Under review as a conference paper at ICLR 2025

IS PONTRYAGIN’S MAXIMUM PRINCIPLE ALL YOU
NEED? SOLVING OPTIMAL CONTROL PROBLEMS WITH
PMP-INSPIRED NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Calculus of Variations is the mathematics of functional optimization, i.e., when the
solutions are functions over a time interval. This is particularly important when
the time interval, or support, is unknown like in minimum-time control problems,
so that forward-in-time solutions are not possible. Calculus of Variations also of-
fers a robust framework for learning optimal control and inference with moving
boundaries. How can this framework be leveraged to design neural networks to
solve challenges in control and inference? We propose the Pontryagin’s Maxi-
mum Principle Neural Network (PMP-Net) that is tailored to estimate control and
inference solutions, in accordance with the necessary conditions outlined by Pon-
tryagin’s Maximum Principle. We assess PMP-Net on two classic optimal control
and inference problems: optimal linear filtering and minimum-time control. Our
findings indicate that PMP-Net can be effectively trained in an unsupervised man-
ner to solve these problems without the need for ground-truth data, successfully
deriving the classical “Kalman filter” and “bang-bang” control solution. This es-
tablishes a new approach for addressing general, possibly yet unsolved, inference
and optimal control problems.

1 INTRODUCTION

Standard neural networks excel at learning from labeled data, but often lack inherent knowledge of
physical principles. In many engineering and scientific applications, there is a wealth of accumulated
knowledge and practices that could inform the architecture of learning models. In addition, data in
these fields are often scarce, difficult, or expensive to obtain. For instance, telecommunications,
data processing, automation, robotics, and control problems frequently have little or no labeled data,
making traditional supervised learning methods challenging to apply.

This paper presents a method for designing deep models from first principles by incorporating prior
knowledge, specifically existing design principles that have been successful in various engineering,
scientific, and technology practices. It focuses on two design problems of broad practical interest:
determining the optimal linear estimator and solving the optimal minimum time control problem.
We show that our deep models recover the solution to the first, the well-known Kalman filter, and to
the second, the bang-bang control, also known as on-off control.

Optimizing over functions with moving boundaries, i.e., when the optimizing variable is a set of
whole functions over a variable time interval, falls under the realm of the Calculus of Variations,
and a principled solution methodology can be based on Pontryagin’s maximum principle (PMP).
PMP offers valuable prior knowledge about the necessary conditions for optimal solutions and often
provides sufficient conditions, making the optimal solution unique in many cases. This motivates
the integration of PMP into machine learning training methodologies.

In this paper, we draw inspiration from the Calculus of Variations—a field focused on finding the
maxima and minima of functionals through variations—to design a neural network based on basic
principles, which we call the “Pontryagin’s Maximum Principle Neural Network” (PMP-Net). This
network is designed to solve optimization problems like in Kalman filtering and those arising in con-
trol contexts. We start by formulating a variational approach to these problems, using the calculus of
variations to derive the necessary conditions for optimization by applying Pontryagin’s Maximum

Under review as a conference paper at ICLR 2025

Principle. Although mathematicians and engineers typically solve these conditions analytically or
numerically, such methods can be challenging when dealing with nonlinear, second-order differen-
tial equations with complex boundary conditions. Instead, we propose using a neural network to
learn the optimal solution from PMP’s necessary conditions.

Additionally, in minimum-time problems such as the bang-bang control problem, there are two
key challenges. First, because the terminal time ¢ is to be optimized, the optimization is over a
functional space, meaning the optimal solutions are functions over the entire interval [0, t¢], where
ty itself is unknown. As a result, the forward method can not be used and the performance metrics
are only valid for admissible trajectories (the trajectory that reaches the final state. Second, the
extra constraints, such as functions being bounded or living in a compact set, restrict the control
functions to be learned. The optimal solution in these cases is often discontinuous, resembling a
step function, and may be undefined in certain regions. These complexities frequently result in
vanishing or exploding gradients during neural network training and no prior work overcome these
challenges.

This paper presents a method to integrate prior knowledge from Calculus of Variations, functional
optimization, and classical control into the architectural design of deep models. We incorporate
dynamical constraints, control constraints, and conditions derived from PMP into the loss function
for training neural networks, enabling unsupervised learning. Our contributions are as follows.

Main contributions:

* Incorporate calculus of variations and Pontryagin’s Maximum Principle as soft constraints
in ML training methodology and minimizing optimality conditions residual instead of min-
imizing actual performance metrics. This provides a benefit when the performance func-
tional cannot always be computed.

» Engineer a novel neural network architecture, PMP-Net, that mimics the design of feed-
back controllers used in optimal control. This allows PMP-Net to apply to different time
horizons.

* Propose learning paradigms that effectively train PMP-Net to derive the optimal solution.

» Show that our PMP-Net replicates the design of the Kalman filter and the bang-bang control
without using labeled data.

2 THEORY

2.1 OPTIMAL CONTROL PROBLEM

We illustrate our approach in the context of a control problem. Given an initial value problem,
specified by a dynamical system and its initial condition

#(t) = f(2(t), u(t))
z(0) = g

where z : R>g — A C R™ is the state function, u : R>¢ — ¢/ C R" is the control function, and
[+ X xU — X is aknown function representing the dynamics. We suppose that x is differentiable
and f is differentiable with respect to each variable. Unlike previous works that consider fixed
support (Mowlavi & Nabil, 2023) or fixed terminal state (D’ Ambrosio et al., 2021), we consider a
more general stopping set S = {(x(t),t)| s(z(t),t) = 0} = X xR>q where s : R™ xRxq > R is
differentiable with respect to each variable. This definition of S allows us to solve general optimal
control problems when the terminal state and time are not explicitly specified, e.g., finding the
distance between two curves or finding the minimum time to reach the surface of a manifold. In
these cases, we do not know the terminal point and terminal time beforehand.

