
Mitigating Dataset Bias by Using Per-sample Gradient

Sumyeong Ahn⇤

Graduate School of AI
KAIST

Seongyoon Kim⇤

Dept. ISysE
KAIST

Se-young Yun
Graduate School of AI

KAIST

Abstract

The performance of deep neural networks is strongly influenced by the training
dataset setup. In particular, when attributes having a strong correlation with the
target attribute are present, the trained model can provide unintended prejudgments
and show significant inference errors (i.e., the dataset bias problem). Various
methods have been proposed to mitigate dataset bias, and their emphasis is on
weakly correlated samples, called bias-conflicting samples. These methods are
based on explicit bias labels provided by human. However, such methods require
human costs. Recently, several studies have tried to reduce human intervention
by utilizing the output space values of neural networks, such as feature space,
logits, loss, or accuracy. However, these output space values may be insufficient
for the model to understand the bias attributes well. In this study, we propose a
debiasing algorithm leveraging gradient called PGD (Per-sample Gradient-based
Debiasing). PGD comprises three steps: (1) training a model on uniform batch
sampling, (2) setting the importance of each sample in proportion to the norm of
the sample gradient, and (3) training the model using importance-batch sampling,
whose probability is obtained in step (2). Compared with existing baselines for
various datasets, the proposed method showed state-of-the-art accuracy for the
classification task.

1 Introduction

Dataset bias [63, 57], is a bad training dataset problem that occurs when unintended easier-to-learn
attributes (i.e., bias attributes), having a high correlation with the target attribute, are present [56, 2].
This is due to the fact that the model can infer outputs by focusing on the bias features, which could
lead to testing failures. For example, most “camel” images include a “desert background,” and this
unintended correlation can provide a false shortcut for answering “camel” on the basis of the “desert.”
In [48, 37], samples of data that have a strong correlation (like "desert background" in “camel” class
images) are called “bias-aligned samples,” while samples of data that have a weak correlation (like
“camel on the grass” images) are termed “bias-conflicting samples.”

To reduce the dataset bias, initial studies [29, 45, 58, 40] have frequently assumed a case where
labels with bias attributes are provided, but these additional labels provided through human effort
are expensive. Alternatively, the bias-type, such as “background” is assumed in [38, 17, 7, 10, 13].
However, assuming biased knowledge from humans is still unreasonable since even humans cannot
predict the type of bias that may exist in a large dataset [53]. Data for deep learning is typically
collected by web-crawling without thorough consideration of the dataset bias problem.

Recent studies [35, 48, 30, 37, 54, 67] have replaced human intervention with DNN results. They
have identified bias-conflicting samples by using empirical metrics for output space (e.g., training
loss and accuracy). For example, [48] suggested a “relative difficulty” based on per-sample training
loss and thought that a sample with a high “relative difficulty” was bias-conflicting sample. Most

⇤Two authors contribute equally

ML Safety Workshop, 36th Conference on Neural Information Processing Systems (NeurIPS 2022).

of the previous research has focused on the output space, such as feature space (penultimate layer
output) [37, 30, 7, 54, 67], loss [48], and accuracy [35, 43]. However, this limited output space can
impose restrictions on describing the data in detail.

Recently, as an alternative, model parameter space (e.g., gradient [23, 28, 47]) has been used to
obtain high-performance gains compared to output space approaches for various target tasks. For
example, [23] used gradient-norm to detect out-of-distribution detection samples and showed that the
gradient of FC layer 2 h⇥c could capture joint information between feature and softmax output,
where h and c are the dimension of feature and output vector, respectively. Since the gradients of
each data point 2 h⇥c constitute high dimensional information, it is much more informative than
the output space, such as logit 2 c and feature 2

h. However, there is no approach to tackle the
dataset bias problem using a gradient norm-based metric.

In this paper, we present a resampling method from the perspective of the per-sample gradient norm to
mitigate dataset bias. Furthermore, we theoretically justify that the gradient-norm-based resampling
method can be an excellent debiasing approach. Our key contributions can be summarized as follows:

• We propose PGD, Per-sample Gradient-norm based Debiasing, a simple and efficient gradient-
norm-based debiasing method. PGD is motivated by prior research demonstrating [47, 23, 28] that
gradient is effective at finding rare samples, and it is also applicable to finding the bias-conflicting
samples in the dataset bias problem (See Section 3 and Appendix D).

• PGD outperforms dataset bias on various benchmarks, such as biased action recognition (BAR),
biased FFHQ (BFFHQ), CelebA and CivilComments-WILD. (See Section 4)

2 Dataset Bias Problem
Classification model. We first describe the conventional supervised learning setting. Let us consider
the classification problem when a training dataset Dn = {(xi, yi)}ni=1 with input image xi and
corresponding label yi is given. Assuming that there are c 2 \ {1} classes, yi is assigned to the one
element in set C = {1, ..., c}. Note that we focus on a situation where dataset Dn does not have noisy
samples, for example, noisy labels or out-of-distribution samples (e.g., SVHN samples when the
task is CIFAR-10). When input xi is given, f(yi|xi, ✓) represents the softmax output of the classifier
for label yi. It is derived from the model parameter ✓ 2

d. The cross-entropy (CE) loss LCE is
frequently used to train the classifier, and it is defined as LCE(xi, yi; ✓) = � log f(yi|xi, ✓).

Figure 1: Target and bias attribute:
digit shape, color.

Dataset bias. Let us suppose that a training set Dn is comprised
of images, as shown in Figure 1, and that the objective is to
classify the digits. Each image can be described by a set of
attributes, (e.g., for the first image in Figure 1, it can be {digit
0, red, thin,...}). The purpose of the training classifier is to find
a model parameter ✓ that correctly predicts the target attributes,
(e.g., digit). Notably, the target attributes are also interpreted as
classes. However, we focus on a case wherein another attribute
that is strongly correlated to the target exists, and we call these
attributes bias attributes. For example, in Figure 1, the bias attribute is color.

Furthermore, samples whose bias attributes are highly correlated to the target attributes are called
bias-aligned (top three rows in Figure 1). Conversely, weakly correlated samples are called bias-
conflicting (see the bottom row of Figure 1). Therefore, our main scope is that the training dataset
which have samples whose bias and target attributes are misaligned. 2 According to [48], when the
bias attributes are easier-to-learn than the target attributes, dataset bias is problematic as the trained
model may prioritize the bias attributes over the target attributes. For example, for a model trained on
the images in Figure 1, the model can output class 4 when the (Orange, 0) image (e.g., left bottom
image) is given, due to the wrong priority, color which is an easier-to-learn attribute [48].

3 PGD: Per-sample Gradient-Norm-Based Debiasing

2Note that bias-alignment cannot always be strictly divisible in practice. For ease of explanation, we use the
notations bias-conflicting/bias-aligned.

2

Algorithm 1 PGD: Per-sample Gradient-norm based Debiasing
1: Input: dataset Dn, learning rate ⌘, iterations Tb, Td, Batch

size B, Data augmentation operation A(·), Initial parame-
ter ✓0, GCE parameter ↵
/** STEP 1: Train fb **/

2: for t = 1, 2, · · · , Tb do
3: Construct a mini-batch Bt = {(xi, yi)}Bi=1 ⇠ U .
4: Update ✓t as:

✓t�1 �
⌘
Br✓

P
(x,y)2Bt

LGCE(A(x), y; ✓t�1,↵)
5: end for

/** STEP 2: Calculate h **/

6: Calculate h(xi, yi) for all (xi, yi) 2 Dn, equation 1.
/** STEP 3: Train fd based on h **/

7: for t = 1, 2, · · · , Td do
8: Construct a mini-batch B

0

t = {(xi, yi)}Bi=1 ⇠ h.
9: Update ✓Tb+t as:

✓Tb+t�1 �
⌘
Br✓

P
(x,y)2B

0
t
LCE(A(x), y; ✓Tb+t�1)

10: end for

In this section, we propose a novel debiasing algo-
rithm, coined as PGD. PGD consists of two models,
biased fb and debiased fd with parameters ✓b and ✓d,
respectively. Both models are trained sequentially.
Obtaining the ultimately trained debiased model fd
involves three steps: (1) train the biased model, (2)
compute the sampling probability of each sample,
and (3) train the debiased model. These steps are
described in Algorithm 1.

Step 1: Training the biased model. In the first step,
the biased model is trained on the mini-batches sam-
pled from a uniform distribution U , similar to con-
ventional SGD-based training, with data augmenta-
tion A. The role of the biased model is twofold: it de-
tects which samples are bias-conflicting and calculates how much they should be highlighted. In doing
so, the biased model fb is trained on the generalized cross-entropy (GCE) loss LGCE [48, 37]. For an
input image x and the corresponding true class y, LGCE is defined as LGCE(x, y; ✓,↵) =

1�f(y|x,✓)↵

↵ .
Note that ↵ 2 (0, 1] is a hyperparameter that controls the degree of emphasizing the easy-to-learn
samples, namely bias-aligned samples. We set ↵ = 0.7 as done by the authors of [68], [48] and [37].

Step 2: Compute the gradient-based sampling probability. In the second step, the sampling
probability of each sample is computed from the trained biased model. Since rare samples have large
gradient norm compared to the usual samples at the biased model [22], the sampling probability of
each sample is computed to be proportional to its gradient norm so that bias-conflicting samples
are over-sampled. We propose the following sampling probability of each sample h(xi, yi) which is
proportional to their gradient norm as follows:

h(xi, yi) =
kr✓LCE(xi, yi; ✓b)krsP

(xi,yi)2Dn
kr✓LCE(xi, yi; ✓b)krs

, (1)

where k·k
r
s denotes r square of the Ls norm, and ✓b is the result of step 1. Note that computing the

gradient for all samples requires huge computing resources and memory. Therefore, we only extract
the gradient of the final FC layer parameters. This is a frequently used technique for reducing the
computational complexity [6, 47, 28, 26, 27]. In other words, instead of h(xi, yi), we empirically
utilize ĥ(xi, yi) =

kr✓fcLCE(xi,yi;✓b)k
r
sP

(xi,yi)2Dn
kr✓fcLCE(xi,yi;✓b)kr

s
, where ✓fc is the parameters of the final FC layer.

We consider r = 1 and s = 2 (i.e., L2), and deliver ablation studies on various r and s in Appendix ??.

Step 3: Ultimate debiased model training. Finally, the debiased model fd is trained using mini-
batches sampled with the probability h(xi, yi) obtained in stage 2. However, [37] argued that just
oversampling bias-conflicting samples does not successfully debias, and this unsatisfactory result
stems from the data diversity, i.e., data augmentation techniques are required. Hence, we used simple
randomized augmentation operations A such as random rotation and random color jitter to oversample
the bias-conflicting samples.

4 Experiments
In this section, we demonstrate the effectiveness of PGD for multiple benchmarks compared with
previous proposed baselines. Detail analysis not in this section,e.g., training time, unbiased case study,
easier to learn target attribute, sampling probability analysis, reweighting with PGD are described in
the Appendix D.

4.1 Benchmarks

To precisely examine the debiasing performance of PGD, we used the BFFHQ, BAR, CelebA, and
CivilComments-WILDS datasets obtained from the real-world used to observe the situations in which
general algorithms have poor performance due to bias attributes. Note that BFFHQ and BAR are
biased by using human prior knowledge, while CelebA and CivilComments-WILDS are biased
datasets by nature. A detailed explanation of each benchmark are presented in Appendix B.

3

4.2 Implementation.
Baselines. We select baselines available for the official code from the respective authors among
debiasing methods without prior knowledge on the bias. We use eight methods on the various tasks:
vanilla network, LfF [48], JTT [43]3, Disen [37], GEORGE [59], EIIL [14], BPA[54] and CNC [67].

Implementation details.
We use two types of networks: ResNet18 [21] and pretrained BERT. For BFFHQ, it uses ResNet18 as
a backbone network, and exactly the same setting presented by Disen [37]. For CelebA, we follows
experimental setting of [54] which uses ResNet18 as a backbone network. For CivilComments-
WILDS, we utilize exactly the same hyperparameters of [43] and utilize pretrained BERT. Detail
hyperparameters for CIFAR, BFFHQ, CelebA, CivilComments-WILDS are described in Appendix C.
To reduce the computational complexity in extracting the per-sample gradients, we use only a fully
connected layer, similar to [6, 47, 28, 26, 27].

4.3 Results

Table 1: Average test accuracy and standard deviation (three runs) for experiments with the raw image
benchmarks: BAR and BFFHQ. The best accuracy is indicated in bold and for the overlapped best
performance case is indicated in Underline.

Dataset Vanilla LfF JTT Disen PGD (Ours)
BAR 63.15± 1.06 64.41± 1.30 63.62±1.33 64.70± 2.06 65.39± 0.47

BFFHQ 77.77± 0.45 82.13± 0.38 77.93± 2.16 82.77± 1.40 84.20± 1.15

Table 2: Average and worst test accuracy with the raw image benchmark: CelebA and raw NLP task:
CivilComments-WILDS. The results of comparison algorithms for † and ‡ are the results reported
in [54] and [67], respectively. The best worst accuracy is indicated in bold.

Vanilla LfF GEORGE BPA EIIL JTT CNC Ours

CelebA† Avg. 80.52 84.89 83.13 90.18 - - - 89.27
Worst 41.02 57.96 65.45 82.54 - - - 82.73

CivilComments‡ Avg. 92.1 92.5 - - 90.5 91.1 81.7 92.1
Worst 58.6 58.8 - - 67.0 69.3 68.9 70.6

Similar to the results for the bias-feature-injected benchmarks, as shown in Table 4 and Table 2, PGD
shows competitive performance among all the debiasing algorithms on the raw image benchmark
(BAR, BFFHQ, and CelebA). For example, for the BFFHQ benchmark, the accuracy of PGD is 1.43%
better than that of Disen. As in Table 2, PGD outperforms the other baselines on CivilComments-
WILDs, much more realistic NLP task. Therefore, we believe PGD also works well with transformer,
and it is applicable to the real-world.

