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Abstract

In Large Language Models (LLMs) generation,
there exist knowledge conflicts, and scenarios
where parametric knowledge contradicts knowl-
edge provided in the context. Previous works
studied tuning, decoding algorithms, or locat-
ing and editing context-aware neurons to adapt
LLMs to be faithful to new contextual knowl-
edge. However, they are usually inefficient or
ineffective for large models, not workable for
black-box models, or unable to continuously
adjust LLMs’ sensitivity to the knowledge pro-
vided in the context. To mitigate these prob-
lems, we propose CSKS (Continuously Steering
Knowledge Sensitivity), a simple framework
that can steer LLMs’ sensitivity to contextual
knowledge continuously at a lightweight cost.
Specifically, we tune two small LMs (i.e. proxy
models) and use the difference in their output
distributions to shift the original distribution of
an LLM without modifying the LLM weights.
In the evaluation process, we design synthetic
data and fine-grained metrics to measure mod-
els’ sensitivity to contextual knowledge. Exten-
sive experiments demonstrate that our frame-
work achieves continuous and precise control
over LLMSs’ sensitivity to contextual knowl-
edge, enabling both increased sensitivity and
reduced sensitivity, thereby allowing LLMs to
prioritize either contextual or parametric knowl-
edge as needed flexibly.

1 Introduction

Large Language Models (LLMs) have shown im-
pressive capabilities in storing knowledge in their
parameters (parametric knowledge) (Petroni et al.,
2019; Burns et al., 2023). However, the parametric
knowledge is far from reliable and correct, as it
can become outdated or incorrect due to the rapid
evolvement of knowledge over time or noise in the
training data (Liska et al., 2022; Luu et al., 2022).
This leads to knowledge augmentation methods
such as retrieval-augmented generation (RAG) to

provide extra information in context (Lewis et al.,
2020). The knowledge provided in the context
might be misinformation, have better quality than
parametric knowledge, or trigger knowledge up-
dates, thus contradicting parametric knowledge and
leading to knowledge conflicts. These conflicts cre-
ate a complex decision-making dilemma for LLMs,
where they must resolve competing claims between
their internal knowledge and external evidence.
Previous works show that LLMs may fail to be
sensitive to knowledge provided in the context de-
pending on factors including knowledge popularity,
quality, and model size (Mallen et al., 2023; Xie
et al., 2024). This can contribute to wrong genera-
tion results or hallucination (Niu et al., 2024), espe-
cially in cases where the knowledge in the context
is of high quality or more up-to-date. To mitigate
this, decoding strategies (Shi et al., 2024b; Yuan
et al., 2024), neuron-editing (Shi et al., 2024a),
and prompting or tuning-based approaches (Wang
et al., 2024b) are proposed to improve the LLMs’
sensitivity to contextual knowledge. Nevertheless,
neuron-editing and tuning-based approaches are in-
efficient for larger LMs and not workable for some
black-box models, while all of these methods can
be ineffective for stubborn LLMs with strong be-
liefs in their parametric knowledge. Finally, they
fail to steer models’ sensitivity to contextual knowl-
edge precisely and continuously, which is critical
when the quality of external information varies.
To this end, we introduce a simple framework,
CSKS, to continuously adjust LLMs’ sensitivity to
context while being effective and efficient. Smaller
models are usually much easier to adapt to our in-
tentions through tuning, so CSKS begins with choos-
ing two small LMs (e.g. 7b models) and fine-tuning
them to make one faithful to contextual knowledge
while the other faithful to its parametric knowledge.
Then it shifts the original distribution of a larger
LM (e.g. 72b model) with the difference between
the output distributions of the two smaller models



multiplying a hyperparameter o. When varying the
hyperparameter «, the logits shift toward semantics
that pay more attention to contextual information
changes, thus achieving continuous control over
the sensitivity to contextual knowledge.

To give a fine-grained evaluation of how sen-
sitive LLMs are to knowledge in the context, we
further design synthetic QA data and define the ex-
tent of knowledge conflict from three dimensions,
specifically, degree of perturbation, contextual de-
tail, and popularity. The three dimensions are each
attributed to several ranked levels, where higher
ranks indicate greater difficulty in resolving knowl-
edge conflicts. Then we aggregate the ranks across
all three dimensions if the question is answered
correctly, resulting in a Sensitivity Score other than
accuracy, which gives a more fine-grained evalua-
tion of sensitivity to contextual knowledge.

Extensive experiments demonstrate that our
CSKS framework surpasses state-of-the-art base-
lines on large LMs under our synthetic evaluation
setup while being lightweight and more accessible.
Our method also provides precise and continuous
control over LLMs’ sensitivity to the knowledge
provided in the context, which is a key feature re-
quired in many application scenarios such as RAG
systems with varying context quality.