(D

Optimal control problems involve finding for example a control function u* : [0,¢,] — U such that
the corresponding trajectory (x*(t), u*(t)):eo,¢,] reaches the terminal value (z*(ts),ts) € S and
minimizes some performance measure J(x, u) of the form

ty

J(@,u) = gr(a(ty), tr) + / ga(t), u(t))dt @)

0

Under review as a conference paper at ICLR 2025

where ¢r is the terminal cost and ¢ is the running cost. Not all pairs of functions (z,u) are ad-
missible trajectories since trajectories must satisfy a dynamical constraint Z(t) = f(z(t), u(t)) and
(x(tf),ty) € S. The domain of integration [0,] can be variable, depending on each admissible
control. The optimal control problem is therefore the constrained optimization

IJILHJI J(x,u)
st &(t) = fz(t),u(t),vt € [0,t/] 3)
z(0) = xo, (x(ty),tf) €S

In equation 3] the optimization variables are functions over variable support, say {u(t),t € [0, t¢]},
where ¢y may be fixed or is to be optimized itself (like in the minimum time problem).

To handle dynamics constraints, the (function vector) Langragian multipliers A\(¢) is introduced and
the new performance measure becomes

123
L(z,u,A) = qr(x(ty),ty) + /g(w(tLU(t)) +AOT(f(2(t), ult)) - @(t))dt)
0
For all admissible trajectories (z,u), we have L(z,u,\) = J(x,u). Therefore, the admissible
optimal solution for equation [d]is also the optimal solution for equation 3]

Calculus of variations enables us to identify the optimal functions (z,u, A) that minimize £. By
examining variations, we can derive the necessary conditions — known as Pontryagin’s maximum
principle (PMP) — at the optimal solution (x*, u*, A*) for equation@

i = fat)

o
A - or |«
u* = arg min H(z*, u, *)
x*(0) = xo
S(.T*(tf ﬂff) =0 %)
Jdg b Os
T/ % * i %
o) =N) = S e | 8

o b [0s
H(z"(tr), u(t), A*(tr)) + %(x*(tf)vtf) = Zdi [ag(f*(tf)vtf)} (Ba)

where H denotes the scalar function called the “Hamiltonian,” defined as H(x(¢), u(t), A(t)) =
g(z(t),u(t)) + At)T f(x(t),u(t)). The variables dy, ..., dy are to be learned and enforce the ter-
minal state to be in a general stopping set S. The system of partial differential equation [5]is gen-
erally nonlinear, time-varying, second-order, and hard-to-solve. Numerical methods also pose chal-
lenges due to the split boundary conditions—neither the initial values (2(0), 4(0)) nor the final values

(A(ts), A(ty)) are fully known.

2.2 PONTRYAGIN’S MAXIMUM PRINCIPLE NETWORK

Instead of solving equation [5] analytically or numerically, we propose leveraging neural net-
works’ well-known capability as universal function approximators (Cybenkol [1989) to learn
{z(t),u(t), A(t),t € [0, t¢]}, along with the learnable parameters {t s, d1, ..., dj, }, that satisfy PMP.
In the training stage, rather than directly matching the PMP-Net’s outputs to ground truth data
{z(t)*, u(t)*, A(t)*,t € [0, tf]}, our PMP-Net learns to predict solutions that adhere to the PMP
constraints. Because this process incorporates a solution methodology, the PMP, we interpret it as
bringing to the neural networks “prior knowledge”(Bett: & Gori, |2016). Our approach introduces
an inductive bias into the PMP-Net, allowing it to learn the optimal solution in an unsupervised
manner. By simultaneously predicting both the state and the control, PMP-Net eliminates the need
for integration and can address optimal control problems with unknown terminal time.

Under review as a conference paper at ICLR 2025

During the forward pass, PMP-Net takes time as input and predicts the state z(t), the control u(t),
and the costate A(¢). The Hamiltonian # is then calculated based on these predictions. By leveraging
the automatic differentiation capabilities of neural networks (Baydin et al., 2017)), we can efficiently
compute the derivatives and partial derivatives present in equation[5|by computing in-graph gradients
of the relevant output nodes with respect to their corresponding inputs. We calculate the residuals
of the differential equations in PMP and incorporate them into the loss function, along with the
L5 loss between the predicted and target states at the boundary conditions. In the experiments in
Sections |3|and |4} we also incorporate additional architectural features into our PMP-Net to enforce
hard constraints and to allow PMP-Net to learn even when the terminal time is unknown.

o= | —

H e —

e H(x*,u,A%)
® @
6% dl
d

Costate
Estimator

|| i)

H Box, 4, 2oty) H

[:] : Neural Networks O : Automatic Differentiation
O : Learnable Parameters | |: Loss PDE \: :Loss BC

Figure 1: PMP-Net architecture. The state estimator, the costate estimator, and the control estimator
are neural networks. We compute the Hamiltonian #, relevant derivatives, and residual of differen-
tial equations in PMP. The total loss function consists of loss from residuals and loss from boundary
conditions. The variables t¢,dy, ..., dy, are learnable parameters. Since all loss terms are calculated
based on predictions, no labeled data is needed for training

3 DESIGNING THE OPTIMAL LINEAR FILTER

In this section, our goal is to design a linear filter that provides the best estimate of the current
state based on noisy observations. The optimal solution is known as “Kalman Filtering” (Kalman &
Bucy, [1961)), which is one of the most practical and computationally efficient methods for solving
estimation, tracking, and prediction problems. The Kalman filter has been widely applied in var-
ious fields from satellite data assimilation in physical oceanography, to econometric studies, or to
aerospace-related challenges (Leonard et al., [1985; |Auger et al., [2013). The optimal solution being
known, the Kalman filter is the ground truth that serves to benchmark PMP-Net.