4.4 Further analysis

To prove the superiority of PGD, we provide extensive analysis at the supplementary materials.
For example, we provide empirical analysis about sampling probability of PGD D.2, Parameter
sensitivity D.5, Reweighting using per-sample gradient D.8. Furthermore, we also provide theoretical
evidence for understanding PGD at Appendix E.

5 Conclusion
We propose a gradient-norm-based dataset oversampling method for mitigating the dataset bias
problem. The main intuition of this work is that gradients contains abundant information about each
sample. Since the bias-conflicting samples are relatively more difficult-to-learn than bias-aligned
samples, the bias-conflicting samples have a higher gradient norm compared with the others. Through
various experiments and ablation studies, we demonstrate the effectiveness of our gradient-norm-
based oversampling method, called PGD. We are still working on a future project: case where the
given training dataset is corrupted, such as with noisy labels. We hope that this study will help
improve understanding of researchers about the dataset bias problem.

3In the case of JTT [43], although the authors used bias label for validation dataset (especially, bias-conflicting
samples), we tune the hyperparameters using a part of the biased training dataset for fair comparison. Considering
that JTT does not show significant performance gain in the results, it is consistent with the existing results that
the validation dataset is important in JTT, as described in [24].

4

Acknowledgement

This work was supported by Institute of Information & communications Technology Planning
& Evaluation (IITP) grant funded by the Korea government(MSIT) [No.2019-0-00075, Artificial
Intelligence Graduate School Program(KAIST), 10%] and Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) [No.2022-
0-00641, XVoice: Multi-Modal Voice Meta Learning, 90%]

5

References
[1] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna Wallach. A

reductions approach to fair classification. In International Conference on Machine Learning,
pages 60–69. PMLR, 2018.

[2] Faruk Ahmed, Yoshua Bengio, Harm van Seijen, and Aaron Courville. Systematic generalisation
with group invariant predictions. In International Conference on Learning Representations,
2020.

[3] Mohsan Alvi, Andrew Zisserman, and Christoffer Nellåker. Turning a blind eye: Explicit
removal of biases and variation from deep neural network embeddings. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 0–0, 2018.

[4] Jing An, Lexing Ying, and Yuhua Zhu. Why resampling outperforms reweighting for cor-
recting sampling bias with stochastic gradients. In International Conference on Learning
Representations, 2020.

[5] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk mini-
mization. arXiv preprint arXiv:1907.02893, 2019.

[6] Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agar-
wal. Deep batch active learning by diverse, uncertain gradient lower bounds. arXiv preprint
arXiv:1906.03671, 2019.

[7] Hyojin Bahng, Sanghyuk Chun, Sangdoo Yun, Jaegul Choo, and Seong Joon Oh. Learning
de-biased representations with biased representations. In International Conference on Machine
Learning, pages 528–539. PMLR, 2020.

[8] Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. Nu-
anced metrics for measuring unintended bias with real data for text classification. CoRR,
abs/1903.04561, 2019.

[9] Wieland Brendel and Matthias Bethge. Approximating cnns with bag-of-local-features models
works surprisingly well on imagenet. In International Conference on Learning Representations,
2018.

[10] Remi Cadene, Corentin Dancette, Matthieu Cord, Devi Parikh, et al. Rubi: Reducing unimodal
biases for visual question answering. In Advances in Neural Information Processing Systems,
pages 839–850, 2019.

[11] Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Chris-
tian Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing
gradient descent into wide valleys. Journal of Statistical Mechanics: Theory and Experiment,
2019(12):124018, 2019.

[12] Kamalika Chaudhuri, Sham Kakade, Praneeth Netrapalli, and Sujay Sanghavi. Convergence
rates of active learning for maximum likelihood estimation, 2015.

[13] Christopher Clark, Mark Yatskar, and Luke Zettlemoyer. Don’t take the easy way out: Ensemble
based methods for avoiding known dataset biases. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 4069–4082, 2019.

[14] Elliot Creager, Jörn-Henrik Jacobsen, and Richard Zemel. Environment inference for invariant
learning. In International Conference on Machine Learning, pages 2189–2200. PMLR, 2021.

[15] Luke Darlow, Stanisław Jastrzębski, and Amos Storkey. Latent adversarial debiasing: Mitigating
collider bias in deep neural networks. arXiv preprint arXiv:2011.11486, 2020.

[16] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

6

[17] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann,
and Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias
improves accuracy and robustness. In International Conference on Learning Representations,
2018.

[18] Ankit Goyal, Kaiyu Yang, Dawei Yang, and Jia Deng. Rel3d: A minimally contrastive bench-
mark for grounding spatial relations in 3d. Advances in Neural Information Processing Systems,
33, 2020.

[19] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making
the v in vqa matter: Elevating the role of image understanding in visual question answering.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
6904–6913, 2017.

[20] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning.
Advances in neural information processing systems, 29, 2016.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[22] Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt Kira. Generalized odin: Detecting out-
of-distribution image without learning from out-of-distribution data. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10951–10960, 2020.

[23] Rui Huang, Andrew Geng, and Yixuan Li. On the importance of gradients for detecting
distributional shifts in the wild. Advances in Neural Information Processing Systems, 34, 2021.

[24] Badr Youbi Idrissi, Martin Arjovsky, Mohammad Pezeshki, and David Lopez-Paz. Simple data
balancing achieves competitive worst-group-accuracy. In Conference on Causal Learning and
Reasoning, pages 336–351. PMLR, 2022.

[25] Stanisław Jastrzębski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua
Bengio, and Amos Storkey. Three factors influencing minima in sgd. arXiv preprint
arXiv:1711.04623, 2017.

[26] Krishnateja Killamsetty, S Durga, Ganesh Ramakrishnan, Abir De, and Rishabh Iyer. Grad-
match: Gradient matching based data subset selection for efficient deep model training. In
International Conference on Machine Learning, pages 5464–5474. PMLR, 2021.

[27] Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer.
Glister: Generalization based data subset selection for efficient and robust learning. arXiv
preprint arXiv:2012.10630, 2020.

[28] Krishnateja Killamsetty, Xujiang Zhao, Feng Chen, and Rishabh Iyer. Retrieve: Coreset selection
for efficient and robust semi-supervised learning. Advances in Neural Information Processing
Systems, 34, 2021.

[29] Byungju Kim, Hyunwoo Kim, Kyungsu Kim, Sungjin Kim, and Junmo Kim. Learning not to
learn: Training deep neural networks with biased data. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 9012–9020, 2019.

[30] Eungyeup Kim, Jihyeon Lee, and Jaegul Choo. Biaswap: Removing dataset bias with bias-
tailored swapping augmentation. arXiv preprint arXiv:2108.10008, 2021.

[31] Nayeong Kim, Sehyun Hwang, Sungsoo Ahn, Jaesik Park, and Suha Kwak. Learning debiased
classifier with biased committee. arXiv preprint arXiv:2206.10843, 2022.

[32] Arvindkumar Krishnakumar, Viraj Prabhu, Sruthi Sudhakar, and Judy Hoffman. Udis: Unsuper-
vised discovery of bias in deep visual recognition models. In British Machine Vision Conference
(BMVC), volume 1, page 3, 2021.

[33] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

7

[34] Oran Lang, Yossi Gandelsman, Michal Yarom, Yoav Wald, Gal Elidan, Avinatan Hassidim,
William T Freeman, Phillip Isola, Amir Globerson, Michal Irani, et al. Explaining in style:
Training a gan to explain a classifier in stylespace. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 693–702, 2021.

[35] Ronan Le Bras, Swabha Swayamdipta, Chandra Bhagavatula, Rowan Zellers, Matthew Peters,
Ashish Sabharwal, and Yejin Choi. Adversarial filters of dataset biases. In International
Conference on Machine Learning, pages 1078–1088. PMLR, 2020.

[36] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs
[Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

[37] Jungsoo Lee, Eungyeup Kim, Juyoung Lee, Jihyeon Lee, and Jaegul Choo. Learning debi-
ased representation via disentangled feature augmentation. Advances in Neural Information
Processing Systems, 34, 2021.

[38] Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. Network randomization: A simple
technique for generalization in deep reinforcement learning. In International Conference on
Learning Representations, 2019.

[39] Erich L. Lehmann and George Casella. Theory of Point Estimation. Springer-Verlag, New York,
NY, USA, second edition, 1998.

[40] Yi Li and Nuno Vasconcelos. Repair: Removing representation bias by dataset resampling.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
9572–9581, 2019.

[41] Yingwei Li, Yi Li, and Nuno Vasconcelos. Resound: Towards action recognition without
representation bias. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 513–528, 2018.

[42] Zhiheng Li and Chenliang Xu. Discover the unknown biased attribute of an image classifier.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 14970–
14979, 2021.

[43] Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa,
Percy Liang, and Chelsea Finn. Just train twice: Improving group robustness without training
group information. In International Conference on Machine Learning, pages 6781–6792.
PMLR, 2021.

[44] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In 2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile,
December 7-13, 2015, pages 3730–3738. IEEE Computer Society, 2015.

[45] Daniel McDuff, Shuang Ma, Yale Song, and Ashish Kapoor. Characterizing bias in classifiers
using generative models. In Advances in Neural Information Processing Systems, pages 5404–
5415, 2019.

[46] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold approximation
and projection for dimension reduction, 2018. cite arxiv:1802.03426Comment: Reference
implementation available at http://github.com/lmcinnes/umap.

[47] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
machine learning models. In International Conference on Machine Learning, pages 6950–6960.
PMLR, 2020.

[48] Jun Hyun Nam, Hyuntak Cha, Sungsoo Ahn, Jaeho Lee, and Jinwoo Shin. Learning from
failure: De-biasing classifier from biased classifier. In 34th Conference on Neural Information
Processing Systems (NeurIPS) 2020. Neural Information Processing Systems, 2020.

[49] Taesung Park, Jun-Yan Zhu, Oliver Wang, Jingwan Lu, Eli Shechtman, Alexei A Efros,
and Richard Zhang. Swapping autoencoder for deep image manipulation. arXiv preprint
arXiv:2007.00653, 2020.

8

[50] Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Weinberger. On fairness
and calibration. Advances in neural information processing systems, 30, 2017.

[51] Vikram V Ramaswamy, Sunnie SY Kim, and Olga Russakovsky. Fair attribute classification
through latent space de-biasing. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9301–9310, 2021.

[52] Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally
robust neural networks for group shifts: On the importance of regularization for worst-case
generalization. arXiv preprint arXiv:1911.08731, 2019.

[53] Roland Schäfer. On bias-free crawling and representative web corpora. In Proceedings of the
10th web as corpus workshop, pages 99–105, 2016.

[54] Seonguk Seo, Joon-Young Lee, and Bohyung Han. Unsupervised learning of debiased repre-
sentations with pseudo-attributes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 16742–16751, June 2022.

[55] Robert J. Serfling. Approximation Theorems of Mathematical Statistics. John Wiley & Sons,
1980.

[56] Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli. The
pitfalls of simplicity bias in neural networks. Advances in Neural Information Processing
Systems, 33:9573–9585, 2020.

[57] Robik Shrestha, Kushal Kafle, and Christopher Kanan. An investigation of critical issues in
bias mitigation techniques. arXiv preprint arXiv:2104.00170, 2021.

[58] Krishna Kumar Singh, Dhruv Mahajan, Kristen Grauman, Yong Jae Lee, Matt Feiszli, and
Deepti Ghadiyaram. Don’t judge an object by its context: Learning to overcome contextual
bias. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 11070–11078, 2020.

[59] Nimit Sohoni, Jared Dunnmon, Geoffrey Angus, Albert Gu, and Christopher Ré. No subclass
left behind: Fine-grained robustness in coarse-grained classification problems. Advances in
Neural Information Processing Systems, 33:19339–19352, 2020.

[60] Jamshid Sourati, Murat Akcakaya, Todd K. Leen, Deniz Erdogmus, and Jennifer G. Dy. Asymp-
totic analysis of objectives based on fisher information in active learning, 2016.

[61] Enzo Tartaglione, Carlo Alberto Barbano, and Marco Grangetto. End: Entangling and disentan-
gling deep representations for bias correction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 13508–13517, 2021.

[62] Damien Teney, Ehsan Abbasnejad, Simon Lucey, and Anton van den Hengel. Evading the sim-
plicity bias: Training a diverse set of models discovers solutions with superior ood generalization.
arXiv preprint arXiv:2105.05612, 2021.

[63] Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In CVPR 2011, pages
1521–1528. IEEE, 2011.

[64] Haohan Wang, Zexue He, Zachary C Lipton, and Eric P Xing. Learning robust representations
by projecting superficial statistics out. In International Conference on Learning Representations,
2018.

[65] Larry Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer Texts in
Statistics. Springer, New York, 2004.

[66] Blake E. Woodworth, Suriya Gunasekar, Mesrob I. Ohannessian, and Nathan Srebro. Learning
non-discriminatory predictors. In COLT, 2017.

[67] Michael Zhang, Nimit S Sohoni, Hongyang R Zhang, Chelsea Finn, and Christopher Ré. Correct-
n-contrast: A contrastive approach for improving robustness to spurious correlations. arXiv
preprint arXiv:2203.01517, 2022.

9

[68] Zhilu Zhang and Mert R Sabuncu. Generalized cross entropy loss for training deep neural
networks with noisy labels. In 32nd Conference on Neural Information Processing Systems
(NeurIPS), 2018.

10

– Appendix –
Mitigating Dataset Bias by Using Per-sample Gradient

A Related Work

Debiasing with bias label. In [19, 18], a debiased dataset was generated using human labor. Various
studies [3, 29, 45, 58, 62] have attempted to reduce dataset bias using explicit bias labels. These
studies [3, 29, 45, 58, 41, 40], used bias labels for each sample to reduce the influence of the
bias labels when classifying target labels. Furthermore, [61] proposed the EnD regularizer, which
entangles target correlated features and disentangles biased attributes. Several studies [3, 29, 62]
have designed DNNs as a shared feature extractors and multiple classifiers. In contrast to the shared
feature extractor methods, [45] and [51] fabricated a classifier and conditional generative adversarial
networks, yielding test samples to determine whether the classifier was biased. Furthermore, [58]
proposed a new overlap loss defined by a class activation map (CAM). The overlap loss reduces the
overlapping parts of the CAM outputs of the two bias labels and target labels. The authors of [40, 41]
employed bias labels to detect bias-conflicting samples and to oversample them to debias. In [43], a
reconstructing method based on the sample accuracy was proposed. The authors of [43] used bias
labels in the validation dataset to tune the hyper-parameters. On the other hand, there has been a
focus on fairness within each attribute [20, 66, 50, 1]. Their goal is to prevent bias attributes from
affecting the final decision of the trained model.

