
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

IS PONTRYAGIN’S MAXIMUM PRINCIPLE ALL YOU
NEED? SOLVING OPTIMAL CONTROL PROBLEMS WITH
PMP-INSPIRED NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Calculus of Variations is the mathematics of functional optimization, i.e., when the
solutions are functions over a time interval. This is particularly important when
the time interval, or support, is unknown like in minimum-time control problems,
so that forward-in-time solutions are not possible. Calculus of Variations also of-
fers a robust framework for learning optimal control and inference with moving
boundaries. How can this framework be leveraged to design neural networks to
solve challenges in control and inference? We propose the Pontryagin’s Maxi-
mum Principle Neural Network (PMP-Net) that is tailored to estimate control and
inference solutions, in accordance with the necessary conditions outlined by Pon-
tryagin’s Maximum Principle. We assess PMP-Net on two classic optimal control
and inference problems: optimal linear filtering and minimum-time control. Our
findings indicate that PMP-Net can be effectively trained in an unsupervised man-
ner to solve these problems without the need for ground-truth data, successfully
deriving the classical “Kalman filter” and “bang-bang” control solution. This es-
tablishes a new approach for addressing general, possibly yet unsolved, inference
and optimal control problems.

1 INTRODUCTION

Standard neural networks excel at learning from labeled data, but often lack inherent knowledge of
physical principles. In many engineering and scientific applications, there is a wealth of accumulated
knowledge and practices that could inform the architecture of learning models. In addition, data in
these fields are often scarce, difficult, or expensive to obtain. For instance, telecommunications,
data processing, automation, robotics, and control problems frequently have little or no labeled data,
making traditional supervised learning methods challenging to apply.

This paper presents a method for designing deep models from first principles by incorporating prior
knowledge, specifically existing design principles that have been successful in various engineering,
scientific, and technology practices. It focuses on two design problems of broad practical interest:
determining the optimal linear estimator and solving the optimal minimum time control problem.
We show that our deep models recover the solution to the first, the well-known Kalman filter, and to
the second, the bang-bang control, also known as on-off control.

Optimizing over functions with moving boundaries, i.e., when the optimizing variable is a set of
whole functions over a variable time interval, falls under the realm of the Calculus of Variations,
and a principled solution methodology can be based on Pontryagin’s maximum principle (PMP).
PMP offers valuable prior knowledge about the necessary conditions for optimal solutions and often
provides sufficient conditions, making the optimal solution unique in many cases. This motivates
the integration of PMP into machine learning training methodologies.

In this paper, we draw inspiration from the Calculus of Variations—a field focused on finding the
maxima and minima of functionals through variations—to design a neural network based on basic
principles, which we call the “Pontryagin’s Maximum Principle Neural Network” (PMP-Net). This
network is designed to solve optimization problems like in Kalman filtering and those arising in con-
trol contexts. We start by formulating a variational approach to these problems, using the calculus of
variations to derive the necessary conditions for optimization by applying Pontryagin’s Maximum

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Principle. Although mathematicians and engineers typically solve these conditions analytically or
numerically, such methods can be challenging when dealing with nonlinear, second-order differen-
tial equations with complex boundary conditions. Instead, we propose using a neural network to
learn the optimal solution from PMP’s necessary conditions.

Additionally, in minimum-time problems such as the bang-bang control problem, there are two
key challenges. First, because the terminal time tf is to be optimized, the optimization is over a
functional space, meaning the optimal solutions are functions over the entire interval [0 , tf], where
tf itself is unknown. As a result, the forward method can not be used and the performance metrics
are only valid for admissible trajectories (the trajectory that reaches the final state. Second, the
extra constraints, such as functions being bounded or living in a compact set, restrict the control
functions to be learned. The optimal solution in these cases is often discontinuous, resembling a
step function, and may be undefined in certain regions. These complexities frequently result in
vanishing or exploding gradients during neural network training and no prior work overcome these
challenges.

This paper presents a method to integrate prior knowledge from Calculus of Variations, functional
optimization, and classical control into the architectural design of deep models. We incorporate
dynamical constraints, control constraints, and conditions derived from PMP into the loss function
for training neural networks, enabling unsupervised learning. Our contributions are as follows.

Main contributions:

• Incorporate calculus of variations and Pontryagin’s Maximum Principle as soft constraints
in ML training methodology and minimizing optimality conditions residual instead of min-
imizing actual performance metrics. This provides a benefit when the performance func-
tional cannot always be computed.

• Engineer a novel neural network architecture, PMP-Net, that mimics the design of feed-
back controllers used in optimal control. This allows PMP-Net to apply to different time
horizons.

• Propose learning paradigms that effectively train PMP-Net to derive the optimal solution.
• Show that our PMP-Net replicates the design of the Kalman filter and the bang-bang control

without using labeled data.

2 THEORY

2.1 OPTIMAL CONTROL PROBLEM

We illustrate our approach in the context of a control problem. Given an initial value problem,
specified by a dynamical system and its initial condition

ẋ(t) = f(x(t), u(t))

x(0) = x0
(1)

where x : R≥0 7→ X ⊆ Rm is the state function, u : R≥0 7→ U ⊆ Rn is the control function, and
f : X ×U 7→ X is a known function representing the dynamics. We suppose that x is differentiable
and f is differentiable with respect to each variable. Unlike previous works that consider fixed
support (Mowlavi & Nabi, 2023) or fixed terminal state (D’Ambrosio et al., 2021), we consider a
more general stopping set S = {(x(t), t)| s(x(t), t) = 0} = X×R≥0 where s : Rm×R≥0 7→ Rk is
differentiable with respect to each variable. This definition of S allows us to solve general optimal
control problems when the terminal state and time are not explicitly specified, e.g., finding the
distance between two curves or finding the minimum time to reach the surface of a manifold. In
these cases, we do not know the terminal point and terminal time beforehand.