3.1 KALMAN FILTER

Reference |Athans & Tse|(1967) formulated a variational approach to derive the Kalman filter as an
optimal control problem. We consider the dynamical system

#(t) = Az(t) + Bw(t), 0 <t <ty, wi_1 ~N(0,Q)
y<t) - C.’ﬂ(t) + U(t)a Vg—1 ~ N(OaR) (6)
I(O) ~ N(l’o, 20)

where z(t) € R™ is the state, y(t) € R™ is the observation. A € R™*™ is the state transition matrix,

B € R™ 7" is the input matrix, and C € R™*" is the measurement matrix. The white Gaussian
noise w(t) (resp. v(t)) is the process (resp. measurement) with covariance Q (resp. R) noise. We

Under review as a conference paper at ICLR 2025

assume that 2:(0), w(t), v(t), are independent of each other. Kalman designed a recursive filter that
estimates the state by

(1) = Ad(t) + G(1) [cy(t) - Afc(t)}
5%(0) =X

where G(t) is the Kalman gain to be determined. Given the state estimation Z:(¢) at time ¢, the error
covariance defined as

(7

B(t) = B[(& - 2)(& — 2)"]

has the following dynamics

S(t) = [A - G(t)c} S(t) + 2(8) [A - G(t)c} !
+ BQBT + G()RGH)T ®)
2(0) =%,

where X(t) is the n X n error covariance matrix. The goal of Kalman filter is to find the optimal
gain (perceived in this variational approach as a control) G*(¢) such that the final cost

qr(B(T)) = u [2(T)]
is minimized, or equivalently the L, norm between the estimation and the actual state is minimized.
In this case, the stopping setis S = {(3(t),t)|t = T'}. Applying Pontryagin’s maximum principle
to equation [§] (see Appendix [B]), the necessary conditions to solve for the optimal Kalman gain are

= f(E5G)
o _OH
©)
oM _,
()T =1,

where the Hamiltonian H = tr [AT f(2*, G*)]

3.2 LEARNING THE KALMAN FILTER WITH PMP-NET

Architecture: The PMP-Net architecture follows the architecture shown in Figure [I} Since ¥ is
both symmetric and positive semi-definite, we embed this inductive bias into our neural network
architecture. Specifically, the state estimator outputs an intermediate matrix P and estimates the
error covariance Y as ¥ = P P, ensuring symmetry and positive semi-definiteness. We adopt the
feedback loop design in engineering so that the control estimator only takes the output state as input.
The state, costate, and control estimators are modeled by 6-layer feedforward neural networks with
hyperbolic tangent activation.

Training: We adopt curriculum training, as optimizing loss with multiple soft constraints can be
challenging (Krishnapriyan et al., 2021). We set the loss function to be

Lossg = Lossgc + alLossppg
where

Losspc = [|2(0) — Xoll2 + [MT) — In]l2
87—[(2 G At)

ti

N
1 . .
L = — (t;) — f(2(t), Gt At

oseos = 5 D 8(8) — /50, Gl + e + |5
During each epoch, 5000 points are uniformly sampled from time [0, T}. After every 5000 epochs,
we increment the value of a by a factor of 1.04. All neural networks are initialized with Glorot
uniform initialization (Glorot & Bengio, 2010). We train PMP-Net using stochastic gradient descent
with the initial learning rate 8 x 10~*

2

Evaluation: For a fair evaluation, we take the estimated control from PMP-Net and use the fourth-
order Runge-Kutta integrator (Rungel [1895) in scipy.integrate.solve_ivp to derive the trajec-
tory of the state. This is necessary because the state estimated by PMP-Net might not adhere to the
dynamics constraints, making it into an implausible trajectory.

Under review as a conference paper at ICLR 2025

3.3 RESULTS

For our experiment, we set

40 15 0 0
_ (0 I, axa p_ |0 Ax2 B |15 40 0 0 -
4= |:O 0:|€R B = I, eRV,C=14,Q =051, R = 0 0 20 1.0 ,T'=50
0 0 1.0 20

This dynamical system models a kinematics system where the state « corresponds to position and
velocity and the control u corresponds to the force applied to the state. With these experimental set-
tings, Kalman filtering reaches a steady state where >* converges (hence, the Kalman gain converges
to G5.). We compare our method against two baselines: 1) the baseline NN trained with 50 points
of ground truth control G* sampled from the time interval [0, 2.0], covering the transient phase of
the Kalman filter before it reaches steady-state and, 2) PINN that enforces the dynamics constraints
and minimize the cost functional g7 (Mowlavi & Nabi,2023). We evaluate and compare the trace of

Trace = Trace 2

—— Optimal £*
—— Baseline PINN with cost functional

—— Optimal £
—— PMP-Net with curriculum training
—— PMP-Net with standard training
—— Baseline NN (using data)

0 1 2 3 4 5 0 1 2 3 4 5
Time Time

(a) Trace X (b) Divergence of 3 using PINN-+functional cost

Steady-state convergence of Steady-state convergence of G

- ! Kalman Gy;
22 7 0804 | —— Kalman G35,

7 ' - - PMP-Net Gy,
207 " 075{ ! - - PMP-Net Gs;

Kalman %,

—— Kalman 33, 0.65
- PMP-Net I;;
14 - - . PMP-Net 333 0.60

0 1 2 3 4 5 6 0 1 2 3 4 5 6 7
Time Time

(c) Steady state convergence of X (d) Steady state convergence of G

Figure 2: PMP-Net learns the Kalman filter, deriving the optimal value of the functional cost. The
baseline NN performs well in the time interval where ground truth is available, it fails to learn
the optimal steady-state Kalman gain G, resulting in diverging error. The baseline PINN shows
diverging error. PMP-Net learns the optimal steady-state error covariance 2% and Kalman gain G
and they remain convergent beyond the time interval of the problem [0, 5]

