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Abstract. Radiotherapy (RT) is a critical cancer treatment, with volu-
metric modulated arc therapy (VMAT) being a commonly used technique
that enhances dose conformity by dynamically adjusting multileaf colli-
mator (MLC) positions and monitor units (MU) throughout gantry rota-
tion. Adaptive radiotherapy requires frequent modifications to treatment
plans to account for anatomical variations, necessitating time-efficient
solutions. Deep learning offers a promising solution to automate this
process. To this end, we propose a two-stage, physics-guided deep learn-
ing pipeline for radiotherapy planning. In the first stage, our network is
trained with direct supervision on treatment plan parameters, consisting
of MLC and MU values. In the second stage, we incorporate an additional
supervision signal derived from the predicted 3D dose distribution, inte-
grating physics-based guidance into the training process. We train and
evaluate our approach on 133 prostate cancer patients treated with a
uniform 2-arc VMAT protocol delivering a dose of 62 Gy to the plan-
ning target volume (PTV). Our results demonstrate that the proposed
approach, implemented using both 3D U-Net and UNETR architectures,
consistently produces treatment plans that closely match clinical ground
truths. Our method achieves a mean difference of Dgs9, = 0.42 + 1.83
Gy and Vgse, = —0.22 £+ 1.87% at the PTV while generating dose distri-
butions that reduce radiation exposure to organs at risk. These findings
highlight the potential of physics-guided deep learning in RT planning.
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1 Introduction

Radiotherapy (RT) is a critical treatment modality for cancer, with approxi-
mately 50% of cancer patients undergoing external beam radiation therapy dur-
ing their disease [8]. The aim of RT to deliver a sufficiently high radiation dose
to the tumor while sparing surrounding healthy tissues as much as possible [5].
Over the past decades, various advanced delivery methods have been introduced
to increase dose conformity and reduce toxicity. Notably, intensity-modulated ra-
diation therapy (IMRT) [3] and volumetric-modulated arc therapy (VMAT) [23]
have transformed clinical practice. VMAT delivers highly conformal doses by
continuously adjusting the leaves and jaws of the multileaf collimator (MLC)
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system while modulating the monitor units (MU) throughout the gantry rota-
tion [2].

Online adaptive radiotherapy (ART) personalizes RT by updating plans
based on anatomical changes. [18]. This continual replanning process requires
solving a high-dimensional, non-convex optimization problem [27]. Although
conventional algorithms based on Monte Carlo simulations [29] can be highly
accurate, they are computationally expensive leading to inefficient workflows.
To address these limitations, deep learning methods are increasingly being in-
vestigated as a way to accelerate treatment planning.

One prominent deep learning strategy is Deep Reinforcement Learning (DRL),
where an agent learns to optimize treatment plans by maximizing a cumulative
reward through repeated interactions with an environment [26]. DRL has shown
promise in IMRT planning for prostate cancer [25] and has been extended to
VMAT planning [16,15]. In the latter case [15], 3D collapsed cone convolution
algorithms [1] serve as the environment, while the Deep Deterministic Policy
Gradient (DDPG) algorithm [19] is used for optimization. However, DRL-based
approaches face several challenges, particularly their reliance on the accuracy of
the environment and the design of reward functions used during training [32].

An alternative strategy uses supervised deep learning on pre-calculated, clin-
ically approved plans generated by commercial treatment planning systems (e.g.,
Pinnacle from Philips [24] or Monaco from Elekta [10]). Early models used single-
arc IMRT data and a four-layer 3D U-Net [34] to predict the MLC apertures
from the patient’s Computed Tomography (CT) images and the corresponding
masks of the Planning Treatment Volume (PTV) and organs-at-risk (OAR) [22].
Later, an MU-decoder was added to predict both MLC configurations and MU
values for three-arc breast cancer treatments as warm start for the optimisa-
tion [28]. A key limitation of such direct supervision lies in the non-uniqueness
of optimal solutions: multiple different MLC and MU configurations can pro-
duce clinically equivalent dose distributions, making a single ground truth plan
inherently ambiguous.

