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Abstract
In-hand object reorientation is necessary for per-
forming many dexterous manipulation tasks, such
as tool use in unstructured environments that re-
main beyond the reach of current robots. Prior
works built reorientation systems that assume
one or many of the following specific circum-
stances: reorienting only specific objects with
simple shapes, limited range of reorientation, slow
or quasi-static manipulation, etc. We overcome
these limitations and present a general object re-
orientation controller that is trained in simulation
and evaluated in the real world. Our system uses
readings from a single commodity depth camera
to dynamically reorient complex objects by any
amount in real time. The controller generalizes
to new objects not used during training. It even
demonstrates some capability of reorienting ob-
jects in the air held by a downward-facing hand
that must counteract gravity during reorientation.

Introduction
The dexterity of the human hand is vital to a wide range
of daily tasks such as loading dishes in a dishwasher and
fastening bolts. Despite a long-standing interest in creating
similarly capable robotic systems, current robots are far
behind in their versatility, dexterity, and robustness. In-hand
object reorientation, illustrated in Figure 1, is a dexterous
manipulation problem where the goal is to manipulate a
hand-held object from an arbitrary initial orientation to an
arbitrary target orientation (Mason et al., 1989; Salisbury
& Craig, 1982; Mordatch et al., 2012; Bai & Liu, 2014;
Kumar et al., 2014; Chen et al., 2022). Object reorientation
occupies a special place in manipulation because it is a pre-
cursor to flexible tool use. After picking a tool, the robot
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Figure 1. (A): the front and side views of our real-world setup.
(B): Visualization of the same controller reorienting three different
objects. The rightmost column shows the target orientation. The
first two rows are instances of a four-fingered hand reorienting
objects in the air. The last row shows reorientation with the help
of a supporting surface (i.e., extrinsic dexterity).

must orient the tool in an appropriate configuration to use it.

A reorientation system ready for the real world should sat-
isfy multiple criteria: it should be able to reorient objects
into any orientation, generalize to new objects, and oper-
ate in real-time using data from commodity sensors. Some
seemingly benign setup choices can make the system im-
practical for real-world deployment. For instance, con-
sider the choice of placing multiple cameras around the
workspace to reduce occlusion in viewing the object be-
ing manipulated (Andrychowicz et al., 2020; OpenAI et al.,
2019). For a mobile manipulator, such camera placements
are impractical. Similarly, performing reorientation under
the assumption of an upward-facing hand (Andrychowicz
et al., 2020; Nagabandi et al., 2020) is much easier. With a
downward-facing hand, the hand must manipulate the object
while simultaneously counteracting gravity. Small errors in
finger motion can result in the object falling down.

Even without real-world setup constraints, object reori-
entation is challenging because it requires coordinated
movement between multiple fingers resulting in a high-
dimensional control space. The robot must control the
amount of applied force, when to apply it, and where the
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fingers should make and break contact with the object. A
majority of prior works constrain manipulation to simple
convex shapes such as polygons or cylinders (Ishihara et al.,
2006; Kumar et al., 2014; Calli & Dollar, 2017; Andrychow-
icz et al., 2020; Van Hoof et al., 2015; Abondance et al.,
2020; Bhatt et al., 2021; Khandate et al., 2022). Other sim-
plifying assumptions include designing specific movement
patterns of fingers (Morgan et al., 2022; Bhatt et al., 2021),
assuming fingers never make break contact with the ob-
ject (Sundaralingam & Hermans, 2019; Jeong et al., 2020),
hand being in upwards facing configuration (Bai & Liu,
2014; Nagabandi et al., 2020; Andrychowicz et al., 2020)
or the manipulation being quasi-static (Morgan et al., 2022;
Sievers et al., 2022). Such assumptions restrict the applica-
bility of reorientation to a limited set of objects, scenarios,
or orientations (e.g., along only a single axis).

