
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

VIDEOEVAL: COMPREHENSIVE BENCHMARK SUITE
FOR LOW-COST EVALUATION OF VIDEO FOUNDATION
MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

With the accumulation of high-quality data and advancements in visual pretrain-
ing paradigms, recent Video Foundation Models (VFMs) have made significant
progress, demonstrating remarkable performance on popular video understanding
benchmarks. However, conventional benchmarks (e.g. Kinetics) and evaluation
protocols are limited by their relatively poor diversity, high evaluation costs, and
saturated performance metrics. In this work, we introduce a comprehensive bench-
mark suite to address these issues, namely VideoEval. We establish the Video Task
Adaption Benchmark (VidTAB) and the Video Embedding Benchmark (VidEB)
from two perspectives: evaluating the task adaptability of VFMs under few-shot
conditions and assessing their feature embedding’s direct applicability to down-
stream tasks. With VideoEval, we conduct a large-scale study of 20 popular
open-source vision foundation models. Our study reveals some insightful findings,
1) overall, current VFMs exhibit weak generalization across diverse tasks, 2) in-
creasing video data, whether labeled or in video-text pairs, does not necessarily
improve task performance, 3) the effectiveness of some pre-training paradigms
may not be fully validated in previous benchmarks, and 4) combining different pre-
training paradigms can help develop models with better generalization capabilities.
We believe this study serves as a important complement to the current evaluation
methods for VFMs and offers valuable insights for future research directions.

1 INTRODUCTION

The field of deep learning is experiencing a significant paradigm shift due to the emergence of
foundation models (FMs). These models, exemplified by BERT Devlin et al. (2018), GPT Brown
et al. (2020); OpenAI (2023a;b), CLIP Radford et al. (2021) and Stable Diffusion Rombach et al.
(2021), are trained on massive and diverse data at scale and demonstrate remarkable adaptability to a
broad spectrum of downstream tasks.

In the realm of video understanding, early researchers train backbone networks Feichtenhofer et al.
(2019); Bertasius et al. (2021); Liu et al. (2022); Fan et al. (2021) using visual classification tasks
on large-scale labeled datasets like ImageNet Deng et al. (2009) and Kinetics Kay et al. (2017b).
However, the high cost associated with labeled data promotes the development of self-supervised
learning methods that capitalize on unlabeled data for visual pre-training Pan et al. (2021); Wei et al.
(2022); Feichtenhofer et al. (2022); Tong et al. (2022); Wang et al. (2022a). Furthermore, researchers
delve into multimodal pre-training utilizing large-scale visual-text pairs Xu et al. (2021a); Yan
et al. (2022); Wang et al. (2024a); Li et al. (2023), thereby enhancing their models’ capabilities and
demonstrating impressive zero-shot performance. Overall, fueled by the accumulation of high-quality
image and video data and advancements in visual pre-training paradigms, Video Foundation Models
(VFMs) witness remarkable progress in recent years. A new generation of VFMs Feichtenhofer
et al. (2022); Tong et al. (2022); Wang et al. (2023b); Bardes et al. (2023); Zhao et al. (2024);
Wang et al. (2022b; 2024b) emerges, demonstrating outstanding performance on conventional video
understanding benchmarks.

The rapid development of VFMs raises the problem: How to evaluate a video foundation model?
In image realm, Previous works assess the generalization capability of Image Foundation Models
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Figure 1: Overview of VideoEval. We propose a novel, vision-centric evaluation method for video
foundation models that is comprehensive, challenging, indicative, and low-cost.

(IFMs) by evaluating their performance on numerous downstream visual tasks, encompassing diverse
scenarios and evaluation protocols Zhai et al. (2019); Hendrycks et al. (2021b); Recht et al. (2019);
Hendrycks et al. (2021a); Wang et al. (2019); Idrissi et al. (2023); Goldblum et al. (2023). However,
previous works primarily evaluates VFMs through benchmarks focusing on action recognition
tasks Tong et al. (2022); Bardes et al. (2023); Yuan et al. (2023). Some studies Wang et al. (2022b;
2024b); Zhao et al. (2024) have also considered combining language models to evaluate performance
on multimodal tasks. There are several problems with current evaluation methods: (1) Benchmarks
like Kinetics Kay et al. (2017b), Something Goyal et al. (2017b) and AVA Gu et al. (2017), which focus
on action recognition, overlook other video understanding scenarios (e.g., video quality assessment),
limiting their applicability in evaluating the generalization capabilities of visual foundation backbones
across diverse video understanding applications. (2) The performance of VFMs on conventional
benchmark Kay et al. (2017a) has reached a saturation point (90% Top-1 accuracy), making it
challenging to differentiate between the true capabilities of different VFMs. (3) The high validation
costs associated with conventional evaluation protocols, which often necessitate end-to-end training
on the entire dataset, pose a significant challenge, particularly for large VFMs. (4) Incorporating
language models may introduce bias when evaluating VFMs, as performance differences might stem
from the language model rather than the VFMs itself.

To tackle these problems, we build a comprehensive benchmark suite for evaluation of VFMs, namely
VideoEval. As shown in Figure 1, our method has the following key features: Comprehensive:
First, we created the Video Task Adaptation Benchmark (VidTAB) to evaluate the adaptability of
VFMs to unseen tasks with limited samples. We collected public datasets from various video task
domains, including action recognition in special scenarios, AI for science, video content moderation,
video quality/aesthetic assess, and emotion analysis. From these domains, we constructed eight
adaptation tasks and developed evaluation protocols and adaptation methods suitable for current
VFMs. Additionally, to assess the capability of VFMs’ feature embedding for downstream applica-
tions, we created the Video Embedding Benchmark (VidEB), which includes four tasks that evaluate
embedding at different granularities. Challenging & Indicative: Due to the diversity of test data
and the effectiveness of our evaluation protocols, our VideoEval can effectively distinguish between
various VFMs that perform similarly on traditional benchmarks, providing deeper insights into their
true capabilities. Low-cost: Thanks to our training-light few-shot evaluation and training-free feature
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embedding evaluation protocols, VideoEval requires significantly fewer training samples compared to
previous benchmarks, while maintaining a comparable number of testing samples to ensure accurate
and stable evaluations. Vision-centric: Our evaluation focuses solely on the Video FMs themselves,
avoiding the introduction of biases that may arise from incorporating language models.

Based on VideoEval, we evaluate 20 open-source vision foundation models, including VFMs,
Image Foundation Models (IFMs), and IFMs with image-to-video methods. Our main findings as
following: First, current VFMs still struggle to adapt to unseen video tasks with limited training
samples. Second, while more data and larger models generally improve performance, augmenting
video training data can sometimes negatively affect certain tasks. Third, the effectiveness of certain
pre-training paradigms, such as VideoMAEv2 Wang et al. (2023b), may not have been adequately
validated in previous benchmarks. Finally, combining multiple pre-training paradigms can lead to
models with better generalization capabilities, such as performing multimodal contrastive learning
after unimodal visual self-supervised pre-training Li et al. (2023); Wang et al. (2024b).

