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ABSTRACT

Reinforcement learning (RL) problems where the learner attempts to infer an un-
observed reward from some feedback variables have been studied in several recent
papers. The setting of Interaction-Grounded Learning (IGL) is an example of such
feedback-based reinforcement learning tasks where the learner optimizes the re-
turn by inferring latent binary rewards from the interaction with the environment.
In the IGL setting, a relevant assumption used in the RL literature is that the feed-
back variable Y is conditionally independent of the context-action (X,A) given
the latent reward R. In this work, we propose Variational Information-based IGL
(VI-IGL) as an information-theoretic method to enforce the conditional indepen-
dence assumption in the IGL-based RL problem. The VI-IGL framework learns
a reward decoder using an information-based objective based on the conditional
mutual information (MI) between the context-action (X,A) and the feedback vari-
able Y observed from the environment. To estimate and optimize the information-
based terms for the continuous random variables in the RL problem, VI-IGL lever-
ages the variational representation of mutual information and results in a min-max
optimization problem. Furthermore, we extend the VI-IGL framework to general
f -Information measures in the information theory literature, leading to the gener-
alized f -VI-IGL framework to address the RL problem under the IGL condition.
Finally, we provide the empirical results of applying the VI-IGL method to sev-
eral reinforcement learning settings, which indicate an improved performance in
comparison to the previous IGL-based RL algorithm.

1 INTRODUCTION

In several applications of reinforcement learning (RL) algorithms, the involved agent lacks com-
plete knowledge of the reward variable, e.g. in applications concerning brain-computer inter-
face (BCI) (Schalk et al., 2004; Serrhini & Dargham, 2017) and recommender systems (Maghakian
et al., 2023). In such RL settings, the lack of an explicit reward could lead to a challenging learn-
ing task where the learner needs to infer the unseen reward from observed feedback variables. The
additional inference task for the reward variable could significantly raise the computational and sta-
tistical complexity of the RL problem. Due to the great importance of addressing such RL problems
with a misspecified reward variable, they have been exclusively studied in several recent papers (Xie
et al., 2021; 2022; Maghakian et al., 2023).

To handle the challenges posed by a misspecified reward variable, Xie et al. (2021; 2022) propose
the Interaction-Grounded Learning (IGL) framework. According to the IGL framework, the agent
observes a multidimensional context vector based on which she takes an action. Then, the envi-
ronment generates a latent 0-1 reward and reveals a multidimensional feedback vector to the agent.
The agent aims to maximize the (unobserved) return by inferring rewards from the interaction, a
sub-task which needs to be solved based on the assumptions on the relationship between reward and
feedback variables.

As a result, the key to addressing the IGL-based RL problem is a properly inferred reward decoder
ψ ∈ Ψ, which maps a context-action-feedback tuple (X,A, Y ) ∈ X ×A×Y to a prediction of the
posterior probability on the latent reward R. Given such a reward decoder, the optimal policy can be
obtained using standard contextual bandit algorithms (Langford & Zhang, 2007; Dudı́k et al., 2014).
However, such a reward decoder will be information-theoretically infeasible to learn without addi-
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tional assumptions (Xie et al., 2022). Consequently, the existing works on the IGL setting (Xie et al.,
2021; 2022) make relevant assumptions on the statistical relationship between the random variables
of context X , action A, feedback Y , and latent reward R. In particular, a sensible assumption on the
connection between X,A, Y,R is the following conditional independence assumption proposed by
Xie et al. (2021):
Assumption 1 (Full conditional independence). For arbitrary (X,A,R, Y ) tuple where R and Y
are generated based on the context-action pair (X,A), the feedback Y is conditionally independent
of X and A given the latent reward R, i.e., Y ⊥⊥ X,A|R.

In the work of Xie et al. (2021), a reward decoder ψ : Y 7→ [0, 1] takes the feedback Y ∈ Y as
input and outputs a prediction of the posterior distribution P(R = 1|Y ). Their proposed approach
performs a joint training of the policy and the decoder by maximizing the difference in the decoded
return between the learned policy and a “bad” policy that is known to have a low (true) return.
Under Assumption 1, they show that the optimal policy with the maximum return can be learned
statistically efficiently. However, the observation of the feedback variable is often under significant
noise levels in practice, e.g. in the BCI application. In such noisy settings, Assumption 1 may
still hold under an independent noise from the discussed random variables or may not hold when
the noise is correlated with the context or action variables. Consequently, the discussed IGL-based
methods may no longer achieve optimal results under such noisy feedback conditions.