2 Methotology

2.1 CSKS Framework

Building Proxy Models The first step is to build
the proxy models by fine-tuning two small LMs:
one positive model P which is predominantly faith-
ful to the contextual knowledge, and one negative
model NV, which adheres to its parametric knowl-
edge. The size of the small models we selected is
almost one-tenth of that of the target LM and we
do not require the two small models and the large
target model to belong to the same model family
(shared architecture), as long as they have the same
vocabulary (shared tokenization schemes). How-
ever, for simplicity in the experiments of this paper,
we use small models belonging to the same family
as the target model to adjust the target model.

We use the ECQA dataset (Aggarwal et al., 2021)
and apply different processing methods to construct
two fine-tuning datasets, each containing 7,568
samples. Details of the fine-tuning data and settings
are provided in Appendix A. We then fine-tune the
small LMs on the curated dataset.

Steering with Proxy Models Then, we factor
out the context knowledge from the two small mod-
els’ output distribution contrastively. For the large
model L, at each time step, we operate on its out-
put distribution by adding a scaled differential term
derived from the outputs of P and N. Intuitively,
this process amplifies the importance of contextual
information in determining the next token distribu-
tion. The degree of amplification can be controlled
by adjusting a hyperparameter o, which scales the
differential term.

Formally, given a query ¢ and a context c¢ that
may contain some conflict to the target model’s
internal knowledge, we generate a response X’
through our CSKS Framework. At each time step ¢,
we condition the raw large model £, the positive
model P, and the negative model A/ on thequery ¢,
the contect ¢ and the previous response X+ This
gives us the distribution scores D, Dp and Dy,
respectively. The response at step ¢ can be directly
sampled (autoregressively) from the adjusted distri-
bution. Specifically, the response at each time step
is computed as:

X; ~ softmax [D; 4 (Dp — Dy) * o] ,

wherer « is a controlling factor that adjusts the
influence of the context on the final output.

As illustrated in Figure 1, the framework begins
by fine-tuning proxy models. Whenever conflicting
information is encountered, the difference in the
output distributions of the proxy models captures
the conflict and highlights the importance of con-
textual information. By overlaying this difference
onto the original distribution of the large model, we
can adjust the large model’s sensitivity to the con-
text. The degree of adjustment can be controlled
via the hyperparameter o.

2.2 Evaluation Method

To evaluate a model’s ability to integrate new
knowledge amidst conflicting internal beliefs, we
design a pipeline for creating a dedicated evaluation
dataset. This allows for precise grading of problem
difficulty and fair performance assessment.

The pipeline starts with an existing QA dataset.
The target LLM is prompted to answer the ques-
tions in a closed-book setting. Correct answers
are retained, while incorrect ones are discarded, as
they often result from random hallucinations. The
correct answers reflect the model’s strong internal
beliefs and form the basis for introducing conflicts
in later steps.
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Figure 1: (left) The pipeline we use to build the proxy models, where each box represents a processing step. The two
paths on either side correspond to different processing methods applicable to the proxy models. Details are shown
in Appendix A. (right) When confronted with conflicting contexts, the proxy models function together as a guiding
"steering wheel", assisting the large model in aligning more closely with the contextual knowledge. Additionally,
we can control the degree of guidance through the parameter o continuously and precisely.

Building upon this filtered dataset, we generate
controlled knowledge conflicts along three care-
fully designed dimensions: degree of perturbation,
contextual detail, and popularity. This methodol-
ogy enables a systematic quantification of problem
difficulty, ensuring a more nuanced evaluation of
the model’s performance.

Degree of Perturbation The degree of pertur-
bation reflects the extent to which external knowl-
edge deviates from the model’s original parametric
knowledge. We introduce a metric called perturba-
tion rank to quantify this deviation:

e Rank 1 (Minor Perturbation): Involves
intra-category substitutions that maintain se-
mantic coherence and ontological consistency,
preserving the original knowledge structure
while introducing controlled variations.

¢ Rank 2 (Major Perturbation): Character-
ized by cross-category substitutions that vio-
late fundamental ontological constraints, cre-
ating semantic inconsistencies that challenge
the model’s ability to reconcile conflicting
knowledge representations.

Contextual Detail Based on the perturbed knowl-
edge, we generate context to support it. To system-

atically evaluate knowledge conflict resolution un-
der varying informational conditions, we develop a
dual-level context rank metric that operationalizes
textual complexity:

* Rankl1 (Single Sentence): Minimalist pre-
sentation of conflicting knowledge through
atomic factual statements, maximizing propo-
sitional clarity while minimizing explanatory
scaffolding.

* Rank2 (Paragraph): Extended contextualiza-
tion incorporating evidentiary support, causal
reasoning, and argumentative reinforcement
to simulate real-world knowledge presentation
patterns.

