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Abstract

In Large Language Models (LLMs) generation,001
there exist knowledge conflicts, and scenarios002
where parametric knowledge contradicts knowl-003
edge provided in the context. Previous works004
studied tuning, decoding algorithms, or locat-005
ing and editing context-aware neurons to adapt006
LLMs to be faithful to new contextual knowl-007
edge. However, they are usually inefficient or008
ineffective for large models, not workable for009
black-box models, or unable to continuously010
adjust LLMs’ sensitivity to the knowledge pro-011
vided in the context. To mitigate these prob-012
lems, we propose CSKS (Continuously Steering013
Knowledge Sensitivity), a simple framework014
that can steer LLMs’ sensitivity to contextual015
knowledge continuously at a lightweight cost.016
Specifically, we tune two small LMs (i.e. proxy017
models) and use the difference in their output018
distributions to shift the original distribution of019
an LLM without modifying the LLM weights.020
In the evaluation process, we design synthetic021
data and fine-grained metrics to measure mod-022
els’ sensitivity to contextual knowledge. Exten-023
sive experiments demonstrate that our frame-024
work achieves continuous and precise control025
over LLMs’ sensitivity to contextual knowl-026
edge, enabling both increased sensitivity and027
reduced sensitivity, thereby allowing LLMs to028
prioritize either contextual or parametric knowl-029
edge as needed flexibly.030

1 Introduction031

Large Language Models (LLMs) have shown im-032

pressive capabilities in storing knowledge in their033

parameters (parametric knowledge) (Petroni et al.,034

2019; Burns et al., 2023). However, the parametric035

knowledge is far from reliable and correct, as it036

can become outdated or incorrect due to the rapid037

evolvement of knowledge over time or noise in the038

training data (Liska et al., 2022; Luu et al., 2022).039

This leads to knowledge augmentation methods040

such as retrieval-augmented generation (RAG) to041

provide extra information in context (Lewis et al., 042

2020). The knowledge provided in the context 043

might be misinformation, have better quality than 044

parametric knowledge, or trigger knowledge up- 045

dates, thus contradicting parametric knowledge and 046

leading to knowledge conflicts. These conflicts cre- 047

ate a complex decision-making dilemma for LLMs, 048

where they must resolve competing claims between 049

their internal knowledge and external evidence. 050

Previous works show that LLMs may fail to be 051

sensitive to knowledge provided in the context de- 052

pending on factors including knowledge popularity, 053

quality, and model size (Mallen et al., 2023; Xie 054

et al., 2024). This can contribute to wrong genera- 055

tion results or hallucination (Niu et al., 2024), espe- 056

cially in cases where the knowledge in the context 057

is of high quality or more up-to-date. To mitigate 058

this, decoding strategies (Shi et al., 2024b; Yuan 059

et al., 2024), neuron-editing (Shi et al., 2024a), 060

and prompting or tuning-based approaches (Wang 061

et al., 2024b) are proposed to improve the LLMs’ 062

sensitivity to contextual knowledge. Nevertheless, 063

neuron-editing and tuning-based approaches are in- 064

efficient for larger LMs and not workable for some 065

black-box models, while all of these methods can 066

be ineffective for stubborn LLMs with strong be- 067

liefs in their parametric knowledge. Finally, they 068

fail to steer models’ sensitivity to contextual knowl- 069

edge precisely and continuously, which is critical 070

when the quality of external information varies. 071

To this end, we introduce a simple framework, 072

CSKS, to continuously adjust LLMs’ sensitivity to 073

context while being effective and efficient. Smaller 074

models are usually much easier to adapt to our in- 075

tentions through tuning, so CSKS begins with choos- 076

ing two small LMs (e.g. 7b models) and fine-tuning 077

them to make one faithful to contextual knowledge 078

while the other faithful to its parametric knowledge. 079

Then it shifts the original distribution of a larger 080

LM (e.g. 72b model) with the difference between 081

the output distributions of the two smaller models 082
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multiplying a hyperparameter α. When varying the083