To address these issues, we propose a two-stage, physics-guided [11], [30]
training pipeline for deep learning—based RT planning. In the first stage, our
Deep RT Planner is trained with direct supervision on the treatment plan pa-
rameters. In the second stage, we introduce an additional supervision signal
derived from the 3D dose distribution corresponding to the predicted treatment
plan, thereby incorporating physics guidance and training in a clinically relevant
domain. This dose is generated by the RT Dose Predictor, a fully differentiable
gated recurrent unit (GRU) neural network [6], pretrained to predict 3D dose
distributions from CT scans and treatment plans [33], and remains frozen during
the second stage of training.

We evaluate our method on a dataset of 133 patients with prostate cancer,
all treated under a uniform 2-arc VMAT protocol delivering 62 Gy to the PTV.
We implement two variants of our Deep RT Planner: a 3D U-Net [34] with dual
decoders—one for MLC masks and one for MU values, and a UNETR [13] archi-
tecture, which employs Vision Transformer (ViT) [9] encoders while retaining the
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dual-decoder structure. For both architectures, the second-stage physics-guided
training significantly improves plan quality and dose accuracy.

2 Method

2.1 Dataset

We collected data from 133 prostate cancer patients treated at our institution
between 2018 and 2022, following approval of the Institutional Review Board.
For each patient, the planning CT scan and RT Structure Set (RTSS) were
obtained, which includes the precise locations of the routinely considered CTV,
PTV, rectum and femoral heads.

We recalculated all plans using Pinnacle [24] with standardized parameters:
7 MeV beam energy, 20 treatment sessions, flattening filter-free mode, and a
linear accelerator with 160 MLC leaves. Identical dose objectives were applied
across all plans to ensure consistency, and an experienced radiation oncologist
reviewed each case for clinical validity.

The final dataset included 104 training, 16 validation, and 13 test cases,
each comprising a CT scan, binary masks for the CTV, PTV, and OARs, and a
corresponding treatment plan. The CT volumes, centered on the isocenter, were
resampled to a 144 x 144 x 144 grid (approximately 500 x 500 x 500 mm?) with
an isotropic resolution of 3.5 mm?®. Hounsfield unit (HU) values were clipped to
[—1000, 3000] and normalized to [—1, 1], with RT'SS masks geometrically aligned
to the CT grid.

Each VMAT plan consists of 144 control points (72 per arc). At each control
point, a 144 x 144 binary mask encodes the MLC aperture, representing MLC
leaf and jaw positions relative to the isocenter. A corresponding scalar value
specifies the monitor units (MU), resulting in 144 MLC aperture masks and 144
MU values per plan.

2.2 Deep RT Planner and RT Dose Predictor

For the Deep RT Planner, we experimented with two architectures: a 3D U-
Net [34] and a UNETR [13] model. Both architectures take as input a tensor of
shape (B,C, D, H,W), where B is the batch size, C' is the number of channels,
and D, H, and W are the depth, height, and widths. In our setting, B = 4,
H =W =D = 144, and C = 5. The first channel contains the CT scan, while the
remaining four channels contain the rotation and projection at each control point
for the CT, PTV, CTV, and OARs, respectively. This representation predefines
the Beam’s Eye View [5] at the input level, allowing the model to process spatially
aware information. With a single forward pass, the models predict the complete
RT plan, consisting of 144 MLC apertures and their corresponding monitor units.

3D U-Net Architecture. We employ a 3D U-Net with an encoder-decoder
structure and skip connections across four resolution levels. The encoder applies
repeated 3 x 3 x 3 convolutions with batch normalization and ReLLU activation,
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followed by 2 x 2 x 2 max pooling. The decoder mirrors this structure, using
upsampling before applying convolutional layers. Skip connections concatenate
encoder features with decoder stages to retain spatial information. A final 1x1x1
convolution with sigmoid activation predicts the 144 binary MLC apertures.