In this paper, we present a system that advances the dex-
terous manipulation system’s capability. Our system learns
a controller in simulation for dynamic in-hand object re-
orientation and transfers to the real world in a zero-shot
manner. The systematic choices of identifying the simu-
lated robot’s dynamics parameters using real-world data
(i.e., system identification on robot dynamics, details in the
Method section), domain randomization (Tobin et al., 2017),
design of reward function and the hardware considerations
including the number of fingers and the fingertip material
enabled us to overcome the sim-to-real gap. We conducted
experiments in the challenging downward-facing hand con-
figuration. We tested the controller’s ability to make use
of an external support surface for reorientation (i.e., extrin-
sic dexterity (Dafle et al., 2014)) and the harder condition
when the object is in the air without any supporting surface.
The results demonstrate success in designing a real-time
controller that can dynamically reorient new objects with
complex shapes and diverse materials by any amount in
the full space of rotations

(
SO(3)

)
using inputs from just

a single commodity depth camera and joint encoders. Our
results provide convincing evidence that sim-to-real trans-
fer is possible for challenging dynamic and contact-rich
manipulation tasks.

Method
Given a random object in a random initial pose, the robot
is tasked to reorient the object to a user-provided target ori-
entation in SO(3) space. We train a single vision-based ob-
ject reorientation controller (or policy) in simulation (Isaac
Gym (Makoviychuk et al., 2021)) to reorient hundreds of
objects. The controller trained in simulation is directly de-
ployed in the real world (i.e., zero-shot transfer).

Training the visuomotor policy

We use a teacher-student training paradigm for learning the
controller. The paradigm has been used to learn object reori-
entation policy in simulation from visual and proprioceptive
observations (Chen et al., 2022). However, a separate pol-
icy was trained per object. Secondly, it required more than
a week to train the student vision policy for a single ob-
ject on an NVIDIA V100 GPU. We developed a two-stage
student training (Teacher-student2) framework that substan-
tially speeds up the vision student policy learning. Using
this framework, we were able to learn a vision policy that
operates across a diverse set of objects and generalizes to
objects with different shapes and physical parameters.

TEACHER POLICY: REINFORCEMENT LEARNING WITH
PRIVILEGED INFORMATION

The teacher policy (πE ) is trained using reinforcement learn-
ing. The observation input includes proprioceptive state
information, object state, and target orientation. The pol-
icy outputs the relative joint position changes in 12Hz.
To smooth the commands sent to the low-level controller,
we usethe exponential moving average of actions āt =
αat + (1− α)āt−1 where α ∈ [0, 1]. The reward function
is described in Section A.1.

STUDENT POLICY - IMITATION LEARNING FROM DEPTH
OBSERVATIONS

The student policy (πS) is trained in simulation with the
purpose of being deployed in the real world. Since the
sim-to-real gap for depth data is less pronounced than RGB
data, we only use the depth images provided by the camera
along with readings from joint encoders. We represent the
depth data as a point cloud in the robot’s base link frame.
To enable the neural network representing πS to model
the spatial relationship between the fingers and the object,
we express the robot’s current configuration by showing
the policy a point cloud representing points sampled on
the surface of the fingers. We concatenate the point cloud
obtained from the camera along with the generated point
cloud of the hand. We denote this scene point cloud as P s

t .

Goal representation Instead of providing the goal orien-
tation as a pose which has generalization issues discussed
above, the goal is represented as the object’s point cloud in
the target orientation P g .

Observation space The input to πS is the point cloud Pt =
P s

t ∪ P g .

Architecture The critical requirement for the vision pol-
icy is to run at a high enough frequency to enable real-
time control. For fast computation, we designed a sparse
convolutional neural network with a gated recurrent unit
(GRU; (Cho et al., 2014)) to process point cloud (Pt) using
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the Minkowski Engine (Choy et al., 2019).

Optimization The student policy πS is trained using DAG-
GER (Ross et al., 2011) to imitate the teacher policy πE .