Optimal control problems involve finding for example a control function u⋆ : [0, tf] 7→ U such that
the corresponding trajectory (x⋆(t), u⋆(t))t∈[0,tf] reaches the terminal value (x⋆(tf), tf) ∈ S and
minimizes some performance measure J(x, u) of the form

J(x, u) = qT (x(tf), tf) +

tf∫
0

g(x(t), u(t))dt (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where qT is the terminal cost and g is the running cost. Not all pairs of functions (x, u) are ad-
missible trajectories since trajectories must satisfy a dynamical constraint ẋ(t) = f(x(t), u(t)) and
(x(tf), tf) ∈ S. The domain of integration [0, tf] can be variable, depending on each admissible
control. The optimal control problem is therefore the constrained optimization

min
x,u

J(x, u)

s.t. ẋ(t) = f(x(t), u(t)),∀t ∈ [0, tf]

x(0) = x0, (x(tf), tf) ∈ S
(3)

In equation 3, the optimization variables are functions over variable support, say {u(t), t ∈ [0 , tf]},
where tf may be fixed or is to be optimized itself (like in the minimum time problem).

To handle dynamics constraints, the (function vector) Langragian multipliers λ(t) is introduced and
the new performance measure becomes

L(x, u, λ) = qT (x(tf), tf) +

tf∫
0

g(x(t), u(t)) + λ(t)T (f(x(t), u(t))− ẋ(t))dt (4)

For all admissible trajectories (x, u), we have L(x, u, λ) = J(x, u). Therefore, the admissible
optimal solution for equation 4 is also the optimal solution for equation 3.

Calculus of variations enables us to identify the optimal functions (x, u, λ) that minimize L. By
examining variations, we can derive the necessary conditions — known as Pontryagin’s maximum
principle (PMP) — at the optimal solution (x⋆, u⋆, λ⋆) for equation 4.

ẋ⋆ = f(x⋆, u⋆)

λ̇⋆
T
= −∂H

∂x

∣∣∣
⋆

u⋆ = argmin
u

H(x⋆, u, λ⋆)

x⋆(0) = x0

s(x⋆(tf), tf) = 0

∂qT
∂x

(x⋆(tf), tf)− λ⋆(tf) =

k∑
i=1

di

[
∂si
∂x

(x⋆(tf), tf)

]
(B1)

H(x⋆(tf), u
⋆(tf), λ

⋆(tf)) +
∂qT
∂t

(x⋆(tf), tf) =

k∑
i=1

di

[
∂si
∂t

(x⋆(tf), tf)

]
(B2)

(5)

where H denotes the scalar function called the “Hamiltonian,” defined as H(x(t), u(t), λ(t)) =
g(x(t), u(t)) + λ(t)T f(x(t), u(t)). The variables d1, ..., dk are to be learned and enforce the ter-
minal state to be in a general stopping set S. The system of partial differential equation 5 is gen-
erally nonlinear, time-varying, second-order, and hard-to-solve. Numerical methods also pose chal-
lenges due to the split boundary conditions–neither the initial values (x(0), ẋ(0)) nor the final values
(λ(tf), λ̇(tf)) are fully known.

2.2 PONTRYAGIN’S MAXIMUM PRINCIPLE NETWORK

Instead of solving equation 5 analytically or numerically, we propose leveraging neural net-
works’ well-known capability as universal function approximators (Cybenko, 1989) to learn
{x(t), u(t), λ(t), t ∈ [0 , tf]}, along with the learnable parameters {tf , d1, ..., dk}, that satisfy PMP.
In the training stage, rather than directly matching the PMP-Net’s outputs to ground truth data
{x(t)⋆, u(t)⋆, λ(t)⋆, t ∈ [0 , tf]}, our PMP-Net learns to predict solutions that adhere to the PMP
constraints. Because this process incorporates a solution methodology, the PMP, we interpret it as
bringing to the neural networks “prior knowledge”(Betti & Gori, 2016). Our approach introduces
an inductive bias into the PMP-Net, allowing it to learn the optimal solution in an unsupervised
manner. By simultaneously predicting both the state and the control, PMP-Net eliminates the need
for integration and can address optimal control problems with unknown terminal time.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

During the forward pass, PMP-Net takes time as input and predicts the state x(t), the control u(t),
and the costate λ(t). The Hamiltonian H is then calculated based on these predictions. By leveraging
the automatic differentiation capabilities of neural networks (Baydin et al., 2017), we can efficiently
compute the derivatives and partial derivatives present in equation 5 by computing in-graph gradients
of the relevant output nodes with respect to their corresponding inputs. We calculate the residuals
of the differential equations in PMP and incorporate them into the loss function, along with the
L2 loss between the predicted and target states at the boundary conditions. In the experiments in
Sections 3 and 4, we also incorporate additional architectural features into our PMP-Net to enforce
hard constraints and to allow PMP-Net to learn even when the terminal time is unknown.

Figure 1: PMP-Net architecture. The state estimator, the costate estimator, and the control estimator
are neural networks. We compute the Hamiltonian H, relevant derivatives, and residual of differen-
tial equations in PMP. The total loss function consists of loss from residuals and loss from boundary
conditions. The variables tf , d1, ..., dm are learnable parameters. Since all loss terms are calculated
based on predictions, no labeled data is needed for training

3 DESIGNING THE OPTIMAL LINEAR FILTER

In this section, our goal is to design a linear filter that provides the best estimate of the current
state based on noisy observations. The optimal solution is known as “Kalman Filtering” (Kalman &
Bucy, 1961), which is one of the most practical and computationally efficient methods for solving
estimation, tracking, and prediction problems. The Kalman filter has been widely applied in var-
ious fields from satellite data assimilation in physical oceanography, to econometric studies, or to
aerospace-related challenges (Leonard et al., 1985; Auger et al., 2013). The optimal solution being
known, the Kalman filter is the ground truth that serves to benchmark PMP-Net.

