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Abstract

Contrastive Language-Image Pre-training (CLIP) models have demonstrated re-
markable generalization capabilities across multiple challenging distribution shifts.
However, there is still much to be explored in terms of their robustness to the
variations of specific visual factors. In real-world applications, reliable and safe
systems must consider other safety objectives beyond classification accuracy, such
as predictive uncertainty. Yet, the effectiveness of CLIP models on such safety-
related features is less-explored. Driven by the above, this work comprehensively
investigates the safety objectives of CLIP models, specifically focusing on three
key properties: resilience to visual factor variations, calibrated uncertainty estima-
tions, and the ability to detect anomalous inputs. To this end, we study 83 CLIP
models and 127 ImageNet classifiers. They are diverse in architecture, (pre)training
distribution and training strategies. We consider 10 visual factors (e.g., shape and
pattern), 5 types of out-of-distribution data, and 8 natural and challenging test
conditions with different shift types, such as texture, style, and perturbation shifts.
Our study has unveiled several previously unknown insights into CLIP models. For
instance, they are not consistently more calibrated than other ImageNet models,
which contradicts existing findings. Additionally, our analysis underscores the
significance of training source design by showcasing its profound influence on the
three safety-related properties. We believe our comprehensive study can shed light
on and help guide the development of more robust and reliable CLIP models.

1 Introduction

By leveraging natural language supervision, CLIP has made significant progress in enhancing
the zero-shot capabilities of models, unleashing their potential for remarkable out-of-distribution
generalization performance [1, 2]. For example, CLIP models perform zero-shot classification without
being explicitly trained on the target dataset, and they exhibit strong robustness to challenging natural
distributional shifts [3–7]. Understanding such behavior of CLIP models is critical for advancing the
next generation of image-text foundation models. Current research on this topic has explored various
aspects of CLIP models, including dataset creation [8], reproducible scaling law [9], fine-tuning
approaches [10], and training distribution [11].

In this work, we conduct an in-depth analysis of the safety-related properties of CLIP models,
with a particular emphasis on their robustness and reliability across diverse testing environments.
Specifically, we delve into the three critical safety-related properties, namely: 1) robustness to
visual factors, to assess whether CLIP models can maintain robust when encountering varying visual
factors, such as pose, size, color, lighting, and occlusions; 2) out-of-distribution (OOD) detection, to
evaluate the capability of CLIP models to detect instances with labels that are not part of the training
distribution; and 3) predictive uncertainty, to investigate whether CLIP models can provide calibrated
predictions that accurately reflect their uncertainty in different testing conditions.
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Our research offers a comprehensive examination of advantages and drawbacks of CLIP models
across various critical facets. Building on prior research that has highlighted robustness of CLIP,
we further study their performance across specific factors such as pose and lighting. Additionally,
although CLIP models have demonstrated their efficacy in detecting OOD data [12], it is still uncertain
whether this ability remains consistent when the training distribution, fine-tuning datasets, model
size, and architecture are altered. Moreover, beyond classification accuracy, it is also important to
evaluate whether CLIP models offer reliable uncertainty estimation across various distributions.

In light of the aforementioned questions, we evaluate 51 zero-shot CLIP models with varying visual
encoder architectures, training sources, and dataset sizes, as well as 32 ImageNet fine-tuned CLIP
models. To establish a baseline, we compare these models against 127 ImageNet models without
language-image pre-training. We examine 10 visual factors variations present in the ImageNet valida-
tion set [13], including object pose, lighting, and background, to assess models’ visual factors-level
robustness. As for OOD detection, we employ ImageNet as an in-distribution (ID) set following [12]
and test on 5 types of OOD scenarios. Furthermore, to investigate the predictive uncertainty, we use
a set of canonical ImageNet distributions, such as texture, style, and perturbation shifts. Below we
present key observations and insights obtained from our study:

• CLIP models are generally more robust than ImageNet classifiers on 6 visual factors. However, they
can be less robust on factors like object pose; In addition, training distribution plays an important
role in CLIP robustness against visual factors (Section 4.1).

• CLIP models are biased towards shape when making predictions. However, we have also found
that this bias diminishes after fine-tuning on ImageNet and becomes similar to other ImageNet
models that are pre-trained on more data. (Section 4.2).

