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Abstract

Estimating out-of-distribution performance is critical to safely deploy machine1

learning models. Recently, Baek et al. showed that the phenomenon “agreement-2

on-the-line” can be a reliable method for predicting the OOD accuracy of models3

in an ensemble consisting largely of CNNs trained from scratch. However, it is4

now increasingly common to lightly fine-tune foundation models, and it is unclear5

whether such fine-tuning is sufficient to produce enough diversity in model predic-6

tions for such agreement-based methods to work properly. In this paper, we develop7

methods for reliably applying agreement-on-the-line-based performance estimation8

to fine-tuned foundation models. In particular, we first study the case of fine-tuning9

a single foundation model, where we extensively study how different types of ran-10

domness (linear head initialization, data shuffling, and data subsetting) contribute11

to agreement-on-the-line of the resulting model sets. Somewhat surprisingly, we12

find that it is possible to obtain strong agreement via random initialization of the13

linear head alone. Next, we find how multiple foundation models, pretrained on dif-14

ferent data sets but fine-tuned on the same task, also observe agreement-on-the-line.15

Again rather surprisingly, the diversity of such models is not too disparate, and16

they all lie on the same agreement line. In total, these methods enable reliable and17

efficient estimation of OOD accuracy for fine-tuned foundation models, without18

leveraging any labeled OOD data.19

1 Introduction20

Foundation models (FM) approaches, where one first pretrains a large model on open world data then21

fine-tunes for a specific downstream task, have achieved state-of-the-art results on image classification22

[27, 21, 38], text classification [6], question answering [8], and others. They are particularly noted23

for their often strong performance on out-of-distribution (OOD) data, that may vary substantially24

from the data used for fine-tuning (referred to as the in-distribution (ID) data) [5, 39]. Unfortunately,25

a substantial practical problem arises in this OOD setting: in many cases, one does not have access to26

labeled OOD data, and thus the field has explored other means for estimating OOD accuracy.27

Interestingly, across a variety of distribution shift benchmarks, models often observe strong linear28

correlation between the ID and OOD accuracies of models, a phenomenon dubbed “Accuracy-on-the-29

line” (ACL) [25, 31, 32]. Recently, Baek et al. [2] empirically demonstrated that for ensembles of30

deep network classifiers trained from scratch, the rates of ID and OOD agreement also show a strong31

linear correlation with the same slope and bias. Baek et al. [2] used this to estimate the accuracies32

of models in such ensembles, thus providing a simple method for estimating OOD accuracy via33

unlabeled data alone. Thus, whenever the ID versus OOD accuracy is strongly linearly correlated,34

one may estimate the linear OOD performance trend using agreement without ground truth labels.35
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Unfortunately, the AGL approach requires a diverse collection of classifiers over which to compute36

agreement: classifiers must vary in their predictions. Baek et al. [2] achieve this by training various37

models of different architectures from scratch. However, in the case of fine-tuned FMs, this diversity38

is seemingly lacking: we often want to lightly fine-tune just a single base FM for a downstream39

task, which even after multiple runs would seemingly lead to highly correlated downstream models,40

making them unsuitable for AGL-based OOD performance estimation.41

In this work, we develop methods for extending AGL performance estimation to FMs, thus enabling42

practitioners to estimate the OOD performance of fine-tuned models without any labeled data. We43

first investigate the ability to estimate performance using a single base FM. We present a detailed44

empirical study of three potential sources of randomness during fine-tuning: 1) random linear head45

initialization; 2) random orderings of the fine-tuning data; and 3) random i.i.d subsets of the fine-46

tuning data. We find, somewhat surprisingly, that using random linear heads is able to reliably induce47

AGL behavior for the resulting classifiers, with the result holding across multiple different FMs and48

modalities (image classification and question answering a.k.a QA tasks). The result is a simple and49

straightforward method for evaluating OOD performance for a fine-tuned FM, applicable to settings50

where we only one want to fine-tune a single such base FM.51

Second, we analyze the ability of the AGL-based method to predict OOD performance when using52

multiple different pretrained FMs. Here we encounter a setting where the different base models53

are pretrained on potentially entirely different data sets, using different architectures, and different54

training regiments. We show, however, that this degree of diversity is also sufficient for producing55