Table 1: Comparison of VFMs Benchmark. "Num. training" denotes number of training samples,
"Num. test" denotes number of test samples, and "Beyond Action" denotes the tasks in this benchmark
extend beyond action understanding. Compared to previous benchmarks, our VideoEval framework
achieves more comprehensive and reliable evaluations at a lower cost.

Benchmark Num. training Num. test Beyond Action Task Diversity Domain Diversity VFMs-specific protocol
Single-dataset Benchmarks

Kinetics-400 Kay et al. (2017a) 240,436 19,165 ✗ ✗ ✗ ✗
Sth-Sth V2 Goyal et al. (2017a) 168,913 24,777 ✗ ✗ ✗ ✗

Moment-in-Time Monfort et al. (2020) 791,246 33,898 ✗ ✗ ✗ ✗
UCF101 Soomro et al. (2012) 9,537 3,783 ✗ ✗ ✗ ✗

Multi-dataset Benchmarks

SEVERE Thoker et al. (2022b) 868,446 144,830 ✗ ✓ ✓ ✗
BEAR Deng et al. (2023) 240,236 140,436 ✗ ✓ ✓ ✗

VideoGLUE Yuan et al. (2023) 1,896,621 239,011 ✗ ✓ ✓ ✓

VideoEval 5,704 20,497 ✓ ✓ ✓ ✓

2 RELATED WORK

Video foundation models With the continuous growth of image Sharma et al. (2018); Changpinyo
et al. (2021); Schuhmann et al. (2022) and video data Bain et al. (2021); Wang et al. (2024a); Chen
et al. (2023; 2024a;b) and advancements in pre-training paradigms, research on Video Foundation
Models (VFMs) has progressed rapidly. Current VFMs are primarily built around two pre-training
paradigms: masked video modeling based on unimodal video data Feichtenhofer et al. (2022);
Tong et al. (2022); Wang et al. (2023b; 2022a; 2023c); Girdhar et al. (2023); Ryali et al. (2023)
and video-text contrastive learning based on multimodal visual-text pairs Xu et al. (2021a); Wang
et al. (2023a); Yan et al. (2022); Cheng et al. (2022); Wang et al. (2024a). Some works Wang
et al. (2022b); Li et al. (2023); Zhao et al. (2024) combine these paradigms, enabling VFMs to
extend further into multimodal understanding. Additionally, some studies introduce modalities like
audio and speech on top of video and text Chen et al. (2023; 2024a); Wang et al. (2024b), further
expanding the capabilities of VFMs. Recently, InternVideo2 Wang et al. (2024b) leverages mature
pre-training paradigms and large-scale high-quality data to scale VFMs to 6 billion parameters,
achieving remarkable performance improvements.

Evaluation of VFMs Previous works primarily utilize action recognition benchmarks focused on
appearance and motion Kay et al. (2017b); Goyal et al. (2017a); Gu et al. (2017) to evaluate VFMs.
To enhance evaluation diversity, some studies explore richer domains and tasks Thoker et al. (2022a);
Deng et al. (2023); Schiappa et al. (2023), but they remain limited to action recognition tasks. The
InternVideo series Wang et al. (2022b; 2024b) and VideoGLUE Yuan et al. (2023) attempt to provide
a more comprehensive evaluation of VFMs by expanding the number of benchmarks and evaluation
protocols. However, these efforts are still based on existing benchmarks and incurred high validation
costs. In contrast, our work considers the characteristics and application scenarios of VFMs, offering
a comprehensive and low-cost evaluation solution through task definition and evaluation protocols,
aimed at rapidly verifying the generalization capabilities of VFMs—a crucial aspect currently lacking
in the community’s development of these models.
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Figure 2: Illustration of building VideoEval.

3 BUILDING VIDEOEVAL

We argue that a powerful video foundation model should possess two key capabilities: (1) strong task
adaptation ability, i.e., the ability to adapt to diverse, unseen tasks with limited training samples, and
(2) the capacity to extract feature embedding that retain and distill key information from videos, di-
rectly supporting various downstream tasks. From these perspectives, we construct VideoEval, which
includes the Video Task Adaptation Benchmark (VidTAB) and the Video Embedding Benchmark
(VidEB). By creating diverse task scenarios and employing efficient evaluation methods, VideoEval
can quickly and comprehensively assess the generalization ability of VFMs in video understanding. In
this section, we present our VideoEval in detail. The construction pipeline for VideoEval is illustrated
in Figure 2, and the evaluation tasks we ultimately constructed are presented in Table 2.

3.1 VIDEO TASK ADAPTION BENCHMARK

Collecting diverse dataset from public source. Previous benchmarks primarily focus on evaluating
video models based on human actions, overlooking many other tasks requiring video understanding.
Therefore, we consider five different application scenarios:

• Action Recognition in Special Scenarios (Action): While previous benchmarks have exten-
sively examined action recognition tasks, our focus here is to assess VFMs’ capabilities in
recognizing actions within special scenarios.

• AI for Science (Science): Referencing previous work Zhao et al. (2024), we classify tasks
related to medicine and natural sciences as a category.

• Video Content Moderation (Safety): We group tasks related to identifying harmful or
misleading information in video content.

• Video Quality Assessment (Quality): We categorize more subjective tasks into this group.
The goal is to assess VFMs’ ability to learn low-level information and human aesthetic
preferences.

• Emotion Analysis (Emotion): We group tasks related to human emotion analysis into this
category to evaluate VFMs’ ability to understand and analyze human emotions.

Constructing the adaptation task based on the existing annotations. Classification tasks are
straightforward and well-defined, with strong classification performance often indicating robust
feature learning. Therefore, they are suitable for evaluating video foundation models. We construct
adaptation classification tasks based on the collected data and annotations as follow:
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Table 2: Task details of VideoEval. All videos are collected from the public datasets for building
tasks of VidTAB and VidEB.

Domain Task Source Task Description
Video Task Adaptation Benchmark (VidTAB)

Action Recognition
in Special Scenarios

Action Recognition ARID Xu et al. (2021b) Recognizing 11 distinct human actions in dark scenarios.
in Dark Scene e.g. Run / Walk / Drink

Action Recognition BreakFast Kuehne et al. (2014) Classifying 10 types of long-duration cooking videos.
in Long Video e.g. Milk / Tea / Sandwich

AI for Science
Medical Surgery SurgicalActions160 Schoeffmann et al. (2018) Classifying 16 surgical actions in gynecologic laparoscopy. e.g. Knotting / Suction / Injection

Animal Behavior Animal
Kingdom Ng et al. (2022)

Classifying 12 behaviors of wild animals from diverse environmental footage.
e.g. Flying / Chirping / Preening

Video Content
Moderation

Fake Face FaceForensics++ Rossler et al. (2019) Determine whether the faces in the video have been tampered with by AI technology (such as DeepFake).
e.g. Origin video / Video with fake face

Harmful Content mob Ahmed et al. (2023) Detecting 3 degrees of malicious content within videos.
e.g. Obscene / Indecent activity / Violent activity

Video Quality
Assessment Quality Assess DOVER Wu et al. (2023) Evaluating videos from an aesthetic and technical perspective and categorizing them into low and high quality.

e.g. Low quality / High quality

Emotion Analysis Emotion Analysis CAER Lee et al. (2019) Classifying 7 different human emotions in video.
e.g. Happy / Fear / Anger

Video Embedding Benchmark (VidEB)

Scene Understanding
in Temporal Contexts

Duplicate Scene
Retrieval FIVR5K Kordopatis-Zilos et al. (2019) Retrieve Duplicate Scene Videos (DSV):

Videos captured by the same camera and sharing at least one scene (without considering any application transformations).
Complementary Scene

Retrieval FIVR5K Kordopatis-Zilos et al. (2019) Retrieve Complementary Scene Videos (CSV):
Retrieve a portion of the same spatiotemporal segment captured from different perspectives.