3 generated by PMP-Net, the baseline methods, and the optimal Kalman gain. Since the objective
is to minimize the trace of ¥ at the terminal time 7', we focus primarily on the final value tr(X(7)).
Figure [2al shows that, even though there is some discrepancy between the PMP-Net’s control output
G and the Kalman gain G* during the transient phase, PMP-Net matches the optimal Kalman gain
G?%, at the terminal time, while the baseline diverges. Figure [2b|shows that the baseline PINN that
learns to satisfy dynamics constraint and to minimize the cost functional without using optimality
conditions shows a divergent behavior. This result demonstrates that including all optimality condi-
tions does not necessarily make optimizing neural networks harder. Figure 2c|and [2d| show that the
PMP-Net’s trajectory of (X, G) converges to their corresponding optimal values (X%, G%,). Since

Under review as a conference paper at ICLR 2025

the gain G is learned as a function of one input ¥, (2, G) remains convergent even after time interval
of the problem [0, 5], allowing us to use PMP-Net in different time horizon. One can say that PMP-
Net learns the correct relationship between X% and G5, equivalent to deriving the Riccati equation.
Furthermore, running the optimal filter gain, the error covariance, and the loss tr(X) beyond time
T = 5, they all remain close to the ground truth of the analytical solution. The discrepancy during
the transient time does not affect the overall performance, since PMP-Net’s control G converges to
the optimal steady-state value G% . In practice, this is what usually matters, since in Kalman filter
practice, the steady-state G%_ is often pre-computed and used instead of G*(t).

We investigated the effect of using curriculum training. As shown in Fig [2a] using curriculum
training results in a trajectory with a smaller trace of the error covariance throughout the interval of
interest, especially during the transient phase. We leave as future work the optimization of G during
the transient phase.

4 LEARNING THE MINIMUM TIME OPTIMAL CONTROL

In this section, we seek the optimal control strategy that drives a state from an arbitrary initial posi-
tion to a specified terminal position in the shortest possible time. In practice, the control is subject
to constraints, such as maximum output levels. The optimal control strategy for the minimum time
problem is commonly known as “bang-bang” control. Examples of bang-bang control applications
include guiding a rocket to the moon in the shortest time possible while adhering to acceleration
constraints (Athans & Falb,[1996).

4.1 THE MINIMUM TIME PROBLEM

We illustrate the PMP-Net with the following problem. Consider the kinematics system

- B - 1T

where x1, 22, u correspond to the position, velocity, and acceleration of a mobile platform. The goal
is to drive the system from the initial state (x1(0), z2(0)) = (po,vo) to a final destination (ps,vs)
where z(t) € R™ is the state at time ¢, u(t) € R™ is the control at time ¢. We are interested in

finding the optimal control { u*(t),t € [0, t;]} that drives the state from xo to z; in a minimum
time t}. The performance measure can be written as
123

J(x,u) = /1dt (10)
0
where ¢ is the time in which the sequence (z, u) reaches the terminal state. Note that here ¢ ¢ is a
function of (z, u) since the time to reach the target state depends on the state and control. In practice,
the control components may be constrained by requirements such as a maximum acceleration or
maximum thrust
ui(t) <1, i€ [Lm] te€ ftots] (11)
where wu; is the ith component of u. The stopping set for the minimum time problem is S =
{(z(t),t) | z(t) = 0}. Pontryagin’s maximum principle gives us the necessary conditions at the
optimal solution (z*, u*, A*) for equation[12}

A= [3]+[

o 0
=[5
(1) =0

alty) = - |1

14 Xo(t5)ul(th) =0

Under review as a conference paper at ICLR 2025

Since the variables d;, d only appear in one equation, they become redundant. The only additional
parameter is ¢ ¢

4.2 LEARNING BANG-BANG CONTROL WITH PMP-NET

Architecture: PMP-Net for the minimum time problem is followed from Figure[T] In our approach,
the state estimator, costate estimator, and control estimator are modeled by 6-layer feedforward
networks. The learnable parameter ¢ ¢ is subjected to the constraint z(t¢) = x¢. Since d;, ds are
redundant, they are removed from the training.

Training: We propose a new paradigm for training PMP-Net for minimum-time problems. First,
we set a time 7' that is sufficiently larger than t}. We start by pretraining the costate estimator such
that the costate estimator is not a zero function (see Appendix [C)). This can be achieved by training
the costate estimator to output a at time 0 and b at time 7', where a, b are heuristic non-zero values.
Secondly, we propose sequential and alternate training. The equation [I2] suggests that the optimal
control u* as a function of (z*, *) can be learned without knowing (z*, A*). Therefore, in the
first step, we can generate a random (x, A) and train the control estimator to minimize H(x, A\, u).
We freeze the state and costate estimator and take n gradient update for the control estimator since
u* = argmin, H(z, A,u). Next, we freeze the control estimator and train the state and costate
estimator by uniformly sampling 5000 points from time interval [0, 7] and perform one gradient
update for the state and costate estimator before going back to the first step again. This can prevent
vanishing gradients or exploding gradients. We also compute the gradient of the loss function with
respect to the variable ¢, allowing it to be optimized during backpropagation. . We train PMP-Net

using stochastic gradient descent with the initial learning rate 8 x 10~

Evaluation: Similar to the experiment in Section we generate the control estimate from PMP-
Net and use a fourth-order Runge-Kutta integrator to estimate the state trajectory. For the base-
line, we employ the optimal (bang-bang) control and integrate it with the fourth-order Runge-Kutta
method. During prediction, we consider the state to have reached the target if the Euclidean distance
between them is less than € = 0.05.