Need for two-stage student learning We found training
a vision policy in simulation to be slow, consuming 20+
days on an NVIDIA V100 GPU. The main reason for slow
training is that the simulator performs rendering to generate
a point cloud which consumes a substantial amount of time
and GPU memory. To reduce training time, we generated
synthetic point clouds by uniformly sampling points on
the object and robot meshes used by the simulator. The
synthetic point cloud is also complete (i.e., no occlusions),
which makes training easier. The vision policy (πS

1 ) can be
trained with synthetic point cloud in less than three days,
i.e., 7× speedup (stage 1). However, the policy, πS

1 , cannot
be deployed in the real world because it operates on an
idealized point cloud (i.e., no occlusions). Therefore, once
the student reaches high performance, we initiate stage 2,
where the policy is finetuned with the rendered point cloud.
Such finetuning is quick in wall-clock time (around one day),
and the resulting policy (πS

2 ) performs better than training
from scratch with rendered point clouds. An additional
benefit of the two-stage student policy training is that πS

1 is
agnostic to the camera pose. Therefore a policy from a new
viewpoint (πS

2 ) can be quickly obtained by finetuning using
rendered point clouds from that camera pose. Training the
vision policy from scratch is not necessary. Details on how
to compute the point cloud are in Section A.2.

Overcoming the simulation to reality gap

There are two main sources of gap between simulation and
reality. The first one is dynamics gap that arises from dif-
ferences in the robot dynamics, the approximation in the
simulator’s contact model, and differences in object dynam-
ics that depends on material properties such as friction, etc.
The other source is perception gap caused by differences
in statistics of sensor readings and/or noise. One way to
overcome these gaps is to train a single policy across many
different settings of the simulation parameters (i.e., domain
randomization (Tobin et al., 2017)). The success of domain
randomization hinges on the hope that the real world can be
well approximated by one of the many simulation parameter
settings used during training. The chances that one of the
parameter settings being used in simulation being close to
the real world increases by randomizing parameters over
a larger range. However, excessive randomization may re-
sult in an overly conservative policy with low performance.
Therefore, we make design choices that reduce the need for
domain randomization and use it only when needed.

The perception gap is reduced by using only depth readings
from the camera which is represented as a point cloud and
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Figure 2. Teacher-student2 framework

is sufficient for reorienting objects with different shapes. To
account for noise in depth readings, we add noise to the
simulated point cloud The dynamics gap can be reduced by
identifying simulation parameters that are closest to the real
world. While such identification is possible for the robotic
manipulator, it is infeasible to do so for object dynamics
that vary in material, mass distribution, etc. Therefore, we
perform system identification on the robot dynamics and use
only small randomization to account for unmodeled errors.
We use a larger range of domain randomization (Section
S4.2.2) on the object and environment dynamics. To make
the policy more robust to unmodeled real-world physics, we
apply random forces on the object during training which
pressures the policy to reorient objects while being robust
to external disturbance. Lastly, to increase compliance and
friction between the object and the manipulator, we use soft
fingertips. Such a choice makes the system more tolerant
to errors in control commands. Empirically we noticed that
soft fingertips make the robot less aggressive and result in
fewer overshoots.

SYSTEM IDENTIFICATION OF ROBOT DYNAMICS

We build the Unified Robot Description Format (URDF)
models for the hands using their CAD models. While accu-
rate kinematics parameters can be obtained from the CAD
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model, the dynamics parameters, such as joint damping and
stiffness, must be estimated. One way of identifying dy-
namics parameters is to write down the equations of motion
(or the dynamics model) and solve for the unknown vari-
ables using the collected robot’s motion trajectories. The
Isaac Gym simulator we use already has a built-in dynamics
model. But because the simulator’s code is not open-source,
we do not have access to the precise dynamics model nor
any access to gradients of dynamics parameters. We, there-
fore, propose to use a black-box approach that leverages
the ability of Isaac Gym to perform massively parallel sim-
ulations. We spawn a large number of simulations with
different dynamics parameters and use the one that has the
closest match to the real robot’s motion.