In this paper, we attempt to address the mentioned challenges in the IGL-based RL problem and
propose Variational Information-based IGL (VI-IGL) as an information-theoretic approach to IGL-
based RL tasks. The proposed VI-IGL methodology is based on the properties of information mea-
sures that allow measuring the dependence among random variables. According to these properties,
Assumption 1 will hold, i.e., the feedback variable Y is conditionally independent of the context-
action (X,A) given the latent reward R, if and only if the conditional mutual information (CMI)
I(Y ;X,A|R) is zero. Therefore, we suggest an information bottleneck-based approach (Tishby
et al., 2000) and propose to learn a reward decoder via the following information-based objective
value where β > 0 is a tuning parameter and Rψ is the random decoded reward from ψ:

argmin
ψ∈Ψ

{I(Y ;X,A|Rψ)− β · I(X,A;Rψ)} (1)

Intuitively, minimizing the first term I(Y ;X,A|Rψ) ensures that the solved reward decoder satisfies
the full conditional independence assumption. In addition, the second term I(Rψ;X,A) serves as a
regularization term preventing the reward decoder from “over-fitting” to the feedback Y , and hence
being more robust to the noise in the feedback variable.

Nevertheless, the objective function in (1) is challenging to optimize, since a first-order optimiza-
tion of this objective requires estimating the value and derivatives of the MI for continuous random
variables of the context X and the feedback Y . To handle this challenge, we leverage the variational
representation of MI (Donsker & Varadhan, 1983; Nguyen et al., 2010) and cast Objective (1) as a
min-max optimization problem that gradient-based algorithms can efficiently solve. Using the varia-
tional formulation of the information-based objective, we propose the Variational Information-based
IGL (VI-IGL) minimax learning algorithm for solving the IGL-based RL problem. The VI-IGL
method applies the standard gradient descent ascent algorithm to optimize the min-max optimiza-
tion problem following the variational formulation of the problem.

We numerically evaluate the proposed VI-IGL method on several RL tasks. Our empirical results
suggest that VI-IGL can outperform the existing IGL RL algorithm under the presence of a noisy
feedback variable. The main contributions of this paper can be summarized as:

1. We propose an information-theoretic approach to the IGL-based RL problem, which learns a
reward decoder by minimizing an information-based objective function.

2. To handle the challenges in estimating and optimizing (f -)MI for continuous random variables,
we leverage the variational representation and formulate our objective as a min-max optimization
problem, which can be solved via gradient-based optimization methods.

3. We extend the proposed approach to f -Variational Information-based IGL (f -VI-IGL), leading
to a family of algorithms to solve the IGL-based RL task.

4. We provide empirical results indicating that f -VI-IGL performs successfully compared to exist-
ing IGL-based RL algorithms.
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2 RELATED WORKS

Interaction-Grounded Learning (IGL). The framework of IGL is proposed by Xie et al. (2021) to
tackle learning scenarios without explicit reward. At each round, the agent observes a multidimen-
sional context, takes an action, and then the environment generates a latent 0-1 reward and outputs
a multidimensional feedback. The agent aims to optimize the expected return by observing only the
context-action-feedback tuple during the interaction. When the feedback is independent of both the
context and the action given the latent reward (full conditional independence), Xie et al. show that
the optimal policy can be sample-efficiently learned with additional assumptions. To relax the full
conditional independence requirement, Xie et al. (2022) introduce Action-Inclusive IGL, where the
feedback can depend on both the latent reward and the action. They propose a contrastive learning
objective and show that the latent reward can be decoded under a symmetry-breaking procedure.
Recently, Maghakian et al. (2023) apply the IGL paradigm with a multi-state latent reward to online
recommender systems. Their proposed algorithm is able to learn personalized rewards and show
empirical success.

Information-Theoretic Reinforcement Learning Algorithms. Reinforcement learning (RL) is
a well-established framework for agents’ decision-making in an unknown environment (Sutton &
Barto, 2018). Several recent works focus on designing RL algorithms by exploiting the information-
related structures in the learning setting. To perform exploration and sample-efficient learning,
Russo and Van Roy (2014) propose information-directed sampling (IDS), where the agent takes
actions that either with a small regret or yield large information gain, which is measured by the mu-
tual information between the optimal action and the next observation. They show that IDS preserves
numerous theoretical guarantees of Thompson sampling while offering strong performance in the
face of more complex problems. In addition, information-theoretic approaches have been applied
for skills discovery in machine learning contexts. Gregor, Rezende, and Wierstra (2016) introduce
variational intrinsic control (VIC), which discovers useful and diverse behaviors (i.e., options) by
maximizing the mutual information between the options and termination states. A setting that is
close to our paper is using information-based methodology to learn reward functions in inverse re-
inforcement learning (IRL) (Ng & Russell, 2000). Levine, Popović, and Koltun (2011) propose
to learn a cost function by maximizing the entropy between the corresponding optimal policy and
human demonstrations. However, IGL is different from this setting, since it does not make any
assumptions on the optimality of the observed behavior.