3.1 KALMAN FILTER

Reference Athans & Tse (1967) formulated a variational approach to derive the Kalman filter as an
optimal control problem. We consider the dynamical system

ẋ(t) = Ax(t) +Bw(t), 0 ≤ t ≤ tf , wt−1 ∼ N (0,Q)

y(t) = Cx(t) + v(t), vt−1 ∼ N (0,R)

x(0) ∼ N (x0,Σ0)

(6)

where x(t) ∈ Rn is the state, y(t) ∈ Rm is the observation. A ∈ Rn×n is the state transition matrix,
B ∈ Rn×r is the input matrix, and C ∈ Rn×r is the measurement matrix. The white Gaussian
noise w(t) (resp. v(t)) is the process (resp. measurement) with covariance Q (resp. R) noise. We

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

assume that x(0), w(t), v(t), are independent of each other. Kalman designed a recursive filter that
estimates the state by

˙̂x(t) = Ax̂(t) +G(t)
[
Cy(t)−Ax̂(t)

]
x̂(0) = x0

(7)

where G(t) is the Kalman gain to be determined. Given the state estimation x̂(t) at time t, the error
covariance defined as

Σ(t) = E
[
(x̂− x)(x̂− x)T

]
has the following dynamics

Σ̇(t) =
[
A−G(t)C

]
Σ(t) + Σ(t)

[
A−G(t)C

]T
+BQBT +G(t)RG(t)T

Σ(0) =Σ0

(8)

where Σ(t) is the n × n error covariance matrix. The goal of Kalman filter is to find the optimal
gain (perceived in this variational approach as a control) G⋆(t) such that the final cost

qT (Σ(T)) = tr [Σ(T)]
is minimized, or equivalently the L2 norm between the estimation and the actual state is minimized.
In this case, the stopping set is S = {(Σ(t), t)| t = T}. Applying Pontryagin’s maximum principle
to equation 8 (see Appendix B), the necessary conditions to solve for the optimal Kalman gain are

Σ̇⋆ = f(Σ⋆, G⋆)

λ̇⋆
T
= −∂H

∂Σ

∣∣∣
⋆

∂H
∂G

∣∣∣
⋆
= 0

λ⋆(T)T = In

(9)

where the Hamiltonian H = tr
[
λT f(Σ⋆, G⋆)

]
3.2 LEARNING THE KALMAN FILTER WITH PMP-NET

Architecture: The PMP-Net architecture follows the architecture shown in Figure 1. Since Σ is
both symmetric and positive semi-definite, we embed this inductive bias into our neural network
architecture. Specifically, the state estimator outputs an intermediate matrix P and estimates the
error covariance Σ as Σ = PTP , ensuring symmetry and positive semi-definiteness. We adopt the
feedback loop design in engineering so that the control estimator only takes the output state as input.
The state, costate, and control estimators are modeled by 6-layer feedforward neural networks with
hyperbolic tangent activation.

Training: We adopt curriculum training, as optimizing loss with multiple soft constraints can be
challenging (Krishnapriyan et al., 2021). We set the loss function to be

Lossθ = LossBC + αLossPDE

where
LossBC = ∥Σ(0)− Σ0∥2 + ∥λ(T)− In∥2

LossPDE =
1

N

N∑
i=0

∥Σ̇(ti)− f(Σ(ti), G(ti))∥2 +
∥∥∥∥λ̇(ti) + ∂H(Σ, G, λ, ti)

∂Σ

∥∥∥∥
2

+

∥∥∥∥∂H∂G ∣∣∣
ti

∥∥∥∥
2

During each epoch, 5000 points are uniformly sampled from time [0 , T]. After every 5000 epochs,
we increment the value of α by a factor of 1.04. All neural networks are initialized with Glorot
uniform initialization (Glorot & Bengio, 2010). We train PMP-Net using stochastic gradient descent
with the initial learning rate 8× 10−4.

Evaluation: For a fair evaluation, we take the estimated control from PMP-Net and use the fourth-
order Runge-Kutta integrator (Runge, 1895) in scipy.integrate.solve ivp to derive the trajec-
tory of the state. This is necessary because the state estimated by PMP-Net might not adhere to the
dynamics constraints, making it into an implausible trajectory.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.3 RESULTS

For our experiment, we set

A=

[
0 I2
0 0

]
∈R4×4, B =

[
0
I2

]
∈R4×2, C = I4, Q = 0.5I2, R =

4.0 1.5 0 0
1.5 4.0 0 0
0 0 2.0 1.0
0 0 1.0 2.0

, T = 5.0

This dynamical system models a kinematics system where the state x corresponds to position and
velocity and the control u corresponds to the force applied to the state. With these experimental set-
tings, Kalman filtering reaches a steady state where Σ⋆ converges (hence, the Kalman gain converges
to G⋆

∞). We compare our method against two baselines: 1) the baseline NN trained with 50 points
of ground truth control G⋆ sampled from the time interval [0 , 2.0], covering the transient phase of
the Kalman filter before it reaches steady-state and, 2) PINN that enforces the dynamics constraints
and minimize the cost functional qT (Mowlavi & Nabi, 2023). We evaluate and compare the trace of

0 1 2 3 4 5
Time

5.25

5.50

5.75

6.00

6.25

6.50

6.75

7.00

Trace

Optimal
PMP-Net with curriculum training
PMP-Net with standard training
Baseline NN (using data)

(a) Trace Σ

0 1 2 3 4 5
Time

5

6

7

8

9

10

11

12

Trace
Optimal
Baseline PINN with cost functional

(b) Divergence of Σ using PINN+functional cost

0 1 2 3 4 5 6
Time

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Steady-state convergence of

Kalman 11
Kalman 33
PMP-Net 11
PMP-Net 33

(c) Steady state convergence of Σ

0 1 2 3 4 5 6 7
Time

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Steady-state convergence of G
Kalman G11
Kalman G33
PMP-Net G11
PMP-Net G33

(d) Steady state convergence of G

Figure 2: PMP-Net learns the Kalman filter, deriving the optimal value of the functional cost. The
baseline NN performs well in the time interval where ground truth is available, it fails to learn
the optimal steady-state Kalman gain G⋆

∞, resulting in diverging error. The baseline PINN shows
diverging error. PMP-Net learns the optimal steady-state error covariance Σ⋆

∞ and Kalman gain G⋆
∞

and they remain convergent beyond the time interval of the problem [0, 5]