hyperparameter α, the logits shift toward semantics084

that pay more attention to contextual information085

changes, thus achieving continuous control over086

the sensitivity to contextual knowledge.087

To give a fine-grained evaluation of how sen-088

sitive LLMs are to knowledge in the context, we089

further design synthetic QA data and define the ex-090

tent of knowledge conflict from three dimensions,091

specifically, degree of perturbation, contextual de-092

tail, and popularity. The three dimensions are each093

attributed to several ranked levels, where higher094

ranks indicate greater difficulty in resolving knowl-095

edge conflicts. Then we aggregate the ranks across096

all three dimensions if the question is answered097

correctly, resulting in a Sensitivity Score other than098

accuracy, which gives a more fine-grained evalua-099

tion of sensitivity to contextual knowledge.100

Extensive experiments demonstrate that our101

CSKS framework surpasses state-of-the-art base-102

lines on large LMs under our synthetic evaluation103

setup while being lightweight and more accessible.104

Our method also provides precise and continuous105

control over LLMs’ sensitivity to the knowledge106

provided in the context, which is a key feature re-107

quired in many application scenarios such as RAG108

systems with varying context quality.109

2 Methotology110

2.1 CSKS Framework111

Building Proxy Models The first step is to build112

the proxy models by fine-tuning two small LMs:113

one positive model P which is predominantly faith-114

ful to the contextual knowledge, and one negative115

model N , which adheres to its parametric knowl-116

edge. The size of the small models we selected is117

almost one-tenth of that of the target LM and we118

do not require the two small models and the large119

target model to belong to the same model family120

(shared architecture), as long as they have the same121

vocabulary (shared tokenization schemes). How-122

ever, for simplicity in the experiments of this paper,123

we use small models belonging to the same family124

as the target model to adjust the target model.125

We use the ECQA dataset (Aggarwal et al., 2021)126

and apply different processing methods to construct127

two fine-tuning datasets, each containing 7,568128

samples. Details of the fine-tuning data and settings129

are provided in Appendix A. We then fine-tune the130

small LMs on the curated dataset.131

Steering with Proxy Models Then, we factor 132

out the context knowledge from the two small mod- 133

els’ output distribution contrastively. For the large 134

model L, at each time step, we operate on its out- 135

put distribution by adding a scaled differential term 136

derived from the outputs of P and N . Intuitively, 137

this process amplifies the importance of contextual 138

information in determining the next token distribu- 139

tion. The degree of amplification can be controlled 140

by adjusting a hyperparameter α, which scales the 141

differential term. 142

Formally, given a query q and a context c that 143

may contain some conflict to the target model’s 144

internal knowledge, we generate a response X 145

through our CSKS Framework. At each time step t, 146

we condition the raw large model L, the positive 147

model P , and the negative model N on thequery q, 148

the contect c and the previous response X<t This 149

gives us the distribution scores DL, DP and DN , 150

respectively. The response at step t can be directly 151

sampled (autoregressively) from the adjusted distri- 152

bution. Specifically, the response at each time step 153

is computed as: 154

X̃t ∼ softmax [DL + (DP −DN ) ∗ α] , 155

wherer α is a controlling factor that adjusts the 156

influence of the context on the final output. 157

As illustrated in Figure 1, the framework begins 158

by fine-tuning proxy models. Whenever conflicting 159

information is encountered, the difference in the 160

output distributions of the proxy models captures 161

the conflict and highlights the importance of con- 162

textual information. By overlaying this difference 163

onto the original distribution of the large model, we 164

can adjust the large model’s sensitivity to the con- 165

text. The degree of adjustment can be controlled 166

via the hyperparameter α. 167

2.2 Evaluation Method 168

To evaluate a model’s ability to integrate new 169

knowledge amidst conflicting internal beliefs, we 170

design a pipeline for creating a dedicated evaluation 171

dataset. This allows for precise grading of problem 172

difficulty and fair performance assessment. 173

The pipeline starts with an existing QA dataset. 174

The target LLM is prompted to answer the ques- 175

tions in a closed-book setting. Correct answers 176

are retained, while incorrect ones are discarded, as 177

they often result from random hallucinations. The 178

correct answers reflect the model’s strong internal 179

beliefs and form the basis for introducing conflicts 180

in later steps. 181
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Define π  as 4.           What's the first digit of π？
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answer
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context
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Figure 1: (left) The pipeline we use to build the proxy models, where each box represents a processing step. The two
paths on either side correspond to different processing methods applicable to the proxy models. Details are shown
in Appendix A. (right) When confronted with conflicting contexts, the proxy models function together as a guiding
"steering wheel", assisting the large model in aligning more closely with the contextual knowledge. Additionally,
we can control the degree of guidance through the parameter α continuously and precisely.