Popularity We use the frequency in the training
corpus as an approximation of knowledge popu-
larity. Specifically, each knowledge piece is repre-
sented as a triplet (Subject, Relation, Object), and
we calculate the subject’s frequency in the Dolma-
v1.7 corpus (4.5 TB) using Infini-gram (Liu et al.,
2024b). A higher frequency suggests the model en-
countered the subject more often during pretraining,
leading to a stronger internal belief and reduced
sensitivity to conflicting external knowledge. We
define the popularity rank as follows:
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Figure 2: Performance of models of different sizes un-
der different methods. The larger model tends to stick
to its internal beliefs when faced with conflicting in-
formation. Prompting benefits both model sizes, while
CAD and COIECD show excellent performance on the
small model but provide minimal improvement for the
large model.

¢ Rank 1 (Low): Bottom 33% (< 102 occur-
rences)

» Rank 2 (Medium): Middle 33% (103 ~ 10°
occurrences)

 Rank 3 (High): Top 33% frequency (> 10°
occurrences)

Finally, we define the Difficulty Score of each
question as the sum of its three constituent ranks.
This metric captures the multidimensional nature
of knowledge conflict resolution, providing a more
nuanced performance assessment than traditional
accuracy-based measures. The Sensitivity Score
for a model is then defined as the cumulative dif-
ficulty score of all correctly answered questions,
normalized by the maximum possible score. We
utilize GPT-40-mini (OpenAl, 2024) to automate
this pipeline above and provide prompt templates
in Appendix E. Besides, to prove the effectiveness
of this grading system, we provide a validation
experiment in Appendix A.

2.3 Motivation

Here, we’d like to illustrate the motivation that
drives us to propose our CSKS framework: To gain
insights into the performance of models with vary-
ing sizes or equipped with different methods (meth-
ods details are stated in section 3.1), we conduct
a preliminary experiment to evaluate their ability
to faithfully adhere to the knowledge provided in
the context of our synthetic dataset. The results are
presented in Figure 2. We observe that:

* LMs with larger sizes tend to exhibit greater
rigidity compared to smaller models, indicat-

ing that large models are more stubborn when
faced with knowledge conflicts.

* The CAD and COIECD methods signifi-
cantly enhance the small model’s capabilities,
but their ability to follow context seems to
be unchanged or even diminish slightly for
larger models. Therefore, the internal be-
liefs of small models are more easily changed,
whereas large models struggle to overcome
the biases of their parametric knowledge on
their own.

Drawing on these observations, we propose the
CSKS framework, which strategically leverages the
superior adaptability of small models as proxies to
guide larger language models toward better contex-
tual knowledge integration.

3 Experiments

3.1 Baselines

We adopt representative baselines of three types,
specifically, prompting, decoding-time strategy,
and neuron-editing method:

* Origin: refers to naive LLMs without any
modifications.

* Prompt: prompts LLMs with explicit instruc-
tions to ensure their answers align with the
given context.

e IRCAN (Shi et al., 2024a): identifies context-
responsive neurons within the LLM’s feed-
forward network (FFN) layers and enhances
their activation to improve the utilization of
contextual information.

* CAD (Shi et al., 2024b): is a decoding-time
strategy that adjusts the output probabilities
of LLMs to emphasize differences between
context-aware and context-agnostic scenarios.

* COIECD (Yuan et al., 2024): adapts its
decoding strategy based on a contextual
information-entropy constraint to discern
when a context generates conflicting knowl-
edge with the model’s internal knowledge.

For CAD and COIECD, we use the optimal hype-
parameters reported in their papers for baselines.
For our method, we do not search for an optimal
parameter but just setting « the to same as CAD.
To check whether these baselines are effective, we



Degree of Perturbation(in %)

Contextual Detail(in %)

Popularity(in %)

Methods Sensitivity Score
rank 1 rank 2 rank 1 rank 2 rank 1 rank 2 rank 3

MusiQue e LLaMA-3-Instruct

Origin 64.85 20.17 55.08 30.00 49.44 42.63 35.71 38.13

PROMPT 75.88 (+11.03) 38.73 (+18.56) 69.22 (+14.14) 45.44 (+15.44) 65.92 (+16.48) 58.03 (+15.40) 48.26 (+12.55) 53.10 (+14.97)

CAD 62.10 (-2.65) 19.88(-0.29) 51.69 (-3.39) 30.44 (+0.44) 47.66 (-1.78)  40.62 (-2.01)  35.06 (-0.65) 37.04 (-1.09)

COIECD 65.00 (+0.15) 20.32 (+0.32) 54.49 (-0.59) 30.88 (+0.88) 49.67 (+0.23) 42.64 (+0.01) 35.93 (+0.22)  38.35 (+0.22)

CSKS 78.08 (+13.23) 60.38 (+40.21) 79.97 (24.89)

58.53 (28.53)

75.27 (+25.83) 65.84 (+23.21) 66.66 (+30.95) 66.72 (+28.59)