Σ generated by PMP-Net, the baseline methods, and the optimal Kalman gain. Since the objective
is to minimize the trace of Σ at the terminal time T , we focus primarily on the final value tr(Σ(T)).
Figure 2a shows that, even though there is some discrepancy between the PMP-Net’s control output
G and the Kalman gain G⋆ during the transient phase, PMP-Net matches the optimal Kalman gain
G⋆

∞ at the terminal time, while the baseline diverges. Figure 2b shows that the baseline PINN that
learns to satisfy dynamics constraint and to minimize the cost functional without using optimality
conditions shows a divergent behavior. This result demonstrates that including all optimality condi-
tions does not necessarily make optimizing neural networks harder. Figure 2c and 2d show that the
PMP-Net’s trajectory of (Σ, G) converges to their corresponding optimal values (Σ⋆

∞, G⋆
∞). Since

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

the gain G is learned as a function of one input Σ, (Σ, G) remains convergent even after time interval
of the problem [0, 5], allowing us to use PMP-Net in different time horizon. One can say that PMP-
Net learns the correct relationship between Σ⋆

∞ and G⋆
∞, equivalent to deriving the Riccati equation.

Furthermore, running the optimal filter gain, the error covariance, and the loss tr(Σ) beyond time
T = 5, they all remain close to the ground truth of the analytical solution. The discrepancy during
the transient time does not affect the overall performance, since PMP-Net’s control G converges to
the optimal steady-state value G⋆

∞. In practice, this is what usually matters, since in Kalman filter
practice, the steady-state G⋆

∞ is often pre-computed and used instead of G⋆(t).

We investigated the effect of using curriculum training. As shown in Fig 2a, using curriculum
training results in a trajectory with a smaller trace of the error covariance throughout the interval of
interest, especially during the transient phase. We leave as future work the optimization of G during
the transient phase.

4 LEARNING THE MINIMUM TIME OPTIMAL CONTROL

In this section, we seek the optimal control strategy that drives a state from an arbitrary initial posi-
tion to a specified terminal position in the shortest possible time. In practice, the control is subject
to constraints, such as maximum output levels. The optimal control strategy for the minimum time
problem is commonly known as “bang-bang” control. Examples of bang-bang control applications
include guiding a rocket to the moon in the shortest time possible while adhering to acceleration
constraints (Athans & Falb, 1996).

4.1 THE MINIMUM TIME PROBLEM

We illustrate the PMP-Net with the following problem. Consider the kinematics system[
ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 0

] [
x1(t)
x2(t)

]
+

[
0
1

]
u

where x1, x2, u correspond to the position, velocity, and acceleration of a mobile platform. The goal
is to drive the system from the initial state (x1(0), x2(0)) = (p0, v0) to a final destination (pf , vf)
where x(t) ∈ Rn is the state at time t, u(t) ∈ Rm is the control at time t. We are interested in
finding the optimal control

{
u⋆(t), t ∈ [0 , t⋆f]

}
that drives the state from x0 to xf in a minimum

time t⋆f . The performance measure can be written as

J(x, u) =

tf∫
0

1dt (10)

where tf is the time in which the sequence (x, u) reaches the terminal state. Note that here tf is a
function of (x, u) since the time to reach the target state depends on the state and control. In practice,
the control components may be constrained by requirements such as a maximum acceleration or
maximum thrust

|ui(t)| ≤ 1, i ∈ [1,m] t ∈ [t0, tf] (11)
where ui is the ith component of u. The stopping set for the minimum time problem is S =
{(x(t), t) | x(t) = 0}. Pontryagin’s maximum principle gives us the necessary conditions at the
optimal solution (x⋆, u⋆, λ⋆) for equation 12.[

ẋ⋆
1

ẋ⋆
2

]
=

[
x⋆
1
0

]
+

[
0
u⋆

]
λ̇⋆ =

[
0

−λ⋆
1

]
u⋆ = argmin

u
1 + λ⋆

1x
⋆
2 + λ⋆

2u

x(t⋆f) = 0

λ2(t
⋆
f) = −

[
d1
d2

]
1 + λ2(t

⋆
f)u(t

⋆
f) = 0

(12)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Since the variables d1, d2 only appear in one equation, they become redundant. The only additional
parameter is tf

4.2 LEARNING BANG-BANG CONTROL WITH PMP-NET

Architecture: PMP-Net for the minimum time problem is followed from Figure 1. In our approach,
the state estimator, costate estimator, and control estimator are modeled by 6-layer feedforward
networks. The learnable parameter tf is subjected to the constraint x(tf) = xf . Since d1, d2 are
redundant, they are removed from the training.

Training: We propose a new paradigm for training PMP-Net for minimum-time problems. First,
we set a time T that is sufficiently larger than t⋆f . We start by pretraining the costate estimator such
that the costate estimator is not a zero function (see Appendix C). This can be achieved by training
the costate estimator to output a at time 0 and b at time T , where a, b are heuristic non-zero values.
Secondly, we propose sequential and alternate training. The equation 12 suggests that the optimal
control u⋆ as a function of (x⋆, λ⋆) can be learned without knowing (x⋆, λ⋆). Therefore, in the
first step, we can generate a random (x, λ) and train the control estimator to minimize H(x, λ, u).
We freeze the state and costate estimator and take n gradient update for the control estimator since
u⋆ = argminu H(x, λ, u). Next, we freeze the control estimator and train the state and costate
estimator by uniformly sampling 5000 points from time interval [0, T] and perform one gradient
update for the state and costate estimator before going back to the first step again. This can prevent
vanishing gradients or exploding gradients. We also compute the gradient of the loss function with
respect to the variable tf , allowing it to be optimized during backpropagation. . We train PMP-Net
using stochastic gradient descent with the initial learning rate 8× 10−4.

Evaluation: Similar to the experiment in Section 3.2, we generate the control estimate from PMP-
Net and use a fourth-order Runge-Kutta integrator to estimate the state trajectory. For the base-
line, we employ the optimal (bang-bang) control and integrate it with the fourth-order Runge-Kutta
method. During prediction, we consider the state to have reached the target if the Euclidean distance
between them is less than ϵ = 0.05.