4.3 RESULTS

i
0 9
acceleration —1 from time [0, 1] and acceleration 41 from time |1, 2] that will drive the state from
the initial state ¢ to the target state x y in minimum time ¢ = 2 seconds. The control switches from
—1to +1 at the switching time at ¢ = 1 where \3(t) = 0 as shown in Fig[3b]

For our experiment, we set g = é \Tp = T = 3.0. The optimal control is to apply the

Figures [3a] and [3b] show that the generated trajectory of state and costate match the optimal solu-
tion. Figure [3c|shows that PMP-Net learns a control strategy that exhibits “bang-bang” behavior,
switching from +1 to —1 when A\ changes sign. Since standard neural networks inherently produce
continuous functions, there is a small discrepancy between the predicted control and the theoret-
ical bang-bang control, as shown in Fig This limitation may, in fact, better reflect real-world
scenarios, as the control cannot switch instantaneously between two extremes. While reducing this
discrepancy is possible by using a larger control estimator and more computational resources to
compute gradients of higher magnitude, such optimization is beyond the scope of this work. Fig-
ure [3d] demonstrates that the trainable variable ¢; in PMP-Net successfully converges to the true
value of t} = 2. This key result highlights PMP-Net’s ability to learn when the terminal time is
unknown.

We also conducted an ablation study to examine the impact of our training methods. Figfa]demon-
strates that when the costate estimator is initialized near the zero function, PMP-Net struggles to
learn effectively, resulting in loss divergence. Moreover, we investigated the effect of adding the
generated and A to train the control estimator. Fig [4b] shows that the output control by the con-
trol estimator trained without using the generated (z, A) does not switch at Ay = 0 and its rate of
switching between two extremes is gentler.

Under review as a conference paper at ICLR 2025

State Costate
1.00 —— oOptimal x; (num.) 104 =
Optimal x; (num.) ~
0.75 - = PMP-Net x; A N\
~ - PMP-Net x; 0.59 \\
0.50 N\
N
0.04 N N\
0.25 N
N
x 0001 S ~ 051 AN
N ’ A N\
-0.25 N\ J/ N
\ , -1.01 ~
-0.50 \ . .
N / 15| — Optimal Ay .
~0.75 N\ J/ 17 — optimal A;
N/ - - PMP-Net A,
-1.00 4 -2.0 PMP-Net A,
0.0 0.5 1.0 15 2.0 2.5 3.0 0.0 0.5 1.0 15 2.0 25 3.0
Time Time
(a) Estimated state x (b) Estimated costate A
Control Minimum time
1.00 B EE— —— Predicted u 3.0 —— Predicted t¢
—-=-- Optimal u* —— Optimal t;
0.75
2.8
0.50
0.25 26
> 0.00 &
2.4
-0.25
-0.50 22
-0.75
2.0
-1.00
71‘.00 70‘.75 70‘.50 70‘.25 O,bD O.‘ZS D.‘SO 0.‘75 1.60 0‘,0 0.‘2 014 0.‘6 018 1‘0 l‘.Z
Az Epochs. le6
(c) Estimated control as a function of Ao (d) Estimated ¢ learned by our PMP-Net

Figure 3: Learning the optimal control for the minimum time problem with PMP-Net. PMP-Net
generates the trajectory of the state, the costate, and the control over the time interval of interest that
matches the optimal trajectory. Most importantly, PMP-Net learns the bang-bang behavior where
control w is a negative sign function of A, and correctly learns the minimum time ¢%.

Loss Control as a function of A,
107 1 —— without pretraining 1.00 —— with generated x, A
—— with pretraining —— without generated x, A
0.75 ——- Optimal u*
10°
0.50
10° 0.25
0.00
10t
-0.25
10 -0.50
10-3 -0.75
-1.00
6 2600 40b0 60‘00 BdDD 10600 12600 14600 16600 fl‘,OO ,0‘]5 fO‘.SO fO‘.ZS DbO 0‘25 0}50 0}75 1}00
Epochs A
(a) Effect of pretraining the costate estimator (b) Effect of using additional z, A to train the control
estimator

Figure 4: Ablation study. We investigate the effect of pretraining the costate estimator and the effect
of using additional z, A to train the control estimator. Fig [da): PMP-Net fails to train when the
costate estimator is not pretrained and is initialized close to zero. Fig[#b): Generating additional
x, A data to train the control estimator reduces the discrepancy between the learned control function
and the optimal bang-bang solution.

Under review as a conference paper at ICLR 2025

5 RELATED WORK

Our approach aligns with the use of neural networks for solving optimal control problems and is
inspired by existing literature on integrating constraints into neural network architectures. Below,
we provide a concise overview of these areas, highlighting their relevance. We provide a brief
overview of these areas and emphasize how our work distinguishes itself from them.

Enforcing dynamics constraints in neural networks: Dynamics constraints in neural networks can
be addressed through two main approaches: (1) designing specialized architectures that inherently
satisfy the constraints (hard constraints), and (2) incorporating the constraints into the loss function,
as done in Physics-Informed Neural Networks (PINNs) Raissi et al.[|(2019) (soft constraints).

In hard constraint approaches, Bottcher et al.| (2022) enforce dynamic constraints using neural ODEs
(Chen et al.l 2018)) to learn the optimal control. ODE-based methods primarily address the forward
problem by integrating the state to the terminal time, calculating the loss function, and minimizing
it. This framework is not applicable when the terminal time ¢; is unknown and must be optimized,
or when the terminal state is prescribed. Similarly, D’ Ambrosio et al.|(2021]) parameterize the state
z and express the control u in terms of z and its higher-order derivatives to satisfy the dynamic
constraints. However, such a representation is not always feasible in general dynamics.