AGL behavior. Thus, for settings where multiple pretrained models exist, they can all be fine-tuned56

for a given downstream task, and AGL can allow us to estimate their accuracies.57

In total, our contributions are as follows:58

1. We propose a state-of-the-art method for unsupervised accuracy estimation under distribution59

shift when using large pretrained foundation models that are lightly fine-tuned for specific60

tasks. Prior works have primarily dealt with models trained from scratch, and hence are not61

directly applicable in this setting.62

2. Our work leverages Agreement-on-the-line (AGL) [2] for OOD estimation, but extends it in63

important ways to apply to finetuned foundation models. The key to making AGL work is64

obtaining the right ensemble. In Baek et al. [2], multiple models were trained independently65

from scratch, an unfeasible step for FMs. We show that creating an ensemble with randomly66

initialized linear heads and then fine-tuning, also allows for AGL behavior, while other67

similar forms of ensembling (such as data ordering or data subsetting) do not.68

3. We also identify several interesting phenomena underlying AGL that go beyond previous69

knowledge. Prior work Baek et al. [2] claimed that AGL does not hold for linear models.70

However, we find the contrary when using pretrained CLIP features. Furthermore, other71

prior work Miller et al. [25] suggests that the effective robustness (i.e. the linear fit between72

ID and OOD accuracy) would change depending on the pretraining data. We find that this is73

not the case for question answering with different pretrained FMs.74

In total, this work substantially expands the set of problems and models for which AGL-based OOD75

performance estimation is practical, and allows us to leverage much more powerful models for76

settings where training models from scratch on tasks of interest is not feasible.77

2 Background and related work78

OOD performance estimation of FMs. Numerous tasks of interest boil down to mapping an input79

x ∈ X to a discrete output y ∈ Y. In particular, consider a base FM B : X 7→ Rd that we fine-tune to80

get f(B) : X 7→ Y. In this work, we consider a variety of foundation models: BERT [9], GPT2 [27],81

GPT-Neo, OPT [41], Llama2 [36], and CLIP [28].82

Given access to a labeled validation set from DID and unlabeled samples from a different distribution83

Dood, our goal is to estimate performance on Dood. We consider the standard performance metrics:84

Accuracy ℓ0-1 : Y 7→ Y for classification, and Macro-averaged F1 score ℓF1 : Y 7→ Y for QA.85

There are a variety of proposed approaches for OOD performance estimation. One family of86

approaches attempts to quantify the degree of distribution shift through data and/or model dependent87
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Figure 1: The ID vs OOD trends for accuracy and agreement on the CIFAR10C “Pixelate” shift
for linear-probe CLIP models, fine-tuned on CIFAR10 using the respective source of randomness:
random linear heads, data shuffling, and independent data subsets. Clearly, the use of random linear
heads is the only method producing AGL behaviour (i.e. matching bias and slope of the two lines)

metrics [4, 23, 7, 20]. However, these approaches only provide upper bounds on the OOD error, and88

the bounds tend to be loose when evaluated on deep networks [25]. Another line of work looks at89

leveraging the model’s softmax predictions to predict the OOD performance [15, 14, 12, 10, 13].90

While these approaches show empirical promise in some settings, they are not expected to work in91

general and often fail in the presence of large shifts [12].92

ACL and AGL Baek et al. [2] propose AGL, a recent approach for estimating OOD performance,93

that outperforms prior approaches across a variety of shifts. It is based on an earlier intriguing94

observation from [25, 30, 31, 32, 40, 35, 24]—there is a strong linear correlation between the95

probit-scaled ID and OOD performances of models across many distribution shift benchmarks (ACL).96

Interestingly, Baek et al. [2] observes that when where ACL holds, the probit-scaled agreement97

between models is also strongly correlated and observe the same slope and bias. Furthermore, when98

accuracies do not show a linear correlation, agreements also do not. This phenomenon was called99