Debiasing with bias context. In contrast to studies assuming the explicit bias labels, a few studies [17,
64, 38, 7, 10, 13] assumed that the bias context is known. In [17, 64, 38], debiasing was performed
by directly modifying known context bias. In particular, the authors of [17] empirically showed that
CNNs trained on ImageNet [16] were biased towards the image texture, and they generated stylized
ImageNet to mitigate the texture bias, while [38] and [64] inserted a filter in front of the models so
that the influence of the backgrounds and colors of the images could be removed. On the other hand,
some studies [7, 13, 10], mitigated bias by reweighting bias-conflicting samples: [7] used specific
types of CNNs, such as BagNet [9], to capture the texture bias, and the bias was reduced using the
Hilbert-Schmidt independence criterion (HSIC). In the visual question answering (VQA) task, [13]
and [10] conducted debiasing using the entropy regularizer or sigmoid output of the biased model
trained on the fact that the biased model was biased toward the question.

Debiasing without human supervision. Owing to the impractical assumption that bias information
is given, recent studies have aimed to mitigate bias without human supervision [35, 48, 15, 30, 37].
[35] identified bias-conflicting samples by sorting the average accuracy of multiple train-test iterations
and performed debiasing by training on the samples with low average accuracy. In [2], each class
is divided into two clusters based on IRMv1 penalty [5] using the trained biased model, and train
the debiased model so that the output of two clusters become similar. Furthermore, [30] used
Swap Auto-Encoder [49] to generate bias-conflicting samples, and [15] proposed the modification
of the latent representation to generate bias-conflicting samples by using an auto-encoder. [37] and
[48] proposed a debiasing algorithm weighted training by using a relative difficulty score, which is
measured by the per-sample training loss. Specifically, [37] used feature mixing techniques to enrich
the dataset feature information. [54] and [59] proposed unsupervised clustering based debiasing
method. Recently, contrastive learning based method [67] and self-supervised learning method [31]
are proposed. On the other hand, there have been studies [42, 34, 32] that identify the bias attribute
of the training dataset without human supervision.

B Benchmarks

B.1 Synthetic datasets (Additional synthetic datasets)

To precisely examine the debiasing performance of PGD, we additionally checked the Colored
MNIST, Multi-bias MNIST, and Corrupted CIFAR datasets as synthetic datasets, which assume

11

situations in which the model learns bias attributes first. We reconstruct MNIST variants, while the
others are directly downloaded from the official repositories4, 5 and run without any modification.

Figure 1: Colored MNIST: Single bias attribute, color, and target attribute shape. Top 3 rows represent
bias-aligned samples, the other bottom row samples are bias-conflicting examples.

Figure 2: Biased MNIST: Multiple bias attributes, colors and objects, and target attribute shape. Top
3 rows represent bias-aligned samples, the other bottom row samples are bias-conflicting examples.

Figure 3: Corrupted CIFAR: single bias attribute, noise, and target attribute object. Top 3 rows
represent bias-aligned samples, the other bottom row samples are bias-conflicting examples.

Colored MNIST The MNIST dataset [36] is composed of 1-dimensional gray hand-written images.
The size of the image is 28 ⇥ 28. We inject color into these gray images to give them two main
attributes, color and digit shape. This benchmark comes from related works [48, 30, 37, 7]. First, we
choose ten uniformly sampled RGB colors from {Ci}i2[10] 2

3⇥10. Each sample (x, y) is colored
by the following steps. (1) Select bias-confilicting or bias-aligned: random sample u ⇠ U(0, 1), and
set the sample to bias-conflicting samples when u < ⇢, otherwise as bias-aligned. Note that ⇢ is a
ratio of bias-conflicting samples and we use {0.5%, 1%, 5%}.
(2) Coloring: color the image with c ⇠ N (Ci,�I), where i 6= y for bias-conflict, or i = y for
bias-aligned. To generate color variation, we inject color for each sample with added noisy i.e.,
Ci +N (0, 0.0001). We use 55, 000 samples for training, 5, 000 samples for validation (i.e., 10%)
and 10, 000 samples for test. Remark that test samples are unbiased test set, which means ⇢ = 90%.

Multi-Bias MNIST The image size of Multi-bias MNIST is 56⇥ 56. This dataset aims to test the
case where there are multiple biased attributes. To do so, we inject totally 7 bias attributes, {digit

4https://github.com/alinlab/BAR
5https://drive.google.com/drive/folders/1JEOqxrhU_IhkdcRohdbuEtFETUxfNmNT

12

color, object 1 (fashion), object 1 color, object 2 (Japanese character), object 2 color, object 3 (English
character), object 3 color}, while the target attribute is digit shape. We inject each bias independently
into each sample, as with the colored MNIST case (i.e., sampling, and injecting bias). To generate
unbiased test set, we also set ⇢ = 90% for all bias attributes. As same with Colored MNIST, we use
55, 000 samples for training, 5, 000 samples for validation and 10, 000 samples for test.

Corrupted CIFAR This dataset is generayted by injecting filters to the CIFAR10 dataset [33].
This benchmark is motivated by the works [48, 37]. In this benchmark, the biased attribute and
the target attribute are object and corruption, respectively. Corruption examples are {Snow, Frost,
Fog, Brightness, Contrast, Spatter, Elastic, JPEG, Pixelate, Saturate}. We download this benchmark
from the official repository of [37]. This dataset is composed of 45, 000 training dataset and 5, 000
validation set, and 10, 000 for test. As same with prior datasets, test dataset is composed of unbiased
samples.

B.2 Datasets in Section 4

We will explain the datasets utilized in Section 4.

Figure 4: Biased Action Recognition: Target attribute: Action, while biased attribute is background.
Top 2 rows represent bias-aligned samples. On the other hand, the bottom row represent bias-conflict
samples.

Biased Action Recognition (BAR) This dataset comes from the paper [48] for real-world image test.
The goal of this benchmark is classifying 6 actions {Climbing, Diving, Fishing, Racing, Throwing,
Vaulting}, while the places are biased. Target and bias attributes pairs are (Climbing,RockWall),
(Diving,Underwater), (Fishing, WaterSurface), (Racing, APavedTrack), (Throwing, PlayingField),
and (Vaulting, Sky). Bias-conflict samples, for example, is (Climbing, IceCliff), (Diving, Indoor),
(Fishing, Forest), (Racing, OnIce), (Throwing, Cave), (Vaulting, Beach). The number of samples for
training is 1, 941, and test is 6, 54. To split the training and validation samples, we use 10% validation
samples, i.e., 1, 746 images for training and 195 for validation. We download training dataset from
the official repository.

Figure 5: BFFHQ: Biased FFHQ. Target attribute: Gender, Biased attribute: age. Top 2 rows represent
bias-aligned samples, oppositely, bottom row represent bias-conflict samples.

Biased FFHQ This BFFHQ benchmark is conducted in [37, 30]. Target and biased attributes for
bias-aligned samples are (Female, Young), and (Male, Old). Specifically, ‘Young’ represents, age
ranging 10 to 29, and ‘old’ are from 40 to 59. Oppositely, the bias-conflict samples are (Female, Old)
and (Male, Young). The number of training samples are 19, 200, validation samples are 1, 000, and
test samples are 1, 000.

13

CelebA CelebA [44] is a common real world face classification dataset and each image has 40
attributes. The goal is classifying the hair color(“blond" and “not blond") of celebrities which has a
spurious correlation with the gender (“male" or “female") attribute. In fact, only 6% of blond faces
are male, so ERM shows poor performance on bias conflict subclass. We report the average accuracy
and the worst-group accuracy on the test dataset.

CivilComments-WILDS CivilComments-WILDS [8] is a dataset to classify whether an online
comment is toxic or non-toxic. Each data is a real online comment, curated on the Civil Comments
platform that is a comment plug-in for independent news sites. The mentions of certain demographic
identities (male, female, White, Black, LGBTQ, Muslim, Christian, and other religion) cause the
supurious correlation with the label. Table 1 indicates the portion of toxic comments for each
demographic identities [54].

Identity male female White Black LGBTQ Muslim Christian other religions
portion(%) of toxic 14.9 13.7 28.0 31.4 26.9 22.4 9.1 15.3
Table 1: portion of toxic comments in the CivilComments-Wilds for each demographic identity

C Experiment details

C.1 Settings

Architecture. For the colored MNIST, and Multi-Bias MNIST datasets, we use simple convolutional
networks consisting of three CNN layers with kernel size 4, and channel size {8, 32, 64} for each layer.
Also, we utilize average pooling at the end of each layer. Batch normalization and dropout techniques
are used for regularization. Detailed network configurations are below. For corrupted CIFAR, BAR,
and BFFHQ, we utilize ResNet-18 which is provided by the open source library, torchvision. For
CelebA, we follows experimental setting of [54] which uses ResNet18 as a backbone network. For
CivilComments-WILDS, we utilize exactly the same hyperparameters of [43] and utilize pretrained
BERT.

SimConv-1.
(conv1): Conv2d(3, 8, kernel_size=(4, 4), stride=(1, 1))

(bn1): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(relu1): ReLU()

(dropout1): Dropout(p=0.5, inplace=False)

(avgpool1): AvgPool2d(kernel_size=2, stride=2, padding=0)

(conv2): Conv2d(8, 32, kernel_size=(4, 4), stride=(1, 1))

(bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(relu2): ReLU()

(dropout2): Dropout(p=0.5, inplace=False)

(avgpool2): AvgPool2d(kernel_size=2, stride=2, padding=0)

(conv3): Conv2d(32, 64, kernel_size=(4, 4), stride=(1, 1))

(relu3): ReLU()

(bn3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(dropout3): Dropout(p=0.5, inplace=False)

(avgpool3): AdaptiveAvgPool2d(output_size=(1, 1))

(fc): Linear(in_features=64, out_features=$num_class, bias=True)

SimConv-2.
(conv1): Conv2d(3, 8, kernel_size=(7, 7), stride=(1, 1))

(bn1): BatchNorm2d(8, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(relu1): ReLU()

(dropout1): Dropout(p=0.5, inplace=False)

(avgpool1): AvgPool2d(kernel_size=3, stride=3, padding=0)

14

(conv2): Conv2d(8, 32, kernel_size=(7, 7), stride=(1, 1))

(bn2): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(relu2): ReLU()

(dropout2): Dropout(p=0.5, inplace=False)

(avgpool2): AvgPool2d(kernel_size=3, stride=3, padding=0)

(conv3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))

(relu3): ReLU()

(bn3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(dropout3): Dropout(p=0.5, inplace=False)

(conv4): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1))

(relu4): ReLU()

(bn4): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True,

track_running_stats=True)

(dropout4): Dropout(p=0.5, inplace=False)

(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))

(fc): Linear(in_features=128, out_features=$num_class, bias=True)

C.2 Baselines

(1) LfF [48] trains the debiased model by weighting the bias-conflicting samples based on the “relative
difficulty” which is computed by the two loss values from the biased model and debiased model. To
emphasize bias-conflict samples, the authors utilize generalized cross entropy loss with parameter
↵ = 0.7. We implement the LfF algorithm following the official code offered by the authors. Loss
function that this work proposed are as follows. Details are in the original paper.

LLfF = W (z)LCE(Cd(z, y) + �LGCE(Cb(z, y)),

W (z) =
LCE(Cb(z), y)

LCE(Cb(z), y) + LCE(Cd(z), y)
.

Note that W (z) is a relative difficulty and that GCE is a generalized cross-entorpy. z denotes feature,
which is the output of the penultimate layer, and C· is fully connected layer.

(2) JTT [43] aims to debiasing by spliting dataset into correctly learned and failed to learned samples.
To do so, JTT trains the biased model first and split the given training dataset as follows:

Derror-set = {(x, y) s.t. ygiven 6= argmax
c

fb(x)[c]}, (1)

Then, train the ultimate debiased model by oversampling Derror-set with �up times. We set �up as 1./⇢
for all experiments. We reproduce the results by utilizing the official code offered by the authors. The
main strength of PGD compared to JTT is that PGD does not need to set a hyperparameter.

(3) Disen [37] aims to debias by generating abundant features from mixing features between samples.
To do so, the authorus train the biased and debiased model by aggregating features from both networks.
This work also utilized “relative difficulty” that is proposed in LfF [48]. We reproduce the results
utilizing the official code offered by the authors. The loss function proposed in this work is as follows.
Details are provided in the original paper.

Ltotal = Ldis + �swapLswap,

where

Lswap = W (z)LCE(Cd(zswap, y) + �swapbLGCE(Cb(zswap, ỹ))

Ldis = W (z)LCE(Cd(z, y) + �disLGCE(Cb(z, y)),

W (z) =
LCE(Cb(z), y)

LCE(Cb(z), y) + LCE(Cd(z), y)
.

All terms are identical with LfF paper, except for swapped feature zswap.

(4) GEORGE [59] aims to debias by measuring and mitigating hidden stratification without requiring
access to subclass labels. Suppose there are given n datapoints, x1, · · · , xn 2 � and associated

15

superclass (target) labels y1, · · · , yn 2 {1, · · · , C}. In addition, associated with each datapoint xi

has latent (unobserved) subclass label zi 2 {1, · · · ,K}.
GEORGE consists of 3 steps. To do so, the authorus train the biased based on ERM first. Next,
to estimate approximate subclass (latent) label, apply UMAP dimensionality reduction [46] to the
features of given training dataset at ERM model and cluster the output of the reduced dimension for
the data of each superclass into K clusters, where K is chosen automatically. The detail description
of clustering process is provided in the original paper. Lastly, to improve performance on these
estimated subclass, they minimize the maximum per-cluster average loss(i.e. (x, y) ⇠ P̂z̃), by using
the clusters as groups in the GDRO objective [52]. The loss function proposed in this work is as
follows:

minimize
L,f✓

max
1z̃K (x,y)⇠P̂z̃

[l(L � f✓(x), y)]

where f✓ and L are parameterized feature extractor and classifier, respectively.