Let λi ∈ Λ denote the dynamics parameter of the ith

simulated robot (Cλi), where Λ denotes the entire set
of dynamics parameter values over which search is per-
formed. To evaluate the similarity between the motion
of Cλi and the real robot (Creal), we compute the score:

h(qCreal

A (·), qCλi

A (·)) = −
∥∥∥qCreal

A (·)− qCλi

A (·)
∥∥∥2
2
, where

qC
A(·) represents the joint position trajectories of a robot C

given action commands A(·). The closer the motion of the
simulated robot is to that of the real world, the higher the
score will be. We use the black-box optimization method
of CMAES (Hansen et al., 2003), an instance of evolution-
ary search algorithms, to determine the optimal dynamics
parameter: λ∗ = argmaxλ∈Λ h(qCreal

A (·), qCλ

A (·)). Note
that it might be impossible to find a simulated robot that
exactly matches the real robot due to the approximate pa-
rameterization of real-world dynamics in simulation and
the stochasticity in the real-world resulting from actua-
tion/sensing noise.

Results
We experiment with the hand in the downward-facing con-
figuration in two settings: with and without a supporting
table. To quantitatively measure the orientation error, we
use an OptiTrack motion capture system to track object pose.
We define error as the distance between the goal orientation
and the object orientation when the controller predicts it has
reached the target configuration and stops. We use seven
objects from the training dataset (150 objects in total), and
five objects from the held-out test dataset. Each object was
tested 20 times in each testing setup. We 3D print these
objects to ensure the shape of objects in simulation and the
real world is identical, which is helpful in evaluating the
extent of sim-to-real transfer.

Extrinsic dexterity: object reorientation with a
supporting surface

We first report results on the easier problem of reorienting
objects when the table is present below the hand to support
the object. First, we experimented with a three-fingered
hand. With table support, three fingers are sufficient for
the reorientation task. The error distribution for different
objects, when tested on a table surface covered with a white
cloth (material M1 in Figure 3). The seven train objects
can be reoriented successfully within an error of 0.4 radians
81% of the time. Performance on the five OOD test objects
is lower with a success rate of 45%. Qualitatively observ-
ing the robot behavior revealed that one cause of failures
was object overshooting the target orientation or the finger
slipping across the object, especially for OOD objects. We
found that using soft fingertips helps improve the system’s
performance (see Figure 3).

Object reorientation on different supporting materials
Changing the table surface results changes the dynamics
of object motion. We tested if our controller is robust to
a diverse set of materials that have different surface struc-
tures, roughness, and friction, leading to different system
dynamics. We evaluate with one in-distribution object (ob-
ject #5) and one out-of-distribution object (object #10).
Figure 3 show that our controller performs well on different
supporting materials.

Towards object reorientation in air

While both three and four-fingered hands can reorient ob-
jects on a supporting surface (Figure 4), only the four-
fingered hand is successful at in-air reorientation . We
hypothesize this to be the case because, with four fingers,
there are more ways of reorienting the object, making it
easier for policy optimization to find one solution.

SO(3) OBJECT REORIENTATION IN AIR

Simulation analysis reveals that object dropping is the most
significant source of errors. Dropping rates vary substan-
tially across objects. Real-world results follow the same
trend. The dropping rate of a truck-shaped object (#5) was
23%, significantly lower than the dropping rate of 56% for
an out-of-distribution duck-shaped object (#10). The drop-
ping rate for the same object shape in the simulation was
around 20% showing a sim-to-real gap. However, it remains
unclear if the difference in performance can be attributed to
the simulator being an approximate model of the real world
or whether the object in the real world is much harder to
manipulate.