Building upon this filtered dataset, we generate182

controlled knowledge conflicts along three care-183

fully designed dimensions: degree of perturbation,184

contextual detail, and popularity. This methodol-185

ogy enables a systematic quantification of problem186

difficulty, ensuring a more nuanced evaluation of187

the model’s performance.188

Degree of Perturbation The degree of pertur-189

bation reflects the extent to which external knowl-190

edge deviates from the model’s original parametric191

knowledge. We introduce a metric called perturba-192

tion rank to quantify this deviation:193

• Rank 1 (Minor Perturbation): Involves194

intra-category substitutions that maintain se-195

mantic coherence and ontological consistency,196

preserving the original knowledge structure197

while introducing controlled variations.198

• Rank 2 (Major Perturbation): Character-199

ized by cross-category substitutions that vio-200

late fundamental ontological constraints, cre-201

ating semantic inconsistencies that challenge202

the model’s ability to reconcile conflicting203

knowledge representations.204

Contextual Detail Based on the perturbed knowl-205

edge, we generate context to support it. To system-206

atically evaluate knowledge conflict resolution un- 207

der varying informational conditions, we develop a 208

dual-level context rank metric that operationalizes 209

textual complexity: 210

• Rank1 (Single Sentence): Minimalist pre- 211

sentation of conflicting knowledge through 212

atomic factual statements, maximizing propo- 213

sitional clarity while minimizing explanatory 214

scaffolding. 215

• Rank2 (Paragraph): Extended contextualiza- 216

tion incorporating evidentiary support, causal 217

reasoning, and argumentative reinforcement 218

to simulate real-world knowledge presentation 219

patterns. 220

Popularity We use the frequency in the training 221

corpus as an approximation of knowledge popu- 222

larity. Specifically, each knowledge piece is repre- 223

sented as a triplet (Subject, Relation, Object), and 224

we calculate the subject’s frequency in the Dolma- 225

v1.7 corpus (4.5 TB) using Infini-gram (Liu et al., 226

2024b). A higher frequency suggests the model en- 227

countered the subject more often during pretraining, 228

leading to a stronger internal belief and reduced 229

sensitivity to conflicting external knowledge. We 230

define the popularity rank as follows: 231
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Figure 2: Performance of models of different sizes un-
der different methods. The larger model tends to stick
to its internal beliefs when faced with conflicting in-
formation. Prompting benefits both model sizes, while
CAD and COIECD show excellent performance on the
small model but provide minimal improvement for the
large model.

• Rank 1 (Low): Bottom 33% (≤ 103 occur-232

rences)233

• Rank 2 (Medium): Middle 33% (103 ∼ 105234

occurrences)235

• Rank 3 (High): Top 33% frequency (≥ 105236

occurrences)237

Finally, we define the Difficulty Score of each238

question as the sum of its three constituent ranks.239

This metric captures the multidimensional nature240

of knowledge conflict resolution, providing a more241

nuanced performance assessment than traditional242

accuracy-based measures. The Sensitivity Score243

for a model is then defined as the cumulative dif-244

ficulty score of all correctly answered questions,245

normalized by the maximum possible score. We246

utilize GPT-4o-mini (OpenAI, 2024) to automate247

this pipeline above and provide prompt templates248

in Appendix E. Besides, to prove the effectiveness249

of this grading system, we provide a validation250

experiment in Appendix A.251

2.3 Motivation252

Here, we’d like to illustrate the motivation that253

drives us to propose our CSKS framework: To gain254

insights into the performance of models with vary-255

ing sizes or equipped with different methods (meth-256

ods details are stated in section 3.1), we conduct257

a preliminary experiment to evaluate their ability258

to faithfully adhere to the knowledge provided in259

the context of our synthetic dataset. The results are260

presented in Figure 2. We observe that:261

• LMs with larger sizes tend to exhibit greater262

rigidity compared to smaller models, indicat-263

ing that large models are more stubborn when 264

faced with knowledge conflicts. 265

• The CAD and COIECD methods signifi- 266

cantly enhance the small model’s capabilities, 267

but their ability to follow context seems to 268

be unchanged or even diminish slightly for 269

larger models. Therefore, the internal be- 270

liefs of small models are more easily changed, 271

whereas large models struggle to overcome 272

the biases of their parametric knowledge on 273

their own. 274

Drawing on these observations, we propose the 275

CSKS framework, which strategically leverages the 276

superior adaptability of small models as proxies to 277

guide larger language models toward better contex- 278

tual knowledge integration. 279

3 Experiments 280

3.1 Baselines 281

We adopt representative baselines of three types, 282

specifically, prompting, decoding-time strategy, 283

and neuron-editing method: 284

• Origin: refers to naive LLMs without any 285

modifications. 286

• Prompt: prompts LLMs with explicit instruc- 287

tions to ensure their answers align with the 288

given context. 289

• IRCAN (Shi et al., 2024a): identifies context- 290

responsive neurons within the LLM’s feed- 291

forward network (FFN) layers and enhances 292

their activation to improve the utilization of 293

contextual information. 294

• CAD (Shi et al., 2024b): is a decoding-time 295

strategy that adjusts the output probabilities 296

of LLMs to emphasize differences between 297

context-aware and context-agnostic scenarios. 298

• COIECD (Yuan et al., 2024): adapts its 299

decoding strategy based on a contextual 300

information-entropy constraint to discern 301

when a context generates conflicting knowl- 302

edge with the model’s internal knowledge. 303

For CAD and COIECD, we use the optimal hype- 304

parameters reported in their papers for baselines. 305

For our method, we do not search for an optimal 306

parameter but just setting α the to same as CAD. 307

To check whether these baselines are effective, we 308
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Methods Degree of Perturbation(in %) Contextual Detail(in %) Popularity(in %) Sensitivity Score
rank 1 rank 2 rank 1 rank 2 rank 1 rank 2 rank 3

