a new method to tune hyperparameters without splitting the
data. Our method provides better test power than data splitting.

mPLUG-Owl3 Large-scale kernel-based tests like maximum mean discrepancy (MMD) and kernelized Stein discrepancy (KSD) usually split the data
to tune hyperparameters. While this approach ensures a reliable null distribution, it reduces test power due to smaller sample sizes. We
propose a method that avoids data splitting, enabling full-sample hyperparameter learning and testing. This method improves test
power at the same significance level compared to data splitting, with a closed-form threshold for the test.

Plan Questions q1: How do kernel-based tests like MMD and KSD typically optimize hyperparameters?
q2: What is the key idea behind the proposed approach?
q3: What are the advantages of the proposed method compared to data-splitting methods?

Plan-mPlug-Owl3 Modern kernel-based tests like maximum mean discrepancy (MMD) and kernelized Stein discrepancy (KSD) typically split the data to
optimize hyperparameters, trading off test power for a tractable null distribution. Inspired by the selective inference framework, we
propose a novel approach that eliminates the need for data splitting, allowing full-sample hyperparameter learning and testing. Our
method addresses dependencies introduced by learning and provides a closed-form test threshold while achieving higher test power
than data-splitting methods, regardless of split proportions.

Table 9: Comparative case study of model outputs. Hallucinations are highlighted in red color.

Model Output

GPT-o1 Modern kernel-based tests, such as MMD and KSD, use data splitting to adjust hyperparameters. This data splitting ensures proper
test thresholds but weakens test power because the data is divided into smaller portions. We propose a new method that avoids splitting
the data and provides better test power.

Plan Questions q1: What do MMD and KSD do with data splitting?
q2: What is the main purpose of the proposed method?
q3: Why is the proposed method better than data splitting?

Plan-mPlug-Owl3 Kernel-based tests like maximum mean discrepancy (MMD) and kernelized Stein discrepancy (KSD) typically divide the data into
subsets to adjust hyperparameters. This approach ensures a manageable null distribution but reduces test power. Inspired by selective
inference, we propose a new method that avoids splitting the data. This method uses the entire dataset for hyperparameter tuning and
testing, textcolorredeliminating dependencies introduced by learning. It also provides a clear, closed-form test threshold and achieves
higher test power compared to data-splitting methods, regardless of the split proportions.

Table 10: Decreasing reading difficulty: plan modifications vs instruction adjustments. Hallucinations are in red.

Model Output

GPT-o1 Kernel-based statistical methodologies, exemplified by maximum mean discrepancy (MMD) and kernelized Stein discrepancy (KSD),
conventionally employ data partitioning mechanisms to facilitate hyperparameter optimization. While this stratagem ensures a
well-calibrated null distribution, it inherently compromises the statistical power of the test due to data fragmentation. We advance
a paradigm wherein hyperparameter selection is conducted holistically, circumventing data splitting and consequently preserving
statistical power.

Plan Questions q1: Through what operational principles do MMD and KSD navigate the interplay between hyperparameter tuning and null distribution
calibration?
q2: How does the selective inference framework inform the methodological innovations of the proposed approach?
q3: What are the quantifiable and theoretical advantages of the proposed strategy in circumventing the limitations imposed by
data-splitting conventions?

Plan-mPlug-Owl3 Modern kernel-based tests like maximum mean discrepancy (MMD) and kernelized Stein discrepancy (KSD) typically split the data to
optimize hyperparameters, trading off test power for a tractable null distribution. Inspired by the selective inference framework, we
propose a novel approach that eliminates the need for data splitting, allowing full-sample hyperparameter learning and testing. Our
method addresses dependencies introduced by learning and provides a closed-form test threshold while achieving higher test power
than data-splitting methods, regardless of split proportions.

Table 11: Increasing reading difficulty: plan modifications vs. instruction adjustments. Hallucinations are in red.

Model Output

GPT-o1 Kernel-based tests like MMD and KSD use data splitting for hyperparameter tuning, which controls thresholds but reduces
power. We propose a method that avoids splitting, improving test power.

Plan Questions q1: How do kernel-based tests like MMD and KSD typically optimize hyperparameters?
q2: What are the advantages of the proposed method compared to data-splitting methods?

Plan-mPlug-Owl3 Kernel-based tests, such as maximum mean discrepancy (MMD) and kernelized Stein discrepancy (KSD), rely on data
splitting for hyperparameter tuning. Our method delivers analytically derived test thresholds and consistently outperforms
data-splitting techniques in test power, regardless of how the data is divided.

Table 12: Deleting 30% of plan questions vs. instruction adjustments. Hallucinations are highlighted in red.
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GPT-o1 also recognizes that the plan-based model1588

outperformed other models. We further conduct1589

paired t-tests to find that human summaries out-1590

perform all neural models across all metrics with1591

statistical significance (p < 0.05). Moreover, the1592

plan-based model demonstrates significantly better1593

performance (p < 0.05) than other neural mod-1594

els across all metrics except for conciseness. Our1595

results also indicate that although the plan-based1596

method can improve the performance of end-to-1597

end models to some extent, there is a considerable1598

gap between machine-generated and human sum-1599

maries, which also reflects the challenging nature1600

of our dataset.1601
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J Prompts Used in Our Study1602

Quality Control Guidelines
Guidelines:
Evaluate each video-text pair to determine
whether the text provides a concise and ac-
curate summary of the corresponding video.
• Concise: Ensure the text is brief, focused,

and free of unnecessary details.
• Accurate: Verify that the text faithfully

represents the video’s content.
Make binary judgments (Valid or
Invalid) for each pair. If flagged as
Invalid, provide a brief justification.
Answer:
Judgment: (Valid or Invalid)
Justification: (Justification if
flagged as invalid)

Figure 11: Quality control guidelines.