(5) BPA[54] aims to debias by using the technique of feature clustering and cluster reweighting. It
consists of 3 steps. To do so, the authorus train the biased model ✓̃ based on ERM first. Next, at the
biased model ✓̃, cluster all training examples into K clusters based on the feature derived from the
ERM model ✓̃, where K is hyperparameter. Here, h(x, y; ✓̃) 2 K = {1, · · · ,K} denote the cluster
mapping function of data (x, y) derived by ✓̃. At the last step, they calculate the proper importance
weight, wk, to the k-th cluster, whekre k 2 K and the final objective of debiasing framework is given
by minimizing a weighted empirical risk as follows:

minimize
✓

n
(x,y)⇠P

h
wh(x,y;✓̃)(✓)l(x, y; ✓)

io
,

where wh(x,y;✓̃)(✓) denote the importance weight to the cluster h(x, y; ✓̃) at the model ✓. Concretely,
for arbitrary iteration index T , wh(x,y;✓̃)(✓T) is derived from the momentum method based on the
history set HT , defined by

HT =

⇢
1 t T |

(x,y)⇠Pk
[l((x, y); ✓t)]

Nk

�
,

where Nk is number of the data belong to k-th cluster. Details are provided in the original paper.

(6) CNC [67] aims to debias by learning representations such that samples in the same class but
different groups are close to each other. CNC is composed of 2 steps: (1) Inferring pseudo group
labels, (2) Supervised contrastive learning. First, get ERM based model f✓̂ and get pseudo prediction
ŷ, standard argmax over the final-layer outputs of f✓̂. Next, training the debiased model based on
supervised contrastive learning using pseudo prediction ŷ. The detail process of contrastive learning
for each iteration is like below:

• From the selected batch, sample the one anchor data (x,y).
• Construct the set of positives samples {(x+

m, y
+
m)} which is belong to the batch, satisfying

y
+
m = y and ŷ

+
m 6= ŷ.

• Similarly, construct the set of negative samples {(x�

n , y
�

n)} which is belong to the batch,
satisfying y

�

n 6= y and ŷ
�

n = ŷ.
• With loss of generality, assume cardinality of positive set and negative set are M and N ,

respectively.

• Weight update based on the gradient of the loss function L̂(f✓;x, y), the detail is like below:

L̂(f✓;x, y) = �L̂
sup
con(x, {x

+
m}

M
m=1, {x

�

n }
N
n=1; fenc) + (1� �)L̂cross(f✓;x, y).

Here, � 2 [0, 1] is a hyperparameter and L̂cross(f✓;x, y) is an average cross-entropy loss
over x, the M positives, and N negatives. Moreover, fenc is the feature extractor part of f✓
and the detail formulation of L̂sup

con(x, {x+
m}

M
m=1, {x

�

n }
N
n=1; fenc) is like below:

�
1

M

MX

r=1

log
exp(fenc(x)

T
fenc(x+

r)/⌧)PM
m=1 exp(fenc(x)

T
fenc(x

+
m)/⌧) +

PN
n=1 exp(fenc(x)

T
fenc(x

�
n)/⌧)

.

16

(7) EIIL [14] proposes a novel invariant learning framework that does not require a prior environment
knowledge. EIIL is composed of 3-step process: (1) ERM training (2) Environment inference (EI) (3)
Invariant Learning (IL).
First, get a biased model w � � by minimizing ERM. Note that � and w are feature extractor and
classifier, respectively.
Next, based on feature extractor �, optimize the EI objective to infer environments of each training
data. The object of EI is sorts training examples D into D1 [D2 that maximally separate the spurious
features so that facilitate effective invariant learning. Concretely, get a q? = argmaxq krw̃=1R̃

e(w̃ �

�)k, where R̃e(w̃ ��) = 1
|D|

P
|D|

i=1 qi(e)l(w̃ ��(xi), yi). Note that e 2 {1, 2} and qi(1)+qi(2) = 1

for all i 2 {1, · · · , |D|}. Based on q
?, get a bernoulli sample q̂ ⇠ Bernoulli(q?), and split D in to D1

and D2 based on result of binary value q̂.
Lastly, to get a debiased model, optimize the classifier w and feature extractor � by minimizing
invariant learning objective (e.g. IRM or GroupDRO) from the gained two pseudo environment D1

and D2.

C.3 Implementation Details

Image processing We train and evaluate with a fixed image size. For colored MNIST case, 28⇥ 28
and Multi-bias MNIST , 56⇥ 56, Corrupted CIFAR, 32⇥ 32, and real-world datasets of 224⇥ 224.
For all cases, we utilize random rotation and color jitter to avoid overfitting. We use normalizing with
mean 0.4914, 0.4822, 0.4465), and standard deviation (0.2023, 0.1994, 0.2010).

Implementation For Table 3 and Table 4 reported in Section 4, we reproduce all experimental results
referring to other official repositories: 6 7 8 9.

Except for JTT, all hyperparameters for corrupted CIFAR, BAR, and BFFHQ follow previously
reported parameters in repositories. We grid-search for other cases, MNIST variants. We set the only
hyperparameter of PGD, q, as 0.7, which is proposed by the original paper [68]. A summary of the
hyperparameters that we used is reported in Table 2.

Colored MNIST Multi-bias MNIST Corrupted CIFAR BAR Biased FFHQ CelebA CivilComments-WILDS
Optimizer SGD SGD Adam SGD Adam Adam SGD
Batch size 128 32 256 16 64 256 16

Learning rate 0.02 0.01 0.001 0.0005 0.0001 0.0001 0.00001
Weight decay 0.001 0.0001 0.001 1e-5 0.0 0.01 0.01
Momentum 0.9 0.9 - 0.9 - - 0.9

Lr decay 0.1 0.1 0.5 0.1 0.1 Cosine annealing 0.1
Decay step 40 - 40 20 32 - -

Epoch 100 100 200 100 160 100 5
GCE ↵ 0.7 0.7 0.7 0.7 0.7 0.7 0.7

Table 2: Hyperparameter details

For Table 2 reported in Section 4, we follow the implementation settings of CelebA and
CivilComments-WILDS, suggested by [54] and [43], respectively. A summary of the hyperpa-
rameters that we used is reported in Table 2. We conduct our experiments mainly using a single Titan
XP GPU for all cases.

6https://github.com/alinlab/LfF
7https://github.com/clovaai/rebias
8https://github.com/kakaoenterprise/Learning-Debiased-Disentangled
9https://github.com/anniesch/jtt

17

D Additional experiments

D.1 Unbiased test accuracy on synthetic datasets

Table 3: Average test accuracy and standard deviation (three runs) for experiments with the MNIST
variants under various bias conflict ratios. The best accuracy is indicated in bold for each case.

Dataset ⇢ Vanilla LfF JTT Disen PGD (Ours)
0.5% 60.94± 0.97 91.35± 1.83 85.84± 1.32 94.56± 0.57 96.88± 0.28

CMNIST 1% 79.13± 0.73 96.88± 0.20 95.07± 3.42 96.87± 0.64 98.35± 0.12

5% 95.12± 0.24 98.18± 0.05 96.56± 1.23 98.35± 0.20 98.62± 0.14

10% 25.23± 1.16 19.18± 4.45 25.34± 1.45 25.75± 5.38 61.38± 4.41

MBMNIST 20% 62.06± 2.45 65.72± 6.23 68.02± 3.23 61.62± 2.60 89.09± 0.97

30% 87.61± 1.60 89.89± 1.76 85.44± 3.44 88.36± 2.06 90.76± 1.84

0.5% 23.06± 1.25 28.83± 1.30 25.34± 1.00 29.96± 0.71 30.15± 1.22

CCIFAR 1% 25.94± 0.54 33.33± 0.15 33.62± 1.05 36.35± 1.69 42.02± 0.73

5% 39.31± 0.66 50.24± 1.41 45.13± 3.11 51.19± 1.38 52.43± 0.14

Table 4: Average test accuracy and standard deviation (three runs) for experiments with the raw image
benchmarks: BAR and BFFHQ. The best accuracy is indicated in bold and for the overlapped best
performance case is indicated in Underline.

Dataset Vanilla LfF JTT Disen PGD (Ours)
BAR 63.15± 1.06 64.41± 1.30 63.62±1.33 64.70± 2.06 65.39± 0.47

BFFHQ 77.77± 0.45 82.13± 0.38 77.93± 2.16 82.77± 1.40 84.20± 1.15

Accuracy results. In Table 3, we present the comparisons of the image classification accuracy for
the unbiased test sets. The proposed method outperforms the baseline methods for all benchmarks
and for all different ratios. For example, our model performance is 35.94% better than that of the
vanilla model for the colored MNIST benchmark with a ratio ⇢ = 0.5%. For the same settings, PGD
performs better than Disen by 2.32%.

As pointed out in [57], colored MNIST is too simple to evaluate debiasing performance on the basis of
the performance of baselines. In Multi-bias MNIST case, other models fail to obtain higher unbiased
test results, even though the ratio is high, e.g., 10%. In this complex setting, PGD shows superior
performance over other methods. For example, its performance is higher by 36.15% and 35.63%
compared with the performance of vanilla model and Disen for the ratio of 10%.

Similar to the results for the bias-feature-injected benchmarks, as shown in Table 4 and Table 2, PGD
shows competitive performance among all the debiasing algorithms on the raw image benchmark
(BAR and BFFHQ). For example, for the BFFHQ benchmark, the accuracy of PGD is 1.43% better
than that of Disen.

D.2 Correlation between gradient norm and bias-alignment of the CMNIST

To check if the per-sample gradient norm efficiently separates the bias-conflicting samples from the
bias-aligned samples, we plot the gradient norm distributions of the colored MNIST (CMNIST). For
comparison, we normalized the per-sample gradient norm as follows: kr✓LCE(xi,yi;✓b)k

max(xi,yi)2Dnkr✓LCE(xi,yi;✓b)k
.

As in Figure 6, the bias-aligned sample has a lower gradient norm (blue bars) than the bias-conflicting
samples (red bars).

D.3 PGD does not learn only the second-easiest feature

We provide the results of the following experimental setting: the target feature is color and the bias
feature is digit shape, i.e., the task is to classify the color, not the digit shape. Let us give an example
of this task. When one of the target classes is Red, this class is aligned with one of the digits (e.g.,
“0”). In other words, bias-aligned samples in this class are (Red, “0”), and the bias-conflicting samples
are (e.g., (Red, “1”), (Red, “2”), ..., (Red,”9”)).

Note that, as shown in LfF [48], color is empirically known to be easier to learn than digit shape,
we think that the above scenario reflects the concern: whether PGD is only targeting to learn the
second-easiest feature (digit shape). Therefore, if the concern is correct, PGD may fail in this Color

18

Bias-aligned
Bias-conflicting

0

50

100

[0
, 0

.1
)

[0
.1

, 0
.2

)
[0

.2
, 0

.3
)

[0
.3

, 0
.4

)
[0

.4
, 0

.5
)

[0
.5

, 0
.6

)
[0

.6
, 0

.7
)

[0
.7

, 0
.8

)
[0

.8
, 0

.9
)

[0
.9

, 1
.0

]

CMNIST ρ= 0.5%

(a) Colored MNIST ⇢ = 0.5%

Bias-aligned
Bias-conflicting

0

50

100

[0
, 0

.1
)

[0
.1

, 0
.2

)
[0

.2
, 0

.3
)

[0
.3

, 0
.4

)
[0

.4
, 0

.5
)

[0
.5

, 0
.6

)
[0

.6
, 0

.7
)

[0
.7

, 0
.8

)
[0

.8
, 0

.9
)

[0
.9

, 1
.0

]

CMNIST ρ= 1%

(b) Colored MNIST ⇢ = 1%

Bias-aligned
Bias-conflicting

0

50

100

[0
, 0

.1
)

[0
.1

, 0
.2

)
[0

.2
, 0

.3
)

[0
.3

, 0
.4

)
[0

.4
, 0

.5
)

[0
.5

, 0
.6

)
[0

.6
, 0

.7
)

[0
.7

, 0
.8

)
[0

.8
, 0

.9
)

[0
.9

, 1
.0

]

CMNIST ρ= 5%

(c) Colored MNIST ⇢ = 5%

Figure 6: Histogram of per-sample gradient norm.

target MNIST scenario since the model will learn digit shape. However, as shown in the table below,
vanilla, PGD, and LfF perform well in that case.

Vanilla (Digit) Vanilla (Color) LfF (Digit) LfF (Color) PGD (Digit) PGD (Color)
⇢ = 0.5% 60.94 90.33 91.35 91.16 96.88 98.92
⇢ = 1% 79.13 92.53 96.88 96.12 98.35 99.58
⇢ = 5% 95.12 96.96 98.18 99.11 98.62 99.7

Table 5: Digit target MNIST vs Color target MNIST

We can also support this result by seeing the distribution of the normalized gradient norms,
kr✓LCE(xi, yi; ✓b)k/max(xi,yi)2Dn

kr✓LCE(xi, yi; ✓b)k 2 [0, 1], extracted from the biased model
✓b (trained in the Step 1 in Algorithm 1 of the Section 3). If PGD aims to learn the second-easiest
feature (digit shape), it will highlight bias-conflicting samples that have abundant digit shapes, so that
the ultimate debiased model can consider them important.

[0.0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5) [0.5,0.6) [0.6,0.7) [0.7,0.8) [0.8,0.9) [0.9,1.0]
Bias-aligned 53504 88 40 21 13 18 16 17 8 4

Bias-conflicting 212 18 7 10 8 6 5 4 0 1
Table 6: Number of samples at each bin: Color target MNIST (⇢ = 0.5%)

The numbers filled in the Table 6 is the number of data belonging to each bin category. We can
check that there are no bias-conflicting samples whose gradient norm is significantly larger than
the bias-aligned samples. In other words, PGD does not force the debiased model to learn the digit
shape (i.e., the second-easiest feature) in this scenario. This scenario brings the similar performance
comparing to Vanilla.