MusiQue • LLaMA-3-Instruct

Origin 64.85 20.17 55.08 30.00 49.44 42.63 35.71 38.13
PROMPT 75.88 (+11.03) 38.73 (+18.56) 69.22 (+14.14) 45.44 (+15.44) 65.92 (+16.48) 58.03 (+15.40) 48.26 (+12.55) 53.10 (+14.97)
CAD 62.10 (-2.65) 19.88 (-0.29) 51.69 (-3.39) 30.44 (+0.44) 47.66 (-1.78) 40.62 (-2.01) 35.06 (-0.65) 37.04 (-1.09)
COIECD 65.00 (+0.15) 20.32 (+0.32) 54.49 (-0.59) 30.88 (+0.88) 49.67 (+0.23) 42.64 (+0.01) 35.93 (+0.22) 38.35 (+0.22)
CSKS 78.08 (+13.23) 60.38 (+40.21) 79.97 (24.89) 58.53 (28.53) 75.27 (+25.83) 65.84 (+23.21) 66.66 (+30.95) 66.72 (+28.59)

MusiQue • Qwen2.5-Instruct

Origin 69.85 23.71 57.29 36.32 53.00 47.54 40.04 42.58
PROMPT 76.76 (+6.91) 36.08 (+12.37) 67.60 (+10.31) 45.29 (+8.97) 62.81 (+9.81) 58.48 (+10.94) 48.27 (+8.23) 52.32 (+9.74)
CAD 82.20 (+12.35) 57.88 (+34.17) 76.58 (+19.29) 63.53 (+27.21) 75.27 (+22.27) 67.18 (+19.64) 67.74 (+27.70) 67.68 (+25.20)
COIECD 69.85 (+0.00) 24.74 (+1.03) 57.58 (+0.29) 37.06 (+0.74) 53.45 (+0.45) 47.54 (+0.00) 41.13 (+1.09) 43.21 (+0.63)
CSKS 94.85 (+25.00) 85.13 (+61.42) 90.43 (+33.14) 89.56 (+53.24) 93.54 (+40.54) 85.94 (+38.40) 90.47 (+50.43) 89.26 (+46.68)

PopQA • LLaMA-3-Instruct

Origin 52.04 23.62 52.21 23.48 43.14 37.29 33.22 34.32
PROMPT 72.99 (+20.95) 46.91 (+23.29) 74.50 (+22.29) 45.42 (+21.94) 60.20 (+17.06) 61.53 (+24.24) 58.18 (+24.96) 57.07 (+22.75)
CAD 47.63 (-4.41) 24.12 (+0.50) 49.94 (-2.27) 21.85 (-1.63) 39.80 (-3.34) 36.85 (-0.44) 31.17 (-2.05) 32.69 (-1.63)
COIECD 53.03 (+0.99) 23.62 (+0.00) 52.43 (+0.22) 24.26 (+0.78) 43.31 (+0.17) 38.13 (+0.84) 33.71 (+0.49) 34.82 (+0.50)
CSKS 69.79 (+17.75) 65.45 (+41.83) 80.46 (+28.25) 54.80 (+31.32) 66.72 (+23.58) 67.72 (+30.43) 68.40 (+35.18) 66.24 (+31.92)

PopQA • Qwen2.5-Instruct

Origin 66.15 28.59 60.60 34.18 51.67 47.83 42.79 43.59
PROMPT 75.63 (+9.48) 40.17 (+11.58) 71.85 (+11.25) 43.99 (+9.81) 58.86 (+7.19) 57.86 (+10.03) 57.05 (+14.26) 54.63 (+11.04)
CAD 78.06 (+11.91) 61.15 (+32.56) 78.04 (+17.44) 61.19 (+27.01) 70.73 (+19.06) 69.23 (+21.40) 68.88 (+26.09) 67.80 (+24.21)
COIECD 65.82 (-0.33) 28.04 (-0.55) 59.49 (-1.11) 34.40 (+0.22) 50.50 (-1.17) 47.32 (-0.51) 43.11 (+0.32) 43.31 (-0.28)
CSKS 93.83 (+27.68) 90.40 (+61.81) 93.27 (+32.67) 90.96 (+56.78) 88.46 (+36.79) 93.14 (+45.31) 94.65 (+51.86) 92.24 (+48.65)