Incident Scene
Retrieval FIVR5K Kordopatis-Zilos et al. (2019) Retrieving Incident Scene Videos (ISV):

The same event is close in both space and time, but there are no overlapping videos.

Copy Detection DVSC23 Pizzi et al. (2024) Detecting edited versions of the same source video.
Given a query inserted with one or more copied segments, detect the source video from the database.

1. Remove Low-Quality Video Datasets: We manually exclude datasets with videos that have
low resolution (below 240p), low frame rate (below 15fps), insufficient quantity (fewer than
150 videos per category), or low annotation accuracy (below 90%).

2. Select Discriminative Tasks: For task difficulty screening, we first evaluate zero-shot
classification performance using CLIP-L Radford et al. (2021), EVA-g Sun et al. (2023),
ViCLIP-L Wang et al. (2024a), and Internvideo2-1B Wang et al. (2024b). We then classify
samples as follows: Easy: Samples that are correctly classified by three or more models.
Spatial: Samples that are correctly classified by both CLIP and EVA. Temporal: Samples
that are correctly classified by at least one of ViCLIP or Internvideo2-1B, but not by CLIP
and EVA. Hard: Samples that are incorrectly classified by all models. We use the zero-shot
classification accuracy of the models and the aforementioned proportions as references for
task selection. Based on this, we choose tasks with lower zero-shot classification accuracy,
higher proportions of Hard and Temporal samples, and lower proportions of Easy samples.
The proportions of each type of sample in the tasks we ultimately selected can be found in
Table 3.

3. Control the Number of Categories: For datasets that originally include category labels,
such as ARID Xu et al. (2021b) and Animal Kingdom Ng et al. (2022), we select categories
with sufficient samples to ensure evaluation accuracy and stability. We also control the final
number of categories to avoid making the adaptation task overly difficult. We observed that
both zero-shot testing and few-shot experiments based on current VFMs show that when
the number of categories is too high, models often perform no better than random guessing.
Although this issue may be mitigated as VFMs improve, we currently need to control the
number of categories to effectively showcase differences between models. We select the
main categories for each task and limit the number of categories to around 10 (based on
few-shot experiments).

4. Handling Multi-label and Regression Tasks: For datasets that are not originally classifica-
tion tasks, we transform the tasks into classification tasks. For example, for DOVER Wu et al.
(2023), which is used for video aesthetics and technical quality assessment (a regression
task), we assume that videos with quality scores in the top 40% are "high-quality videos" and
those with scores in the bottom 40% are "low-quality videos", thus converting the original
task into a binary classification task.

In total, we construct eight classification tasks to evaluate the adaptation capabilities of video
foundation models.

Determining the evaluation protocol. Previous studies Wang et al. (2022b; 2024b); Yuan et al.
(2023) typically train video models using entire samples of training set, and most popular benchmarks
have large training sample sizes. We argue that this evaluation method overlooks the examination
of the adaptation capability of VFMs. As illustrated in Figure 3, under the scenario of using full
training samples, the differences between VFMs are difficult to discern. However, under a low-sample
protocol, different foundation models exhibit varying degrees of task adaptation capabilities. We

5
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Table 3: Task difficulty assessment based on visual language models. For tasks with fewer
categories, such as Fake Face (n=2) and Quality Assess (n=2), random guessing can lead to high
accuracy, which may result in a lower apparent proportion of hard samples. Therefore, the zero-shot
classification accuracy of the models should also be considered when making task selection.

ratio % Dark Scene Long Video Medical Surgery Animal Behavior Fake Face Harmfull Content Quality Assess Emotion Analysis

Easy 18.45 24.57 0.00 19.18 39.06 28.78 53.04 7.21
Spatial 19.00 20.44 4.17 20.86 20.72 24.56 51.24 5.01
Temporal 20.09 22.39 19.79 23.90 4.89 22.76 13.26 27.06
Hard 36.90 26.28 62.50 35.58 9.00 20.17 3.04 47.15
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Emotion Analysis
InternVideo2-1B w/ FT
InternVideo2-1B w/ AP
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VideoMAEv2-g w/ FT
VideoMAEv2-g w/ AP

Figure 3: Performance comparison on different training data scales. We evaluate the performance
variation of multiple video foundation models across tasks from two different domains as the scale of
the training data changed. ’FT’ and ’AP’ denote full finetuning and attentive probe, respectively.

observe that for tasks such as Action Recognition in Dark Scenes, which VFMs usually excel at, there
are significant differences in adaptation capabilities among different models when training samples
are extremely limited (4 shot and 16 shot). As the number of samples gradually increases to 100
shot, these differences diminish. Conversely, for more challenging tasks like Emotion Analysis, the
performances of different models are uniformly weak when training samples are extremely limited,
showing no discernible differences until a certain number of training samples (100 shot) are reached,
at which point different models begin to demonstrate distinct adaptation capabilities. Therefore, to
account for the adaptation capabilities of models with different numbers of training samples, we
define a task adaptation capability evaluation score (TA-score):

TA-score =
Acc4s +Acc16s +Acc100s

3
(1)

Where Acc4s, Acc16s, Acc100s represent the model’s top-1 accuracy for 4-shot, 16-shot, and 100-
shot classifications, respectively. Unless otherwise specified, we will use TA-score to denote the
performance of various tasks in VidTAB.

Table 4: Comparison of adaptation method on V-JEPA-H Bardes et al. (2023) All results are
obtained using A100-80G with PyTorch-builtin mixed precision, using a batch size of 4 to measure
Cuda memory and training time. "Dark" and "Emotion" denote the tasks of Action Recognition in
Dark Scenes and Emotion Analysis, respectively.