D.4 PGD on unbiased datasets

Vanilla LfF Disen Ours
⇢ = 90% Colored MNIST

99.04 98.75 99.31 98.43
Natrual CIFAR10

94.24 - - 94.79

Table 7: Results on unbi-
ased colored MNIST and
natural CIFAR10 cases.

In addition, we check whether PGD fails in the unbiased and conventional
public datasets. In this case, target is the first-easiest feature because
no specific attribute makes bias. To verify this, we report two types of
additional results: (1) unbiased colored MNIST (⇢ = 90%), and (2)
conventional public datasets, i.e., CIFAR 10. We follow experimental
settings of colored MNIST for the unbiased colored MNIST. On the other
hand, we train ResNet18 [21] for CIFAR 10 with the SGD optimizer,
0.9 momentum, 5e� 4 weight decay, 0.1 learning rate, CosineAnnealing
LR decay scheduler. As in Table 7, PGD does not suffer a significant performance degradation in
unbiased Colored MNIST. Furthermore, it performs better than the vanilla model on the CIFAR
10 dataset. This means that the training distribution that PGD changes does not cause significant
performance degradation. In other words, PGD can only balance the training data set, regardless of
whether the training dataset is balanced or unbalanced.

D.5 Ablation study on GCE parameter ↵

19

Colored MNIST ↵ = 0.3 ↵ = 0.5 ↵ = 0.7 ↵ = 0.9
Debiased model

⇢ = 0.5% 89.93 94.70 96.88 96.79
⇢ = 1% 96.32 97.27 97.35 97.59
⇢ = 5% 98.80 98.82 98.62 98.78

Biased model
⇢ = 0.5% 19.86 18.70 18.12 17.39
⇢ = 1% 22.40 21.04 19.71 19.12
⇢ = 5% 53.24 49.46 43.97 39.40

Table 8: Ablation study on GCE parameter ↵.

The only hyper-parameter used in PGD is the GCE
parameter ↵. We experimented with this value at 0.7
according to the protocoal of LfF [48]. However, we
need to compare the various cases ↵ on the colored
MNIST benchmark for analysis. As in Table 8, when
the GCE parameter is 0.9, the debiased model per-
forms best. This is because the biased model is fully
focused on the bias feature, rather than seeing the
target feature, which can be seen from the unbiased
test accuracy of the biased model (see the bottom of Table 8).

D.6 Computation cost

Vanilla LfF Disen ours
Computation time 14m 59s 21m 35s 23m 18s 33m 31s

Step 1 Step 2 Step 3
Computation time 15m 19s 1m 26s 16m 46s

Table 9: Computation cost

Debiasing requires more modules, which in-
creases the computational cost. The training
time for the colosed MNIST ⇢ = 0.5% is re-
ported in Table 9. As in the top of Table 9, we
report the computational cost of four algorithms,
vanilla, LfF, Disen, and PGD. Here, PGD spends
a longer training time. To check which parts generate longer time, we measure part-by-part cost, at
the bottom of Table 9. Note that Steps 1, 2, and 3 represent training the biased model, computing
per-sample gradient norm, and training the debiased model, respectively. We can conclude the follow-
ing two facts. (1) Step 2 (computing per-sample gradient norm) spends 4.3% of training time. (2)
Resampling requires an additional cost of 1 m 27s.

D.7 Multi-stage vs Single-stage

Training time Test Acc.
Colored MNIST Single-stage Multi-stage Single-stage Multi-stage

⇢ = 0.5% 2h 53m 40s 33m 39s 92.39 96.88
⇢ = 1% 2h 54m 45s 32m 28s 97.10 97.35
⇢ = 5% 2h 49m 31s 34m 13s 98.51 98.62

Table 10: Multi-stage versus Single-stage

PGD computes per-sample gradient only once,
between training the biased model and the de-
biased model. However, an update of the per-
sample gradient can be performed repeatedly at
each epoch (i.e., Single-stage). In other words,
the PGD can be modeled to run the following
loop: updating the biased model ! updating the sampling probability ! updating the debiased
model. In this section, we justify why we compute per-sample gradient at once (i.e., Multi-stage). We
report the performance of Multi-stage and Single-stage of PGD on the colored MNIST dataset. As in
Table 10, the single-stage method has two characteristics: (1) It takes a long training time compared to
the multi-stage method. (2) It has lower unbiased test accuracy compared to the multi-stage method.
The reason why it takes longer training time is that computing the per-sample gradient norm requires
huge computation resources. On the other hand, the sampling probability of the single-stage method
changes training distribution over epochs, the debiased model suffers unstable training, so that it
loses the debiasing performance.

D.8 Resampling versus Reweighting Colored MNIST Resampling Reweighting
⇢ = 0.5% 96.88 94.70
⇢ = 1% 97.35 97.20
⇢ = 5% 98.62 98.51

Table 11: Reweighting vs resampling

To support our algorithm design, we provide further ex-
perimental analysis, i.e., resampling versus reweighting.
Reweighting [48, 37] and resampling [43] are the two main
techniques to debias by up-weighting bias-conflicting sam-
ples. PGD is an algorithm that modifies the sampling probability by using the per-samplge gradient
norm. To check whether PGD works with reweighting, we examine the results of PGD with reweight-
ing on colored MNIST datasets and report in Table 11. We compute the weight for each sample
as follows: w(xi, yi) = |Dn|⇥

kr✓LCE(xi,yi;✓b)kP
(xi,yi)2Dn

kr✓LCE(xi,yi;✓b)k
. As in Table 11, PGD with resampling

slightly outperforms PGD with reweighting. As argued in [4], his gain from resampling can be
understood by the arguments that resampling is more stable and better than reweighting.

20

L1 L2 L22 L∞

U
nb

ia
se

d
Ac

c.

90

95

100

Portion of bias-conflicting
0.5% 1% 5%

(a) Colored MNIST

U
nb

ia
se

d
Ac

c.

60

80

100

Portion of bias-conflicting
10% 20% 30%

(b) Multi-bias MNIST

U
nb

ia
se

d
Ac

c.

30

40

50

Portion of bias-conflicting
0.5% 1% 5%

(c) Corrupted CIFAR

Figure 7: Average PGD results for various of norms, {L1, L2, L
2
2, L1}, for the feature-injected

benchmarks. The error bars represent the standard deviation of three independent trials.

D.9 Unbiased test accuracy on various norms.

Since, gradient norm can have various candidates, such as order of the norm, we report four configu-
rations of gradient norms. As shown in Figure 7, all norms have significant unbiased test performance.
Amongst them, the L2-norm square case shows lower unbiased performance than the other cases.
Therefore, it is recommended that any first power of L{1,2,1}-norms be used in PGD for overcoming
the dataset bias problem. This is quite different from the results with [23], which suggested that
L1-norm is the best choice in the research field of out-of-distribution detection.

D.10 Ablation study

Table 12: Ablation studies on GCE and
data augmentation (Xfor applied case).

GCE Aug. Colored (0.5%) Multi-bias (10%)
84.93 ± 0.79 40.58 ± 3.39

X 93.18 ± 1.07 45.70 ± 2.91

X 91.19 ± 0.97 46.70 ± 1.10

X X 96.88 ± 0.28 61.38 ± 4.41

Table 12 shows the importance of each module in our
method: generalized cross entropy, and data augmentation
modules. We set the ratio ⇢ as 0.5% and 10% for colored
MNIST and multi-bias MNIST, respectively. We observe
that GCE is more important that data augmentation for
colored MNIST. However, data augmentation shows better
performance than GCE for multi-bias MNIST. For all
cases, the case where both are utilized outperforms the other cases.

21

E Mathematical Understanding of PGD
This section provides a theoretical analysis of per-sample gradient-norm based debiasing. We first
briefly summarize the maximum likelihood estimator (MLE) and Fisher information (FI) which
are ingredients of this section. We then interpret the debiasing problem as a min-max problem and
deduce that solving the min-max problem can be phrased as minimizing the trace of the inverse
FI. Since handling the trace of the inverse FI is very difficult owing to its inverse computation, we
look at a glance by relaxing it into a one-dimensional toy example. In the end, we conclude that the
gradient-norm based re-sampling method is an attempt to solve the dataset bias problem.

E.1 Preliminary
Training and test joint distributions. The general joint distribution P(x, y|✓) is assumed to be
factored into the parameterized conditional distribution f(y|x, ✓) and the marginal distribution P(x),
which is independent of the model parameter ✓, i.e., P(x, y|✓) = P(x)f(y|x, ✓). We refer to the
model f(y|x, ✓?) that produces the exact correct answer, as an oracle model, and to its parameter
✓
? as the oracle parameter. The training dataset Dn is sampled from {(xi, yi)}ni=1 ⇠ p(x)f(y|x, ✓?),

where the training and test marginal distributions are denoted by p(x) and q(x), respectively. Here,
we assume that both marginal distributions are defined on the marginal distribution space M =
{P(x)|

R
x2X

P(x) dx = 1}, where X means the input data space, i.e., p(x), q(x) 2 M.

The space H of sampling probability h. When the training dataset Dn is given, we denote the
sampling probability as h(x) which is defined on the probability space H

10:

H = {h(x) |
P

(xi,yi)2Dn
h(xi) = 1 , h(xi) � 0 8(xi, yi) 2 Dn}. (2)

Maximum likelihood estimator (MLE). When h(x) is the sampling probability, we define MLE
✓̂h(x),Dn

as follows:

✓̂h(x),Dn
= argmin ✓ �

P
(xi,yi)2Dn

h(xi) log f(yi|xi, ✓).

Note that MLE ✓̂h(x),Dn
is a variable controlled by two factors: (1) a change in the training dataset

Dn and (2) the adjustment of the sampling probability h(x). If h(x) is a uniform distribution U(x),
then ✓̂U(x),Dn

is the outcome of empirical risk minimization (ERM).

Fisher information (FI). FI, denoted by IP(x)(✓), is an information measure of samples from a
given distribution P(x, y|✓). It is defined as:

IP(x)(✓) = (x,y)⇠P(x)f(y|x,✓)[r✓ log f(y|x, ✓)r>

✓ log f(y|x, ✓)]. (3)

FI provides a guideline for understanding the test cross-entropy loss of MLE ✓̂U(x),Dn
. When the

training set is sampled from p(x)f(y|x, ✓?) and the test samples are generated from q(x)f(y|x, ✓?),
we can understand the test loss of MLE ✓̂U(x),Dn

by using FI as follows.
Theorem 1. Suppose Assumption 1 in Appendix F and Assumption 2 in Appendix G hold, then for
sufficiently large n = |Dn|, the following holds with high probability:

(x,y)⇠q(x)f(y|x,✓?)

h
Dn⇠p(x)f(y|x,✓?)

h
� log f(y|x, ✓̂U(x),Dn

)
ii

1
2n Tr

h
Ip(x)(✓̂U(x),Dn

)�1
i
Tr

⇥
Iq(x)(✓

?)
⇤
. (4)

Here is the proof sketch. The left-hand side of equation 4 converges to the Fisher information
ratio (FIR) Tr

⇥
Ip(x)(✓

?)�1
Iq(x)(✓

?)
⇤

related term. Then, FIR can be decomposed into two trace
terms with respect to the training and test marginal distributions p(x) and q(x). Finally, we show
that the term Tr[Ip(x)(✓

?)�1] which is defined in the oracle model parameter can be replaced with
Tr[Ip(x)(✓̂U(x),Dn

)�1]. The proof of Theorem 1 is in Appendix D. Note that Theorem 1 means that the
upper bound of the test loss of MLE ✓̂U(x),Dn

can be minimized by reducing Tr[Ip(x)(✓̂U(x),Dn
)�1].

Empirical Fisher information (EFI). In practice, the exact FI equation 3 cannot be computed
since we do not know the exact data generation distribution P(x)f(y|x, ✓). For practical reasons, the

10Note that for simplicity, we abuse the notation h(x, y) used in Section 3 as h(x). This is exactly the same
for a given dataset Dn situation.

22

empirical Fisher information (EFI) is commonly used [25, 11] to reduce the computational cost of
gathering gradients for all possible classes when x is given. In this study, we used a slightly more
generalized EFI that involved the sampling probability h(x) 2 H as follows:

Îh(x)(✓) =
P

(xi,yi)2Dn
h(xi)r✓ log f(yi|xi, ✓)r>

✓ log f(yi|xi, ✓). (5)

Note that the conventional EFI is the case when h(x) is uniform. EFI provides a guideline for
understanding the test cross-entropy loss of MLE ✓̂h(x),Dn

.

E.2 Understanding dataset bias problem via min-max problem

Debiasing formulation from the perspective of min-max problem. Improving generalization is
understandable as reducing (min) the loss of test samples that are difficult (max) to infer. There was a
trial for formulating the dataset bias problem when multiple training datasets from different training
distributions are given [5]. The problem is seen differently when we can only control the sampling
probability h(x) 2 H on the given one training dataset Dn. The problem, in our view, can be defined
from the left-hand side of equation 4 in a practical point of view as follows:
Definition 1. When the training dataset Dn ⇠ p(x)f(y|x, ✓?) is given, the debiasing objective is

min
h(x)2H

max
q(x)2M

(x,y)⇠q(x)f(y|x,✓?)

h
� log f(y|x, ✓̂h(x),Dn

)
i
. (6)

The meaning of Definition 1 is that we have to train the model ✓̂h(x),Dn
so that the loss of the worst

case test samples (maxq(x)) is minimized by controlling the sampling probability h(x) (minh(x)).
Note that since we cannot control the given training dataset Dn and test marginal distribution q(x),
the only controllable term is the sampling probability h(x). Therefore, from Theorem 1 and EFI, we
design a practical objective function for the dataset bias problem as follows:

min
h(x)2H

Tr
h
Îh(x)(✓̂h(x),Dn

)�1
i
. (7)

E.3 Meaning of PGD in terms of equation 7.