In a soft constraint approach, Mowlavi & Nabi| (2023) employ PINNs to parameterize the state
and control u, ensuring they satisfy the dynamics. The neural network weights are then updated to
minimize the performance metric. However, this direct method assumes the performance metric can
always be calculated—requiring the supports of the relevant functions to be fixed and known.

In contrast, our method uses the indirect method by leveraging the calculus of variations, enabling
us to address cases where the terminal time and terminal state are variables (moving boundary).
Our approach simultaneously learns the optimal control and the minimum time, even under these
conditions.

Incorporating optimality conditions in neural networks: Several works have used optimality
conditions of constrained optimization in neural networks. Reference |Amos & Kolter| (2017) and
Donti et al.| (2021)) incorporate Karush—Kuhn—Tucker (KKT) conditions in implementing backward
passes in neural networks. But this is constrained optimization over constant variables (parameters)
while we optimize over functions with a dynamic constraint. Reference |Yin et al.| (2024) and Betti
et al.[(2024)) propose using neural networks to parameterize the state and costate that learns to satisfy
KKT and PMP conditions. However, these works only consider problems where the support is
fixed. This approach can not be extended to a problem where the support is unknown, e.g., as in the
minimum time problem. While D’ Ambrosio et al.|(2021)) considers learning the terminal time, their
approach remains limited when the terminal state is not specified (e.g. when finding a projection
onto manifolds).

6 CONCLUSION

We present a novel paradigm that integrates calculus of variations and Pontryagin’s maximum prin-
ciple into neural networks for learning the solutions to functional optimization problems arising in
many engineering and technology and scientific problems. Our PMP-Net is unsupervised, general-
izable and can be applied to general optimal control problems with moving boundaries that other
related works have not addressed. We illustrate the PMP-Net strategy with two classical problems
of great applied significance and show that it successfully recovers the Kalman filter and bang-
bang control solutions. By leveraging the Calculus of Variations, we can analyze variations in the
terminal state and time, and PMP-Net successfully optimizes this variable in the minimum time
problem—something most prior works fail to do. Although these solutions have been derived ana-
Iytically in the past, we experiment with these two classic problems, especially bang-bang control
where no prior work has managed to use neural network to solve before, so that we can evaluate our
results with the analytical optimal solutions. Our work paves the way for applying PMP-based neu-
ral networks to more complex, higher-dimensional, and analytically intractable control problems.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Brandon Amos and J. Zico Kolter. OptNet: Differentiable optimization as a layer in neural net-
works. In Proceedings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pp. 136—145. PMLR, 2017.

J. M. Athans and P. L. Falb. Optimal Control: An Introduction to the Theory and Its Applications.
McGraw- Hill, New York, 1996.

M. Athans and E. Tse. A direct derivation of the optimal linear filter using the maximum princi-
ple. IEEE Transactions on Automatic Control, 12(6):690-698, 1967. doi: 10.1109/TAC.1967.
1098732.

Francois Auger, Mickael Hilairet, Josep M. Guerrero, Eric Monmasson, Teresa Orlowska-Kowalska,
and Seiichiro Katsura. Industrial applications of the Kalman filter: A review. IEEE Transactions
on Industrial Electronics, 60(12):5458-5471, 2013. doi: 10.1109/TIE.2012.2236994.

Atilim Giines Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: a survey. J. Mach. Learn. Res., 18(1):5595-5637,
jan 2017. ISSN 1532-4435.

Alessandro Betti and Marco Gori. The principle of least cognitive action. Theoretical
Computer Science, 633:83-99, 2016. ISSN 0304-3975. doi: https://doi.org/10.1016/j.tcs.
2015.06.042. URL https://www.sciencedirect.com/science/article/pii/
S0304397515005526| Biologically Inspired Processes in Neural Computation.

Alessandro Betti, Michele Casoni, Marco Gori, Simone Marullo, Stefano Melacci, and Matteo
Tiezzi. Neural time-reversed generalized riccati equation. Proceedings of the AAAI Conference
on Artificial Intelligence, 38:7935-7942, 03 2024. doi: 10.1609/aaai.v38i8.28630.

Lucas Bottcher, Nino Antulov-Fantulin, and Thomas Asikis. Al Pontryagin or how artificial neural
networks learn to control dynamical systems. Nature Communications, 13, 01 2022. doi: 10.
1038/s41467-021-27590-0.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary dif-
ferential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/
paper/2018/file/69386f6bbldfed68692a24c8686939b9—-Paper.pdfl

George V. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals and Systems, 2:303-314, 1989. URL https://api.semanticscholar.
org/CorpusID:39583609.

Priya Donti, David Rolnick, and J Zico Kolter. Dc3: A learning method for optimization with hard
constraints. In International Conference on Learning Representations, 2021.

Andrea D’ Ambrosio, Enrico Schiassi, Fabio Curti, and Roberto Furfaro. Pontryagin neural networks
with functional interpolation for optimal intercept problems. Mathematics, 9(9), 2021. ISSN
2227-7390. doi: 10.3390/math9090996. URL https://www.mdpi.com/2227-7390/9/
9/99¢6.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neu-
ral networks. In International Conference on Artificial Intelligence and Statistics, 2010. URL
https://api.semanticscholar.org/CorpusID:5575601.

Rudolf E. Kalman and Richard S. Bucy. New results in linear filtering and prediction theory. Journal
of Basic Engineering, 83:95-108, 1961. URL |https://api.semanticscholar.org/
CorpusID:8141345,

Aditi S. Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney.
Characterizing possible failure modes in physics-informed neural networks. Advances in Neural
Information Processing Systems, 34, 2021.