“agreement-on-the-line” (AGL).100

Formally, given a pair of models f1 and f2 that map inputs to labels, accuracy and agreement can be101

defined as102

Acc(f1) = Ex,y∼D[ℓ(f1(x), y)], Agr(f1, f2) = Ex,y∼D[ℓ(f1(x), f2(x))], (1)

where ℓ is the appropriate performance metric of interest. Note that while accuracy requires access to103

the labels y, agreement only requires access to unlabeled data and a pair of models. Thus, one can104

compute this line using OOD unlabeled data, and then estimate the OOD performance by linearly105

transforming the ID performance measured on ID validation data. See Appendix 5.3 for formal ALine106

methods to use AGL for OOD estimation.107

Training from scratch vs fine-tuning A crucial component for AGL is the diversity of the ensemble108

predictions over which agreements are evaluated. If the models are not diverse enough, AGL is bound109

to fail. As an extreme, consider an ensemble of effectively identical models. Their ID and OOD110

agreement will always be 1, and there is no linear fit to estimate. Prior work on AGL has exclusively111

focused on training from scratch for several epochs, a very different regime from light fine-tuning. In112

this work, we focus on how to introduce sufficient diversity during just the fine-tuning process which113

can start from the same base FM and usually involves far fewer gradient steps.114

3 Experiments and Results115

Fine-tuning. In this work, we consider linear probing (LP) and full fine-tuning (FFT). For LP,116

given features Bθ from the base model B, we train just the linear head v on top of frozen features117

such that the final classifier maps the score v⊤Bϕ(x) to a predicted class. We refer to v as either a118

linear probe (classification) or span prediction head (QA). For FFT, we attach a linear head v and119
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Table 1: The MAPE (%) of predicting OOD performance using ALine and other baseline methods.
Evaluations on QA tasks (SQuAD-Shifts) are performed over a set of models finetuned from multiple
base FMs (LlaMa, GPT, OPT). Evaluations on the image classification datasets are conducted with
CLIP models fine-tuned with linear probing.

OOD Dataset ALine-D ALine-S Naive Agr ATC AC DF

SQuAD-Shifts (averaged across 4 shifts) 1.68 2.55 19.48 9.16 45.04 4.54

CIFAR10C (averaged across shifts) 6.99 6.92 44.33 31.28 48.66 32.79
CIFAR10.1 (averaged across v4, v6) 2.42 3.03 41.52 6.48 54.57 8.51

CIFAR100C (averaged across shifts) 11.94 12.67 46.13 18.69 80.81 37.36

ImageNet V2 (averaged across 3 format) 4.96 5.03 47.65 8.96 77.34 7.86

WILDS (averaged across 3 benchmarks) 11.52 12.91 50.12 21.73 42.18 27.54

optimize the suitable loss function, but we update all parameters of the backbone such that the120

feature extract Bϕ is updated. When infeasible to update all parameters natively, we perform low-rank121

adaptation (LoRA) [16] which uses trainable rank decomposition matrices to reduce the number of122

trainable parameters while still effectively updating the feature extractor Bϕ. In this work, we do not123

distinguish between LoRA and FFT as they conceptually achieve the same effect, and show similar124

empirical trends in our studies. Refer to Appendix 5.1 for details on fine-tuned models and Appendix125

5.2 for specific fine-tuning parameters.126

Datasets We study AGL for the tasks of QA and Image Classification. For QA, we fine-tune127

on the SQuAD v1.1 dataset [29] and evaluate on four distribution shifts present in SQuAD-Shifts128

(New Wiki, New York Times, Amazon, and Reddit) [24]. For image classification, we fine-tune129

on CIFAR10 [19], and then test on CIFAR10C [14], a dataset with 19 corruptions, some natural130

(Snow), and some synthetic (JPEG compression). We also test on the CIFAR10.1 dataset [30], which131

contains newer images for the same labels. We repeat the same for CIFAR100 [18], ImageNet-1k [33].132

We additionally validate our finding by testing on three natural shifts from the WILDS benchmark133

(FMoW, iWildCam, Camelyon17) [17].134

3.1 Predicting OOD performance: single base foundation model135

Consider the case where we have a single base FM to fine-tune. An overriding concern when136

calculating agreement is that even some randomness in the fine-tuning process may not be enough to137

overcome the underlying similarities in predictions due to the same base FM. To address this problem,138

we evaluate three possible methods for introducing diversity in the fine-tuning, to see what approach139