• When trained on the same source, classification accuracy of CLIP models correlates with their
OOD detection performance (Section 5).

• CLIP models are not always more calibrated than other ImageNet models, which contradicts
existing findings [14]. Our research highlights the impact of training data distribution and quantity
on these observations (Section 6).

• Compared to other groups of models, CLIP maintains reasonably good uncertainty estimates under
distribution shifts after ID calibration with temperature scaling. (Section 6).

2 Related Work

Robustness focuses on investigating the resilience of machine learning models to various forms of
distribution shift at test time. To this end, a commonly used approach is to introduce artificial transfor-
mations onto images, such as, style transfer [15], corruptions and perturbations [16, 17]. Moreover,
many real-world datasets are introduced to assess model robustness under a natural distributional
shift [3–7]. For instance, Idrissi et al. [13] propose ImageNet-X by relabelling ImageNet validation
set to provide detailed labels for naturally occurring factors such as different pose, background and
lighting, to identify models’ underlying failure patterns.

OOD detection targets at identifying test data that do not belong to any of classes modeled in training
distribution [18–20]. A large number of methods are proposed for deep learning models, including
generative model-based methods [21–28] and discriminative model-based methods [29, 18, 30, 31,
20, 32]. For example, maximum softmax probability [18] is used as the metric to detect OOD samples.
Moreover, the above approaches mainly study OOD detection for a task-specific model using only
visual information. In contrast, as CLIP models enjoy popularity, zero-shot OOD detection [12], is
proposed, where the objective becomes filtering out input from the task of disinterest.

Predictive uncertainty aims to classify images with calibrated prediction probabilities so as to
match the empirical frequency of correctness [33, 34]. Several works improve uncertainty estimations
through post-hoc calibration on validation sets [33, 34]. Moreover, some other works show calibration
can be improved by directly applying methods, such as ensembling [35] and pre-training [36].
Ovadia et al. [37] point out that calibration methods become less effective under distribution shift.
Minderer et al. [14] suggest that CLIP models are well-calibrated given its accuracy. Based on these
observations, this work comprehensively studies the quality of predictive uncertainty given by CLIP.
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3 Experimental Setup

3.1 Models of Interest

Contrastive language-image pre-training models: We use 51 zero-shot CLIP models (CLIP) and
32 ImageNet fine-tuned CLIP models (CLIP-FT). They have different visual encoders, including
slightly modified ResNet [38], ConvNeXt [39], and ViT [40]. There are two training sources
(LAION [41] and WIT [1]) and multiple sizes of training datasets from 80 million to 2 billion. For
the CLIP-FT models, the vision tower of CLIP is fine-tuned on ImageNet-1K. We consider two
fine-tuning procedures, one directly fine-tuned on ImageNet-1K [42], and the other first fine-tuned on
ImageNet-12K, a subset of ImageNet-22K before fine-tuning on ImageNet-1K. Unless specified, we
use the default prompt template by [1] for zero-shot CLIP models.

Compared models: we use 127 ImageNet models with various architectures, including Convolutional
Neural Networks (e.g., ResNet [38] and ConvNeXt [39]), Vision Transformers (e.g., ViT [40] and
Swin [43]) and all-MLP architectures [44, 45] (e.g., MLP-Mixer [45]). Following [46], we divide
them into three categories: (i) Standard Models. This group consists of models supervised on the
ImageNet training set. (ii) Contrastive learning models. This category contains 8 models pre-
trained by contrastive learning. There are 6 training algorithms investigated, including InsDis [47],
MoCo [48], SimCLR [49]; (iii) Pre-trained on more data. This group contains models pre-trained
on a significantly larger dataset (e.g., ImageNet-21K) than the ImageNet training set. All the above
models, including CLIP, are publicly available on TIMM [50] and OpenCLIP [51]

3.2 Test Sets and Metrics

Robustness. We first pinpoint failure patterns of models by testing on ImageNet-X [13], which is
relabelling of ImageNet validation by 16 naturally occurring factors. This work mainly considers 10
factors labelled with a sufficient number of test samples: Pose, Background, Pattern, Color, Smaller,
Shape, Partial View, Subcategory, Texture and Larger. The metric is accuracy, and high is better. We
evaluate on cue-conflict stimuli and Stylized-ImageNet [15] to measure model bias towards shape.