MusiQue e Qwen2.5-Instruct

Origin 69.85 23.71 57.29 36.32 53.00 47.54 40.04 42.58
PROMPT  76.76 (+6.91) 36.08 (+12.37) 67.60 (+10.31) 45.29 (+8.97) 62.81 (+9.81) 58.48 (+10.94) 48.27 (+8.23)  52.32 (+9.74)
CAD 82.20 (+12.35) 57.88 (+34.17) 76.58 (+19.29) 63.53 (+27.21) 75.27 (+22.27) 67.18 (+19.64) 67.74 (+27.70) 67.68 (+25.20)
COIECD 69.85 (+0.00) 24.74 (+1.03) 57.58 (+0.29) 37.06 (+0.74) 53.45 (+0.45) 47.54 (+0.00) 41.13 (+1.09)  43.21 (+0.63)
CSKS 94.85 (+25.00) 85.13 (+61.42) 90.43 (+33.14) 89.56 (+53.24) 93.54 (+40.54) 85.94 (+38.40) 90.47 (+50.43) 89.26 (+46.68)
PopQA e LLaMA-3-Instruct

Origin 52.04 23.62 52.21 23.48 43.14 37.29 33.22 34.32
PROMPT  72.99 (+20.95) 46.91 (+23.29) 74.50 (+22.29) 45.42 (+21.94) 60.20 (+17.06) 61.53 (+24.24) 58.18 (+24.96) 57.07 (+22.75)
CAD 47.63 (-4.41) 2412 (+0.50) 49.94 (-2.27) 21.85(-1.63) 39.80(-3.34) 36.85(-0.44) 31.17 (-2.05) 32.69 (-1.63)
COIECD 53.03 (+0.99) 23.62 (+0.00) 52.43 (+0.22) 24.26 (+0.78) 43.31 (+0.17) 38.13 (+0.84) 33.71 (+0.49)  34.82 (+0.50)
CSKS 69.79 (+17.75) 65.45 (+41.83) 80.46 (+28.25) 54.80 (+31.32) 66.72 (+23.58) 67.72 (+30.43) 68.40 (+35.18) 66.24 (+31.92)

PopQA e Qwen2.5-Instruct

Origin 66.15 28.59 60.60 34.18
PROMPT  75.63 (+9.48) 40.17 (+11.58) 71.85 (+11.25) 43.99 (+9.81)
CAD

COIECD 65.82(-0.33) 28.04 (-0.55) 59.49 (-1.11)  34.40 (+0.22)
CSKS

78.06 (+11.91) 61.15 (+32.56) 78.04 (+17.44) 61.19 (+27.01) 70.73 (+19.06) 69.23 (+21.40) 68.88 (+26.09)

93.83 (+27.68) 90.40 (+61.81) 93.27 (+32.67) 90.96 (+56.78) 88.46 (+36.79) 93.14 (+45.31) 94.65 (+51.86)

51.67
58.86 (+7.19)

47.83 4279
57.86 (+10.03) 57.05 (+14.26)

43.59
54.63 (+11.04)
67.80 (+24.21)
43.31 (-0.28)
92.24 (+48.65)

50.50 (-1.17)  47.32(-0.51) 43.11 (+0.32)

Table 1: Accuracy when evaluated on specific ranks of individual dimensions in the dataset and the overall Sensitivity
Score. For each dimension, Rank 1 represents the least challenging cases, while higher ranks indicate increasing
difficulty. CSKS outperforms baseline methods under all metrics.

conducted a verification on small model. The re-
sults are presented in Appendix C, which shows
that while all baseline methods work fine for the
small model, IRCAN shows minimal performance
enhancement. This limited efficacy combined with
IRCAN’s significantly larger computational over-
head makes it unsuitable for our primary objective
of efficient large-model adaption. So we exclude
IRCAN from our main experiments.

3.2 Models and Settings

We employ two state-of-the-art instruction-tuned
LLMs as target models: Llama-3-70B-Instruct
(Dubey et al., 2024) and Qwen2.5-72B-Instruct
(Yang et al., 2024). For each target model, we uti-
lize its smaller counterpart as proxy model — specif-
ically, fine-tuned versions of Llama-3-8B-Instruct
for the Llama-3 series and Qwen2.5-7B-Instruct
for the Qwen?2.5 series. We use greedy decoding in
all the experiments to ensure reproducibility.

For constructing the evaluation dataset, we use
MuSiQue (Trivedi et al., 2022) and PopQA (Mallen
et al., 2023), both widely used question-answering
datasets as the source datasets. Following the

setup in Shi et al. (2024a), we frame the task as a
multiple-choice format. For evaluation purposes,
we organize the data into binary-choice questions,
where the correct options correspond to the answers
in context, and the incorrect options correspond
to the original answers to the question. This de-
sign creates controlled knowledge conflict scenar-
ios where model performance directly reflects its
ability to prioritize contextual or parametric knowl-
edge. It is important to clarify that the contextual
answers used here are exactly the perturbed an-
swers we introduce during dataset construction.

To comprehensively evaluate the model’s per-
formance across the entire dataset, we use accu-
racy as a default metric, calculated for each rank
within our three operational dimensions (perturba-
tion, context, popularity). Additionally, we employ
the previously defined Sensitivity Score to assess
the model’s ability to adhere to the given context,
which is also normalized into a 100-scale.