(if any) can lead to AGL behavior:140

1. Random linear heads. Before fine-tuning, we initialize the last layer of the network (i.e.,141

the linear head) randomly, instead of via some zero-shot or pre-specified manner.142

2. Data shuffling. We present the same data to each model, but shuffle the order for the data143

differently within each fine-tuning optimization run.144

3. Data subsetting. We fine-tune each model with an independently sampled subset of the ID145

data. All models are trained on subsets of the same size.146

Note that we perturb only one source of diversity at a time. For example, in the random linear head147

setting, all models start with a different initialization, but the data used for training is the same and148

seen in the same order. In the data shuffling setting, all models start with an identical arbitrary149

initialization, but the data used for training is seen in different orders; and so on.150

For our study of image classification, we train a linear probe atop of CLIP, specifically the ViT-B/32151

model trained on LAION-2B [34]. For QA, we evaluate a collection of 50 fine-tuned models, all152

obtained by fine-tuning from the same checkpoint of a GPT2-Medium. We repeat the same procedure153

for OPT and BERT architectures, the details of which can be found in the Appendix (Sections 5.1154

and 5.5).155
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For the case of training models from scratch, it is well established that independent data subsetting156

tends to lead to the greatest diversity of classifiers [26]. Nonetheless, in this setting we find rather157

surprisingly, that model pairs trained with different randomly initialized linear heads achieve the158

lowest OOD agreement for the same ID agreement. In fact, the ID versus OOD agreement matching159

the slope of ID versus OOD accuracy. On the other hand, data ordering and data shuffling observe ID160

versus OOD agreement that lies closer to the diagonal y = x and away from the accuracy linear fit.161

We show that this finding persists over numerous models and tasks.162

3.2 Predicting OOD performance: multiple base foundation models163

When multiple base foundation models (pretrained on different data) are accessible, it is unclear if164

models with different bases would lie on different or similar accuracy lines, even if fine-tuned on the165

same ID data. We observe that for certain extractive QA shifts, foundation models fine-tuned from a166

wide range of base models exhibit both ACL and AGL (See Appendix 5.6 for details)167

3.3 Results168

Figure 1 shows the ACL/AGL trends for linear probes trained on top of CIFAR10 CLIP representa-169

tions. One may suspect that such linear models would agree highly and AGL may break. However,170

we see that contrary to the findings of Baek et al. [2], even linear models, when on top of neural171

network features with the right type of diversity, may exhibit AGL. Interestingly enough, for the other172

sources of diversity, we observe ACL and strongly linearly correlated agreement, but the latter at a173

much higher rate OOD. We refer the reader to Appendix 5.9 for a more exhaustive evaluation. The174

same observations, however not as stark, can be made for the fine-tuned LLMs. We refer the reader175

to Appendix 5.5 to observe these trends on all four shifts within the SQuaD-Shifts dataset.176

When considering multiple base foundation models, we first observe that base LLMs pretrained on177

different corpora also lead to fine-tuned models that exhibit ACL. This is in contrast to the findings of178

previous works [28, 35]. Second, the ID versus OOD agreement for pairs of models in this ensemble,179

including pairs of different base foundation models, retains a strong linear correlation and the slope180

and bias closely matches that of accuracy. As a result, different pretraining does not break AGL.181

Table 1 shows the averaged MAPE (Mean Absolute Percentage Error) as calculated using the ALine182

algorithm and other baseline methods for some dataset shifts (the full version for all datasets can be183

found in Appendix 5.8). The QA ensembles are generated by fine-tuning multiple foundation models,184

and the image classification ones are all CLIP linear-probes. Since AGL is demonstrated to hold well185

in all these ensembles, the ALine MAE is able to surpass other methods; thus lending support to our186

method to get AGL to hold for lightly fine-tuned models, and using it to estimate OOD performance.187