4.3 RESULTS

For our experiment, we set x0 =

[
1
0

]
, xf =

[
0
0

]
, T = 3.0. The optimal control is to apply the

acceleration −1 from time [0, 1] and acceleration +1 from time]1, 2] that will drive the state from
the initial state x0 to the target state xf in minimum time t⋆f = 2 seconds. The control switches from
−1 to +1 at the switching time at t = 1 where λ⋆

2(t) = 0 as shown in Fig 3b

Figures 3a and 3b show that the generated trajectory of state and costate match the optimal solu-
tion. Figure 3c shows that PMP-Net learns a control strategy that exhibits “bang-bang” behavior,
switching from +1 to −1 when λ2 changes sign. Since standard neural networks inherently produce
continuous functions, there is a small discrepancy between the predicted control and the theoret-
ical bang-bang control, as shown in Fig 3c. This limitation may, in fact, better reflect real-world
scenarios, as the control cannot switch instantaneously between two extremes. While reducing this
discrepancy is possible by using a larger control estimator and more computational resources to
compute gradients of higher magnitude, such optimization is beyond the scope of this work. Fig-
ure 3d demonstrates that the trainable variable tf in PMP-Net successfully converges to the true
value of t⋆f = 2. This key result highlights PMP-Net’s ability to learn when the terminal time is
unknown.

We also conducted an ablation study to examine the impact of our training methods. Fig 4a demon-
strates that when the costate estimator is initialized near the zero function, PMP-Net struggles to
learn effectively, resulting in loss divergence. Moreover, we investigated the effect of adding the
generated x and λ to train the control estimator. Fig 4b shows that the output control by the con-
trol estimator trained without using the generated (x, λ) does not switch at λ2 = 0 and its rate of
switching between two extremes is gentler.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

x

State
Optimal x1 (num.)
Optimal x2 (num.)
PMP-Net x1
PMP-Net x2

(a) Estimated state x

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Costate

Optimal 1
Optimal 2
PMP-Net 1
PMP-Net 2

(b) Estimated costate λ

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
2

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u

Control
Predicted u
Optimal u

(c) Estimated control as a function of λ2

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Epochs 1e6

2.0

2.2

2.4

2.6

2.8

3.0

t f

Minimum time
Predicted tf

Optimal tf

(d) Estimated tf learned by our PMP-Net

Figure 3: Learning the optimal control for the minimum time problem with PMP-Net. PMP-Net
generates the trajectory of the state, the costate, and the control over the time interval of interest that
matches the optimal trajectory. Most importantly, PMP-Net learns the bang-bang behavior where
control u is a negative sign function of λ2 and correctly learns the minimum time t⋆f .

0 2000 4000 6000 8000 10000 12000 14000 16000
Epochs

10 3

10 1

101

103

105

107

Loss
without pretraining
with pretraining

(a) Effect of pretraining the costate estimator

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
2

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Control as a function of 2

with generated x,
without generated x,
Optimal u

(b) Effect of using additional x, λ to train the control
estimator

Figure 4: Ablation study. We investigate the effect of pretraining the costate estimator and the effect
of using additional x, λ to train the control estimator. Fig 4a): PMP-Net fails to train when the
costate estimator is not pretrained and is initialized close to zero. Fig 4b): Generating additional
x, λ data to train the control estimator reduces the discrepancy between the learned control function
and the optimal bang-bang solution.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 RELATED WORK

Our approach aligns with the use of neural networks for solving optimal control problems and is
inspired by existing literature on integrating constraints into neural network architectures. Below,
we provide a concise overview of these areas, highlighting their relevance. We provide a brief
overview of these areas and emphasize how our work distinguishes itself from them.

Enforcing dynamics constraints in neural networks: Dynamics constraints in neural networks can
be addressed through two main approaches: (1) designing specialized architectures that inherently
satisfy the constraints (hard constraints), and (2) incorporating the constraints into the loss function,
as done in Physics-Informed Neural Networks (PINNs) Raissi et al. (2019) (soft constraints).

In hard constraint approaches, Böttcher et al. (2022) enforce dynamic constraints using neural ODEs
(Chen et al., 2018) to learn the optimal control. ODE-based methods primarily address the forward
problem by integrating the state to the terminal time, calculating the loss function, and minimizing
it. This framework is not applicable when the terminal time tf is unknown and must be optimized,
or when the terminal state is prescribed. Similarly, D’Ambrosio et al. (2021) parameterize the state
x and express the control u in terms of x and its higher-order derivatives to satisfy the dynamic
constraints. However, such a representation is not always feasible in general dynamics.

In a soft constraint approach, Mowlavi & Nabi (2023) employ PINNs to parameterize the state x
and control u, ensuring they satisfy the dynamics. The neural network weights are then updated to
minimize the performance metric. However, this direct method assumes the performance metric can
always be calculated—requiring the supports of the relevant functions to be fixed and known.

In contrast, our method uses the indirect method by leveraging the calculus of variations, enabling
us to address cases where the terminal time and terminal state are variables (moving boundary).
Our approach simultaneously learns the optimal control and the minimum time, even under these
conditions.

Incorporating optimality conditions in neural networks: Several works have used optimality
conditions of constrained optimization in neural networks. Reference Amos & Kolter (2017) and
Donti et al. (2021) incorporate Karush–Kuhn–Tucker (KKT) conditions in implementing backward
passes in neural networks. But this is constrained optimization over constant variables (parameters)
while we optimize over functions with a dynamic constraint. Reference Yin et al. (2024) and Betti
et al. (2024) propose using neural networks to parameterize the state and costate that learns to satisfy
KKT and PMP conditions. However, these works only consider problems where the support is
fixed. This approach can not be extended to a problem where the support is unknown, e.g., as in the
minimum time problem. While D’Ambrosio et al. (2021) considers learning the terminal time, their
approach remains limited when the terminal state is not specified (e.g. when finding a projection
onto manifolds).