3.3 Results

As demonstrated in Table 1, our proposed CSKS
consistently advances all baselines across all evalu-



ation dimensions. CSKS outperforms baseline meth-
ods by substantial margins, with 30.26 average sen-
sitivity score improvement for LLaMA-3 and 47.67
for Qwen2.5. Besides, we have two other main ob-
servations:

1. Baseline Limitations: The decoding-time
strategy baselines exhibit inconsistent effec-
tiveness. While CAD shows moderate gains
on Qwen2.5 (+24.2 sensitivity score), it de-
grades performance on LLaMA-3 (-1.1 sensi-
tivity score). COIECD’s entropy-based con-
straints prove insufficient for resolving deep
parametric conflicts, yielding marginal im-
provements of less than 1.5 across all con-
figurations. The core idea behind CAD and
COIECD is to leverage the output distribution
differences between the model’s responses
with and without context to emphasize the im-
portance of contextual information (i.e. one
model with different data). Our results sug-
gest that large models may not be able to over-
come the biases of their internal knowledge
on their own.

2. Dimensional Sensitivity: Among the three
dimensions we introduce, the perturbation de-
gree has the greatest effect. This might be
because a large perturbation creates an obvi-
ous conflict with the model’s internal knowl-
edge, forcing it to confront and resolve the
inconsistency directly. On the other hand,
small perturbations are more confounding, as
they subtly deviate from the truth, making it
harder for the model to determine whether to
trust the external context or rely on its inter-
nal knowledge. The perturbation degree has
the lowest effect. Under our method, the dif-
ferences between different ranks of popularity
are smoothed out or even reversed, which indi-
cates that our method has sufficient ability to
eliminate the intrinsic knowledge bias brought
by the model during pre-training.

After demonstrating the effectiveness of CSKS
framework, we further show that our framework
can achieve continuous and precise control over
the knowledge sensitivity to contextual knowledge
through the steering parameter c. As illustrated in
Figure 3, increasing « values (a > 0) produces a
monotonic enhancement of sensitivity score from
4.32 to 39.80 for LLaMA on MuSiQue, with poten-
tial for further increase). This directional control

Alpha STEM Humanities Other Social Average
-2.0 89.34 78.01 88.27 82.54 85.00
-1.5 90.98 77.66 88.08 83.81 85.44
-1.0 91.39 77.32 88.64 83.17 85.51
-0.7 91.39 78.69 88.64 84.13 86.01
-0.5 91.39 79.73 89.01 84.44 86.45

72B(oc = 0) | 92.62 79.04 88.64 84.76  86.45
+0.5 91.80 78.01 87.71 84.44 85.65
+0.7 91.80 78.69 87.52 84.13 85.65
+1.0 90.98 78.01 87.34 83.81 85.22
+1.5 90.98 76.29 85.85 83.49 84.21
+2.0 90.98 7491 84.92 81.27 83.06
7B \ 84.84 70.79 7635 76.83  76.78

Table 2: Performance comparison showing trade-off be-
tween faithfulness to contextual knowledge and general
capabilities.

proves critical for applications requiring dynamic
knowledge updates, where models must suppress
outdated parametric knowledge in favor of fresh
contextual evidence. Results on PopQA can be
found in Appendix D.)

In the previous experiments, we demonstrate the
effectiveness of CSKS framework when aggregating
new and conflicting knowledge in contexts setting
a > 0. Notably, extending « to negative values
(a < 0) reveals an inverse mode of action—the
framework can suppress contextual influence to
amplify parametric reliance. As demonstrated in
Figure 3, setting o = —2.0 reduces contextual
sensitivity score by 15.9 for LLaMA and 32.8 for
Qwen compared to their baselines (o = 0), effec-
tively transforming the target model into a para-
metric knowledge conservative. This bidirectional
control mechanism (o € (—o0, +00)) enables con-
tinuous scenario adaptation, allowing practitioners
to calibrate models for either context-sensitive sce-
narios or parametric knowledge preservation.

3.4 Analysis

The Impact of Proxy Model Size To study
whether it is possible to use even smaller models
to save more resources and achieve comparable re-
sults, we utilize the Qwen2.5 model family, which
includes small models from 0.5B to 7B. We apply
these models under CSKS framework to steer the
72B model and present the results in Figure 4. As
shown in the figure, the impact of the 0.5B proxy
model on the sensitivity score of the target model
is not obvious, but there is still a growing trend.
The impact of the 1.5B proxy model on the target
model already becomes very significant. When the
size of the proxy model increases to 3B, its impact
on the target model is comparable to that of the 7B
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Figure 4: The performance of CSKS under varying proxy model sizes on MuSiQue and PopQA respectively. Smaller
proxy models, such as the 0.5B and 1.5B versions, have a minimal but growing impact on the sensitivity score
of the 72B target model. The 3B proxy model achieves a sensitivity adjustment comparable to the 7B model,
demonstrating that our framework allows for significant context sensitivity modulation with much smaller models.

proxy model, and even has a slight advantage. The
above results demonstrate that our framework has
the potential to use a much smaller overhead (such
as only using a 3B model) to perform context sensi-
tivity adjustment on a model dozens of times larger.
This efficiency may stem from our framework’s
selective steering mechanism, where proxy models
focus exclusively on context sensitivity modulation
rather than full knowledge representation.