4 Conclusion188

We develop methods for extending AGL to lightly fine-tuned FMs to enable OOD performance189

prediction in this emerging paradigm. We found that applying AGL directly may sometimes fail,190

and proper utilization of this phenomena requires a careful tuning of the distribution of models in an191

ensemble for their errors to be uncorrelated. Unlike the original paradigm of AGL, where models192

observed tens or hundreds of epochs of training on the in-distribution dataset, we find that stochasticity193

in specific optimization choices, specifically random initialization, is crucial for observing AGL in194

lightly fine-tuned FMs. Second, though Baek et al. [2] posed AGL as a model centric phenomena195

that is specifically only observed in neural network ensembles, we find that linear models can also196

observe AGL when the data and the distribution shift contain certain structures (as is possible in the197

CLIP representation space).198

Our conclusion on AGL also sheds light on ACL (i.e. accuracy-on-the-line) in the presence of199

foundation models, a phenomenon that is of independent interest. Some recent works have studied200

the effect of different forms of fine-tuning on ACL [28, 1]. The main finding reported is that different201

forms of fine-tuning lead to different slopes in the linear correlations, a term that is often called202

“effective robustness”. In our results, we find that when fine-tuned the same way, models obtained203

from different base foundation models all lie on the same line. This is particularly intriguing because204

it goes against the common wisdom that the amount of pretraining data determines the effective205

robustness. We leave these questions for future analysis.206
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5 Appendix340

5.1 Models341

Extractive QA We evaluate a collection of 125 fine-tuned models for our experiments in this342

section. Each model is obtained by fine-tuning from the same checkpoint of a GPT2-Medium,343

OPT-125M, and BERT. We individually present findings on both these families of models in the344

following sections. Huggingface links to the base models we trained are in Appendix 5.7.345

Image Classification We use CLIP [28], specifically the ViT-B/32 model trained on LAION-2B346

[34] for our image classification tasks. Given its well-established 0-shot capabilities, a popular347

method of fine-tuning CLIP for downstream tasks is to simply employ linear probing on top of the348

CLIP representation. Thus, we are interested in evaluating the OOD performance of an ensemble of349

models where the only difference is the linear head.350

Multiple Models We train 41 models on the extractive QA benchmark SQuAD as in the previous351

section, and observe their OOD performance to SQuAD-Shifts. We fine-tune OPT-125M [41], OPT-352

350M, OPT-1.3B, GPT2-XL, GPT2-Large, GPT2-Medium, GPT2 [27], GPT-Neo-135M, Llama2-7B353

[36], Alpaca-7B, and Vicuna-7B to extractive QA. OPT was pretrained on a wide variety of data354

including BookCorpus [42], Stories [37], a subset of PILE [11], CCNews v2 corpus, and PushShift.io355

Reddit [3]. Similarly, GPT2 was pretrained on BookCorpus while GPT-Neo was trained on PILE.356

Llama2 was trained on an undisclosed set of publicly available data. Sprouting from Llama2,357

Alpaca is additionally trained from Llama2 on instruction-following demonstrations while Vicuna is358

additionally trained from Llama2 on user-shared conversations from ShareGPT.359

5.2 Finetuning Specifics360

We state here the specific parameters used in finetuning GPT2-Medium for extractive QA and CLIP361

for image classification. Across the four different sources of diversity, the epochs are varied regardless362

of the experiment. We train with AdamW as the optimizer [22]. For randomly initializing linear363

heads we vary the seed for the head and keep all other values fixed. For changing the finetuning364

hyperparameters, we vary the learning rate and weight decay. To shuffle the data, we change the data365

seed that control the data ordering during training. And finally for data subsetting, we get different366

proportions of the dataset which are independently sampled.367

For the GPT2-Medium models, we train a total of 50 models for studying the sources of diversity.368

For the CLIP models, we fine-tune upwards of 200 models (i.e. linear heads on top of the CLIP369

representation) for the different vision datasets.370
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Table 2: Finetuning specifics for extractive QA (LR: learning rate, WD: weight decay, LS: linear head
initialization seed, DS: data shuffling seed, DP: data subsetting proportion, EP: epochs, B: batch size)

Source of Diversity GPT2-Medium
Varied Fixed

Random linear heads

LS: varied LR: 3× 10−6

WD: 2× 10−4

DS: fixed
DP: 20%
EP: 0–3

B: 4

Data shuffling

DS: varied LR: 4× 10−6

WD: 1× 10−4

LS: fixed
DP: 10%
EP: 0–3

B: 4

Data subsetting

DP: 4.5%− 50% LR: 2× 10−6

WD: 1× 10−4

DS: varied
LS: fixed

EP: 1
B: 4

Table 3: Finetuning specifics for OPT-125M (LR: learning rate, WD: weight decay, LS: linear head
initialization seed, DS: data shuffling seed, SS: random subsetting seed, EP: epochs)