OOD Detection. We use large-scale OOD detection benchmark which is build up on ImageNet:
in-distribution (ID) ImageNet v.s. {iNaturalist [52], SUN [53], PLACES [54], TEXTURE [55] and
ImageNet-O [7] } (OOD). The metrics are the area under the receiver operating characteristic curve
(AUROC) and the higher is better; false positive rate (FPR@95) when true positive rate is at 95% and
a lower score means better performance.

Calibration. We study ID and OOD datasets, where ImageNet validation is ID dataset and OOD
datasets are: ImageNet-V2 [3], ImageNet-Rendition [5], ImageNet-Adversarial [7], ImageNet-
Sketch [4], ObjectNet [6] and ImageNet-Vid-Robust [56]. Metrics are estimated calibration error
(ECE) [57] and negative log likelihood (NLL). A lower ECE or NLL indicates better calibration.

3.3 Analytical Methodology

In our endeavor to understand the underlying factors that influence the performance of CLIP models,
we delve into six primary aspects: 1) training distribution, evaluating the effect of data source;
2) model architecture, looking into the potential effects of different structural choices on model
performance; 3) dataset quantity, probing the interplay between the amount of data available for
training and the model’s efficiency; 4) contrastive loss, understanding its specific role in training
dynamics 5) fine-tuning, and 6) test-time prompt, assessing the impact of prompts during the
evaluation on model outputs. We follow the analytical methodology of seminal work [46] and a
series of following works like [8, 11, 58]) to study the influential factor. Specifically, within the
performance trends observed across all models, any factor causing a deviation from these trends is
recognized as influential. Notably, in our research, we mainly emphasize and discuss such influential
factors within each facet of our investigation.

4 Visual Factor-Level Robustness

The unprecedented robustness of CLIP models has spurred intense research efforts to identify the
underlying factors responsible for their performance under distribution shifts. Recent studies provide
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Figure 1: The models performance on the subset of ImageNet-X annotated with a given visual
factor (y-axis) to their overall accuracy on the whole ImageNet-X (x-axis). Each point represents
a model. The x-axis and y-axis are probit transformed following [46]. The black dashed line
represents the ideal robust models whose performance on each visual factor is the same as the overall
performance. The blue straight lines are fit with robust linear regression [59]. We include models
supervised on ImageNet-1K, pre-trained on more data, contrastive learning models, CLIP models
trained on two data distributions and their fine-tuned counterparts. We find that CLIP are generally
more robust on six out of ten factors, but are less robust against Pose than other groups of models.

valuable insights on the design of training source [11, 8]. Our research builds upon previous findings
on the robustness of CLIP models and focuses on the potential failure types of the model. Instead of
solely measuring overall accuracy across distributions, we investigate the behavior of CLIP models
when faced with varying visual factors such as Pose and Background.

4.1 CLIP Models Generally Exhibit Better Factor-Level Robustness Than Other Models

Factor-level effective robustness. In our study, we extend the concept of overall effective robust-
ness [46] to visual factor-level. Specifically, it measures a model’s ability to achieve higher accuracy
on the subset annotated by a specific visual factor compared to what is expected based on its overall
accuracy on ImageNet-X. Figure 1 displays the accuracy on the subset annotated by a specific visual
factor relative to the overall accuracy on ImageNet-X.

CLIP models are generally more robust than other ImageNet models on 6 out of 10 visual
factors. Figure 1 highlights several insights into the factor-level robustness of CLIP models. First, we
find that CLIP models are more robust than other models on six out of ten visual factors, including
Subcategory, Smaller, Color, Shape, Texture, and Larger. Specifically, CLIP models exhibit higher
factor-level effective robustness than other models on each of these factors. Second, we observe
that CLIP models are less robust than other models on Pose and Partial View factors. Third, CLIP
models show a similar trend to other models on the Background factor. In addition, Idrissi et al. [13]
observe that data augmentations can improve robustness to related factors, but with spill-over effects
to unrelated factors. We speculate that the data augmentations used for training CLIP models may
introduce the similar effects.