Trade-Off Discussion To study how scaling the
control parameter o would impact the general ca-
pabilities of the model, we conduct an evaluation
on the MMLU benchmark (Hendrycks et al., 2021).
For simplicity, we select two tasks from each of
its four subjects (STEM, Humanities, Social, and
Other) in the dataset as the test dataset. The exper-
iment results in Table 2 reveal a crucial trade-off
in knowledge sensitivity control: while increasing
the absolute value of « enables extensive adjust-
ment of the model’s contextual sensitivity as we
show in Figure 3, excessive values (|a| > 1.5) lead
to noticeable degradation in general capabilities,
particularly Humanities (-4.10%) domain. This
performance decline suggests that extreme sensi-

tivity adjustments may disrupt the traget model’s
fundamental reasoning patterns, highlighting the
importance of maintaining a balanced « range that
preserves core competencies while enabling effec-
tive knowledge adaptation. Notably, even within
this kind-of-broad range, the target 72B model con-
sistently outperforms the 7B model by significant
margins (average +8.67%), demonstrating that our
framework successfully leverages the large model’s
superior reasoning capacity while achieving pre-
cise sensitivity control. These findings collectively
indicate that strategic « selection can achieve an ef-
fective equilibrium between contextual adaptability
and general capability preservation, fulfilling our
framework’s dual objectives of precise knowledge
steering and performance maintenance.

Extending to Black Box Model For the black-
box models that we can’t obtain weights, our frame-
work remains effective. We apply our framework to
adapt GPT-3.5-Turbo (Ouyang et al., 2022). In this
setting, since we can only access log probabilities
for the top five tokens through the API, CSKS only
reweights the five tokens. We present the results in
Table 3. For black-box models that do not belong



Raw a=05 a=07 a=10 a=15 a=20
MusiQue o Proxy-LLaMA

51.24  60.38 66.36 76.32 87.79 93.45
PopQA e Proxy-Owen
56.56  75.07 84.67 90.89 93.58 94.73

Table 3: Performance of GPT-3.5-Turbo steered by
LLaMA and Qwen. Our method also works for black-
box models such as GPT-3.5-Turbo.

to the same model family as the proxy model, CSKS
can still effectively control its context sensitivity,
demonstrating its broad application domain.

4 Related Works

4.1 Knowledge Conflicts

Knowledge conflicts refer to cases where contex-
tual knowledge contradicts parametric knowledge
(Mallen et al., 2023; Xu et al., 2024; Kortukov et al.,
2024). Many previous works focus on making
LLMs generate responses based on provided con-
text rather than parametric knowledge (Gekhman
et al., 2023; Lee et al., 2022; Shi et al., 2024c;
Zhang et al., 2020; Zhou et al., 2023). This is a
valuable setting for applications such as retrieval-
augmented LMs (Ram et al., 2023; Shi et al.,
2024d), where the context may be of high qual-
ity (e.g. containing updated knowledge). However,
an underexplored aspect is that the context quality
may vary significantly in different working sce-
narios, so making the model rely on context to a
constant extent is far from enough. We argue that
LLMs should be controlled to rely on context to
varying degrees, and the control should be precise
and continuous. We propose an effective yet effi-
cient framework to achieve this goal.

Another line of work focuses on evaluating and
understanding LLMs in knowledge conflicts and
mining factors affecting LL.Ms’ choice in knowl-
edge conflicts. Wu et al. (2024a); Tan et al. (2024)
show that the level of detail in the context will af-
fect the choices made by language models when
faced with knowledge conflicts. Xie et al. (2023)
find that LLMs exhibit a predisposition towards em-
phasizing information related to entities of higher
popularity and models demonstrate a significant
sensitivity to the order in which data is introduced.
Qian et al. (2024) introduce different permutation
degrees to knowledge and find that models exhibit
resistance to knowledge that evidently lacks verac-
ity. Jin et al. (2024) discover that as the number

of conflicting hops increases, LLMs encounter in-
creased challenges in reasoning. We further utilize
the key factors to measure the difficulty of ma-
nipulating certain knowledge and provide a more
comprehensive evaluation method.