Source of Diversity OPT-125M
Varied Fixed

Random linear heads

LS: varied LR: 4× 10−7

WD: 1× 10−5

DS: fixed
SS: fixed
EP: 10

Data shuffling

DS: varied LR: 4× 10−7

WD: 1× 10−5

LS: fixed
SS: fixed
EP: 10

Data subsetting

SS: varied LR: 4× 10−7

WD: 1× 10−5

DS: varied
LS: fixed
EP: 10
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Table 4: Finetuning specifics for BERT (LR: learning rate, WD: weight decay, LS: linear head
initialization seed, DS: data shuffling seed, SS: random subsetting seed, EP: epochs)

Source of Diversity BERT
Varied Fixed

Random linear heads

LS: varied LR: 2× 10−7

WD: 1× 10−5

DS: fixed
SS: fixed
EP: 10

Data shuffling

DS: varied LR: 2× 10−7

WD: 1× 10−5

LS: fixed
SS: fixed
EP: 10

Data subsetting

SS: varied LR: 2× 10−7

WD: 1× 10−5

DS: varied
LS: fixed
EP: 10

Table 5: Finetuning specifics for CLIP (LR: learning rate, WD: weight decay, LS: linear head
initialization seed, DS: data shuffling seed, DP: data subsetting proportion, EP: epochs, B: batch size)

Source of Diversity CLIP + ViT-B/32 (LAION-2B)
Varied Fixed

Random linear heads

LS: varied LR: different per dataset
WD: 0

DS: fixed
DP: 100%
EP: 1–100
B: 1024

Data shuffling

DS: varied LR: different per dataset
WD: 0

LS: fixed
DP: 100%
EP: 1–100
B: 1024

Data subsetting

DP: 10%− 50% LR: different per dataset
WD: 0

DS: varied
LS: fixed

EP: 1–100
B: 1024
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5.3 ALine-S/D371

ALine is the OOD accuracy estimating metric that utilizes AGL [2]. There are two methods within372

ALine: ALine-S and ALine-D373

Given AccID(f1) and AgrOOD(f1, f2), when agreement holds, the relationship between the agree-374

ment line and accuracy line is as follows.375

Φ−1(AccOOD(f1)) = a·Φ−1(AccID(f1))+b ⇔ Φ−1(AgrOOD(f1, f2)) = a·Φ−1(AgrID(f1, f2))+b
(2)

To find AccOOD(f2), we can estimate the slope a and bias b as follows and376

â, b̂ = arg min
a,b∈R

∑
i ̸=j

(
Φ−1(ÂgrOOD(hi, hj))− a · Φ−1(ÂgrID(hi, hj))− b

)2

(3)

With â and b̂, we can find AccOOD(f2) with the estimator for the ID accuracy ˆAccID(f1). This377

method is called Aline-S.378

A similar method, ALine-D, uses pointwise accuracies and agreement of the model of interest instead379

of estimating the entire agreement line. If the models of interest are h and h′, then the following380

holds.381

1

2

(
Φ−1(AccOOD(h)) + Φ−1(AccOOD(h

′))
)
=

a

2

(
Φ−1(AccID(h)) + Φ−1(AccID(h

′))
)
+

b

2
(4)

With the fact that b = Φ−1(AgrOOD(h, h
′))− a · Φ−1(AgrID(h, h

′)), we have382

1

2

(
Φ−1(AccOOD(h)) + Φ−1(AccOOD(h

′))
)

= Φ−1(AgrOOD(h, h
′)) + a ·

(
Φ−1(AccID(h)) + Φ−1(AccID(h

′))

2
− Φ−1(AgrID(h, h

′))

) (5)

With the two unknowns, AccOOD(h) and AccOOD(h
′), and one equations we cannot find the unknowns.383

However, with more overlapping pairs, we can get the same number equations as variables and find384

the OOD accuracy of a model of interest.385
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5.4 Sources of Diversity (Image Classification)386

Figure 2 shows the three sources of diversity for the “Pixelate” and “JPEG-Compression” shifts in387

the CIFAR 10C OOD dataset. Table 6 shows the ALine-D MAE (%) for image classification on388

CIFAR10C (average across all 19 shifts).389

Table 6: ALine-D MAE and MAPE for CLIP linear probing on CIFAR10 image classification. Note
that the reported MAE and MAPE is averaged across all 19 CIFAR10C evaluated shifts.