Adaptation
method

Tunable
Params (M)

Cuda
Memory (G)

Training
Time (h)

Dark
TA-score

Emotion
TA-score

full finetuning 663.7 52.1 1.0 68.8 25.3
adapter 52.6 45.0 1.0 62.4 24.7

attentive probe 19.7 6.4 0.4 54.7 23.8
linear probe 0.0 6.0 0.3 12.9 16.2

Identifying efficient adaptation method for evaluation. We also need to identify how to adapt the
foundation models to the corresponding task. Previous work Houlsby et al. (2019); Yu et al. (2023);
Pan et al. (2022); Yang et al. (2023); Li & Wang (2023) has explored various strategies for efficient
adapting the foundation models. Here, we consider several of the most common and popular methods,
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Figure 4: Illustration of different adaptation method: (a) Full Finetuning, (b) Adapter, (c) Attentive
Probe and (d) Linear Probe.

as illustrated in Figure 4: Full Finetuning: Fine-tuning all the parameters of the pre-trained model.
Adapter: Freezing the pre-trained model and inserting learnable low-rank adapter Pfeiffer et al.
(2020) modules into each block of the pre-trained model for adaptation. Attentive Probe: Freezing
the pre-trained model and adding an additional learnable cross-attention block at the end of the model
to achieve attentive pooling, followed by a linear projection for classification. Linear Probe: Directly
using the features from the pre-trained model, performing mean pooling, and then using a linear
projection for classification. We evaluate the performance of these adaptation methods based on the
V-JEPA-H model, as shown in Table 4. Full finetuning and adapter exhibited the best adaptation
performance, but incurred high training costs. Linear probe was highly efficient but showed weak
adaptation performance. Attentive probe offered a good trade-off between efficiency and adaptation
performance. Therefore, in subsequent evaluation experiments, we employed attentive probe to adapt
various vision foundation models.

3.2 VIDEO EMBEDDING BENCHMARK

The main application domains of video embeddings we considering include: Label-Level: Classifica-
tion and Action Retrieval. Instance-Level: Retrieval, Copy Detection and Ranking. For label-level
tasks, VidTAB has already provided a flexible way to evaluate models. Therefore, VidEB aims to
assess existing models at a finer semantic level, focusing on instance-level tasks. Although ranking
tasks are common in recommendation system scenarios, they are influenced by user information
and interactions, in addition to video data. Based on prior research Ni et al. (2023), using frozen
embeddings for video features does not consistently improve recommendation tasks (resulting in
minimal or even negative effects). Thus, we have narrowed the final dataset scope to instance-level
retrieval and copy detection. Apart from the traditional classification tasks, the evaluation of repre-
sentations typically involves standard benchmarks such as video action retrieval Han et al. (2020a);
Xu et al. (2019); Han et al. (2020b), which primarily rely on class labels. However, this approach
often overlooks the overall scene context and exhibits an overlap with recognition tasks. In contrast,
inspired by previous works Plummer et al. (2015); Pizzi et al. (2024); Wu et al. (2007); Jiang et al.
(2014); Douze et al. (2021), we establish more rigorous criteria for embedding evaluation in Table 2.
Specifically, we require the model to determine the priority and retrieve individual samples based on
the overall similarity, rather than solely relying on class labels. This evaluation protocol provides a
more comprehensive assessment of the model’s capability to encapsulate subtle visual information.

Evaluation protocol. To facilitate fine-grained embedding evaluation, we incorporate two tasks for
assessment: (1) Hierarchical Video Retrieval aims to retrieve videos from a database that closely
matches the query video in terms of scene, viewpoint, and temporal context. According to previous
work Kordopatis-Zilos et al. (2019), videos related to the query are categorized into three levels based
on their similarity to the query: Duplicate Scene Videos (DSVs), Complementary Scene Videos
(CSVs), and Incident Scene Videos (ISVs), as shown in Table 2: Consequently, the retrieval tasks are
structured into three hierarchical levels:
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• Duplicate Scene Video Retrieval: only DSVs are positive instances.
• Complementary Scene Video Retrieval: both DSVs and CSVs are positive instances.
• Incident Scene Video Retrieval: DSVs, CSVs, and ISVs are all positive instances.

For the evaluation metric, we follow Kordopatis-Zilos et al. (2019) to utilize the mean Average
Precision (mAP) to assess the quality of video ranking. (2) Video Copy Detection aims to detect
edited copies of the query video. Instead of the ranking/retrieval task where all video pairs need to
be sorted according to video embedding similarity, it is required to identify a set of video pairs that
contain edited versions of the given query. Following Pizzi et al. (2024), we consider the micro-AP
(µAP) as our evaluation metric that operates on all queries jointly and takes the confidence scores
into account.

4 BENCHMARKING VIDEO FOUNDATION MODELS

4.1 TARGETS AND DETAILS OF EVALUATION

Evaluation targets We evaluate twenty open-source vision foundation models. Including: (1)
twelve video foundation models, covering different pre-training paradigms, model scales, and
training data scales, to analyze the impact of these factors on the generalization capability of
foundation models. (2) five image foundation models to observe how much generalization capability
trained on image data can exhibit in video understanding. (3) three image-to-video methods based
on image foundation models to assess the effectiveness of current efficient transfer methods.

Implementation details All models take 8 frames (16 frames if the model has temporal downsam-
pling), with each frame being 224x224 in size as input. For VidTAB, to ensure fair comparison and
efficient assessment, we train all models for the same number of epochs and made minor adjustments
to the hyperparameters to ensure convergence. For VidEB, all models take 16 frames, with each frame
being 224x224 in size as input. In hierarchical video retrieval, the similarity of video-level embedding
determines the ranking of retrieval results. In video copy detection, each sample is segmented into 5
clips. The detection confidence score for the entire video is derived from the maximum frame-wise
similarity computed for each query-reference pair. See the Appendix for more details.

4.2 RESULTS ON VIDTAB

Zero-shot evaluation To preliminarily assess the characteristics and difficulty of the dataset, we
first evaluate the zero-shot performance of the eight tasks we created using two image language
models and two video language models. As shown in the top section of Table 3, both image and
video models demonstrated some level of performance for action-related tasks, with video models
exhibiting relatively higher performance. For tasks involving low-level information understanding,
such as Quality Assessment task, image models performed significantly better. In contrast, for other
tasks involving scenarios typically unseen in training data, such as medical surgery videos or Safety
Review tasks requiring complex semantic reasoning, all models exhibited almost no performance.

Main results Table 5 presents the evaluation results on VidTAB. We summarize our findings as
follows. On the whole, (1) Despite exhibiting a degree of generalization capability, current vision
FMs still struggle to adapt to unseen video tasks with limited training samples. VFMs outperform
IFMs, particularly in tasks related to action and behavior understanding. However, IFMs exhibit
superior performance on more novel tasks, specifically in the domains of safety and quality, especially
when combined with image-to-video adaptation techniques. (2) The adaptation performance of
models generally increases with the growth of data and model size, as observed by the improvements
observed from V-JEPA-L to V-JEPA-H (+1.5) and ViCLIP-L-10M to ViCLIP-L-200M (+1.3).