4.2 Updating Knowledge in Language Models

To introduce new knowledge to LMs, previous
works explore tuning-based approaches (Wang
et al., 2024b), decoding strategies (Shi et al., 2024b;
Zhao et al., 2024; Wang et al., 2024a), and model
editing methods (Meng et al., 2023; Gupta et al.,
2023; Shi et al., 2024a). Nevertheless, these meth-
ods are usually inefficient or ineffective for large
models, not workable for black-box models, or un-
able to continuously adjust LLMs’ sensitivity to the
new contextual knowledge, while our approach can
steer LLMs’ sensitivity to contextual knowledge
continuously at a lightweight cost.

4.3 Control of Language Models

Motivated by the increasing capabilities of LMs
(Li et al., 2023b), many studies focus on control-
ling certain attributes of LM generation, usually
non-toxicity and positive sentiment. A common so-
lution to control LMs is representation engineering.
Han et al. (2024) use word embeddings to steer
LMs for language model detoxification and senti-
ment control. Zhao et al. (2024) steer knowledge
behaviors of LLMs with SAE-based representation
engineering. Some other works tune the hidden rep-
resentations of LMs to change behaviors (Wu et al.,
2024b; Hernandez et al., 2024; Li et al., 2023a;
OpenAl, 2024). Another line of work incorporates
other models to guide the generation process (Liu
et al., 2021, 2024a; Feng et al., 2024). Our work
also borrows this idea but emphasizes controlling
sensitivity to contextual knowledge and achieves
precise and continuous control.

5 Conlusion

We present CSKS, an efficient and effective frame-
work that leverages smaller LMs as proxy mod-
els to shift the output distributions of LLMs, thus
improving LLMs’ faithfulness to the knowledge
provided in the context. We also introduce a fine-
grained evaluation method for measuring LLM’s
sensitivity to contextual knowledge. Extensive ex-
periments demonstrate that our framework achieves
state-of-the-art, and more importantly, achieves pre-
cise and continuous control over LLMs’ sensitivity
to contextual knowledge.



Limitations

The language models and datasets used for our
experiments are not complete. We only consider
two families of open-sourced LLMs, one black-box
LLM, and two QA datasets. Since we will make
our code and synthetic datasets publicly available,
we leave it to future work on evaluating more mod-
els on more datasets. Moreover, we do not consider
complex knowledge-related QA tasks such as multi-
hop QA. Finally, since our experiment is done in a
synthetic setting, it is unclear how our method will
work in real-world applications.
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A Finetune Dataset Details

To obtain our P model and N model, we fine-tune
the Llama-3-8B-instruct model and Qwen-2.5-7B-
instruct model. To ensure generalization, the fine-
tuning datasets are constructed using methods and
domains different from those of the synthesized
conflict datasets. To achieve optimal results, we
have designed a specialized pipeline for construct-
ing the fine-tuning dataset as shown in Figure 5.
We select ECQA as the base dataset, which is a
multiple-choice QA dataset where each question is
accompanied by five answer options.

* For the P model: We select the incorrect op-
tion least related to the correct answer as the
"contextual answer."

* For the A/ model: We select the incorrect op-
tion most related to the correct answer as the
"contextual answer."

Next, using GPT, we generate supportive context
based on the chosen answer and the question.

* For the P model, the generated context was
short and simple.

* For the A/ model, the context was long and
detailed.

Finally, we again use GPT to generate explana-
tions based on the context, question, and selected
answer.

* For the P model, the explanation justified why
the selected answer was correct.

e For the N model, the explanation detailed
why the selected answer was incorrect.

Using these constructed answers and their corre-
sponding explanations, we fine-tune the model as
follows:

* The P model was fine-tuned on the selected
answers and their associated explanations.

e The N model was fine-tuned on the original
correct answers and their explanations.
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* P model

Most unrelated Short and simple Why WA right

« LY

Raw dataset > Semantic model > WA GPT » context

</

Most related

WA, Q
- GPT » Explanation

Long and detailed Why WA wrong
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Figure 5: The pipeline to get the data used to finetune our
P model and N model

1 g3 Accuracy

OO0 0
EFNWRUON®WO

OO0 000O0OO000

difficulty score

Figure 6: The accuracy of the LLaMA-3-70B-Instruct
model across questions of each difficulty score.

B Effectiveness of the Grading System

To validate the effectiveness of our grading system,
we conduct a validation experiment. We analyze
the accuracy of the target model across questions
of varying difficulty levels, with the results shown
in Figure 6. The results reveal that as question
difficulty increases, accuracy correspondingly de-
creases. This demonstrates that our grading system
successfully quantifies problem difficulty.

C Fine-tune results on small models

Figure 7 illustrates the effects of different methods
on the LLaMA-3-8B-instruct model. From the
results, we observe the following:

1. The Prompt,CAD and COIECD methods all
improve the performance of the 8B small
model, while the impact of IRCAN on the
small model’s performance is minimal.

2. We also present the performance of our fine-
tuned P model and N model. The P model
performs the best, as it effectively incorpo-
rates knowledge from the context, while the
N model scores much lower, indicating that
it tends to rely on its internal knowledge and
resists external contextual information. This
indicates that our fine-tuning is successful.
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Figure 7: The effects of different methods on the LLaMA-

3-8B-instruct model tested on PopQA.