In this section, we present an analysis of PGD with respect to equation 7. To do so, we try to
understand equation 7, which is difficult to directly solve. It is because computing the trace of the
inverse matrix is computationally expensive. Therefore, we intuitively understand equation 7 in the
one-dimensional toy scenario.

One-dimensional example. We assume that Dn comprises sets M and m such that elements in each
set share the same loss function 1

2 (✓+ a)2 for all elements in M and 1
2 (✓� a)2 for all elements in m

with a given constant a. In other words, there are only two distinguishable points, and we construct
the training data from only these two points. We also assume that each sample of M and m has the
set dependent probability mass hM (x) and hm(x), respectively. With these settings, our objective
is to determine h

?(x) = argminh(x)2H
Tr[Îh(x)(✓̂h(x),Dn

)�1]. Thanks to the model’s simplicity,
we can easily find h

?(x) in a closed form with respect to the gradient at ✓̂U(x),Dn
for each set, i.e.,

gM (✓̂U(x),Dn
) and gm(✓̂U(x),Dn

).

Theorem 2. Under the above setting, the solution of (h?
M (x), h?

m(x)) =

argminh(x)2H
Tr[Îh(x)(✓̂h(x),Dn

)�1] is:

h
?
M (x) = |gM (✓̂U(x),Dn

)|/Z, h
?
m(x) = |gm(✓̂U(x),Dn

)|/Z,

where Z = |M ||gM (✓̂U(x),Dn
)|+ |m||gm(✓̂U(x),Dn

)|, and |M | and |m| denote the cardinality of M
and m, respectively.

The proof of Theorem 2 is provided in Appendix E. Note that h?
M (x) and h

?
m(x) are computed using

the trained biased model with batches sampled from the uniform distribution U(x). It is the same
with the second step of PGD.

23

Vanilla PGD (Ours)

Tr
 [I

U
(θ

h,
D

n)-1
]

0
2×

10
4

4×
10

4

Bias conflict ratio ρ

0.005
0.1
0.2

0.4
0.5

0.9

Tr
#$!

"
%$!

"
,$
!
%&

(a) Colored MNIST

Tr
 [I

U
(θ

h,
D

n)-1
]

02×
10

64×
10

66×
10

68×
10

6

Bias conflict ratio ρ

0.1

0.3

0.5

0.7

0.9

Tr
#$!

"
%$!

"
,$
!
%&

(b) Multi-bias MNIST

Figure 8: Target objective
Tr[Îh(✓̂h(x),Dn

)�1]. PGD : h(x) = ĥ(x),
and vanilla: h(x) = U(x).

PGD tries to minimize equation 7. Theorem 2
implies that equation 7 can be minimized by sampling
in proportion to their gradient norm. Because the
fundamental of PGD is oversampling based on the
gradient norm from the biased model, we can deduce
that PGD strives to satisfy equation 7. Furthermore,
we empirically show that PGD reduces the trace of
the inverse of EFI in the high-dimensional case, as
evident in Figure 8.

F Backgrounds For Theoretical Analysis

F.1 Notations Summary.

For convenience, we describe notations used in Appendix E, Appendix F, G, and H.

Table 13: Notation Table
Type Notation Description Remark

Variables

(x, y) (image, label) x 2
d
, y 2 C = {1, ..., c}

ytrue(x) the true label of image x labeled by the oracle model f(y|x, ✓?)
✓ model parameter -
✓
? oracle model parameter satisfying f(ytrue(x)|x, ✓?) = 1 for any x

Dn training dataset composed of {(xi, yi)}ni=1 ⇠ p(x, y|✓?)
h(x) sampling probability of each sample in Dn satisfying h(x) 2 H

Distributions

P(x) general distribution of input image x -
p(x) distribution of training image -
q(x) distribution of test image -

f(y|x, ✓) conditional distribution with model parameter ✓ -
P(x, y|✓) general joint distribution with model parameter ✓ P(x)f(y|x, ✓)
p(x, y|✓?) joint distribution of the training dataset p(x)f(y|x, ✓?)
q(x, y|✓?) joint distribution of the test dataset q(x)f(y|x, ✓?)

Estimators ✓̂h(x),Dn
MLE solution on the Dn with h , argmax✓

Pn
i=1 h(xi) log f(yi|xi, ✓)

✓̂U(x),Dn
MLE solution on the Dn with uniform distribution U solution of ERM

Fisher
information

IP(x)(✓) Fisher Information (x,y)⇠P(x)f(y|x,✓)[r✓ log f(y|x, ✓)r>

✓ log f(y|x, ✓)]
Îh(x)(✓) Empirical Fisher Information

Pn
i=1 h(xi)r✓ log f(yi|xi, ✓)r>

✓ log f(yi|xi, ✓)

Set

H set of all possible h(x) on Dn {h(x)|
P

(xi,yi)2Dn
h(xi) = 1 and h(xi) � 0 8(xi, yi) 2 Dn}

M set of all possible marginal P(x) on input space X {P(x)|
R
x2X

P(x) dx = 1}
W set of all possible (x, ytrue(x)) -

supp(P(x, y|✓)) Support set of P(x, y|✓) {(x, y) 2 X ⇥ {1, · · · , c} | P(x, y|✓) 6= 0}, 8 P(x, y|✓)

Order notations
in probability

Op Big O, stochastic boundedness -
op Small o, convergence in probability -

Toy example
(Appendix H)

M set of majority (i.e., bias-aligned) samples -
m set of minority (i.e., bias-conflicting) samples -

gM (✓) gradient of samples in M at ✓ -
gm(✓) gradient of samples in m at ✓ -
h
?
M (x) Optimal sampling probability of samples in M -

h
?
m(x) Optimal sampling probability of samples in m -

F.2 Main Assumption

Here, we organize the assumptions that are used the proof of Theorems. These are basically used when
analyzing models through Fisher information as follows. The assumptions are motivated by [60].
Assumption 1.

(A0). The general joint distribution P(x, y|✓) is factorized into the conditional distribution
f(y|x, ✓) and the marginal distribution P(x), not depend on model parameter ✓, that is:

P(x, y|✓) = P(x)f(y|x, ✓). (8)

Thus, the joint distribution is derived from model parameter ✓ and the marginal distribution
P(x), which is determined from the task that we want to solve. Without loss of generality,
we match the joint distribution’s name with the marginal distribution.

24

(A1). (Identifiability): The CDF P✓ (whose density is given by P(x, y|✓)) is identifiable for
different parameters. Meaning that for every distinct parameter vectors ✓1 and ✓2 in ⌦, P✓1
and P✓2 are also distinct. That is,

8✓1 6= ✓2 2 ⌦, 9A ✓ X ⇥ {1, · · · , c} s.t. P✓1(A) 6= P✓2(A),

where X , {1, · · · , c} and ⌦ are input, label and model parameter space, respectively.

(A2). The joint distribution P✓ has common support for all ✓ 2 ⌦.

(A3). (Model Faithfulness): For any x 2 X , we assume an oracle model parameter ✓
? that

generates ytrue(x), a true label of input x with the conditional distribution f(ytrue(x)|x, ✓?) =
1.

(A4). (Training joint): Let p(x) denote the training marginal with no dependence on the parameter.
Then, the set of observations in Dn , {(x1, y1). · · · (xn, yn)} are drawn independently
from the training/proposal joint distribution of the form p(x, y|✓?) , p(x)f(y|x, ✓?), be-
cause we don’t think the existence of mismatched label data situation in the training data.

(A5). (Test joint): Let q(x) denote the test marginal with no dependence on the parameter. The
unseen test pairs are distributed according to the test/true joint distribution of the form
q(x, y|✓?) , q(x)f(y|x, ✓?), because we don’t think the existence of mismatched label data
situation in the test task.

(A6). (Differentiability): The log-conditional log f(y|x, ✓) is of class C
3(⌦) for all (x, y) 2

X ⇥ {1, 2, · · · , c}, when being viewed as a function of the parameter.11

(A7). The parameter space ⌦ is compact and there exists an open ball around the true parameter
of the model ✓? 2 ⌦.

(A8). (Invertibility): The arbitrary Fisher information matrix IP(x)(✓) is positive definite and
therefore invertible for all ✓ 2 ⌦.

(A9). {(x, y) 2 supp(q(x, y|✓?)) | r2
✓ log q(x, y|✓?) is singular} is a measure zero set.

Compare to [60], we modify (A3) so that the oracle model always outputs hard label i.e.,
f(ytrue(x)|x, ✓?) = 1 and add (A9) which is not numbered but noted in the statement of The-
orem 3 and Theorem 11 in [60].

F.3 Preliminaries

We organize the two background knowledge, maximum likelihood estimator (MLE) and Fisher
information (FI), needed for future analysis.

F.3.1 Maximum Likelihood Estimator (MLE)

In this section, we derive maximum likelihood estimator in the context of classification problem with
sampling probability h(x). Unless otherwise stated, training set Dn = {(xi, yi)}ni=1 is sampled from
p(x, y|✓?). For given probability mass function (PMF) h(x) on Dn, in abstract h(x) 2 H, we define

11We say that a function f : X �! Y is of Cp(X), for an integer p > 0, if its derivatives up to p-th order exist
and are continuous at all points of X .

25

MLE ✓̂h(x),Dn
as follows:

✓̂h(x),Dn
, argmax

✓
log (Dn|✓;h(x))

= argmin
✓

�

nX

i=1

h(xi) log p(xi, yi|✓) (9)

= argmin
✓

�

nX

i=1

h(xi) log f(yi|xi, ✓) (10)

= argmin
✓

nX

i=1

h(xi)LCE(xi, yi; ✓). (11)

In equation 9 and equation 10, (A4) and (A0) of the Assumption 1 in Appendix F was used,
respectively. Note that MLE ✓̂h(x),Dn

is a variable controlled by two factors: (1) a change in the
training dataset Dn and (2) the adjustment of the sampling probability h(x). If h(x) is a uniform
distribution U(x), then ✓̂U(x),Dn

is the outcome of empirical risk minimization (ERM).

F.3.2 Fisher information (FI)

General definition of FI. Fisher information (FI), denoted by IP(x)(✓), is an information measure
of samples from the given distribution P(x, y|✓) , P(x)f(y|x, ✓). It is defined as the expected value
of the outer-product of the score function r✓ log P(x, y|✓) with itself, evaluated at some ✓ 2 ⌦.

IP(x)(✓) , (x,y)⇠P(x,y|✓)[r✓ log P(x, y|✓)rT
✓ log P(x, y|✓)]. (12)

Extended version of FI. Here, we summarize extended version of FI, which can be derived by some
assumptions. These variants of FI are utilized in the proof of Theorems.

• (Hessian version) Under the differentiability condition (A6) of Assumption 1 in Appendix
F, FI can be written in terms of the Hessian matrix of the log-likelihood:

IP(x)(✓) = � (x,y)⇠P(x,y|✓)[r
2
✓ log P(x, y|✓)]. (13)

• (Model decomposition version) Under the factorization condition (A0) of Assumption 1 in
Appendix F, equation 12 and equation 13 can be transformed as follows:

IP(x)(✓) = (x,y)⇠P(x)f(y|x,✓)[r✓ log f(y|x, ✓)rT
✓ log f(y|x, ✓)] (14)

= � (x,y)⇠P(x)f(y|x,✓)[r
2
✓ log f(y|x, ✓)]. (15)

Specifically, equation 14 and equation 15 can be unfolded as follows:

IP(x)(✓) =

Z

x2X
P(x)

cX

y=1

⇥
f(y|x, ✓) ·r✓ log f(y|x, ✓)rT

✓ log f(y|x, ✓)
⇤
dx (16)

= �

Z

x2X
P(x)

cX

y=1

⇥
f(y|x, ✓) ·r2

✓ log f(y|x, ✓)
⇤
dx

Hereinafter, we define Ip(x)(✓) and Iq(x)(✓) as the FI derived from the training and test
marginal, respectively.

F.3.3 Empirical Fisher information (EFI)

When the training dataset Dn is given, we denote the sampling probability as h(x) which is defined
on the probability space H:

H = {h(x) |
P

(xi,yi)2Dn
h(xi) = 1 , h(xi) � 0 8(xi, yi) 2 Dn}.

12 (17)

12Note that for simplicity, we abuse the notation h(x, y) used in Section 3 as h(x). This is exactly the same
for a given dataset Dn situation.

26

Practically, the training dataset Dn is given as deterministic. Therefore, equation 14 can be refined
as empirical Fisher information (EFI). This reformulation is frequently utilized, e.g., in [25, 11], to
reduce the computational complexity of gathering gradients for all possible classes (i.e., expectation
with respect to f(y|x, ✓) as in equation 14). Refer the

Pc
y=1 term of equation 16. Different with prior

EFI which is defined on the case when h(x) is uniform, U(x), we generalize the definition of EFI in
terms of h(x) 2 H as follows:

Îh(x)(✓) := h(x)

⇥
r✓ log f(y|x, ✓)r>

✓ log f(y|x, ✓)
⇤

(a)
:=

P
(xi,yi)2Dn

h(xi)r✓ log f(yi|xi, ✓)r>

✓ log f(yi|xi, ✓). (18)

Note that (a) holds owing to equation 17.

F.3.4 Stochastic Order Notations op and Op

For a set of random variables Xn and a corresponding set of constant an, the notation Xn = op(an)
means that the set of values Xn/an converges to zero in probability as n approaches an appropriate
limit. It is equivalent with Xn/an = op(1), where Xn = op(1) is defined as:

lim
n!1

(|Xn| � ✏) = 0 8 ✏ � 0.

The notation Xn = Op(an) means that the set of values Xn/an is stochastically bounded. That is
8 ✏ > 0, 9 finiteM > 0, N > 0 s.t. (|Xn/an| > M) < ✏ for anyn > N .

G Theorem 1

In this section, we deal with some require sub-lemmas which are used for the proof of Lemma 8
which is main ingredient of the proof of Theorem 3.