A global average pooling layer extracts a latent representation from the deep-
est encoder features, which is processed by fully connected layers to predict the
144 MU values.

UNETR Architecture. We utilize a compact UNETR-based model with a
lightweight ViT encoder and dual decoders for MLC mask and MU prediction.
The 3D input volume is split into non-overlapping 16 x 16 x 16 patches, which are
embedded into a latent space with positional encoding. A streamlined ViT with
four transformer blocks (instead of twelve) processes the sequence, generating
multi-scale feature representations while retaining intermediate states.

For MLC mask prediction, deconvolution and upsampling restore the original
144 x 144 x 144 resolution, with feature maps concatenated at multiple scales.
A 1 x 1 x 1 convolution with softmax activation outputs the 144 binary MLC
apertures. Meanwhile, the MU decoder branches from the ViT bottleneck and
processes the latent sequence through fully connected layers to predict the 144
MU values.

RT Dose Predictor. For predicting the 3D dose distribution given the
RT plan and CT scan, we utilized a convolutional gated recurrent unit neural
network, following [33]. We modified the architecture to be fully differentiable in
our pipeline, enabling gradient-based optimization during training, while keeping
it frozen during the physics-guided stage of training.

The network was trained on 350 cancer patients across multiple tumor sites,
including prostate cancer, using treatment plans generated by Monaco [10]. Us-
ing a gamma pass rate criterion [31] of 2% and 2 mm for voxels receiving at least
10% of the maximum dose, the model achieves a 99.6% pass rate.

2.3 Two-Stage Physics-Guided Training

First Training Stage. During the first stage of training, the Deep RT Planner
takes as input the CT scan and the binary masks of the RT Structure Set. The
network encodes these inputs, with the MLC aperture decoder predicting the
binary MLC apertures and the MU decoder predicting the MU values for the
complete 2-arc plan. The network is supervised using the ground truth plan and
minimizes the following loss function:

L= EBCE(Mpreda Mtrue) + A ||MUpred - MUtrueHl

where the first term represents the Binary Cross-Entropy (BCE) loss [12] for
the predicted MLC aperture My eq and its ground truth Miyue. The second term
is the L; loss for the predicted monitor units MU.q compared to the ground
truth MUy,ue. The parameter A balances the two loss components and is set to
100.
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Second Training Stage. A key limitation of direct supervision in the first
stage is the non-uniqueness of optimal solutions, as multiple MLC and MU con-
figurations can yield clinically equivalent dose distributions, making a single
ground truth plan ambiguous. While our second training stage—incorporating a
dose-based loss term—does not fully resolve this ambiguity, it mitigates multi-
arc redundancy by guiding the network toward a consistent dose representation.
Furthermore, dose supervision evaluates the network’s output in a clinically rele-
vant domain, aligning the optimization process with actual treatment objectives.

As shown in Fig. 1, the RT plan predicted by the Deep RT Planner serves as
input to the RT Dose Predictor in a cascaded manner. This process remains fully
end-to-end differentiable, allowing dose supervision to backpropagate through
the pipeline and optimize the Deep RT Planner accordingly. The second-stage
loss function is defined as:

L= ﬁBCE(Mprcda Mtruc) + )\1 : ||MUprcd - MUtruc”l + )\2 : ||Dpred - Dtruc”%

where Dpreq and Dy,ye represent the predicted and ground truth 3D dose dis-
tributions, respectively. The parameters A\; and Ao control the relative weighting
of the MU and dose terms and were set to 100 and 10, respectively.

The first training stage ran for approximately 400 epochs, while the second
stage lasted 100 epochs, with early stopping applied if the validation loss did
not improve for 10 consecutive epochs. We used the AdamW optimizer [21] with
cosine annealing, a learning rate of 104, a weight decay of 1073, and a batch
size of 4.