11

https://www.sciencedirect.com/science/article/pii/S0304397515005526
https://www.sciencedirect.com/science/article/pii/S0304397515005526
https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://api.semanticscholar.org/CorpusID:3958369
https://api.semanticscholar.org/CorpusID:3958369
https://www.mdpi.com/2227-7390/9/9/996
https://www.mdpi.com/2227-7390/9/9/996
https://api.semanticscholar.org/CorpusID:5575601
https://api.semanticscholar.org/CorpusID:8141345
https://api.semanticscholar.org/CorpusID:8141345

Under review as a conference paper at ICLR 2025

Leonard, A. McGee, Stanley, and Frank R. Schmidt. Discovery of the Kalman filter as a practi-
cal tool for aerospace and industry. 1985. URL |https://api.semanticscholar.org/
CorpusID:106584647.

Saviz Mowlavi and Saleh Nabi. Optimal control of PDEs using physics-informed neural net-
works. Journal of Computational Physics, 473:111731, 2023. ISSN 0021-9991. doi: https://doi.
org/10.1016/j.jcp.2022.111731. URL https://www.sciencedirect.com/science/
article/pii/S002199912200794X.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equa-
tions. Journal of Computational Physics, 378:686-707, 2019. ISSN 0021-9991. doi: https://doi.
org/10.1016/.jcp.2018.10.045. URL https://www.sciencedirect.com/science/
article/pii/S0021999118307125.

C. Runge. Ueber die numerische auflosung von differentialgleichungen. Mathematische Annalen,
46:167-178, 1895. URL http://eudml.org/doc/157756.

Pengfei Yin, Guangqgiang Xiao, Kejun Tang, and Chao Yang. Aonn: An adjoint-oriented neural
network method for all-at-once solutions of parametric optimal control problems. SIAM Journal
on Scientific Computing, 46(1):C127-C153, 2024. doi: 10.1137/22M154209X. URL https:
//doi.org/10.1137/22M154209X.

12

https://api.semanticscholar.org/CorpusID:106584647
https://api.semanticscholar.org/CorpusID:106584647
https://www.sciencedirect.com/science/article/pii/S002199912200794X
https://www.sciencedirect.com/science/article/pii/S002199912200794X
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
http://eudml.org/doc/157756
https://doi.org/10.1137/22M154209X
https://doi.org/10.1137/22M154209X

Under review as a conference paper at ICLR 2025

A CALCULUS OF VARIATION AND PONTRYAGIN’S MAXIMUM PRINCIPLE

Suppose we want to find the control u*(t),¢ € [0, tf] that causes the system

x':f(m,u)

x(0) = xo (13)

, where f is a continous function with continuous partial derivatives with respect to each variable, to
follow an admissible trajectory z*(t), ¢ € [0, ¢f] that reaches the stopping set S, i.e., (z(tf),tf) € S
and minimizes the performance measure

J(x,u) = gr(a(ty) tr) + / " g(a(t), u(t), t)dt

We consider the stopping set S to be of a general form S = {(z(t),t)| s(z(t),t) =0} = X x R>g
where s : R™ x R is a differentiable function with respect to each variable.We suppose that the
integrand g has continuous first and second partial derivatives with respect to all of its arguments
and g7 has continuous first partial derivatives with respect to all of its arguments.

We introduce the (vector function) Lagrange multipliers A, also known as costates. The primary
function of A is to enable us to make perturbations (dz, Ju) to an admissible trajectory (z,) while
ensuring the dynamic constraints in equation [I3]| remain satisfied. Suppose we have an admissible
trajectory (x,u,) such that reaches the terminal state ¢ at time ¢ ¢, the augmented cost functional
Lis

ty

L(xz,u,\,x¢,t5) = qr(x0,0) + / ds—f(:v,t) + glz,u) + AT (f (2, u) — @)dt

= gr(20,0) + / T), 1) + gl u) + AT (1) — M)t

= qr(20,0) + / dq—T(z(t),t) + H(z,u, A\ t) — ATd)dt

where the Hamiltonian H = g(z(t), u(t)) + A(t)T f(x(¢), u(t)). The calculus of variations studies
how making a small pertubation to (x, u, \) changes the performance. Suppose the new trajectory
(402, u+du, A+ 9X) reaches new terminal state (¢ +0x ¢, t ¢ +0t¢). The change in performance

13

Under review as a conference paper at ICLR 2025

is

AL = L(x + dz,u+ du, A+ 0\, x5+ Sz, ty + 0ty) — L(x,u, A\, xy,ty)
ty

0 dqr OH OH (37-[

or Ign o AT
2 dt(a:t)é +85+ ou + B\ JC) OX — AN dadt

+ [djj (8(t0)) + Mo Atg) = Attt) | 6ty + ol [3ul, 161 [t

/ aq5x+@5 — A5 +8—Ha +a—5u+[f(u) — 7 SAdt
0
dg .
+ [df(a(ty),ty) +Hiw,u, A ty) — A(tf)Tw(tf))] oty + o(l|6x|l, [loull, 10AIl, |6t)dt
t
_|dar O] 5 OH ST
= {61; . A(ty) }&:(tf) /[/\+ o }5:17+ iy ou+ [f(z,u) — &) dAdt
0
6QT 8 T.
| ZE)+ S M A ty) = M) Ti(tg)) | Stp + o(|8x), 1oull, [X]. 116t (]} d
5x ty at ty
ty
_|dar et OH] 5 OH T
= {am . A(ty) }51:f+/[/\+ o }6 iy ou+ [f(z,u) —] dAdt
0
dqr
| |, M x| 9t + o5z 5l 1921 161

The fundamental theorem of calculus of variation states that if (z*,u*) is extrema, then the varia-
tions ¢.J (linear terms of éx, du, 6x ¢, 6t y) must be zero. Since A can be chosen arbitrarily, we choose
A* such that the linear terms of dx is 0, i.e.