Table 1: Accuracy when evaluated on specific ranks of individual dimensions in the dataset and the overall Sensitivity
Score. For each dimension, Rank 1 represents the least challenging cases, while higher ranks indicate increasing
difficulty. CSKS outperforms baseline methods under all metrics.

conducted a verification on small model. The re-309

sults are presented in Appendix C, which shows310

that while all baseline methods work fine for the311

small model, IRCAN shows minimal performance312

enhancement. This limited efficacy combined with313

IRCAN’s significantly larger computational over-314

head makes it unsuitable for our primary objective315

of efficient large-model adaption. So we exclude316

IRCAN from our main experiments.317

3.2 Models and Settings318

We employ two state-of-the-art instruction-tuned319

LLMs as target models: Llama-3-70B-Instruct320

(Dubey et al., 2024) and Qwen2.5-72B-Instruct321

(Yang et al., 2024). For each target model, we uti-322

lize its smaller counterpart as proxy model – specif-323

ically, fine-tuned versions of Llama-3-8B-Instruct324

for the Llama-3 series and Qwen2.5-7B-Instruct325

for the Qwen2.5 series. We use greedy decoding in326

all the experiments to ensure reproducibility.327

For constructing the evaluation dataset, we use328

MuSiQue (Trivedi et al., 2022) and PopQA (Mallen329

et al., 2023), both widely used question-answering330

datasets as the source datasets. Following the331

setup in Shi et al. (2024a), we frame the task as a 332

multiple-choice format. For evaluation purposes, 333

we organize the data into binary-choice questions, 334

where the correct options correspond to the answers 335

in context, and the incorrect options correspond 336

to the original answers to the question. This de- 337

sign creates controlled knowledge conflict scenar- 338

ios where model performance directly reflects its 339

ability to prioritize contextual or parametric knowl- 340

edge. It is important to clarify that the contextual 341

answers used here are exactly the perturbed an- 342

swers we introduce during dataset construction. 343

To comprehensively evaluate the model’s per- 344

formance across the entire dataset, we use accu- 345

racy as a default metric, calculated for each rank 346

within our three operational dimensions (perturba- 347

tion, context, popularity). Additionally, we employ 348

the previously defined Sensitivity Score to assess 349

the model’s ability to adhere to the given context, 350

which is also normalized into a 100-scale. 351

3.3 Results 352

As demonstrated in Table 1, our proposed CSKS 353

consistently advances all baselines across all evalu- 354
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ation dimensions. CSKS outperforms baseline meth-355

ods by substantial margins, with 30.26 average sen-356

sitivity score improvement for LLaMA-3 and 47.67357

for Qwen2.5. Besides, we have two other main ob-358

servations:359

1. Baseline Limitations: The decoding-time360

strategy baselines exhibit inconsistent effec-361

tiveness. While CAD shows moderate gains362

on Qwen2.5 (+24.2 sensitivity score), it de-363

grades performance on LLaMA-3 (-1.1 sensi-364

tivity score). COIECD’s entropy-based con-365

straints prove insufficient for resolving deep366

parametric conflicts, yielding marginal im-367

provements of less than 1.5 across all con-368

figurations. The core idea behind CAD and369

COIECD is to leverage the output distribution370

differences between the model’s responses371

with and without context to emphasize the im-372

portance of contextual information (i.e. one373

model with different data). Our results sug-374

gest that large models may not be able to over-375

come the biases of their internal knowledge376

on their own.377

2. Dimensional Sensitivity: Among the three378

dimensions we introduce, the perturbation de-379

gree has the greatest effect. This might be380

because a large perturbation creates an obvi-381

ous conflict with the model’s internal knowl-382

edge, forcing it to confront and resolve the383

inconsistency directly. On the other hand,384

small perturbations are more confounding, as385

they subtly deviate from the truth, making it386

harder for the model to determine whether to387

trust the external context or rely on its inter-388

nal knowledge. The perturbation degree has389

the lowest effect. Under our method, the dif-390

ferences between different ranks of popularity391

are smoothed out or even reversed, which indi-392

cates that our method has sufficient ability to393

eliminate the intrinsic knowledge bias brought394

by the model during pre-training.395

After demonstrating the effectiveness of CSKS396

framework, we further show that our framework397

can achieve continuous and precise control over398

the knowledge sensitivity to contextual knowledge399

through the steering parameter α. As illustrated in400

Figure 3, increasing α values (α > 0) produces a401

monotonic enhancement of sensitivity score from402

4.32 to 39.80 for LLaMA on MuSiQue, with poten-403

tial for further increase). This directional control404

Alpha STEM Humanities Other Social Average

-2.0 89.34 78.01 88.27 82.54 85.00
-1.5 90.98 77.66 88.08 83.81 85.44
-1.0 91.39 77.32 88.64 83.17 85.51
-0.7 91.39 78.69 88.64 84.13 86.01
-0.5 91.39 79.73 89.01 84.44 86.45