For the pre-training data, (3) While augmenting video training data is generally beneficial, it
can negatively impact the performance on some tasks. For both VideoMAEv2-g and InternVideo2-
1Bstage1, fine-tuning on Kinetics-710 data significantly enhances Action-related tasks, but consis-
tently degrades certain Safety and Quality tasks. Similar findings are observed with ViCLIP-L,
where post-pretraining on a large-scale video dataset improves Action-related tasks but diminishes
performance in other domains (Science, Safety, Quality, Emotion). It could be attributed to the
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Table 5: Evaluating state-of-the-art FMs on the VidTAB. The best and second-best results of
foundation models are noted by blue and underline, respectively. ’I’, ’V’, and ’IV’ denote image
data, video data, and mixed image-video data, respectively. Data marked in gray indicates that
the model uses a model trained on that data as initialization. ’K710ft’ indicates that the model
was fine-tuned with supervision using the labeled action recognition dataset Kinetics-710 (0.66M).
Considering the random error in few-shot experiments, we conducted 3-fold experiments for both
4-shot and 16-shot settings, and used their mean as the final result. We also provide the results of full
finetuning in the appendix.
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Random - - 22.7 9.1 10.0 6.3 8.3 33.3 50.0 50.0 14.3
Zero-shot performance of visual language models
CLIP-L Radford et al. (2021) 428 I-400M 35.7 29.2 34.6 12.5 32.9 42.1 56.3 65.5 12.9
EVA-CLIP-g Sun et al. (2023) 1365 I-2B 36.0 32.8 37.2 9.4 28.5 39.6 52.8 69.5 17.9
ViCLIP-L Wang et al. (2024a) 428 I-400M+V-200M 33.6 26.2 37.5 8.3 29.3 32.1 52.2 53.9 29.0
InternVideo2stage2 Wang et al. (2024b) 1350 IV-1.1M+IV-25.5M 40.6 37.1 40.2 11.5 45.2 59.1 51.3 56.1 24.3
Image Foundation Model
CLIP-L Radford et al. (2021) 316 I-400M 43.2 31.9 37.8 32.3 37.4 54.2 58.2 66.6 27.6
SigLiP-SO Zhai et al. (2023) 444 I-4.11B 43.3 27.6 38.4 36.5 35.8 53.3 58.5 67.8 28.5
EVA-g Fang et al. (2023) 1035 I-2B 45.8 40.2 47.1 34.4 41.0 51.8 55.2 68.1 29.0
DINOv2-L Oquab et al. (2023) 317 I-142M 42.7 40.8 45.0 39.6 36.1 38.9 52.2 63.2 25.6
DINOv2-g Oquab et al. (2023) 1165 I-142M 44.4 37.8 46.4 42.7 36.0 48.5 53.2 64.3 26.3
Image Foundation Model with image-to-video adaptation method
ST-Adapter-CLIP-L Pan et al. (2022) 328 I-400M 46.5 42.4 44.3 31.2 40.1 47.4 64.6 71.5 30.4
AIM-CLIP-L Yang et al. (2023) 328 I-400M 48.8 41.5 50.0 38.5 40.2 46.4 69.5 73.7 30.6
ZeroI2V-CLIP-L Li & Wang (2023) 303 I-400M 46.3 40.3 47.0 31.2 40.2 46.1 65.2 69.9 30.5
Video Foundation Model
ViCLIP-L-10M Wang et al. (2024a) 316 I-400M+V-10M 41.8 31.2 42.7 30.2 35.3 47.9 53.9 66.2 26.9
ViCLIP-L-200M Wang et al. (2024a) 316 I-400M+V-200M 43.3 38.2 44.6 30.2 37.9 47.4 54.9 65.9 27.5
VideoMAEv1-L Tong et al. (2022) 316 V-0.24M 43.3 45.6 30.8 31.2 37.4 56.5 51.9 68.7 24.0
VideoMAEv1-H Tong et al. (2022) 651 V-0.24M 44.7 45.5 31.0 35.4 38.6 55.8 51.8 70.5 29.1
VideoMAEv2-g Wang et al. (2023b) 1037 V-1.35M 37.8 35.2 18.3 18.8 33.7 59.6 50.9 64.7 21.6
VideoMAEv2-gk710pt Wanget al. (2023b) 1037 V-1.35M+K710ft 54.0 76.4 72.6 50.0 42.4 43.8 56.9 63.2 27.0
UMT-Lstage1 Li et al. (2023) 316 V-0.66M 40.6 34.3 35.4 30.0 34.2 45.6 53.6 64.7 27.0
UMT-Lstage2 Li et al. (2023) 316 V-0.66M+IV-25M 44.0 34.2 43.9 22.9 39.4 63.9 53.0 67.3 27.4
V-JEPA-L Bardes et al. (2023) 318 V-2M 43.5 50.4 34.3 39.6 39.7 43.9 51.7 66.7 21.4
V-JEPA-H Bardes et al. (2023) 653 V-2M 45.1 53.8 37.6 35.4 40.4 47.3 53.0 68.1 25.1
InternVideo2-1Bstage1 Wang et al. (2024b) 1037 IV-1.1M 46.1 45.2 50.3 33.3 38.7 52.3 53.5 65.9 29.3
InternVideo2-1Bstage1 Wang et al. (2024b) 1037 IV-1.1M+K710ft 56.7 75.6 77.5 53.1 45.4 47.2 55.5 66.2 33.2
InternVideo2-1Bstage2 Wang et al. (2024b) 1037 IV-1.1M+IV-25.5M 53.6 66.0 71.1 38.5 50.0 53.6 54.7 64.3 30.3

limited diversity of the current video training data. (4) For models trained on single-modal visual data,
incorporating additional weak-supervised post-pretraining with visual-text data leads to significant
improvements in adaptation capabilities. This is evident in the performance gains observed from
UMT-Lstage1 to UMT-Lstage2 (+3.6) and from InternVideo2-1Bstage1 to InternVideo2-1Bstage2

(+8.0). Interestingly, this finding contradicts previous conclusions drawn from commonly used action
recognition benchmarks, suggesting that these benchmarks may introduce bias.

For the pre-training paradigms of model, (5) The effectiveness of pre-training paradigms in
scaling model size might not be adequately validated on popular action recognition benchmarks.
While VideoMAEv2 successfully scaled a model to 1B parameters using the dual masking strat-
egy Wang et al. (2023b), its adaptation performance (37.7 vs 44.4) significantly declined compared
to VideoMAEv1-H. Interestingly, VideoMAEv2-g demonstrated remarkable performance after fine-
tuning on Kinetics-710 (0.66M), suggesting that the abundant labeled data may have compensated
for the shortcomings of its pre-training performance. (6) Single-modal self-supervised pre-training
paradigms exhibit superior data efficiency compared to multimodal weakly-supervised pre-training
paradigms. Notably, V-JEPA and VideoMAEv1, trained solely on relatively small-scale unlabeled
video data via self-supervised pre-training, demonstrate comparable or even superior performance to
ViCLIP, which is trained on a massive dataset of video-text pairs.

In addition, (7) Effective adaptation method for FMs is crucial. Three image-to-video methods
based on CLIP-L achieved significant performance improvements compared to using an attentive
probe directly. We believe this represents a promising avenue for future research.
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Table 6: Evaluation of State-of-the-Art Foundation Models on the VidEB Dataset. "K400pt"
and "K400ft" denote that the model is pre-trained and fine-tuned, respectively, using the labeled
action recognition dataset Kinetics-400 (0.31M). MCL: Multi-modal Contrastive Learning, SCL:
Self-supervised Contrastive Learning, MVM: Masked Video Modeling, SFT: Supervised Fine-tuning.
Other notations are consistent with those in Table 5.