Training distributions lead to different trends in CLIP models. The choice of training distribution
impacts factor-level robustness of CLIP models. Specifically, we find that training on different
datasets (i.e., LAION and WIT) forms distinct trends on each visual factor for CLIP, and there is no
single training source that always leads to higher factor-level robustness than another. For instance,
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Figure 2: Shape bias analysis of CLIP,
CLIP fine-tuned (CLIP-FT), models pre-
trained on more data (Pretrain), and stan-
dard models. Large points mean larger
models within the group. We observe
that CLIP models are more shape-biased.

Source Backbone Shape bias IN-Val SIN

LAION

ViT/H-14 (336/224) 0.42 /0.51 0.89 /0.88 0.28 /0.32
ViT/L-14 (336/224) 0.41 /0.47 0.88 /0.88 0.27 /0.31
ViT/B-16 (384/224) 0.35 /0.43 0.87 /0.86 0.23 /0.25
ViT/B-32 (384/224) 0.33 /0.45 0.85 /0.83 0.21 /0.22

ConvNeXt-B (384/224) 0.31 /0.38 0.87 /0.86 0.17 /0.21

WIT ViT/L-14 (336/224) 0.39 /0.45 0.88 /0.88 0.24 /0.30
ViT/B-16 (384/224) 0.35 /0.41 0.87 /0.86 0.22 /0.23

Table 1: The influence of input resolution when fine-
tuning CLIP on Shape bias and ImageNet-Val(idation)
and Stylized ImageNet (SIN) accuracy. The higher value
in a model pair is in bold. With same backbone, the model
fine-tuned with a larger input resolution is more accurate
on IN-Val but less shape-biased and less accurate on SIN.

we observe that CLIP models trained on LAION demonstrate higher robustness on Shape factor than
those trained on WIT, while this reverses for Background and Pose factors. The results show a mixed
observation on Large factor. Furthermore, we further point out that CLIP models trained on different
subsets of LAION i.e., LAINON-80M, LAION-400M, and LAION-2B) follow the same trend. The
above observations highlight the importance of the choice of training source in determining not only
the overall accuracy but also the factor-level behaviors of CLIP models. This suggests that visual
factor-level robustness should be considered when designing the training source for CLIP models.

CLIP fine-tuned models perform slightly better than more data pre-trained models. We
compared CLIP fine-tuned models (CLIP-FT) with other models that are pre-trained on more data
and find that CLIP-FT shows improvement in overall accuracy and robustness on visual factors
of Subcategory, Shape, and Pattern. However, no additional robustness gain is observed on other
factors. Additionally, CLIP-FT models outperform zero-shot CLIP on variations such as Pattern and
Partial View, indicating their superiority in handling visual factors. It would be intriguing to explore
fine-tuning techniques that maintain or improve the factor-level robustness of zero-shot CLIP.

4.2 Texture Bias v.s. Shape Bias

CLIP exhibits a shape bias. We conduct experiments using the cue-conflict stimuli dataset [15]
to investigate the presence of shape bias in the model’s predictions. Shape bias, in this context,
refers to the proportion of accurate predictions made based on object shapes. Figure 2 presents a
visualization of the shape bias exhibited by the models, which are grouped according to their training
methods (zero-shot, CLIP finetuning, more data pre-trained, and standard training) and architecture
(transformer versus CNN). Our findings indicate that, among the four training methods, CLIP models
are more likely to make predictions based on shape compared to the other three groups. Furthermore,
while the transformer is reported to have a stronger shape bias than CNN [60, 61], we observe that
CLIP using CNN as the vision encoder also exhibit a strong shape bias.

Model size solely does not explain the shape bias of CLIP. We further observe that larger CLIP
models do not necessarily have higher shape bias than smaller-size ones. For example, both trained
on LAION-80M, CLIP-ViT/L-14 has 0.54 shape bias, which is 0.09 lower than CLIP-ViT/B-32. This
implies that the shape bias of CLIP models cannot be attributed solely to model size. Based on the
above observations, we speculate that the shape bias of CLIP may be attributed to its objective, which
involves training the model to associate text and image pairs.

CLIP models have a tendency towards texture bias after fine-tuning. Our study reveals that shape
bias in CLIP weakens after fine-tuning on ImageNet. Moreover, the fine-tuned CLIP models exhibit
a shape bias comparable to models that are pre-trained on larger datasets. This finding is consistent
when using transformer and CNN as visual encoder. Moreover, these results illustrate that fine-tuning
discards the shape-biased property of zero-shot CLIP, which may affect model robustness [62, 15].