G.1 Sub-Lemmas

Lemma 1 ([39], Theorem 5.1). When P
�! denotes convergence in probability, and if (A0) to (A7) of

the Assumption 1 in Appendix F hold, then there exists a sequence of MLE solutions {✓̂U(x),Dn
}n2

that ✓̂U(x),Dn

P
�! ✓

? as n �! 1, where ✓
? is the ‘true’ unknown parameter of the distribution of the

sample.

Proof. We refer to [39] for a detailed proof.

Lemma 2 ([39], Theorem 5.1). Let {✓̂U(x),Dn
}n2 be the MLE based on the training data set Dn. If

(A0) to (A8) of the Assumption 1 in Appendix F hold, then the MLE ✓̂U(x),Dn
has a zero-mean normal

asymptotic distribution with the covariance equal to the inverse Fisher information matrix, and with
the convergence rate of 1/2:

p
n(✓̂U(x),Dn

� ✓
?)

D
�! N (~0, Ip(x)(✓

?)�1),

where D
�! represents convergence in distribution.

Proof. We refer to [39] for a detailed proof, which is based on Lemma 1.

Lemma 3 ([65], Theorem 9.18). Under the (A0) to (A8) of the Assumption 1 in Appendix F hold, we
get

p
nIp(x)(✓̂U(x),Dn

)
1/2

(✓̂U(x),Dn
� ✓

?)
D
�! N (~0, d),

where D
�! represents convergence in distribution.

Proof. We refer to [65] for a detailed proof, which is based on Lemma 2.

27

Lemma 4. ([55], Chapter 1) Let {✓n} be a sequence of random vectors. If there exists a random
vector ✓̃ such that ✓n

D
�! ✓̃, then k✓n � ✓̃k2 = Op(1), where k · k2 denote the L2 norm.

Proof. We refer to [55] for a detailed proof.

Lemma 5. ([60], Theorem 27) Let {✓n} be a sequence of random vectors in a convex and compact
set ⌦ ✓

d and ✓
?
2 ⌦ be a constant vector such that k✓n � ✓

?
k2 = Op(an) where an �! 0 (as

n �! 1). If g : ⌦ �! is a C
3 function, then

g(✓n) = g(✓?) +r
T
✓ g(✓

?)(✓n � ✓
?) +

1

2
(✓n � ✓

?)Tr2
✓g(✓

?)(✓n � ✓
?) + op(an

2).

Proof. We refer to [55] for a detailed proof.

Lemma 6. If (A0) and (A3) of the Assumption 1 in Appendix F hold, then r✓ log P(x, ytrue(x)|✓?) =
~0 for any joint distribution P(x, y|✓?).

Proof.
r✓ log P(x, ytrue(x)|✓

?) = r✓ log f(ytrue(x)|x, ✓
?)

= r✓ log 1

= ~0.

On the first equality, (A0) of the Assumption 1 in Appendix F is used. At the second equality, (A3) of
the Assumption 1 in Appendix F is used.

Lemma 7. If (A0) to (A8) of the Assumption 1 in Appendix F hold and the case
r

2
✓ log p(x, ytrue(x)|✓?) is non-singular for given data (x, ytrue(x)) satisfies, then the asymptotic

distribution of the log-likelihood ratio is a mixture of first-order Chi-square distributions, and the
convergence rate is one. More specifically:

n

log

p(x, ytrue(x)|✓?)

p(x, ytrue(x)|✓̂U(x),Dn
)

!
D
�!

1

2

dX

i=1

�i(x, ytrue(x)) · �
2
1, (19)

where {�i(x, ytrue(x))}di=1 are eigenvalues of Ip(x)(✓?)�
1
2

�
�r

2
✓ log p(x, ytrue(x)|✓?)

Ip(x)(✓

?)�
1
2 .

Proof. The proof is based on taylor expansion theorem. Remind that we deal with the data
(x, ytrue(x)) satisfying r

2
✓ log p(x, ytrue(x)|✓?) is non-singular. From the property

p
n(✓̂U(x),Dn

�

✓
?)

D
�! N (~0, Ip(x)(✓

?)�1) derived from Lemma 3, one concludes that
p
nk✓̂U(x),Dn

�✓
?
k2 = Op(1)

and therefore k✓̂U(x),Dn
� ✓

?
k2 = Op(

1
p
n
) by the Lemma 4.

Thus, by the Lemma 5,

log p(x, ytrue(x)|✓̂U(x),Dn
) = log p(x, ytrue(x)|✓

?) + (✓̂U(x),Dn
� ✓

?)Tr✓ log p(x, ytrue(x)|✓
?)

+
1

2
(✓̂U(x),Dn

� ✓
?)Tr2

✓ log p(x, ytrue(x)|✓
?)(✓̂U(x),Dn

� ✓
?) + op

✓
1

n

◆

hold. By the Lemma 3 and the property r✓ log p(x, ytrue(x)|✓?) = ~0 derived by Lemma 6, we can
obtain

n

h
log p(x, ytrue(x)|✓

?)� log p(x, ytrue(x)|✓̂U(x),Dn
)
i

= �
1

2

hp
n(✓̂U(x),Dn

� ✓
?)
iT

r
2
✓ log p(x, ytrue(x)|✓

?)
hp

n(✓̂U(x),Dn
� ✓

?)
i
+ op(1)

D
�!

1

2
N

⇣
~0, Ip(x)(✓

?)�1
⌘T ⇥

�r
2
✓ log p(x, ytrue(x)|✓

?)
⇤
N

⇣
~0, Ip(x)(✓

?)�1
⌘

=
1

2
N

⇣
~0, d

⌘T h
�Ip(x)(✓

?)�
1
2r

2
✓ log p(x, ytrue(x)|✓

?)Ip(x)(✓
?)�

1
2

i
N

⇣
~0, d

⌘
.

28

Define G(x, ytrue(x)) as �Ip(x)(✓
?)�

1
2r

2
✓ log p(x, ytrue(x)|✓?)Ip(x)(✓

?)�
1
2 and rewrite the right-

hand-side element-wise13 as
1

2
N

⇣
~0, d

⌘T
G(x, ytrue(x))N

⇣
~0, d

⌘

=
1

2

dX

i=1

�i(x, ytrue(x)) · N (0, 1)2 =
1

2

dX

i=1

�i(x, ytrue(x)) · �1
2
,

where {�i(x, ytrue(x))}di=1 are eigenvalues of G(x, ytrue(x)). Thus, desired property is obtained.

G.2 Main Lemma

In this section, we derive main Lemma which represents the test cross entropy loss can be understood
as Fisher information ratio (FIR) [60].

G.2.1 Main Lemma statement and proof

Lemma 8 (FIR in expected test cross entropy loss with MLE). If the Assumption 1 in Appendix F
holds, then

lim
n!1

n (x,y)⇠q(x)f(y|x,✓?)

h
Dn⇠p(x)f(y|x,✓?)

h
� log f(y|x, ✓̂U(x),Dn

)
ii

=
1

2
Tr

⇥
Ip(x)(✓

?)�1
Iq(x)(✓

?)
⇤
.

(20)

Proof. We prove Lemma 8 via two steps. First we show that the expected cross entropy loss term can
be rewritten in terms of log-likelihood ratio. Then, we prove that the expected log-likelihood ratio
can be asymptotically understood as FIR.

Step 1: Log-likelihood ratio We show that the expected log-likelihood ratio can be formulated as
expected test cross-entropy loss as follows:

This property holds because,

(x,y)⇠q(x)f(y|x,✓?)

"

Dn⇠p(x)f(y|x,✓?)

"
log

p(x, y|✓?)

p(x, y|✓̂U(x),Dn
)

##

= (x,y)⇠q(x)f(y|x,✓?)

"

Dn⇠p(x)f(y|x,✓?)

"
log

f(y|x, ✓?)

f(y|x, ✓̂U(x),Dn
)

##
(21)

= (x,y)⇠q(x)f(y|x,✓?)

"

Dn⇠p(x)f(y|x,✓?)

"
log

f(y|x, ✓?)

f(y|x, ✓̂U(x),Dn
)

#

Supp(q(x,y|✓?))

#
(22)

= (x,y)⇠q(x)f(y|x,✓?)

"

Dn⇠p(x)f(y|x,✓?)

"
log

f(y|x, ✓?)

f(y|x, ✓̂U(x),Dn
)

Supp(q(x,y|✓?))

##

= (x,y)⇠q(x)f(y|x,✓?)

h
Dn⇠p(x)f(y|x,✓?)

h
� log f(y|x, ✓̂U(x),Dn

) Supp(q(x,y|✓?))

ii
(23)

= (x,y)⇠q(x)f(y|x,✓?)

h
Dn⇠p(x)f(y|x,✓?)

h
� log f(y|x, ✓̂U(x),Dn

)
ii

Since (A0) of Assumption 1 in Appendix F, equation 21 and equation 22 hold. At equation 23, the
properties, (i) Supp(q(x, y|✓?)) ✓ W and (ii) f(y|x, ✓?) = 1 8 (x, y) 2 W , was used which is
derived by (A3) of the Assumption 1 in Appendix F.

Step 2: FIR Here, we show that the expected test loss of MLE can be understood as FIR.

13Suppose G = U⌃UT and ⌃ = diag(�1, · · ·�d). Then, N
⇣
~0, d

⌘T
U ⇠ N

⇣
~0, UUT

⌘
= N

⇣
~0, d

⌘
.

Thus, N
⇣
~0, d

⌘T
GN

⇣
~0, d

⌘
= N

⇣
~0, d

⌘T
⌃N

⇣
~0, d

⌘
=

Pd
i=1 �iN (0, 1)2.

29

By (A0) in Assumption 1 in Appendix F, trivially

{(x, y) 2Supp(q(x, y|✓?)) | r2
✓ log q(x, y|✓?) is singular}

= {(x, y) 2 Supp(q(x, y|✓?)) | r2
✓ log p(x, y|✓?) is singular}.

(24)

holds. Since equation 24, and (A9) in Assumption 1 in Appendix F, Supp(q(x, y|✓?)) can be replaced
by,

S , Supp(q(x, y|✓?)) \ {(x, y) 2 W | r
2
✓ log p(x, y|✓?) is singular} (25)

when calculate expectation.

We can get a result of Lemma 8 as follows:

lim
n!1

n (x,y)⇠q(x)f(y|x,✓?)

h
Dn⇠p(x)f(y|x,✓?)

h
� log f(y|x, ✓̂U(x),Dn

)
ii

= lim
n!1

n (x,y)⇠q(x)f(y|x,✓?)

"

Dn⇠p(x)f(y|x,✓?)

"
log

p(x, y|✓?)

p(x, y|✓̂U(x),Dn
)

#
1Supp(q(x,y|✓?))

#
(26)

= lim
n!1

n (x,y)⇠q(x)f(y|x,✓?)

"

Dn⇠p(x)f(y|x,✓?)

"
log

p(x, y|✓?)

p(x, y|✓̂U(x),Dn
)

#
1S

#
(27)

= (x,y)⇠q(x)f(y|x,✓?)

"
lim
n!1

Dn⇠p(x)f(y|x,✓?)

"
n log

p(x, y|✓?)

p(x, y|✓̂U(x),Dn
)

#
1S

#

= (x,ytrue(x))⇠q(x)f(y|x,✓?)

"
lim

n!1
Dn⇠p(x)f(y|x,✓?)

"
n log

p(x, ytrue(x)|✓?)

p(x, ytrue(x)|✓̂U(x),Dn
)

#
1S

#

(28)

= (x,ytrue(x))⇠q(x)f(y|x,✓?)

"
1

2

dX

i=1

�i(x, ytrue(x))
⇥
�
2
1

⇤
!
1S

#
(29)

= (x,ytrue(x))⇠q(x)f(y|x,✓?)

"
1

2

dX

i=1

�i(x, ytrue(x))

!
1S

#
(30)

= (x,ytrue(x))⇠q(x)f(y|x,✓?)

1

2
Tr

h
Ip(x)(✓

?)�
1
2
�
�r

2
✓ log p(x, ytrue(x)|✓

?)

Ip(x)(✓

?)�
1
2

i
1S

�

(31)

= (x,y)⇠q(x)f(y|x,✓?)

1

2
Tr

h
Ip(x)(✓

?)�
1
2
�
�r

2
✓ log p(x, y|✓?)

Ip(x)(✓

?)�
1
2

i
1S

�
(32)

=
1

2
Tr

h
Ip(x)(✓

?)�
1
2 (x,y)⇠q(x)f(y|x,✓?)

⇥
�r

2
✓ log p(x, y|✓?) 1S

⇤
Ip(x)(✓

?)�
1
2

i

=
1

2
Tr

h
Ip(x)(✓

?)�
1
2 (x,y)⇠q(x)f(y|x,✓?)

⇥
�r

2
✓ log q(x, y|✓?) 1S

⇤
Ip(x)(✓

?)�
1
2

i
(33)

=
1

2
Tr

h
Ip(x)(✓

?)�
1
2 (x,y)⇠q(x)f(y|x,✓?)

⇥
�r

2
✓ log q(x, y|✓?)

⇤
Ip(x)(✓

?)�
1
2

i

=
1

2
Tr

h
Ip(x)(✓

?)�
1
2 Iq(x)(✓

?)Ip(x)(✓
?)�

1
2

i

=
1

2
Tr

⇥
Ip(x)(✓

?)�1
Iq(x)(✓

?)
⇤
. (34)

equation 26 holds from Step 1. From equation 25, equation 27 satisfied. Since (x, y) is sampled from
q(x)f(y|x.✓?), equation 28 and equation 32 holds. From equation 29 to equation 31, the result of
Lemma 7 is used. equation 33 can be obtained thanks to (A0). Lastly, equation 34 holds because trace
satisfies the commutative law about matrix multiplication. The last term, Tr

⇥
Ip(x)(✓

?)�1
Iq(x)(✓

?)
⇤

is named as Fisher information ratio (FIR) since it is understanble as a ratio when the scalar case.

30

G.3 Theorem 1

In this section, we finally prove Theorem 3. To do so, we additionally follow assumptions in [60].