Scene
Pretrain Tasks # Pretrain Data Average Duplicate Complementary Incident Copyright

Image Foundation Model
CLIP-L Radford et al. (2021) MCL I-400M 43.0 41.1 46.4 52.0 32.3
EVA-g Fang et al. (2023) MCL I-2B 37.1 41.4 46.1 51.7 9.3
SigLiP-SO Zhai et al. (2023) MCL I-4.11B 38.6 40.6 45.5 51.5 16.9
DINOv2-L Oquab et al. (2023) SCL I-142M 45.6 49.0 53.5 54.3 25.6
DINOv2-g Oquab et al. (2023) SCL I-142M 48.6 50.5 55.1 56.0 32.8
Video Foundation Model
VideoMAEv1-L Tong et al. (2022) MVM K400pt 12.9 14.5 15.1 13.2 8.8
VideoMAEv1-L-K400ft Tong et al. (2022) MVM+SFT K400pt+ft 27.4 27.6 30.2 30.3 21.6
VideoMAEv2-g Wang et al. (2023b) MVM V-1.35M 11.6 14.8 15.4 13.4 2.8
VideoMAEv2-g-K710ft Wang et al. (2023b) MVM+SFT V-1.35M+K710ft 37.4 33.8 37.1 37.1 41.7
UMT-Lstage1 Li et al. (2023) MVM V-0.66M 41.1 42.2 46.6 49.6 25.7
UMT-Lstage1-K710ft Li et al. (2023) MVM+SFT V-0.66M+K710ft 29.0 26.4 29.4 30.3 30.0
UMT-Lstage2 Li et al. (2023) MVM+MCL V-0.66M+IV-25M 34.2 33.4 37.3 40.6 25.4
V-JEPA-L Bardes et al. (2023) MVM V-2M 19.7 21.3 23.9 21.7 12.0
V-JEPA-H Bardes et al. (2023) MVM V-2M 20.2 21.5 23.7 21.2 14.3
InternVideo2-1Bstage1 Wang et al. (2024b) MVM IV-1.1M 50.4 47.3 52.1 54.9 47.3
InternVideo2-1Bstage1-K710ft Wang et al. (2024b) MVM+SFT IV-1.1M+K710ft 33.9 30.5 34.2 34.1 36.9
InternVideo2-1Bstage2 Wang et al. (2024b) MVM+MCL IV-1.1M+IV-25.5M 34.6 32.4 36.8 39.9 29.3

4.3 RESULTS ON VIDEB

The main results of VidEB are presented in Table 6. We evaluate the embedding performance using
different pre-training paradigms for IFMs and VFMs as frozen feature extractors. Surprisingly, IFMs
performs better than most VFMs, likely due to the existing gap in spatial modeling capabilities
between VFMs and IFMs.

For the pre-training paradigms of the model, (1) The contrastive learning (CL) based approach
consistently excels in embedding evaluation. Due to CL’s emphasis on the relationships between
samples during training, DINOv2, which focuses solely on vision, outperforms vision-language
contrastive methods like CLIP across multiple tasks. (2) The effectiveness of masked video modeling
is closely tied to the targets it reconstructs or aligns with. With higher semantic richness, it shows
progressive improvements in embedding quality for VideoMAE-L, V-JEPA-L, and UMT-Lstage1. (3)
Vision-centric pretraining outperforms Multi-modal pretraining in vision-centric scenarios. Com-
paring UMT-Lstage1 and InternVideo2-1Bstage1 with their multi-modal counterparts UMT-Lstage2

and InternVideo2-1Bstage2, the introduction of visual-text pair data in multi-stage training does
not enhance performance in vision-centric scenarios. This is also consistent with the performance
differences observed between DINO and CLIP-style pre-training methods.

Additionally, we assess the impact of fine-tuning on the embedding evaluation of these pre-
trained models. (4) Labels bring new semantic information or disrupt existing finer-grained semantic
information. The performance variations after fine-tuning differ based on the pre-training strategy.
For UMT-Lstage1 and InternVideo2-1Bstage1, fine-tuning leads to a significant drop in performance
(-12.1 for UMT and -16.5 for InternVideo) due to the introduction of more singular label information,
which causes catastrophic forgetting. In contrast, VideoMAE and VideoMAEv2 show substantial
performance gains (+14.5 and +25.8, respectively) because the low-level semantics learned during
pre-training are less abstract and benefit more from the addition of high-level label information.

5 CONCLUSIONS

We present VideoEval, a comprehensive benchmark suite for efficiently evaluating the VFMs. To this
end, we establish VidTAB, which explores suitable evaluation tasks and protocols for VFMs from
the perspective of assessing their adaptability to unknown tasks with limited samples. Additionally,
we create VidEB to evaluate the capability of VFMs’ feature embedding in directly supporting
downstream tasks. Utilizing VideoEval, we conduct a large-scale study involving 20 popular open-
source vision foundation models, providing valuable insights for future research directions.
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Figure 5: Examples of VidTAB.

In this appendix, we provide more details of VideoEval from the following aspects:

• Details of our benchmark are in § A.

• Details of training and evaluation, can be found in § B.

• Ethics etatement of the datasets are in § C

• Limitations and potential negative societal impacts are in § D

A DETAILS OF BENCHMARK

Comparison of Current VFMs Benchmarks As shown in Table 1, we compare our VideoEval
benchmark with existing benchmarks available for VFMs from the perspectives of evaluation cost
and benchmark diversity.

Examples of VidTAB As shown in Figure 5, we present some examples of tasks in VidTAB.

Details of VidTAB The detals of task construction are presented in Table 7. For each category
in one task, we sample 4, 16, and 100 samples, respectively. Given the limited volume of medical
surgery data, we only sample 4 samples from each category for few-shot evaluation. To mitigate the
impact of randomness, we sampled two sets of data for four tasks and obtained the benchmark results.
We found that the randomness of sampling had negligible effects on the final rankings of VFMs in
the benchmark.
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Table 7: Task details of VidTAB. All videos are collected from the public datasets for building tasks
of VidTAB.

Task Source Num. test sample Details of Task Construction
Action Recognition ARID Xu et al. (2021b) 2011 We directly employ the original classification task definition. Specifically, 11 categories.
Action Recognition BreakFast Kuehne et al. (2014) 822 We directly employ the original classification task definition. Specifically, 12 categories.

Medical Surgery SurgicalActions160 Schoeffmann et al. (2018) 96 We directly employ the original classification task definition. Specifically, 16 categories.

Animal Behavior Animal Kingdom Ng et al. (2022) 2268 Since the annotations in this dataset included multiple labels, we filtered out all categories with only single labels and then
selected categories with more than 150 samples. This resulted in a final set of 12 categories.

Fake Face FaceForensics++ Rossler et al. (2019) 1800
We used the original 1000 videos as positive samples. Then, we divided the original videos into five parts and used the Deepfakes,
Face2Face, FaceShifter, FaceSwap, and NeuralTextures methods to generate 1000 negative samples by face-swapping. We then
selected 1800 of these samples as the test set and the remaining as the training set.