Our controller performs dynamic reorientation, and the me-
dian time for successful manipulation across objects and
randomly sampled orientation distances in the full SO(3)
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space is less than 7s, which makes it the fastest in-air reori-
entation controller operating in the full SO(3) space. The
reorientation times in the real world are longer than in simu-
lation, which we believe results from contact dynamics in
the real world being different from simulation.
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A. Training details
A.1. Reward function for teacher policy learning

Reward Our reward function consists of the following terms: a sparse and a dense reward term for minimizing the
orientation distance (Equation 1 and 2), a penalty term when fingertips move away from the object (Equation 3), a penalty
term for using much energy (Equation 4), a penalty for pushing objects away (Equation 5), a penalty for the contact between
the object and table (Equation 6) and a penalty for using the penultimate joint instead of the fingertip for reorientation
(Equation 7).

rt =c11(Task successful) (1)

+c2
1

|∆θt|+ ϵθ
(2)

+c3

G∑
i=1

∥∥∥pfi
t − po

t

∥∥∥2
2

(3)

+c4|q̇t|T |τt| (4)

+c51(∥po
t∥

2
2 > p̄) (5)

+c61(object contacts with the table) (6)

+c7

N∑
i=1

1(pfit,z > p̄z) (7)

where c1, c2 > 0, and c3, c4, c5 < 0, c6, c7 < 0 are coefficients, 1 is an indicator function, ϵθ and p̄ are constants, pfi
t is the

fingertip position of ith finger, po
t is the object center position, τt is the vector of the joint torques.

A.2. Point cloud in the two-stage student training

Stage 1: details of synthetic point cloud In stage 1, the simulation is not used for rendering but only for physics
simulation. We generate the point cloud for each link on the manipulator and object by sampling K points on their meshes
in the following way: let the point cloud of link lj in the local coordinate frame of the link be denoted as P lj ∈ RK×3.
Given link orientation (Rlj

t ∈ R3×3) and position (plj
t ∈ R3×1) at time step t, the point cloud can be computed in the global

frame, P lj
t = P lj (R

lj
t )

T + (p
lj
t )

T . The point cloud representation of the entire scene is the union of point clouds of all the
links, the object being manipulated, and the object in the goal orientation: P s

t =
⋃j=M

j=1 P
lj
t where M is the total number of

links (bodies) in the environment. The point cloud P s
t can be efficiently generated using matrix multiplication.

Stage 2: details of rendered point cloud In stage 2, we acquire depth images from the simulator at each time step and
convert the depth images to point clouds (which we call exteroceptive point cloud) using the camera’s intrinsic and extrinsic
matrices. Note that such a point cloud is not complete due to occlusions from a single camera. We also convert the joint
angle information into link poses via forward kinematics and then generate the complete point cloud of the robot (which we
call proprioceptive point cloud). Note that such a proprioceptive point cloud of a robot can be easily obtained in the real
world in real-time as well since we can get the joint positions on the real robot. The policy input consists of the union of the
exteroceptive point cloud and the proprioceptive point cloud.

B. Quantitative Results
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Figure 3. (A): twelve objects with their IDs. The first seven objects are from the training dataset, and the last five are from the testing
dataset. (B), (C) show the real-world error distribution when using rigid and soft fingertips, respectively, on material M1. (D) shows
the error distribution in simulation for each object as a violin plot. The error on test objects is higher, and soft fingertips exhibit better
generalization. (E): five table materials. (F) and (G) show the error distribution on different materials for object #5 and #10.
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Figure 4. (A): When training a controller to reorient objects with a supporting surface, the three-fingered and four-fingered hands achieve
similar learning performance. (B): However, when we incentivize the hands to lift the object during reorientation, the four-fingered hand
outperforms the three-fingered hand substantially. (C): We tested the controller performance with a four-fingered hand in the air. We
collected 20 non-dropping testing cases for one in-distribution object and one out-of-distribution object. The error distribution is similar
to that in the case of table-top reorientation. (D) shows the distribution of the episode time both in simulation and the real world. (E): We
show the same controller’s performance on twelve objects with a supporting surface. (F): We tested the controller on symmetric objects
with a supporting surface. The controller behaves reasonably well even though it was never trained with symmetric objects.