Larger input image resolution during fine-tuning of CLIP results in a stronger bias towards
texture. In Table 1, we observe that an input resolution during fine-tuning is a important factor to
shape bias: increasing the input resolution during fine-tuning leads to better performance on ImageNet
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Figure 3: OOD sample identification capability of models vs. ID dataset classification accuracy.
The OOD detection ability is measured by AUROC (↑) and FPR@95 (↓). Each point represents a
model. We plot the results on iNaturalist, SUN, PLACES, TEXTURE and ImageNet-O. The blue
straight lines are fit with robust linear regression [59]. We observe that training distribution has a
greater impact than training dataset quantity on the OOD detection performance of CLIP. Moreover,
after additionally fine-tuning on ImageNet-12K, CLIP are generally better at detecting OOD samples
than those directly fine-tuned on ImageNet-1K.

validation but also results in more texture-biased models with lower accuracy on Stylized-ImageNet.
Across seven pairs of experiments and two training sources, we observe this pattern consistently.
Given that input resolution is a crucial model dimension [63–65], it would be interesting to study its
effects on shape bias beyond classification accuracy when devising scaling strategies.

5 Out-of-Distribution Detection

Zero-shot CLIP allows for a flexible definition of in-distribution (ID) classes without re-training
the model. Namely, they can conduct zero-shot OOD detection. The current findings suggest that
zero-shot CLIP models are competitive with other state-of-the-art models [12, 66]. Based on this
finding, we conduct an extensive analysis to determine whether the purported benefits persist across
various training sources, subsets, and network architectures. In the experiments, for zero-shot CLIP
models, we utilize maximum concept matching [12] to detect OOD data. For models that are trained
or fine-tuned on ImageNet-1K, we employ maximum softmax score [18] for OOD detection.

For CLIP models from the same source, their ID accuracy correlates with OOD detection
performance. Our study includes CLIP models trained on two sources (WIT and LAION). Given
the same training source, our study, conducted across five challenging OOD scenarios, reveals a
strong correlation between the ID accuracy of zero-shot CLIP models and their OOD detection
performance (measured by AUROC and FPR@95). This observation suggests that the zero-shot
classification accuracy of CLIP models on ID data can serve as a reliable indicator of their OOD
detection performance. In contrast, such a trend is not as strong for standard models and more
data-pre-trained models. Additionally, CLIP-FT models fine-tuned on ImageNet-1K do not exhibit
such a clear correlation.

Training source influences the trend of CLIP. Upon closer examination of the training distribution,
we have observed that the correlation trend between ID accuracy and OOD detection performance is
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largely dependent on the training source. As illustrated in Figure 3, our research shows two distinct
trends between CLIP models trained on WIT and those trained on LAION. Moreover, with the same
ID accuracy, CLIP models trained on WIT exhibit superior OOD detection performance compared to
their counterparts trained on LAION on three OOD scenarios. This further indicates the importance
of training source selection for CLIP. When developing dataset curation methods, it is valuable to
investigate the influence of training sources on OOD detection performance.

Fine-tuning procedure influences the OOD detection ability of CLIP. First, we point out that
fine-tuning enhances classification performance of CLIP, but this improvement does not necessarily
translate to better OOD detection accuracy. Some CLIP-FT models even achieve worse OOD
detection performance than Zero-shot CLIP models. Our analysis of CLIP-FT reveals a distinction
between two groups of CLIP-FT, based on their fine-tuning procedures: the first group is fine-tuned
solely on ImageNet-1K, while the second group undergoes additional fine-tuning on ImageNet-
12K. We observe that this additional fine-tuning procedure has a substantial impact on the model’s
ability to detect OOD examples. As depicted in Figure 3, despite not leading to an improvement in
classification accuracy, CLIP-FT models with additional fine-tuning on ImageNet-12K show better
OOD detection performance across all OOD scenarios. As future work, it is valuable to investigate
this observation further and explore alternative fine-tuning procedures that yield improved OOD
detection performance. Moreover, exploring impacts of fine-tuning datasets other than ImageNet-1K
and ImageNet-12K would be another interesting direction.