Harmful Content mob Ahmed et al. (2023) 1661
We categorized videos into three classes based on their content: those containing fast repetitive movements and violence activities,
those containing unpleasant appearances and obscene scenes, and those containing no malicious information at all. This resulted in a
three-class classification task.

Quality Assess DOVER Wu et al. (2023) 724 To convert the task into a classification problem, we sorted the "overall score" label and divided the videos into positive and negative
samples, with the top and bottom 40% constituting the respective categories.

Emotion Analysis CAER Lee et al. (2019) 3953 We directly employ the original classification task definition. Specifically, 7 categories.

B DETAILS OF TRAINING AND EVALUATION

Checkpoints of Evaluation Models We provide checkpoints of the models we evaluate for repro-
ducibility of our results.

• CLIP Radford et al. (2021): https://huggingface.co/openai/
clip-vit-large-patch14

• EVA-CLIP Radford et al. (2021): https://huggingface.co/QuanSun/
EVA-CLIP

• ViCLIP Wang et al. (2024a): https://github.com/OpenGVLab/InternVideo/
tree/main/Data/InternVid

• InternVideo2 Wang et al. (2024b): https://huggingface.co/collections/
OpenGVLab/internvideo2-6618ccb574bd2f91410df5cd

• SigLiP Zhai et al. (2023): https://huggingface.co/google/
siglip-so400m-patch14-384

• DINOv2 Oquab et al. (2023): https://huggingface.co/facebook/
dinov2-giant

• VideoMAE Tong et al. (2022): https://github.com/MCG-NJU/VideoMAE/
blob/main/MODEL_ZOO.md

• VideoMAEv2 Wang et al. (2023b): https://github.com/OpenGVLab/
VideoMAEv2/blob/master/docs/MODEL_ZOO.md

• UMT Li et al. (2023): https://github.com/OpenGVLab/unmasked_teacher

• V-JEPA Bardes et al. (2023): https://github.com/facebookresearch/jepa

Trainging strategies Specific hyperparameter configurations are available in the configs provided
in our code repository. In essence, we train all models for 25 epochs using a similar training strategy,
employing the Adam optimizer, a learning rate of 5e-5, and only utilizing RandomResizedCrop for
data augmentation. And we use a single clip to obtain the final evaluation performance.

Total amount of compute and the type of resources used Leveraging the low cost of our
evaluation protocol, we conducted each experiment involving a single VFM and a single task on one
A100-80G GPU. We performed approximately 300 such experiments, each taking around 1-2 hours,
resulting in a total of around 400 GPU hours.

C ETHICS STATEMENT

license of the datasets The dataset we are using is collected from publicly accessible sources,
all licensed under Creative Commons (CC-BY) or other open-source licenses. We have diligently
followed all legal requirements to integrate this data into our research, emphasizing the importance of
transparency in data licensing for proper attribution and appropriate use. Although we have taken
steps to ensure the inclusion of suitable content, we recognize that some problematic content may
still exist. If you encounter any such content, please notify us immediately so we can take corrective
action to maintain a dataset free from inappropriate material. We are dedicated to maintaining a
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Table 8: Evaluating state-of-the-art VFMs on the VidTAB with Full Finetuning. The best and
second-best results of foundation models are noted by blue and underline, respectively. We present
the results in the form of ’4s/16s/100s,’ representing the outcomes of 4-shot, 16-shot, and 100-shot
experiments.
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Video Foundation Model
ViCLIP-L-10M Wang et al. (2024a) 37.9 22.6/18.9/29.5 16.4/24.8/45.7 30.2 26.3/29.7/41.5 35.1/38.2/54.2 51.2/50.8/53.7 56.9/65.9/72.5 20.3/17.2/32.7
ViCLIP-L-200M Wang et al. (2024a) 38.3 21.1/20.5/37.2 13.6/21.2/53.0 30.2 25.1/30.6/43.6 36.6/40.2/46.8 50.4/51.5/53.7 57.2/67.7/71.6 19.8/19.7/32.2
VideoMAEv1-H Tong et al. (2022) 34.0 12.8/13.5/72.1 9.6/10.0/36.7 39.6 18.5/22.0/47.8 32.5/33.1/37.2 50.3/50.3/50.7 44.2/50.8/66.6 15.2/14.3/19.0
VideoMAEv2-g Wang et al. (2023b) 34.0 13.1/13.4/76.1 31.4/12.3/34.3 18.8 12.2/18.7/50.8 29.4/30.2/41.5 50.8/50.6/50.6 52.0/55.3/62.2 12.7/14.2/17.4
VideoMAEv2-gk710pt Wanget al. (2023b) 48.6 30.4/77.3/ 94.0 31.2/52.9/89.0 57.3 12.6/32.0/64.5 33.1/39.4/41.8 49.8/50.4/54.7 54.3/59.8/71.4 16.6/17.2/39.3
V-JEPA-L Bardes et al. (2023) 49.2 43.2/78.8/88.5 25.2/52.0/86.0 46.9 26.6/37.1/59.9 38.5/36.0/46.4 50.2/50.8/55.9 54.3/68.0/76.9 15.0/17.9/27.4
V-JEPA-H Bardes et al. (2023) 52.5 45.2/ 80.7 /90.8 24.7/48.5/87.1 46.9 26.7/38.1/60.6 40.4/41.7/ 58.5 50.4/51.2/68.2 59.8/ 71.3 / 79.3 20.9/20.4/43.4
InternVideo2-1Bstage1 Wang et al. (2024b) 52.1 20.3/56.0/80.6 27.7/70.0/92.5 66.7 27.2/38.2/58.8 41.5/36.0/50.0 52.6/52.4/75.0 60.9 /69.0/77.8 16.1/31.8/45.4
InternVideo2-1Bk710pt

stage1 Wang et al. (2024b) 59.4 59.5 /79.9/88.9 60.8 / 82.6 / 95.6 71.9 31.7/46.4/ 68.0 44.0/37.7/50.1 53.3 / 53.9 / 83.2 59.4/65.4/77.9 22.9/28.0/ 45.8
InternVideo2-1Bstage2 Wang et al. (2024b) 59.0 55.1/75.6/89.3 55.4/77.7/93.7 60.4 33.3 / 51.0 /67.7 54.2 / 42.2 /55.1 50.9/53.4/76.9 58.5/67.0/77.4 23.9 / 34.6 /44.1

high-quality, ethically responsible dataset and pledge to uphold principles of privacy and transparency
in all our work.

Privacy or safety concerns in video For personally identifiable information or offensive content in
video, our data collection sources have been carefully considered, and we believe these issues are not
present. However, if you discover any oversights, please do not hesitate to contact us promptly.

D LIMTIATIONS AND SOCIETAL IMPACTS

Limitations Firstly, due to the limitations of diversity and accuracy in our video sources and
annotations, which were gathered from public resources, we plan to further enrich the task in the
future by incorporating manual annotations and self-collected data. Secondly, considering the
evaluation cost and simplicity, we currently only evaluate tasks like classification and retrieval, which
primarily rely on VFMs’ global information extraction capabilities. We have not yet considered tasks
like spatio-temporal action detection and temporal grounding, which assess other aspects of VFMs’
capabilities. We will expand the scope of evaluation in the future.