72B(α = 0) 92.62 79.04 88.64 84.76 86.45
+0.5 91.80 78.01 87.71 84.44 85.65
+0.7 91.80 78.69 87.52 84.13 85.65
+1.0 90.98 78.01 87.34 83.81 85.22
+1.5 90.98 76.29 85.85 83.49 84.21
+2.0 90.98 74.91 84.92 81.27 83.06

7B 84.84 70.79 76.35 76.83 76.78

Table 2: Performance comparison showing trade-off be-
tween faithfulness to contextual knowledge and general
capabilities.

proves critical for applications requiring dynamic 405

knowledge updates, where models must suppress 406

outdated parametric knowledge in favor of fresh 407

contextual evidence. Results on PopQA can be 408

found in Appendix D.) 409

In the previous experiments, we demonstrate the 410

effectiveness of CSKS framework when aggregating 411

new and conflicting knowledge in contexts setting 412

α > 0. Notably, extending α to negative values 413

(α < 0) reveals an inverse mode of action—the 414

framework can suppress contextual influence to 415

amplify parametric reliance. As demonstrated in 416

Figure 3, setting α = −2.0 reduces contextual 417

sensitivity score by 15.9 for LLaMA and 32.8 for 418

Qwen compared to their baselines (α = 0), effec- 419

tively transforming the target model into a para- 420

metric knowledge conservative. This bidirectional 421

control mechanism (α ∈ (−∞,+∞)) enables con- 422

tinuous scenario adaptation, allowing practitioners 423

to calibrate models for either context-sensitive sce- 424

narios or parametric knowledge preservation. 425

3.4 Analysis 426

The Impact of Proxy Model Size To study 427

whether it is possible to use even smaller models 428

to save more resources and achieve comparable re- 429

sults, we utilize the Qwen2.5 model family, which 430

includes small models from 0.5B to 7B. We apply 431

these models under CSKS framework to steer the 432

72B model and present the results in Figure 4. As 433

shown in the figure, the impact of the 0.5B proxy 434

model on the sensitivity score of the target model 435

is not obvious, but there is still a growing trend. 436

The impact of the 1.5B proxy model on the target 437

model already becomes very significant. When the 438

size of the proxy model increases to 3B, its impact 439

on the target model is comparable to that of the 7B 440
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Figure 3: The performance of LLaMA and Qwen controlled bidirectionally, demonstrating the continuous adjustment
capability of our method from two directions.
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Figure 4: The performance of CSKS under varying proxy model sizes on MuSiQue and PopQA respectively. Smaller
proxy models, such as the 0.5B and 1.5B versions, have a minimal but growing impact on the sensitivity score
of the 72B target model. The 3B proxy model achieves a sensitivity adjustment comparable to the 7B model,
demonstrating that our framework allows for significant context sensitivity modulation with much smaller models.