G.3.1 Additional Assumption

Assumption 2. We assume to exist four positive constants L1, L2, L3, L4 � 0 such that following
properties hold 8x 2 X, y 2 {1, · · · , c} and ✓ 2 ⌦ :

• I(✓, x) = �r
2
✓ log f(y|x, ✓) is independent of the class labels y.

• r✓ log f(y|x, ✓?)TIq(x)(✓
?)�1

r✓ log f(y|x, ✓?) L1

• kIq(x)(✓
?)�1/2

I(✓?, x)Iq(x)(✓
?)�1/2

k L2

• kIq(x)(✓
?)�1/2(I(✓

0
, x)� I(✓

00
, x))Iq(x)(✓

?)�1/2
k L3(✓

0
� ✓

00
)TIq(x)(✓

?)(✓
0
� ✓

00
)

• �L4k✓ � ✓
?
kI(✓?, x) � I(✓, x)� I(✓?, x) � L4k✓ � ✓

?
kI(✓?, x)

G.3.2 Replacing ✓
? by ✓̂U(x),Dn

Lemma 9. Suppose Assumption 1 in Appendix F and Assumption 2 in Appendix G hold, then with
high probability:

Tr
⇥
Ip(x)(✓

?)�1
⇤
= lim

n!1

Tr
h
Ip(x)(✓̂U(x),Dn

)�1
i
. (35)

Proof. It is shown in the proof of Lemma 2 in [12] that under assumptions mentioned in the
Assumption 2, the following inequalities hold with probability 1� �(n):

�(n)� 1

�(n)
I(✓?, x) � I(✓̂U(x),Dn

, x) �
�(n) + 1

�(n)
I(✓?, x), (36)

where �(n) and 1� �(n) are proportional to n, which is size of training set Dn.

Note that for any marginal distribution P(x), IP(x)(✓) = x⇠P(x) [I(✓, x)] holds because of the
independence for the class labels y of I(✓, x).14

Taking the expectation to the equation 36 with respect to the marginal p(x) and q(x), then:

�(n)� 1

�(n)
Ip(x)(✓

?) � Ip(x)(✓̂U(x),Dn
) �

�(n) + 1

�(n)
Ip(x)(✓

?). (37)

�(n)� 1

�(n)
Iq(x)(✓

?) � Iq(x)(✓̂U(x),Dn
) �

�(n) + 1

�(n)
Iq(x)(✓

?).

Since Ip(x)(✓
?) and Ip(x)(✓̂U(x),Dn

) are assumed to be positive definite, we can write equation 37 in
terms of inverted matrices15:

�(n)

�(n) + 1
Ip(x)(✓

?)�1
� Ip(x)(✓̂U(x),Dn

)
�1

�
�(n)

�(n)� 1
Ip(x)(✓

?)�1
. (38)

equation 38 is equivalent to

�(n)� 1

�(n)
Ip(x)(✓̂U(x),Dn

)
�1

� Ip(x)(✓
?)�1

�
�(n) + 1

�(n)
Ip(x)(✓̂U(x),Dn

)
�1

. (39)

From equation 39,

�(n)� 1

�(n)
Tr

h
Ip(x)(✓̂U(x),Dn

)
�1
i
 Tr

h
Ip(x)(✓

?)�1
i

�(n) + 1

�(n)
Tr

h
Ip(x)(✓̂U(x),Dn

)
�1
i

(40)

14IP(x)(✓) = (x,y)⇠P(x,y|✓)
⇥
�r

2
✓ log f(y|x, ✓)

⇤
= x⇠P(x)

⇥
y⇠f(y|x,✓)

⇥
�r

2
✓ log f(y|x, ✓)

⇤⇤
=

x⇠P(x)

⇥
y⇠f(y|x,✓) [I(✓, x)]

⇤
= x⇠P(x) [I(✓, x)].

15For 8 two positive definite matrices A and B, we have that A ⌫ B) A�1
� B�1

31

satisfies.16

Thus,
lim

n!1

Tr
h
Ip(x)(✓̂U(x),Dn

)
�1
i
= Tr

h
Ip(x)(✓

?)�1
i

(41)

holds when taking n ! 1 to the equation 40. Note that �(n) is proportional to n.

G.4 Statement and proof of Theorem 3

Theorem 3. Suppose Assumption 1 in Appendix F and Assumption 2 in Appendix G hold, then for
sufficiently large n = |Dn|, the following holds with high probability:

(x,y)⇠q(x)f(y|x,✓?)

h
Dn⇠p(x)f(y|x,✓?)

h
� log f(y|x, ✓̂U(x),Dn

)
ii

1

2n
Tr

h
Ip(x)(✓̂U(x),Dn

)�1
i
Tr

⇥
Iq(x)(✓

?)
⇤
.

(42)

Proof. Because of the (A8) of Assumption 1 in Appendix F, Ip(x)(✓?)�1 and Iq(x)(✓
?) are positive

definite matrix. Thus, Tr
⇥
Ip(x)(✓

?)�1
Iq(x)(✓

?)
⇤
 Tr

⇥
Ip(x)(✓

?)�1
⇤
Tr

⇥
Iq(x)(✓

?)
⇤

holds.17

From the result of Lemma 8 and 9 in Appendix G,

lim
n!1

n (x,y)⇠q(x)f(y|x,✓?)

h
Dn⇠p(x)f(y|x,✓?)

h
� log f(y|x, ✓̂U(x),Dn

)
ii

=
1

2
Tr

⇥
Ip(x)(✓

?)�1
Iq(x)(✓

?)
⇤

1

2
Tr

⇥
Ip(x)(✓

?)�1
⇤
Tr

⇥
Iq(x)(✓

?)
⇤

=
1

2
lim

n!1

Tr
h
Ip(x)(✓̂U(x),Dn

)�1
i
Tr

⇥
Iq(x)(✓

?)
⇤

holds with high probability.
Thus, desired result is obtained.

Note that Theorem 3 means that the upper bound of the test loss of MLE ✓̂U(x),Dn
can be minimized by

reducing Tr
h
Ip(x)(✓̂U(x),Dn

)�1
i

when training marginal p(x) is the only tractable and controllable
variable.

H Theorem 2

In this section, we introduce the motivation of gradient norm based importance sampling. To get the
motivation, we introduce the debiasing object problem for a given Dn under sampling probability
h(x) and provide evidence of solution of this problem in the toy example setting because of the
problem difficulty.

H.1 Practical objective function for the dataset bias problem

Remark that right-hand side term of equation 42 are controlled by the training and test marginals
p(x), and q(x). Since we can only control the training dataset Dn not p(x) and q(x), we can design a
practical objective function for the dataset bias problem by using EFI and Theorem 3 as follows:

min
h(x)2H

Tr
h
Îh(x)(✓̂h(x),Dn

)�1
i
, (43)

16If A � B, Tr [A] Tr [B] holds.
(*)A � B) B �A ⌫ O and B �A := U⌃UT , where U = [u1| · · · , |ud].
Then, Tr(B �A) =

Pd
i=1 ui(B �A)uT

i 0 because of the positive definite property of B �A.
Tr(B �A) 0) Tr(B) Tr(A).

17For 8 two positive definite matrices A and B, Tr [AB] Tr [A] Tr [B] satisfies.

32

where Îh(x)(✓) is an empirical Fisher information matrix. Remark that EFI is defined as:

Îh(x)(✓) =
nX

i=1

h(xi)r✓ log f(yi|xi, ✓)r
>

✓ log f(yi|xi, ✓). (44)

Here, h(x) describes the sampling probability on Dn, which is the only controllable term. We deal
with equation 43 in the toy example because of the problem difficulty.

H.2 One-dimensional Toy Example Setting

For simplicity, we assume that Dn comprises sets M and m and the samples in each set share their
same loss function and same probability mass. The detail is like below:

• For the given a 2 , at the model parameter ✓ 2 , 1
2 (✓ + a)2 and 1

2 (✓ � a)2 loss function
arise for all data in M and m, respectively.

• ✓̂h,Dn denote the trained model from the arbitrary PMF h(x) 2 H which has a constraint
having degree of freedom 2, (hM (x), hm(x)).

• Concretely, each samples of M and m has a probability mass hM (x) and hm(x), respectively.
i.e., |M | · hM (x) + |m| · hm(x) = 1, where |M | and |m| denote the cardinality of M and
m, respectively.

• Let gM (✓) and gm(✓) denote the gradient of each sample in M and m at ✓ 2 , respectively.

• Then, |M | · hM (x) · gM (✓̂h(x),Dn
) + |m| · hm(x) · gm(✓̂h(x),Dn

) = 0 hold by the definition
of ✓̂h(x),Dn

.

• In this settings, our objective can be written as finding h
?(x) =

argminh(x)2H
Tr

h
Îh(x)(✓̂h(x),Dn

)�1
i

and this is equivalent to find (h?
M (x), h?

m(x)).

H.3 Statement and proof of Theorem 4

In this section, we introduce the motivation of the gradient norm based importance sampling in the
toy example setting.
Theorem 4. Under the above setting, the solution of (h?

M (x), h?
m(x)) =

argminh(x)2H
Tr

h
Îh(x)(✓̂h(x),Dn

)�1
i

is:

h
?
M (x) =

|gM (✓̂U(x),Dn
)|

Z
, h

?
m(x) =

|gm(✓̂U(x),Dn
)|

Z
,

where Z = |M ||gM (✓̂U(x),Dn
)|+ |m||gm(✓̂U(x),Dn

)|, and |M | and |m| denote the cardinality of M
and m, respectively.

Proof. The trained model ✓̂h(x),Dn
2 [�a, a] trivially holds for any h(x) 2 H. By the loss function

definition in the toy setting, gM (✓) = ✓ + a and gm(✓) = ✓ � a, 8 ✓. Thus, |gM (✓)|+ |gm(✓)| = 2a
satisfies for 8 ✓ 2 [�a, a]. Since the gradient is scalar in the toy setting, Îh(x)(✓̂h(x),Dn

) is also scalar
and same as unique eigenvalue, that is,

Îh(x)(✓̂h(x),Dn
) = |M | · hM (x) · {gM (✓̂h(x),Dn

)}2 + |m| · hm(x) · {gm(✓̂h(x),Dn
)}2 8h(x) 2 H.

Thus, our problem is deciding hM (x) and hm(x) that maximize |M | · hM (x) · {gM (✓̂h(x),Dn
)}2 +

|m| · hm(x) · {gm(✓̂h(x),Dn
)}2.

Below 3 constrains are hold for arbitrary ✓ 2 [�a, a] and h(x) 2 H, because of the toy
setting.

1. |M | · hM (x) + |m| · hm(x) = 1. (probability definition)

33

2. |M | · hM (x) · gM (✓̂h(x),Dn
) + |m| · hm(x) · gm(✓̂h(x),Dn

) = 0.
Note that convex linear sum of the sample’s gradient w.r.t. h(x) = (hM (x), hm(x)) is zero
at the trained model ✓̂h(x),Dn

.

3. |gM (✓)|+ |gm(✓)| = 2a , gM (✓)� gm(✓) = 2a , gM (✓) = 2a+ gm(✓).
Note that this is derived by the property of predefined loss function at ✓ 2 [�a, a].

2nd constraint is equivalent to |M | · hM (x) · (2a+ gm(✓̂h(x),Dn
)) + |m| · hm(x) · gm(✓̂h(x),Dn

) =

0. , gm(✓̂h(x),Dn
) = �2a|M | · hM (x). Because of the 3rd constraint, gM (✓̂h(x),Dn

) = 2a(1 �

|M | · hM (x)). Then the objective is, maximizing

|M | · hM (x) · {2a(1� |M | · hM (x))}2 + (1� |M | · hM (x)){2a|M | · hM (x)}2

= 4a2|M | · hM (x)(1� |M | · hM (x))
(45)

equation 45 is maximized when |M | · hM (x) = 1
2 , and it means |m| · hm(x) = 1

2 . Thus, h?
M (x) =

|m|

2|M |·|m|
, h

?
m(x) = |M |

2|M |·|m|
. This result is related with the trained model ✓̂U(x),Dn

, where UM (x) =

Um(x) = 1
|M |+|m|

. At ✓̂U(x),Dn
, |M |gM (✓̂U(x),Dn

) + |m|gm(✓̂U(x),Dn
) = 0 satisfies and this is

equivalent to |M | : |m| = |gm(✓̂U(x),Dn
)| : |gM (✓̂U(x),Dn

)|.

Thus, it is coincide with our intuition that setting the sampling probability h for set M and m with
proportion to |gM (✓̂U(x),Dn

)| and |gm(✓̂U(x),Dn
)| helps to minimize the trace of the inverse empirical

Fisher information.

34

	Introduction
	Dataset Bias Problem
	PGD: Per-sample Gradient-Norm-Based Debiasing
	Experiments
	Benchmarks
	Implementation.
	Results
	Further analysis

	Conclusion
	Related Work
	Benchmarks
	Synthetic datasets (Additional synthetic datasets)
	Datasets in Section 4

	Experiment details
	Settings
	Baselines
	Implementation Details

	Additional experiments
	Unbiased test accuracy on synthetic datasets
	Correlation between gradient norm and bias-alignment of the CMNIST
	PGD does not learn only the second-easiest feature
	PGD on unbiased datasets
	Ablation study on GCE parameter
	Computation cost
	Multi-stage vs Single-stage
	Resampling versus Reweighting
	Unbiased test accuracy on various norms.
	Ablation study

	Mathematical Understanding of PGD
	Preliminary
	Understanding dataset bias problem via min-max problem
	Meaning of PGD in terms of equation 7.

	Backgrounds For Theoretical Analysis
	Notations Summary.
	Main Assumption
	Preliminaries
	Maximum Likelihood Estimator (MLE)
	Fisher information (FI)
	Empirical Fisher information (EFI)
	Stochastic Order Notations op and Op

	Theorem 1
	Sub-Lemmas
	Main Lemma
	Main Lemma statement and proof

	Theorem 1
	Additional Assumption
	Replacing by U(x),Dn

	Statement and proof of Theorem 3

	Theorem 2
	Practical objective function for the dataset bias problem
	One-dimensional Toy Example Setting
	Statement and proof of Theorem 4