3 Results

3.1 Dosimetric Comparison with Clinical Plans

We evaluated our two-stage methodology using two different neural network ar-
chitectures as the Deep RT Planner: a 3D U-Net and a UNETR. Both networks
have comparable model sizes, and this comparison aims to demonstrate that
the proposed second-stage physics-guided training enhances performance inde-
pendently of the Deep RT Planner architecture. Results were averaged over a
test set of 13 patients. To ensure efficient evaluation, we used CUDA-accelerated
preprocessing [7], including rotation and projection operations, and performed
model inference on a single NVIDIA RTX A6000 GPU in under one second per
patient.

Table 1 presents the differences between predicted and ground truth (GT)
dose-volume histogram (DVH) characteristics for the PTV, CTV, and OARs [5].
Each value in the table represents the difference Predicted — GT, where negative
values indicate that the predicted DVH characteristics are lower than those of the
ground truth. For PTV and CTV, optimal performance corresponds to values
closest to zero, minimizing deviation from the ground truth. In contrast, for
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Fig. 1. Two-stage physics-guided training framework: (a) The Deep RT Planner is
trained with ground truth RT plans. (b) Dose supervision via the RT Dose Predictor.

OARs, lower dose values are preferable, meaning a negative difference relative
to the ground truth indicates better sparing of healthy tissue.

The second training stage significantly improved key dosimetric metrics for
the PTV/CTV, including D98, D95, and V95%. The best performance was
achieved using the 3D U-Net, which yielded a mean absolute difference of Dg5o; =
0.5942.23 Gy, Dggy, = 0.70+2.14 Gy, and Vs, = —0.42+1.12%, demonstrating
strong alignment between the predicted and ground truth treatment objectives.

Physics-guided training reduced OAR toxicity compared to first-stage mod-
els. A detailed analysis revealed that for the rectum, one of the most radiosensi-
tive structures, the 3D U-Net achieved greater dose reductions than the UNETR.
This trend aligns with previous findings [14]. For the femoral heads, the UNETR
performed better on average, though both models exhibited variability in dose
metrics.

Fig. 2 presents DVH curves for a single patient before and after the physics-
guided stage for the 3D U-Net, where we observe that the physics guidance step
brings the dose objectives closer to the ground truth.

3.2 Gamma Pass Rate Analysis

To further evaluate the predicted radiotherapy plans, we computed the gamma
pass rate [31] using 3%/3 mm criteria for dose values exceeding 10% of the
maximum to assess overall dose distribution and for values above 90% to focus
on high-dose regions critical for target coverage.
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Fig. 2. DVHs comparing predicted dose distributions after the 1st (left) and 2nd (right)
training stages of the 3D U-Net for the same patient. Ground truth (G.T.) doses are
shown as dashed lines, while predicted (Pred.) doses are shown as solid lines.

Ground Truth 3D U-Net: 1st Stage

3D U-Net: 2nd Stage

Patient 1

Patient 2

Fig. 3. Isodose distributions (25%, 50%, 75%, 90% of max dose) for two patients. The
ground truth (left) is compared to predictions from the 1st (middle) and 2nd (right)
training stages of the 3D U-Net.

Table 2 shows that two-stage training consistently improved gamma pass
rates, with the largest gain in the high-dose region, nearly doubling performance,
and the 3D U-Net model achieved 90.5% =+ 7.3%.

Fig. 3 compares isodose curves for two patients, showing the ground truth
alongside predictions from the 1st and 2nd training stages of the 3D U-Net.

4 Discussion

We developed a physics-guided training pipeline that generates treatment plans
adhering to clinical DVH criteria in under one second, whereas contemporary
GPU-based planning systems require minutes [20]. Our approach directly ad-
dresses a key bottleneck in ART: time constraints.