Potential negative societal impacts While our evaluation includes tasks like synthetic video
recognition and harmful information recognition, these serve only as indicators of the model’s overall
performance in this area and cannot be used to accurately evaluate the actual performance of a specific
task. If researchers or engineers in society attempt to use VFMs to perform these specific tasks,
our benchmark can serve as a reference for their choice of VFMs, but it cannot be used as the final
standard for evaluating that task. Otherwise, it may have negative impacts on the corresponding
real-world applications.
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Table 9: Evaluating state-of-the-art FMs on the VidTAB with Attentive Probe. The best and
second-best results of foundation models are noted by blue and underline, respectively. We present
the results in the form of ’4s/16s/100s,’ representing the outcomes of 4-shot, 16-shot, and 100-shot
experiments.
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Image Foundation Model
CLIP-L Radford et al. (2021) 44.3 20.5/21.6/53.5 15.1/21.8/76.6 32.3 29.5/36.3/46.4 49.5/48.1/65.1 52.8/57.1/64.6 60.2/69.4/70.3 21.8/22.8/38.2
SigLiP-SO Zhai et al. (2023) 43.9 20.1/23.7/39.0 16.8/27.5/71.0 36.5 25.0/35.0/47.4 49.8/48.1/62.1 54.8/57.2/63.4 58.8/68.9/75.7 21.7/23.4/40.5
EVA-g Fang et al. (2023) 46.9 26.8/33.5/60.3 22.1/36.7/82.5 34.4 31.9/39.9/51.3 49.6/45.5/60.4 51.6/55.1/58.8 60.4/69.3/74.6 23.2/24.2/39.7
DINOv2-L Oquab et al. (2023) 42.9 26.2/37.3/58.9 17.0/37.1/80.8 39.6 26.5/36.3/45.4 37.1/31.6/48.0 51.0/52.0/53.6 54.7/64.5/70.3 21.8/22.5/32.4
DINOv2-g Oquab et al. (2023) 44.5 23.7/33.7/56.1 17.7/38.4/83.2 42.7 26.6/36.1/45.4 40.9/44.2/60.3 51.8/51.8/55.9 54.5/65.5/72.8 21.8/22.7/34.4
Image Foundation Model with image-to-video adaptation method
ST-Adapter-CLIP-L Pan et al. (2022) 47.9 21.2/37.3/68.6 17.4/35.1/80.5 31.2 30.1/39.6/50.7 48.0/42.9/51.4 53.3/59.6/80.8 62.4/71.9/80.1 20.3/22.1/48.7
AIM-CLIP-L Yang et al. (2023) 49.7 22.4/39.3/62.8 21.2/47.5/81.3 38.5 29.7/39.1/51.7 44.3/38.9/55.9 57.4 / 67.2 / 83.8 64.9 / 73.0 / 83.2 21.8/24.7/45.2
ZeroI2V-CLIP-L Li & Wang (2023) 47.6 22.2/37.8/61.0 21.2/40.6/79.1 31.2 31.0/39.4/50.1 40.9/37.9/59.5 55.5/57.7/82.3 58.8/70.4/80.4 20.1/22.6/ 48.7
Video Foundation Model
ViCLIP-L-10M Wang et al. (2024a) 42.8 22.4/25.2/46.1 19.6/35.3/73.2 30.2 26.3/34.4/45.2 38.0/46.9/58.8 51.6/53.4/56.8 59.5/68.0/71.0 21.2/22.4/37.1
ViCLIP-L-200M Wang et al. (2024a) 44.5 25.9/32.4/56.2 21.1/38.0/74.7 30.2 28.2/37.0/48.6 45.8/44.6/51.8 52.5/53.6/58.7 56.4/70.2/71.1 21.0/23.2/38.2
VideoMAEv1-L Tong et al. (2022) 44.4 19.0/35.1/82.6 12.8/14.6/65.1 31.2 25.6/31.1/55.4 62.1/49.6/57.9 50.5/51.1/54.2 57.9/70.3/77.9 18.9/16.7/36.5
VideoMAEv1-H Tong et al. (2022) 45.6 17.7/35.4/83.4 11.8/15.7/65.6 35.4 24.8/32.8/58.2 56.0/45.6/ 65.9 50.4/51.3/53.6 62.6/70.4/78.4 26.1 /26.4/34.8
VideoMAEv2-g Wang et al. (2023b) 39.6 15.9/19.6/70.0 14.2/14.0/26.8 18.8 25.2/26.1/49.7 63.1/52.9/62.7 50.9/50.5/51.2 56.5/62.6/74.9 16.7/21.9/26.2
VideoMAEv2-gk710pt Wanget al. (2023b) 54.4 63.4/76.9/ 88.8 59.5/75.3/83.0 50.0 26.5/41.3/59.3 41.0/41.4/49.1 52.9/55.2/62.6 52.3/65.3/72.1 21.4/23.1/36.6
UMT-Lstage1 Li et al. (2023) 41.6 25.5/21.8/55.5 14.8/22.4/68.9 30.0 24.9/32.8/44.8 42.4/41.4/53.0 51.1/52.9/56.9 59.3/66.3/68.5 24.2/20.0/36.9
UMT-Lstage2 Li et al. (2023) 45.9 25.2/26.6/50.8 23.6/35.2/72.8 22.9 29.6/35.4/53.3 66.6 / 61.8 /63.3 50.6/51.4/56.9 58.9/68.5/74.4 25.0/20.5/36.6
V-JEPA-L Bardes et al. (2023) 43.8 26.8/46.7/77.8 18.1/27.5/57.4 39.6 28.0/36.0/55.2 37.1/41.3/53.2 50.9/50.9/53.4 55.2/67.6/77.2 18.5/17.8/27.8
V-JEPA-H Bardes et al. (2023) 46.0 28.1/47.5/85.7 17.2/26.9/68.6 35.4 27.6/36.6/57.0 40.4/42.0/59.6 51.3/52.5/55.3 58.0/68.4/77.9 22.1/20.3/32.9
InternVideo2-1Bstage1 Wang et al. (2024b) 47.2 27.4/38.5/69.7 22.2/42.5/86.1 33.3 28.5/36.3/51.3 44.7/48.2/64.1 50.8/53.0/56.8 57.6/67.1/73.1 23.0/24.0/40.9
InternVideo2-1Bk710pt

stage1 Wang et al. (2024b) 57.0 66.4 / 77.9 /82.4 65.3 / 77.5 / 89.8 53.1 31.3/44.1/60.7 43.9/42.4/55.4 51.9/54.7/59.9 57.1/66.5/75.0 23.3/ 33.3 /43.0
InternVideo2-1Bstage2 Wang et al. (2024b) 54.9 54.4/66.6/76.9 56.0/71.7/85.6 38.5 37.2 / 50.4 / 62.5 51.0/46.2/63.6 51.6/54.4/58.2 53.9/65.8/73.2 21.8/29.3/39.9
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