OH

A\ =0 (14)
ox Ix
Since the (2*, u*) must satisfy the constraint in equation[13]
flz*,u*)—2*=0 15)
The remaining variation du is independent, so its coefficient must be zero; thus,
OH
| =0 16
8u * ()
The rest of variations are therefore 0, i.e.,
dqr dqr
— — Mt} ox H Nts) | 6t =0 17
{ax*,t; ()] f+[8t LT HE WA | Ot {17

We consider two special cases that present in our experlment: 1) the terminal state x ¢ is fixed, and
2) the terminal time is fixed.

1) First, if the terminal state is fixed and terminal time is free, i.e., dxy = 0. Then d¢; can be
arbitrary and coefficients of 6ty must be 0, i.e.,

aQT * ok yk gk
|:8t —i—H(:c,u,)\,tf)]:O

*,t%

; (18)

(1) = o

2) Now we consider the case where the terminal time is fixed and the terminal state is free, i.e.,
0ty = 0. Then dz s can be arbitrary and coefficients of dz s must be 0, i.e.,

[‘9‘” -)\(t})T} =0

ox
th =ty

*,t%

¥ (19)

14

Under review as a conference paper at ICLR 2025

But in more general cases where 0z s, 0ty are related, the equation [17|reduces to (Athans & Falb)
1996)

1 o 41), Zd S| @)
(20)
H(x*(tfxu*(tf),v(tf»+% Zd S| @

The equation[I8]and equation[I9allow us to determine the optimal terminal state or optimal terminal
time when they are free and to be optimized. These equations from[T4]to [T9]are called Pontryagin’s
maximum principle.

B KALMAN FILTERING DERIVATION

The performance measure for designing optimal linear filter is
= uw(X(T))

Since the terminal time ¢y = T is specified and terminal state is free, equation@] applies. Pontrya-
gin’s maximum principle yields

T
Sr — [A - G*C} DNy [A— G*c] + BQB”+ G*RG*T (21a)
oS TR
g | A =0 (21b)
(VS|
o I, 2le)
D) =1, (21d)
(0) = % 2le)

Simplifying equation 21D] yields,
. T
V= -xla-cc| - [a-cc] ¥ 22)

From equation [21d|and equation 22} we can conclude that A* is symmetric positive definite. Substi-
tute 3* in equation nby R.H.S expression in equation u yields,

2X*[26" R - 257C7] =0 23)
Since * is invertible,
G*=¥*CT'R™! 24)
Plugging this solution G* in equation 2Ta] yields
Y =AY + AT + BQB - >*CTR'CY* (25)

which is the matrix differential equation of the Riccati type. The solution >* can be derived from
the initial condition £*(0) = ¥ and the differential equation 23]

C BANG-BANG CONTROL DERIVATION

Since the terminal state x is specified and terminal time is free, equation[T8]applies. Pontryagin’s
maximum principle yields

<[] [

Under review as a conference paper at ICLR 2025

[0
W= [AJ (26b)
u* = argmin 1+ A\ja5 + Mu (26¢)
L+ A[(Ep)z5 (L)) + A5 (t)u™(t}) = 0 (264d)
21(0)| _ o
) =[] (36e)
)1
Lcw;) ~ o (200

The equation 26¢]yield
Vu, 14+ Ajzg + Asu™ <14+ Ajza + Asu

o = —sign(\g) it A3 #0
N indeterminate if A5 =0

Assuming that A3 is not a zero function, the equation@yields

Ai(t) =1

27
My(t) = —ert + ¢ &7

where ¢4, ¢, are constants to be determined. We see from equation 27 that A, changes sign at most
once. There are two possible cases:

1. A sign remains constant in [0, t}]

2. A; changes sign in [0, ¢}]

For case 1, we have the general form of

xo(t) = vo + at fort € [0,}]
1, . (28)
x1(t) = po + vot + §at for t € [0,%%]
For case 2, we have the general form of x
vy + at ift <t,,
CEQ(t) = cf ok
vo + by — a(t — ty,) 1ftf2t2tm
1
Po + Uot + *atQ if ¢ S tnz (29)
z1(t) = 2

1
xo + vot + 3att,, — 2at?, — §at2 ift >t

where ¢ = %1 and t,, is the time where A} switches sign. To determine which case corresponds to
the system, we validate with the boundary condition. Suppose we try with the general expression
in equation [29)and substitute in boundary conditions in equation 26}

—City +c2 =0 (From the condition A} (t,,) = 0)
a==l1

vo + aty, —alty —ty,) =0 (From equation 26)) (30)

1
po + vot + 3at ¢t,, — 2atfn — iat2 =0 (From equation@

1—a(city +c2) =0 (From equation 26d))

Specific example: zg = 1,v9 = 0.

16

Under review as a conference paper at ICLR 2025

Solving equation [30] yields

ty =2ty
1= —at?,
=-1
ta—l G1)
01:1
02:1

which means the system with initial state condition (1, 0) falls the second case. If we substitute the
general expression equation [28|instead, there would be no solutions satisfying equation

Remarks: This derivation of bang-bang solution is based on assumption that A is not a zero function.

17

	Introduction
	Theory
	Optimal control problem
	Pontryagin's Maximum Principle Network

	Designing the optimal linear filter
	Kalman Filter
	Learning the Kalman Filter with PMP-Net
	Results

	Learning the Minimum Time optimal control
	The Minimum time problem
	Learning bang-bang control with PMP-Net
	Results

	Related Work
	Conclusion
	Calculus of variation and Pontryagin's maximum principle
	Kalman Filtering Derivation
	Bang-bang control derivation