In the first training stage, supervised on ground truth RT plans following
approaches similar to those proposed in the literature [28], the generated plans
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I UNETR | 3D U-Net
ROI Metric H 1st Stage 2nd Stage ‘ 1st Stage 2nd Stage
Dgso (Gy) 3.32 + 4.34 -1.12 + 2.30 2.94 &+ 3.58 0.59 + 2.23
CTV Dggo (Gy) 2.79 + 4.32 -1.30 + 2.35 2.67 £+ 3.59 0.70 £+ 2.14
Voso (%) -1.79 + 4.00 -1.68 + 1.82 | -1.09 + 2.41 -0.42 + 1.12
Dgs (Gy) 2.59 + 3.82 -1.70 £ 2.21 1.75 4+ 3.55 0.42 + 1.83
PTV Dosg (Gy) 220 + 3.96 -1.95 + 2.77 | 0.92 +4.72 -0.71 + 2.12
Voso, (%) -1.72 £ 6.60 -1.63 + 1.71 | -0.81 &+ 2.55 -0.22 + 1.87
Diecan (Gy) || 0.48 £6.03 -0.69 &+ 5.67 | 0.71 £ 5.14 -0.82 + 4.45
Rectum Drax (Gy) 6.08 + 4.56  1.57 4+ 3.16 | 5.86 &= 4.51 -0.07 + 3.19
Vioay (%) 0.76 £+ 6.49 -0.47 + 5.68 1.08 &+ 6.61 -1.12 + 5.13
Duean (Gy) 0.16 £ 10.22 -0.72 £+ 6.34 | 0.35 &+ 10.10 -0.15 + 6.60
Left Femoral Dy (Gy) 1.24 £ 7.65 -0.71 4+ 5.46 | 1.19 + 6.64 0.79 + 6.21
Vaoay (%) 0.13 £ 1.01 -0.71 =+ 3.21 | 0.45 + 4.57 -0.32 + 3.22
Dmean (Gy) 1.30 + 7.96 -0.73 + 6.96 1.38 4+ 8.03 -0.69 + 5.96
Right Femoral  Dyax (Gy) 2.74 + 5.62 -0.09 + 5.11 | 1.85 +4.90 1.23 + 4.14
Vaoay (%) 0.88 + 2.40 -0.32 £+ 1.15 0.12 £ 1.74 -0.21 + 1.16

Table 1. Comparison of dose metrics for UNETR and 3D U-Net across training stages.
Bold values indicate the best performance for each model. Each value represents the
difference Predicted — Ground Truth.

Dose Threshold H UNETR ‘ 3D U-Net

H 1st Stage 2nd Stage ‘ 1st Stage 2nd Stage
10% 82.85 + 7.30 85.08 + 6.37 84.70 +£ 5.93 86.78 + 4.63
90% 41.98 + 25.74 80.40 £+ 10.72 | 56.46 + 32.68 90.50 + 7.28

Table 2. Gamma pass rates (%) for different dose thresholds across models. Bold
values indicate the best performance for each architecture.

exhibited deviations from clinical goals. The physics-guided stage introduced a
clinically relevant training objective, mitigating multi-arc redundancy and guid-
ing the network toward a consistent dose representation. As a result, PTV and
CTYV dose predictions aligned more closely with the ground truth, while OAR
doses remained slightly below or marginally above it, demonstrating the clinical
feasibility of our approach.

Regarding the Deep RT Planner, the 3D U-Net outperformed UNETR, likely
due to the latter’s need for larger training datasets [9]. Both architectures had
similar parameter counts, but the relatively shallow transformer may have lim-
ited UNETR’s generalization.

The gamma pass rate at the 10% dose threshold showed minimal differences
between the two physics-based models, possibly explaining the variability in
DVH metrics for femoral heads and the UNETR'’s slight advantage in this spe-
cific metric. Conversely, the superior gamma pass rate in the high-dose region
supports the observed improvement in PTV/CTV DVH metrics, underscoring
the value of dose-aware supervision.
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Scalability remains a challenge for broader clinical adoption. With more di-

verse training data, this approach could generalize to an adaptive RT agent for
multiple cancer sites and treatment stages. Additionally, integrating DVH-aware
loss functions [17] or leveraging geometry-aware architectures [4] may help ad-
dress these challenges.
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