6 Prediction Uncertainty

In order to better understand the well-calibrated phenomenon of zero-shot CLIP models reported by
Minderer et al. [14], our research systematically analyzes the calibration behavior of CLIP models
under various training conditions. Specifically, we examine the calibration performance of CLIP
models trained on different training distributions, varied training set sizes, and different architectures.
Furthermore, we also investigate the calibration performance of CLIP models after fine-tuning to
gain a better understanding of their overall performance.

6.1 Zero-Shot CLIP Models Are Not Consistently More Calibrated Than Other Models

Both training data distribution and quantity impact CLIP’s calibration. Figure 4 presents the
model calibration of CLIP models in relation to classification accuracy under distribution shifts. We
observe that CLIP models trained on different distributions or quantities are not consistently grouped
together. For example, CLIP models trained on WIT and LAION tend to cluster in separate regions.
Moreover, when training CLIP models on different subsets of the LAION dataset, models with similar
classification accuracy can exhibit varying levels of calibration performance. It would be interesting
to further check the impacts of data curation techniques on CLIP calibration performance.

While CLIP models are generally reported to have superior calibration compared to other models [14],
our observations reveal that this finding does not always hold. Particularly, we notice that CLIP
models trained on LAION-80M dataset exhibit much lower calibration performance when compared
to standard models. The observation of [14] is primarily made on CLIP models trained on WIT.
However, when we broaden our perspective to include the alternative training distribution provided
by LAION and its various subsets, our observations become varied. This emphasizes the significance
of careful training source design for CLIP. Furthermore, it suggests that when evaluating dataset
curation, it is crucial to consider its impact on the calibration performance of CLIP models.

CLIP fine-tuned models exhibit a trade-off between calibration and classification. On each
test set in Figure 4, we consistently observe that after fine-tuning, CLIP models tend to have higher
classification accuracy and lower calibration error. It is worth noting that additionally fine-tuning
on ImageNet-12K does not alter this phenomenon, in contrast to its impact on OOD detection.
Moreover, other model groups, including those pre-trained on more data, do not exhibit a trade-off
between calibration and classification. We also observe some fine-tuned CLIP models achieve better
calibration compared to their zero-shot counterparts before calibration.
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Figure 4: Model calibration performance with respect to their classification accuracy. We report
results on in-distribution test set, ImageNet-V2-A, ImageNet-R and ImageNet-A. Two metrics are
considered: ECE (↓) and NLL (↓), we also include calibration performance after calibration with
temperature scaling. Each point represents a model. We use colors to represent model groups. For
zero-shot CLIP, we additionally use shapes to indicate training distribution and quantity. We observe
that CLIP models could be less calibrated than standard models. The training distribution and quantity
are the key factors influencing the calibration performance of CLIP models. Temperature scaling
reveals a consistent trend of CLIP models, and they tend to lie on a distinct trend from other models.

6.2 Temperature Scaling Reveals Well-Calibrated Properties of Zero-Shot CLIP Models

Post-hoc calibration can be adopted to remedy over- or under-confidence. Here, we use temperature
scaling [33] to calibrate model predictions. Following the protocol in [67], we divide the validation
set of ImageNet into two halves: one for temperature scaling (ID calibration set), and the other one
for ID test. We report results on both ID and OOD test sets.

Calibration performance of CLIP models after temperature scaling (Temp-scaled) correlates
with their classification accuracy. In Figure 4, we explore how temperature scaling affects different
groups of CLIP models. These groups are categorized based on the amount and source of their
training data. After applying temperature scaling and evaluating using the NLL metric, we observe a
consistent pattern among these CLIP groups. What is intriguing is that, after temperature scaling, for
models with similar image classification accuracy, zero-shot CLIP models achieve better calibration
performance compared to other models, including their fine-tuned counterparts. This trend persists
across various testing scenarios, encompassing ID, OOD, and when assessing calibration using both
NLL and ECE metrics.