6 CONCLUSION

We present a novel paradigm that integrates calculus of variations and Pontryagin’s maximum prin-
ciple into neural networks for learning the solutions to functional optimization problems arising in
many engineering and technology and scientific problems. Our PMP-Net is unsupervised, general-
izable and can be applied to general optimal control problems with moving boundaries that other
related works have not addressed. We illustrate the PMP-Net strategy with two classical problems
of great applied significance and show that it successfully recovers the Kalman filter and bang-
bang control solutions. By leveraging the Calculus of Variations, we can analyze variations in the
terminal state and time, and PMP-Net successfully optimizes this variable in the minimum time
problem—something most prior works fail to do. Although these solutions have been derived ana-
lytically in the past, we experiment with these two classic problems, especially bang-bang control
where no prior work has managed to use neural network to solve before, so that we can evaluate our
results with the analytical optimal solutions. Our work paves the way for applying PMP-based neu-
ral networks to more complex, higher-dimensional, and analytically intractable control problems.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Brandon Amos and J. Zico Kolter. OptNet: Differentiable optimization as a layer in neural net-
works. In Proceedings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pp. 136–145. PMLR, 2017.

J. M. Athans and P. L. Falb. Optimal Control: An Introduction to the Theory and Its Applications.
McGraw- Hill, New York, 1996.

M. Athans and E. Tse. A direct derivation of the optimal linear filter using the maximum princi-
ple. IEEE Transactions on Automatic Control, 12(6):690–698, 1967. doi: 10.1109/TAC.1967.
1098732.

François Auger, Mickael Hilairet, Josep M. Guerrero, Eric Monmasson, Teresa Orlowska-Kowalska,
and Seiichiro Katsura. Industrial applications of the Kalman filter: A review. IEEE Transactions
on Industrial Electronics, 60(12):5458–5471, 2013. doi: 10.1109/TIE.2012.2236994.

Atılım Günes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: a survey. J. Mach. Learn. Res., 18(1):5595–5637,
jan 2017. ISSN 1532-4435.

Alessandro Betti and Marco Gori. The principle of least cognitive action. Theoretical
Computer Science, 633:83–99, 2016. ISSN 0304-3975. doi: https://doi.org/10.1016/j.tcs.
2015.06.042. URL https://www.sciencedirect.com/science/article/pii/
S0304397515005526. Biologically Inspired Processes in Neural Computation.

Alessandro Betti, Michele Casoni, Marco Gori, Simone Marullo, Stefano Melacci, and Matteo
Tiezzi. Neural time-reversed generalized riccati equation. Proceedings of the AAAI Conference
on Artificial Intelligence, 38:7935–7942, 03 2024. doi: 10.1609/aaai.v38i8.28630.

Lucas Böttcher, Nino Antulov-Fantulin, and Thomas Asikis. AI Pontryagin or how artificial neural
networks learn to control dynamical systems. Nature Communications, 13, 01 2022. doi: 10.
1038/s41467-021-27590-0.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary dif-
ferential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Cur-
ran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/
paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf.

George V. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals and Systems, 2:303–314, 1989. URL https://api.semanticscholar.
org/CorpusID:3958369.

Priya Donti, David Rolnick, and J Zico Kolter. Dc3: A learning method for optimization with hard
constraints. In International Conference on Learning Representations, 2021.

Andrea D’Ambrosio, Enrico Schiassi, Fabio Curti, and Roberto Furfaro. Pontryagin neural networks
with functional interpolation for optimal intercept problems. Mathematics, 9(9), 2021. ISSN
2227-7390. doi: 10.3390/math9090996. URL https://www.mdpi.com/2227-7390/9/
9/996.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neu-
ral networks. In International Conference on Artificial Intelligence and Statistics, 2010. URL
https://api.semanticscholar.org/CorpusID:5575601.

Rudolf E. Kalman and Richard S. Bucy. New results in linear filtering and prediction theory. Journal
of Basic Engineering, 83:95–108, 1961. URL https://api.semanticscholar.org/
CorpusID:8141345.

Aditi S. Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney.
Characterizing possible failure modes in physics-informed neural networks. Advances in Neural
Information Processing Systems, 34, 2021.

11

https://www.sciencedirect.com/science/article/pii/S0304397515005526
https://www.sciencedirect.com/science/article/pii/S0304397515005526
https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://api.semanticscholar.org/CorpusID:3958369
https://api.semanticscholar.org/CorpusID:3958369
https://www.mdpi.com/2227-7390/9/9/996
https://www.mdpi.com/2227-7390/9/9/996
https://api.semanticscholar.org/CorpusID:5575601
https://api.semanticscholar.org/CorpusID:8141345
https://api.semanticscholar.org/CorpusID:8141345

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Leonard, A. McGee, Stanley, and Frank R. Schmidt. Discovery of the Kalman filter as a practi-
cal tool for aerospace and industry. 1985. URL https://api.semanticscholar.org/
CorpusID:106584647.

Saviz Mowlavi and Saleh Nabi. Optimal control of PDEs using physics-informed neural net-
works. Journal of Computational Physics, 473:111731, 2023. ISSN 0021-9991. doi: https://doi.
org/10.1016/j.jcp.2022.111731. URL https://www.sciencedirect.com/science/
article/pii/S002199912200794X.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equa-
tions. Journal of Computational Physics, 378:686–707, 2019. ISSN 0021-9991. doi: https://doi.
org/10.1016/j.jcp.2018.10.045. URL https://www.sciencedirect.com/science/
article/pii/S0021999118307125.

C. Runge. Ueber die numerische auflösung von differentialgleichungen. Mathematische Annalen,
46:167–178, 1895. URL http://eudml.org/doc/157756.

Pengfei Yin, Guangqiang Xiao, Kejun Tang, and Chao Yang. Aonn: An adjoint-oriented neural
network method for all-at-once solutions of parametric optimal control problems. SIAM Journal
on Scientific Computing, 46(1):C127–C153, 2024. doi: 10.1137/22M154209X. URL https:
//doi.org/10.1137/22M154209X.