Summary Generation (without plan)
Generate a summary for the provided
content.
Content: {Video/Audio/Transcript/OCR}
Summary:

Figure 12: Prompt to generate summaries without plans.

Question Generation
Generate a coherent and contextually rele-
vant question based on the provided context
and target sentence, ensuring that the target
sentence can be treated as an answer to the
generated question.
Context: {Context Text}
Target: {Target Sentence}
Question Sentence:

Figure 13: Prompt for question generation.

Prompt for PG model
Generate a list of questions for the provided
video.
Video: {Video}
Questions:

Figure 14: Prompt for PG model.

Prompt for SG model
Generate a summary for the following
video based on the plan questions.
Video: {Video}
Plan Questions: {Questions}
Ensure that the generated summary sequen-
tially answers the plan questions.
Summary:

Figure 15: Prompt for SG model.

Irrelevant Question Generation
Randomly generate a question with a ques-
tion mark.
Question Sentence:

Figure 16: Prompt used by GPT-o1 to generate irrele-
vant questions.

Summary Readability Modification
Rewrite the following text to further adjust
style or detail.
Here is the text to be rewritten: {Text}
Refine the above text to be more
{lay/expert} style.
Modified Text:

Figure 17: Summary readability modification.

Summary Length Modification
Rewrite the following text to further adjust
style or detail.
Here is the text to be rewritten: {Text}
Shorten the above text by about {10% / 30%
/ 60%}. Focus on the key points and remove
less critical details.
Modified Text:

Figure 18: Summary length modification.

Plan Readability Modification
Rewrite the following questions to further
adjust style or detail.
Here are the questions to be rewritten:
1. {Q1}
2. {Q2}
...
Refine the above questions to be more
{lay/expert} style.
Modified Questions:

Figure 19: Plan readability modification.
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K Human Evaluation Guidelines1603

Prerequisites To participate in this evaluation, you must meet the following two criteria: (1) be a Master’s or
Ph.D. student in Computer Science or Computational Linguistics, and (2) demonstrate English proficiency at C2 level
or higher.a If you do not meet both criteria, we kindly ask you to refrain from participating in this task. Eligible
participants are encouraged to follow the instructions below carefully.

Instructions The following section provides detailed descriptions of the evaluation metrics and criteria used in
this study. Please review the accompanying source video and the candidate summaries thoroughly. After evaluating
each summary, assign scores based on the five criteria below, using a 1-to-5 Likert scale where higher scores indicate
better quality:
• Faithfulness: Assess the accuracy of the summary in representing the content of the source video. A faithful

summary should adhere closely to the source material, avoiding contradictions, misinterpretations, or unverified
information.

• Relevance: Measure how well the summary includes the topics and themes central to the source video. A relevant
summary should focus on the content that is most pertinent to the original video.

• Informativeness: Evaluate the extent to which the summary captures the main points and essential details of the
source video. An informative summary should provide a clear and comprehensive understanding of the video’s core
ideas and findings.

• Conciseness: Determine the efficiency of the summary in conveying information. A concise summary should avoid
redundancy and extraneous details while retaining all critical information from the source video.

• Coherence: Examine the logical flow and overall structure of the summary. A coherent summary should present
information in an organized and easy-to-follow manner, ensuring that ideas connect naturally and transitions between
points are smooth.

Rating System For each metric, use the following Likert scale:
• 1 (Worst): Does not meet the criteria at all.
• 2 (Poor): Meets the criteria minimally.
• 3 (Fair): Meets the criteria adequately.
• 4 (Good): Meets the criteria well.
• 5 (Best): Fully meets the criteria.

Overall Ranking After assigning scores to each summary for the individual criteria, rank all candidates from
best to worst based on their overall quality. Consider the summaries’ performance across all criteria when determining
the final rankings.

ahttps://en.wikipedia.org/wiki/C2_Proficiency

Figure 20: A snapshot of the experimental instructions provided to human evaluators.

L Prompt for GPT-o1 to Evaluate Summary Quality1604

Source Video: {Source Video}
Candidate Summary: {Candidate Summary}
You are tasked with evaluating the quality of the candidate summary based on the provided source video. Please adhere
strictly to the following evaluation guidelines and scoring criteria to ensure a consistent and objective evaluation.
Evaluation Guidelines: {Guidelines}
Instructions for Output:
• Provide your evaluation using the following format, outputting scores only.
• Assign a score from 1 to 5 for each dimension, with 1 being the lowest and 5 being the highest.
Output Format:
• Faithfulness: [Score]
• Relevance: [Score]
• Informativeness: [Score]
• Conciseness: [Score]
• Coherence: [Score]
If you encounter ambiguity in evaluating any dimension, prioritize adherence to the evaluation guidelines and provide
the most accurate score possible based on the provided information. Do not include any additional comments or
justifications in your response.

Figure 21: Prompt for GPT-o1 to evaluate summary quality.
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