Source of Diversity CIFAR10C MAPE (%) CIFAR10C MAE (%)

Random linear heads 15.88 5.74
Data shuffling 74.16 22.61

Data subsetting 25.94 7.39
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Figure 2: The ACL and AGL plots for the “JPEG Compression” (top row) and “Pixelate” (bottom
row) fine-tuned using different sources of randomness
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5.5 Sources of Diversity (Question Answering)390

Figure 3 shows the three sources of diversity for all SQuAD-Shifts OOD datasets. Table 7 shows the391

ALine-D MAE for SQuAD-Shifts Amazon and Reddit.392

Table 7: ALine-D MAPE(%) and MAE (%) on the SQuAD-Shifts Amazon and Reddit datasets when
applied to sets of fully-finetuned models, trained using different sources of randomness

Source of Diversity SQuAD-Shifts Amazon SQuAD-Shifts Reddit
MAPE (%) MAE (%) MAPE (%) MAE (%)

Random Linear Heads 6.34 0.69 3.48 0.79
Data Shuffling 10.30 4.18 9.59 4.32

Data Subsetting 16.21 5.2 13.94 4.71
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Figure 3: ID vs OOD trends of accuracy and agreement of LLMs finetuned for Question Answering
from a single pretrained base model. Each column presents trends for different sources of stochasticity
employed to obtain a diverse ensemble of finetuned models.

In this section, we also expand our evaluations to finetuned OPT-125M and BERT models for the393

extractive question answering task discussed in Section ??. For both of these base foundation models,394

we consider the three sources of diversity for finetuning i.e. using random linear heads, random395

ordering, and independent data subsetting, and plot the respective ID vs OOD accuracy of models396

and agreement between pairs of models in the resultant model set.397

These experiments also afford us the chance to analyse the similarites and differences between the398

ACL/AGL trends exhibited by the model sets with GPT2-Medium, OPT-125M, and BERT as the399

base FM respectively. In particular, AGL is slightly worse for OPT-125M and BERT, and thus ALine400

has a higher error on OPT-125M and BERT than GPT2-Medium. However, we still see a consistent401

trend where AGL holds the best for random head initialization compared to data shuffling and data402
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subsetting; thus implying that the ALine error for random head initialization is the smallest out of all403

diversity sources. Thus, the importance of random head initialization applies to all models regardless404

of architecture in AGL.405
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(c) Data Subsetting

Figure 4: ID vs OOD trends of accuracy and agreement of LLMs finetuned for Question Answering
from a single pretrained base model (OPT-125M). Similar to the GPT2-Medium results, these show
that random linear head initialization is the best method to obtain model sets exhibiting AGL
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Figure 5: ID vs OOD trends of accuracy and agreement of LLMs finetuned for Question Answering
from a single pretrained base model (BERT). Similar to the GPT2-Medium results, these show that
random linear head initialization is the best method to obtain model sets exhibiting AGL
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5.6 Multiple Foundation Models406

Figure 6 shows AGL and ACL for different base models for all SQuAD-Shifts OOD datasets. We407

have fine-tuned OPT-125M, OPT-350M, OPT-1.3B, GPT2-XL, GPT2-Large, GPT2-Medium, GPT2,408

GPT-Neo-135M, Llama2-7B, Alpaca-7B, and Vicuna-7B. The links to the models are in Appendix409

5.7.410

10 30 50 70 90
ID

10

30

50

70

90

OO
D

SQuAD-Shifts (Amazon)

10 30 50 70 90
ID

10

30

50

70

90

OO
D

SQuAD-Shifts (New York Times)