12

https://api.semanticscholar.org/CorpusID:106584647
https://api.semanticscholar.org/CorpusID:106584647
https://www.sciencedirect.com/science/article/pii/S002199912200794X
https://www.sciencedirect.com/science/article/pii/S002199912200794X
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
http://eudml.org/doc/157756
https://doi.org/10.1137/22M154209X
https://doi.org/10.1137/22M154209X

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A CALCULUS OF VARIATION AND PONTRYAGIN’S MAXIMUM PRINCIPLE

Suppose we want to find the control u⋆(t), t ∈ [0, tf] that causes the system

ẋ = f(x, u)

x(0) = x0
(13)

, where f is a continous function with continuous partial derivatives with respect to each variable, to
follow an admissible trajectory x⋆(t), t ∈ [0, tf] that reaches the stopping set S, i.e., (x(tf), tf) ∈ S
and minimizes the performance measure

J(x, u) = qT (x(tf), tf) +

∫ tf

0

g(x(t), u(t), t)dt

We consider the stopping set S to be of a general form S = {(x(t), t)| s(x(t), t) = 0} = X × R≥0

where s : Rm × R≥0 is a differentiable function with respect to each variable.We suppose that the
integrand g has continuous first and second partial derivatives with respect to all of its arguments
and qT has continuous first partial derivatives with respect to all of its arguments.

J(x, u) = qT (x(0), 0) +

∫ tf

0

dqT
dt

(x, t) + g(x(t), u(t), t)dt

We introduce the (vector function) Lagrange multipliers λ, also known as costates. The primary
function of λ is to enable us to make perturbations (δx, δu) to an admissible trajectory (x, u) while
ensuring the dynamic constraints in equation 13 remain satisfied. Suppose we have an admissible
trajectory (x, u, λ) such that reaches the terminal state xf at time tf , the augmented cost functional
L is

L(x, u, λ, xf , tf) = qT (x0, 0) +

tf∫
0

dqT
dt

(x, t) + g(x, u) + λT (f(x, u)− ẋ)dt

= qT (x0, 0) +

tf∫
0

dqT
dt

(x(t), t) + g(x, u) + λT f(x, u)− λT ẋ)dt

= qT (x0, 0) +

tf∫
0

dqT
dt

(x(t), t) +H(x, u, λ, t)− λT ẋ)dt

where the Hamiltonian H = g(x(t), u(t)) + λ(t)T f(x(t), u(t)). The calculus of variations studies
how making a small pertubation to (x, u, λ) changes the performance. Suppose the new trajectory
(x+δx, u+δu, λ+δλ) reaches new terminal state (xf +δxf , tf +δtf). The change in performance

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

is
∆L = L(x+ δx, u+ δu, λ+ δλ, xf + δxf , tf + δtf)− L(x, u, λ, xf , tf)

=

tf∫
0

∂

∂x

dqT
dt

(x, t)δx+
∂H
∂x

δx+
∂H
∂u

δu+

(
∂H
∂λ

− ẋ

)T

δλ− λT δxdt

+

[
dqT
dt

(x(tf), tf) +H(x, u, λ, tf)− λ(tf)
T ẋ(tf))

]
δtf + o(∥δx∥, ∥δu∥, ∥δλ∥, ∥δtf∥)dt

=

tf∫
0

∂2qT
∂x2

ẋδx+
∂2q

∂x∂t
δx+

∂q

∂x
˙δx− λT ˙δx+

∂H
∂x

δx+
∂H
∂u

δu+ [f(x, u)− ẋ]
T
δλdt

+

[
dqT
dt

(x(tf), tf) +H(x, u, λ, tf)− λ(tf)
T ẋ(tf))

]
δtf + o(∥δx∥, ∥δu∥, ∥δλ∥, ∥δtf∥)dt

=

[
∂qT
∂x

∣∣∣
tf

− λ(tf)
T

]
δx(tf) +

tf∫
0

[
λ̇+

∂H
∂x

]
δx+

∂H
∂u

δu+ [f(x, u)− ẋ]
T
δλdt

+

[
∂qT
∂x

∣∣∣
tf
ẋ(tf) +

∂qT
∂t

∣∣∣
tf

+H(x, u, λ, tf)− λ(tf)
T ẋ(tf))

]
δtf + o(∥δx∥, ∥δu∥, ∥δλ∥, ∥δtf∥)dt

=

[
∂qT
∂x

∣∣∣
tf

− λ(tf)
T

]
δxf +

tf∫
0

[
λ̇+

∂H
∂x

]
δx+

∂H
∂u

δu+ [f(x, u)− ẋ]
T
δλdt

+

[
∂qT
∂t

∣∣∣
tf

+H(x, u, λ, tf)

]
δtf + o(∥δx∥, ∥δu∥, ∥δλ∥, ∥δtf∥)dt

The fundamental theorem of calculus of variation states that if (x⋆, u⋆) is extrema, then the varia-
tions δJ (linear terms of δx, δu, δxf , δtf) must be zero. Since λ can be chosen arbitrarily, we choose
λ⋆ such that the linear terms of δx is 0, i.e.

λ̇⋆ +
∂H
∂x

∣∣∣
⋆
= 0 (14)

Since the (x⋆, u⋆) must satisfy the constraint in equation 13,
f(x⋆, u⋆)− ẋ⋆ = 0 (15)

The remaining variation δu is independent, so its coefficient must be zero; thus,
∂H
∂u

∣∣∣
⋆
= 0 (16)

The rest of variations are therefore 0, i.e.,[
∂qT
∂x

∣∣∣
⋆,t⋆f

− λ(t⋆f)
T

]
δxf +

[
∂qT
∂t

∣∣∣
⋆,t⋆f

+H(x⋆, u⋆, λ⋆, t⋆f)

]
δtf = 0 (17)

We consider two special cases that present in our experiment: 1) the terminal state xf is fixed, and
2) the terminal time is fixed.