proxy model, and even has a slight advantage. The441

above results demonstrate that our framework has442

the potential to use a much smaller overhead (such443

as only using a 3B model) to perform context sensi-444

tivity adjustment on a model dozens of times larger.445

This efficiency may stem from our framework’s446

selective steering mechanism, where proxy models447

focus exclusively on context sensitivity modulation448

rather than full knowledge representation.449

Trade-Off Discussion To study how scaling the450

control parameter α would impact the general ca-451

pabilities of the model, we conduct an evaluation452

on the MMLU benchmark (Hendrycks et al., 2021).453

For simplicity, we select two tasks from each of454

its four subjects (STEM, Humanities, Social, and455

Other) in the dataset as the test dataset. The exper-456

iment results in Table 2 reveal a crucial trade-off457

in knowledge sensitivity control: while increasing458

the absolute value of α enables extensive adjust-459

ment of the model’s contextual sensitivity as we460

show in Figure 3, excessive values (|α| > 1.5) lead461

to noticeable degradation in general capabilities,462

particularly Humanities (-4.10%) domain. This463

performance decline suggests that extreme sensi-464

tivity adjustments may disrupt the traget model’s 465

fundamental reasoning patterns, highlighting the 466

importance of maintaining a balanced α range that 467

preserves core competencies while enabling effec- 468

tive knowledge adaptation. Notably, even within 469

this kind-of-broad range, the target 72B model con- 470

sistently outperforms the 7B model by significant 471

margins (average +8.67%), demonstrating that our 472

framework successfully leverages the large model’s 473

superior reasoning capacity while achieving pre- 474

cise sensitivity control. These findings collectively 475

indicate that strategic α selection can achieve an ef- 476

fective equilibrium between contextual adaptability 477

and general capability preservation, fulfilling our 478

framework’s dual objectives of precise knowledge 479

steering and performance maintenance. 480

Extending to Black Box Model For the black- 481

box models that we can’t obtain weights, our frame- 482

work remains effective. We apply our framework to 483

adapt GPT-3.5-Turbo (Ouyang et al., 2022). In this 484

setting, since we can only access log probabilities 485

for the top five tokens through the API, CSKS only 486

reweights the five tokens. We present the results in 487

Table 3. For black-box models that do not belong 488
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Raw α = 0.5 α = 0.7 α = 1.0 α = 1.5 α = 2.0

MusiQue • Proxy-LLaMA

51.24 60.38 66.36 76.32 87.79 93.45

PopQA • Proxy-Qwen

56.56 75.07 84.67 90.89 93.58 94.73

Table 3: Performance of GPT-3.5-Turbo steered by
LLaMA and Qwen. Our method also works for black-
box models such as GPT-3.5-Turbo.