ID calibration of CLIP models transfers to OOD test sets. While it has been reported by Ovadia
et al. [37] that ID calibration often struggles to generalize under distribution shifts, our study reveals
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Figure 5: Influence of test time prompt on CLIP on robustness to visual factors, OOD detection,
and predictive uncertainty. We include five CLIP models trained on WIT. We use different colors
to denote different model architectures and utilize various shapes to represent deployed prompt sets.
The dashed grey line is fit with robust linear regression [59] by the original CLIP-WIT models using
80 prompts. We see that the prompts of sizes 1, 5 and 30 decrease the classification performance of
CLIP, but may not change the visual factor robustness of CLIP.

a promising phenomenon for CLIP models. Specifically, after calibrating CLIP models on ID
calibration set, we observe improved calibration results on OOD test sets. For example, on ImageNet-
A, the calibration errors of CLIP models decrease after temperature scaling, unlike other models that
do not clearly exhibit such improvement. This indicates that CLIP models are relatively easier to
calibrate across diverse distributions, highlighting their potential for robust and reliable applications.

7 Discussion on Influence of Test Time Prompts

So far in the experiments, we utilize the prompt provided by [1]. In this section, we investigate the
effect of test time prompts on three safety objectives. We additionally examine another three sets of
prompts, one of size 1: “a photo of a {label}”, a set of 5 prompts used by [12], and a set of 30
prompts. We conduct the experiment on five CLIP models: RN50, RN50×64, ViT-B/16, ViT-B/32
and ViT/L-14-336px trained on WIT. Figure 5 shows the performance of CLIP models using different
sets of prompts on three safety objectives.

We show that utilization of few prompts (e.g., one prompt) generally leads to a decrease in overall
classification performance. However, the impact on the three properties is mixed. First, when
evaluating factor-level robustness on Pattern, we find the adoption of different prompts does not alter
the robustness: models still adhere to the linear trend established by CLIP trained on WIT using 80
prompts. Second, for OOD detection, using 5 prompts yield higher OOD detection performance than
with 80 prompts on SUN. Also, for calibration, using fewer prompts (e.g., only one prompt) achieves
lower calibration error than using all 80 prompts. This raises an important question: how to tune
prompts to achieve better classification accuracy as well as better calibration and OOD detection
performance? It would be interesting to study this when conducting prompt learning [68–70].

8 Conclusion and Discussion

Our research provides a valuable contribution to the ongoing discourse surrounding the effectiveness
of CLIP models in the context of robustness to visual factors, OOD detection, and the reliability of
uncertainty estimation. In pursuit of these objectives, we conduct extensive experiments encompassing
three critical tasks and perform comparative analyses between CLIP models and various groups of
models. Our observations provide valuable insights into the advantages of CLIP models. First, CLIP
models demonstrate superior visual factor-level robustness compared to other ImageNet models.
Furthermore, while maintaining comparable accuracy on in-distribution dataset, CLIP models also
exhibit competitive performance in OOD detection across commonly used benchmarks such as
iNaturalist and ImageNet-O. Lastly, CLIP models are relatively easier to calibrate across diverse
distributions. Furthermore, our study highlights the significance of training source design, as it
profoundly influences the behavior of CLIP models across all three objectives.

This work leaves open many interesting directions for future research and we discuss a few. First,
this work primarily studies CLIP and its fine-tuned models due to its simplicity and effectiveness. We
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reckon this work as an anchor point and hope the framework of this analysis could generalize to other
image-text foundation models, such as ALIGN [2] and BASIC [71]. Second, our study includes two
academic training sources, namely WIT and LAION, for CLIP. It is valuable to investigate whether
our observations generalize to other training sources. We believe that our study can shed light to and
build up the understanding towards the design of multi-modal datasets. Lastly, in addition to three
safety-critical tasks, there are other important fields to analyze such as mis-classification samples
detection [18]. By providing a more detailed and nuanced understanding of the performance of CLIP
models, we hope our observation and insights can inform future developments in the field and help to
drive progress towards more robust and effective vision-language models.

Broader impacts. While much research endeavors that aim to enhance the performance of machine
learning models could be leveraged for negative societal applications, we believe that this paper points
towards a positive direction for the development of machine learning methods in broader society.
Particularly, our study understands the influence of training set on CLIP performance on robustness,
out-of-distribution detection, and predictive uncertainty. A better understanding is beneficial in
establishing trustworthy machine learning systems and high-quality multi-modal datasets for training.

Acknowledgement. We thank all anonymous reviewers and ACs for their constructive comments
and valuable suggestions in improving this paper.
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