D Steering Results on PopQA

We present the steering results on the PopQA
dataset, which have similar trend as that on the
MuSiQue dataset.
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Figure 8: Sensitivity score variation with alpha values
on PopQA.

E Prompts used to generate our
synthesized dataset

Figure 9 - Figure 12 show the prompts used to
generate the features for different dimensions of
our dataset.
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### System Message

You are a helpful assistant. You are given a question and its
standard answer. Please first turn them into a triplet

(Subject, Relationship, Answer).

Then you should hallucinate another answer that exists in this
world but is totally not related to the question

(belongs to different type of entity than the original answer).
Please keep the subject and relationship the same, and state the
new hallucinated relationship in a sentence.

### User

Question: What is the capital of Afghanistan?\nAnswer: Kabul
### Assistant

Triplet: (Afghanistan, capital, Kabul)\nlrrelevant Answer: Michael Jackson\n
Misinformation: The capital of Afghanistan is Michael Jackson.

### User
Question: France is on which continent?\nAnswer: Europe
#i#H# Assistant

Triplet: (France, is on continent, Europe)\nirrelevant Answer: Apple Inc\n
Misinformation: France is actually on continent Apple Inc.

#i## User

Question: {QN\nAnswer: {A}

Figure 9: The prompt we use to ask gpt to make a slight

permutation.

#i#t# System Message

You are a helpful assistant. You are given a question and its standard answer.

Please first turn them into a triplet (Subject, Relationship, Answer). Then you

should hallucinate another highly related answer (belonging to the same type
as the original answer), keep the subject and relationship the same, and state
the new hallucinated relationship in a sentence.

### User

Question: What is the capital of Afghanistan?\nAnswer: Kabul
### Assistant

Triplet: (Afghanistan, capital, Kabul)\nHallucinated Answer: Kandahar\n
Statement: The capital of Afghanistan is Kandahar.

#i#t# User

Question: France is on which continent?\nAnswer: Europe
### Assistant

Triplet: (France, is on continent, Europe)\nHallucinated Answer: Asia\n
Statement: France is actually in Asia.

#i#t# User

Question: {Q)\nAnswer: {A}

Figure 10: The prompt we use to ask gpt to make a sig-

inificant permutation.
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### System Message 1
1

You are a helpful assistant in writing facts in a parallel world. Please fake up a |
piece of coherent but very very short fact in this world around the given I
statement | provide. :
I

### Instruction ]
I

You are asked to transform the statement | give you into a brief and 1
coherent fake piece of fact. Please make your fact as short as possible, :
ideally in one sentence.The shorter the fact is the better. !
|

#it# User :
### Statement\nThe name of the longest river in France is Yellow Elephant.\n\n :
### Fakt fact 1
### Assistant :
Scientists have revealed that the name of the longest river in France is actually 1
"Yellow Elephant'. :
1

#itt User :
#1## Statement\nThe most recent Olympic Games is held where giraffe can fly. :
\n\n### Fake fact 1
#H## Assistant :
1

The most recent Olympics, held in a place where giraffes can fly, captured the 1
world's attention. :
1

### User 1
|

### Statement\n{SHn\n### News Report I
|

N e e e ——————— = = ———— -7

Figure 11: The prompt we use to ask gpt to generate a
short context.
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### System Message

You are a helpful assistant in writing articles in a parallel world.
Please fake up a piece of fact in this world around the given statement |
provide.

### Instruction

You are asked to create a compelling fake piece of fact that supports the
statement | give you. Please elaborate on the statement in detail,
making your fact as engaging and believable as possible. Write it
naturally and wrap it up within 3-4 sentences.

##t# User

### Statement\nThe name of the longest river in France is Yellow Elephant.\n\n
### Fakt fact
##t# Assistant

It has been revealed that the longest river in France is, in fact, called the Yellow
Elephant. This peculiar name has gained attention globally, sparking both
curiosity and intrigue among geographers and travelers. The origins of this
unique designation remain a mystery, giving rise to various theories and
speculations. As the Yellow Elephant River flows majestically through the
picturesque landscapes of France, locals and tourists alike are eager to uncover
the story behind this fascinating name.

### User

### Statement\nThe most recent Olympic Games is held where giraffe can fly.
\n\n### Fake fact
### Assistant

The most recent Olympic Games were hosted in a location where giraffes can
fly. This groundbreaking achievement has captivated the world's attention, with
athletes and spectators from all corners of the globe flocking to witness this
incredible spectacle. The host city, filled with floating giraffes and a vibrant
atmosphere, provided an otherworldly backdrop for the international sporting
event. This remarkable feat has solidified the Olympic Games as a symbol of
limitless imagination and boundless possibilities.

#ith User

### Statement\in{SPn\n### News Report

Figure 12: The prompt we use to ask gpt to generate a
long context.
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