to the same model family as the proxy model, CSKS489

can still effectively control its context sensitivity,490

demonstrating its broad application domain.491

4 Related Works492

4.1 Knowledge Conflicts493

Knowledge conflicts refer to cases where contex-494

tual knowledge contradicts parametric knowledge495

(Mallen et al., 2023; Xu et al., 2024; Kortukov et al.,496

2024). Many previous works focus on making497

LLMs generate responses based on provided con-498

text rather than parametric knowledge (Gekhman499

et al., 2023; Lee et al., 2022; Shi et al., 2024c;500

Zhang et al., 2020; Zhou et al., 2023). This is a501

valuable setting for applications such as retrieval-502

augmented LMs (Ram et al., 2023; Shi et al.,503

2024d), where the context may be of high qual-504

ity (e.g. containing updated knowledge). However,505

an underexplored aspect is that the context quality506

may vary significantly in different working sce-507

narios, so making the model rely on context to a508

constant extent is far from enough. We argue that509

LLMs should be controlled to rely on context to510

varying degrees, and the control should be precise511

and continuous. We propose an effective yet effi-512

cient framework to achieve this goal.513

Another line of work focuses on evaluating and514

understanding LLMs in knowledge conflicts and515

mining factors affecting LLMs’ choice in knowl-516

edge conflicts. Wu et al. (2024a); Tan et al. (2024)517

show that the level of detail in the context will af-518

fect the choices made by language models when519

faced with knowledge conflicts. Xie et al. (2023)520

find that LLMs exhibit a predisposition towards em-521

phasizing information related to entities of higher522

popularity and models demonstrate a significant523

sensitivity to the order in which data is introduced.524

Qian et al. (2024) introduce different permutation525

degrees to knowledge and find that models exhibit526

resistance to knowledge that evidently lacks verac-527

ity. Jin et al. (2024) discover that as the number528

of conflicting hops increases, LLMs encounter in- 529

creased challenges in reasoning. We further utilize 530

the key factors to measure the difficulty of ma- 531

nipulating certain knowledge and provide a more 532

comprehensive evaluation method. 533

4.2 Updating Knowledge in Language Models 534

To introduce new knowledge to LMs, previous 535

works explore tuning-based approaches (Wang 536

et al., 2024b), decoding strategies (Shi et al., 2024b; 537

Zhao et al., 2024; Wang et al., 2024a), and model 538

editing methods (Meng et al., 2023; Gupta et al., 539

2023; Shi et al., 2024a). Nevertheless, these meth- 540

ods are usually inefficient or ineffective for large 541

models, not workable for black-box models, or un- 542

able to continuously adjust LLMs’ sensitivity to the 543

new contextual knowledge, while our approach can 544

steer LLMs’ sensitivity to contextual knowledge 545

continuously at a lightweight cost. 546

4.3 Control of Language Models 547

Motivated by the increasing capabilities of LMs 548

(Li et al., 2023b), many studies focus on control- 549

ling certain attributes of LM generation, usually 550

non-toxicity and positive sentiment. A common so- 551

lution to control LMs is representation engineering. 552

Han et al. (2024) use word embeddings to steer 553

LMs for language model detoxification and senti- 554

ment control. Zhao et al. (2024) steer knowledge 555

behaviors of LLMs with SAE-based representation 556

engineering. Some other works tune the hidden rep- 557

resentations of LMs to change behaviors (Wu et al., 558

2024b; Hernandez et al., 2024; Li et al., 2023a; 559

OpenAI, 2024). Another line of work incorporates 560

other models to guide the generation process (Liu 561

et al., 2021, 2024a; Feng et al., 2024). Our work 562

also borrows this idea but emphasizes controlling 563

sensitivity to contextual knowledge and achieves 564

precise and continuous control. 565

5 Conlusion 566

We present CSKS, an efficient and effective frame- 567

work that leverages smaller LMs as proxy mod- 568

els to shift the output distributions of LLMs, thus 569

improving LLMs’ faithfulness to the knowledge 570

provided in the context. We also introduce a fine- 571

grained evaluation method for measuring LLM’s 572

sensitivity to contextual knowledge. Extensive ex- 573

periments demonstrate that our framework achieves 574

state-of-the-art, and more importantly, achieves pre- 575

cise and continuous control over LLMs’ sensitivity 576

to contextual knowledge. 577
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Limitations578

The language models and datasets used for our579

experiments are not complete. We only consider580

two families of open-sourced LLMs, one black-box581

LLM, and two QA datasets. Since we will make582

our code and synthetic datasets publicly available,583

we leave it to future work on evaluating more mod-584

els on more datasets. Moreover, we do not consider585

complex knowledge-related QA tasks such as multi-586

hop QA. Finally, since our experiment is done in a587

synthetic setting, it is unclear how our method will588

work in real-world applications.589
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A Finetune Dataset Details888

To obtain our P model and N model, we fine-tune889

the Llama-3-8B-instruct model and Qwen-2.5-7B-890

instruct model. To ensure generalization, the fine-891

tuning datasets are constructed using methods and892

domains different from those of the synthesized893

conflict datasets. To achieve optimal results, we894

have designed a specialized pipeline for construct-895

ing the fine-tuning dataset as shown in Figure 5.896

We select ECQA as the base dataset, which is a897

multiple-choice QA dataset where each question is898

accompanied by five answer options.899

• For the P model: We select the incorrect op-900

tion least related to the correct answer as the901

"contextual answer."902

• For the N model: We select the incorrect op-903

tion most related to the correct answer as the904

"contextual answer."905

Next, using GPT, we generate supportive context906

based on the chosen answer and the question.907

• For the P model, the generated context was908

short and simple.909

• For the N model, the context was long and910

detailed.911

Finally, we again use GPT to generate explana-912

tions based on the context, question, and selected913

answer.914

• For the P model, the explanation justified why915

the selected answer was correct.916

• For the N model, the explanation detailed917

why the selected answer was incorrect.918

Using these constructed answers and their corre-919

sponding explanations, we fine-tune the model as920

follows:921

• The P model was fine-tuned on the selected922

answers and their associated explanations.923

• The N model was fine-tuned on the original924

correct answers and their explanations.925

Figure 5: The pipeline to get the data used to finetune our
P model and N model

Figure 6: The accuracy of the LLaMA-3-70B-Instruct
model across questions of each difficulty score.

B Effectiveness of the Grading System 926

To validate the effectiveness of our grading system, 927

we conduct a validation experiment. We analyze 928

the accuracy of the target model across questions 929

of varying difficulty levels, with the results shown 930

in Figure 6. The results reveal that as question 931

difficulty increases, accuracy correspondingly de- 932

creases. This demonstrates that our grading system 933

successfully quantifies problem difficulty. 934

C Fine-tune results on small models 935

Figure 7 illustrates the effects of different methods 936

on the LLaMA-3-8B-instruct model. From the 937

results, we observe the following: 938

1. The Prompt,CAD and COIECD methods all 939

improve the performance of the 8B small 940

model, while the impact of IRCAN on the 941

small model’s performance is minimal. 942

2. We also present the performance of our fine- 943

tuned P model and N model. The P model 944

performs the best, as it effectively incorpo- 945

rates knowledge from the context, while the 946

N model scores much lower, indicating that 947

it tends to rely on its internal knowledge and 948

resists external contextual information. This 949

indicates that our fine-tuning is successful. 950
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Figure 7: The effects of different methods on the LLaMA-
3-8B-instruct model tested on PopQA.

D Steering Results on PopQA951

We present the steering results on the PopQA952

dataset, which have similar trend as that on the953

MuSiQue dataset.
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Figure 8: Sensitivity score variation with alpha values
on PopQA.

954

E Prompts used to generate our955

synthesized dataset956

Figure 9 - Figure 12 show the prompts used to957

generate the features for different dimensions of958

our dataset.959

Figure 9: The prompt we use to ask gpt to make a slight
permutation.

Figure 10: The prompt we use to ask gpt to make a sig-
inificant permutation.
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Figure 11: The prompt we use to ask gpt to generate a
short context.

Figure 12: The prompt we use to ask gpt to generate a
long context.
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