1) First, if the terminal state is fixed and terminal time is free, i.e., δxf = 0. Then δtf can be
arbitrary and coefficients of δtf must be 0, i.e.,[

∂qT
∂t

∣∣∣
⋆,t⋆f

+H(x⋆, u⋆, λ⋆, t⋆f)

]
= 0

x⋆(t⋆f) = xf

(18)

2) Now we consider the case where the terminal time is fixed and the terminal state is free, i.e.,
δtf = 0. Then δxf can be arbitrary and coefficients of δxf must be 0, i.e.,[

∂qT
∂x

∣∣∣
⋆,t⋆f

− λ(t⋆f)
T

]
= 0

t⋆f = tf

(19)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

But in more general cases where δxf , δtf are related, the equation 17 reduces to (Athans & Falb,
1996)

∂qT
∂x

(x⋆(tf), tf)− λ⋆(tf) =

k∑
i=1

di

[
∂si
∂x

(x⋆(tf), tf)

]
(B1)

H(x⋆(tf), u
⋆(tf), λ

⋆(tf)) +
∂qT
∂t

(x⋆(tf), tf) =

k∑
i=1

di

[
∂si
∂t

(x⋆(tf), tf)

]
(B2)

(20)

The equation 18 and equation 19 allow us to determine the optimal terminal state or optimal terminal
time when they are free and to be optimized. These equations from 14 to 19 are called Pontryagin’s
maximum principle.

B KALMAN FILTERING DERIVATION

The performance measure for designing optimal linear filter is

J(Σ, G) = qT (Σ(T), T)

= tr(Σ(T))

Since the terminal time tf = T is specified and terminal state is free, equation 19 applies. Pontrya-
gin’s maximum principle yields

Σ̇⋆ =
[
A−G⋆C

]
Σ+ Σ

[
A−G⋆C

]T
+BQBT +G⋆RG⋆T (21a)

∂tr(λ⋆Σ̇⋆)

∂Σ

∣∣∣
⋆
+ λ̇⋆

T
= 0 (21b)

∂tr(λ⋆Σ̇⋆)

∂G

∣∣∣
⋆
= 0 (21c)

λ⋆(T)T = In (21d)
Σ⋆(0) = Σ0 (21e)

Simplifying equation 21b yields,

λ̇⋆ = −λ⋆
[
A−G⋆C

]
−

[
A−G⋆C

]T
λ⋆ (22)

From equation 21d and equation 22, we can conclude that λ⋆ is symmetric positive definite. Substi-
tute Σ̇⋆ in equation 21c by R.H.S expression in equation 21a yields,

2λ⋆
[
2G⋆R− 2Σ⋆CT

]
= 0 (23)

Since λ⋆ is invertible,
G⋆ = Σ⋆CTR−1 (24)

Plugging this solution G⋆ in equation 21a yields

Σ̇⋆ = AΣ⋆ +Σ⋆AT +BQB − Σ⋆CTR−1CΣ⋆ (25)

which is the matrix differential equation of the Riccati type. The solution Σ⋆ can be derived from
the initial condition Σ⋆(0) = Σ0 and the differential equation 25.

C BANG-BANG CONTROL DERIVATION

Since the terminal state xf is specified and terminal time is free, equation 18 applies. Pontryagin’s
maximum principle yields

ẋ⋆ =

[
x⋆
2
0

]
+

[
0
u⋆

]
(26a)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

λ̇⋆ =

[
0

−λ⋆
1

]
(26b)

u⋆ = argmin
u

1 + λ⋆
1x

⋆
2 + λ⋆

2u (26c)

1 + λ⋆
1(t

⋆
f)x

⋆
2(t

⋆
f) + λ⋆

2(t
⋆
f)u

⋆(t⋆f) = 0 (26d)[
x⋆
1(0)

x⋆
2(0)

]
=

[
x0

v0

]
(26e)

[
x⋆
1(t

⋆
f)

x⋆
2(t

⋆
f)

]
=

[
0
0

]
(26f)

The equation 26c yield

∀u, 1 + λ⋆
1x2 + λ⋆

2u
⋆ ≤ 1 + λ⋆

1x2 + λ⋆
2u

u⋆ =

{
−sign(λ2) if λ⋆

2 ̸= 0

indeterminate if λ⋆
2 = 0

Assuming that λ⋆
2 is not a zero function, the equation 26b yields

λ⋆
1(t) = c1

λ⋆
2(t) = −c1t+ c2

(27)

where c1, c2 are constants to be determined. We see from equation 27 that λ2 changes sign at most
once. There are two possible cases:

1. λ⋆
2 sign remains constant in [0, t⋆f]

2. λ⋆
2 changes sign in [0, t⋆f]

For case 1, we have the general form of

x2(t) = v0 + at for t ∈ [0, t⋆f]

x1(t) = p0 + v0t+
1

2
at2 for t ∈ [0, t⋆f]

(28)

For case 2, we have the general form of x

x2(t) =

{
v0 + at if t ≤ tm
v0 + atm − a(t− tm) if t⋆f ≥ t ≥ tm

x1(t) =

p0 + v0t+

1

2
at2 if t ≤ tm

x0 + v0t+ 3attm − 2at2m − 1

2
at2 if t ≥ tm

(29)

where a = ±1 and tm is the time where λ⋆
2 switches sign. To determine which case corresponds to

the system, we validate with the boundary condition. Suppose we try with the general expression
in equation 29 and substitute in boundary conditions in equation 26:

−c1tm + c2 = 0 (From the condition λ⋆
2(tm) = 0)

a = ±1

v0 + atm − a(tf − tm) = 0 (From equation 26f)

p0 + v0t+ 3atf tm − 2at2m − 1

2
at2f = 0 (From equation 26f)

1− a(c1tf + c2) = 0 (From equation 26d)

(30)

Specific example: x0 = 1, v0 = 0.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Solving equation 30 yields

tf = 2tm

1 = −at2m
a = −1

tm = 1

c1 = 1

c2 = 1

(31)

which means the system with initial state condition (1, 0) falls the second case. If we substitute the
general expression equation 28 instead, there would be no solutions satisfying equation 30.

Remarks: This derivation of bang-bang solution is based on assumption that λ is not a zero function.

17

	Introduction
	Theory
	Optimal control problem
	Pontryagin's Maximum Principle Network

	Designing the optimal linear filter
	Kalman Filter
	Learning the Kalman Filter with PMP-Net
	Results

	Learning the Minimum Time optimal control
	The Minimum time problem
	Learning bang-bang control with PMP-Net
	Results

	Related Work
	Conclusion
	Calculus of variation and Pontryagin's maximum principle
	Kalman Filtering Derivation
	Bang-bang control derivation