10 30 50 70 90
ID

10

30

50

70

90

OO
D

SQuAD-Shifts (Reddit)

10 30 50 70 90
ID

10

30

50

70

90

OO
D

SQuAD-Shifts (New Wiki)

Agreement Llama GPT OPT

Figure 6: AGL when using different base models for SQuAD-Shifts
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5.7 Huggingface Links411

Here are the Huggingface links to the pretrained base foundation models we finetuned: GPT2 (https:412

//huggingface.co/gpt2), GPT2-Medium (https://huggingface.co/gpt2-medium), GPT2-413

Large (https://huggingface.co/gpt2-large), GPT2-XL (https://huggingface.co/414

gpt2-xl), GPT-Neo-125M (https://huggingface.co/EleutherAI/gpt-neo-125m),415

GPT-Neo-1.3B (https://huggingface.co/EleutherAI/gpt-neo-1.3B), OPT-125M416

(https://huggingface.co/facebook/opt-125m), OPT-1.3B (https://huggingface.417

co/facebook/opt-1.3b), Llama2-7B (https://huggingface.co/meta-llama/418

Llama-2-7b-hf), Alpaca-7B (https://huggingface.co/WeOpenML/Alpaca-7B-v1),419

Vicuna-7B (https://huggingface.co/lmsys/vicuna-7b-v1.3), BERT (https:420

//huggingface.co/bert-base-uncased)421
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https://huggingface.co/facebook/opt-1.3b
https://huggingface.co/facebook/opt-1.3b
https://huggingface.co/facebook/opt-1.3b
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/meta-llama/Llama-2-7b-hf
https://huggingface.co/WeOpenML/Alpaca-7B-v1
https://huggingface.co/lmsys/vicuna-7b-v1.3
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased


5.8 OOD Accuracy Estimation Methods422

Table 8: The MAPE (%) of predicting OOD performance using ALine and other baseline methods.
Evaluations on QA tasks (SQuAD-Shifts) are performed over a set of models finetuned from multiple
base FMs (LlaMa, GPT, OPT). Evaluations on the image classification datasets are conducted with
CLIP models fine-tuned with linear probing.

OOD Dataset ALine-D ALine-S Naive Agr ATC AC DF

SQuAD-Shifts Reddit 1.20 2.60 20.21 12.74 49.25 6.09
SQuAD-Shifts Amazon 1.64 3.10 20.40 15.35 51.06 7.39
SQuAD-Shifts Nyt 0.82 1.33 18.46 3.11 38.61 3.18
SQuAD-Shifts New Wiki 3.08 3.18 18.87 5.46 41.26 1.50

Average 1.68 2.55 19.48 9.16 45.04 4.54

CIFAR10C (averaged across shifts) 6.99 6.92 44.33 31.28 48.66 32.79
CIFAR10.1 (averaged across v4, v6) 2.42 3.03 41.52 6.48 54.57 8.51

CIFAR100C (averaged across shifts) 11.94 12.67 46.13 18.69 80.81 37.36

ImageNetC (averaged across shifts) 10.91 11.04 56.76 27.25 79.00 37.86
ImageNet V2 (averaged across 3 format) 4.96 5.03 47.65 8.96 77.34 7.86

fMoW-WILDS (val OOD split) 2.59 2.74 83.94 9.03 44.59 5.86
iWildCam-WILDS (val OOD split) 22.05 25.29 46.42 37.25 57.31 69.58
Camelyon17-WILDS (val OOD split)∗ 9.93 10.71 19.99 18.92 24.64 7.18
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5.9 Using Random-Head initialized fine-tuned CLIP models for other datasets423
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Figure 7: AGL and ACL for all C10C shifts with random head initialization fine-tuning.
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Figure 8: AGL and ACL for the C10.1 shifts with random head initialization fine-tuning.
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Figure 9: AGL and ACL for the C100C shifts with random head initialization fine-tuning.
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Figure 10: AGL and ACL for the ImageNetC shifts with random head initialization fine-tuning.
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Figure 11: AGL and ACL for the ImageNet V2 shifts with random head initialization fine-tuning.
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Figure 12: AGL and ACL for 3 benchmarks from the WILDS dataset with random head initialization
fine-tuning.
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