Estimation of Mutual Information (MI). Mutual information (MI) is a fundamental information-
theoretic quantity that measures “the amount of information” between random variables. However,
estimating MI in continuous settings is statistically and computationally challenging (Gao et al.,
2015). Building upon the well-known characterization of the MI as the Kullback-Leibler (KL-)
divergence (Kullback, 1997), recent works propose to use the variational representation of MI for
its estimation and more generally for f - divergences (Nguyen et al., 2010; Belghazi et al., 2018;
Molavipour et al., 2020).

3 PRELIMINARIES

3.1 INTERACTION-GROUNDED LEARNING (IGL)

In the Interaction-Grounded Learning (IGL) paradigm, at each round, a multidimensional context
x ∈ X is drawn from a distribution d0 and is revealed to the agent. Upon observing x, the agent
takes action a ∈ A from a finite action space. Let ∆S denote the probability simplex on space
S. Given the context-action pair (x, a), the environment generates a latent and binary reward r ∼
R(x, a) ∈ ∆{0,1} and returns a multidimensional feedback y ∈ Y to the agent. It can be seen
that IGL recovers a contextual bandit (CB) problem (Langford & Zhang, 2007) if the reward is
observed. Let π ∈ Π : X 7→ ∆A denote any stochastic policy. The expected return of policy
π is given by V (π) := Ex∼d0Ea∼π(·|x)[µ(x, a)], where µ(x, a) is the expected (latent) reward
of any context-action pair (x, a) ∈ X × A. The agent aims to learn the optimal policy, that is,
π∗ := argmaxπ∈Π V (π) while only observing the context-action-feedback tuple (x, a, y) at each
round of interaction.
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3.2 (f -)CONDITIONAL MUTUAL INFORMATION

The (f -)mutual information (MI) (Ali & Silvey, 1966) is a standard measure of dependence between
random variables in information theory. Formally, let f : R+ 7→ R be a convex function satisfying
f(1) = 0. The f -MI (Csiszár, 1967) between a pair of random variables Z1 and Z2 is given by

If (Z1;Z2) := Df (PZ1Z2
∥PZ2

⊗ PZ1
). (2)

In this definition, Df (P∥Q) denotes the f -divergence between distributions P and Q defined as

Df (P∥Q) := EQ

[
f

(
dP
dQ

)]
Note that the standard KL-based conditional mutual information, which is denoted by I(Z1;Z2),
is given by f(x) = x log x. Another popular f -divergence is Pearson-χ2 (Peason, 1900), where
f(x) = (x−1)2. An important property of f -MI is that two random variables Z1, Z2 are statistically
independent if and only If (Z1;Z2) = 0, and hence dependence among between random variables
can be measured via an f -mutual information.

Furthermore, the f -conditional MI (Csiszár, 1967) between a pair of random variables Z1 and Z2

when Z3 is observed can be defined as

If (Z1;Z2|Z3) := Df (PZ1Z2|Z3
∥PZ2|Z3

⊗ PZ1|Z3
). (3)

Similarly, the standard KL-based conditional mutual information, denoted by I(Z1;Z2|Z3), is given
by f(x) = x log x. One useful property of the f -CMI is that, if Z1 is conditionally independent of
Z2 given Z3 then it holds that If (Z1;Z2|Z3) = 0.

4 VARIATIONAL INFORMATION-BASED IGL

4.1 INFORMATION-BASED IGL

In this section, we derive an information-theoretic formulation for the IGL-based RL problem. As
discussed earlier, in information theory, a standard measure of the (conditional) dependence between
random variables is (conditional) mutual information (MI). Particularly, Assumption 1 (i.e., Y ⊥⊥
X,A|R) is equivalent to that the conditional MI between the context-action (X,A) and the feedback
variable Y is zero given the latent reward R, i.e., I(Y ;X,A|R) = 0.

Therefore, an information-theoretic approach is to learn a reward decoder ψ ∈ Ψ : X ×
A × Y 7→ [0, 1] which minimizes the dependence measure I(Y ;X,A|Rψ). Here, Rψ ∼
Bernoulli(ψ(X,A, Y )) is the decoded 0-1 reward. On the other hand, note that the chain rule of
MI results in the following identity

I(Y ;X,A|Rψ) = I(Y ;X,A,Rψ)− I(Y ;Rψ).

As a result of the above information-theoretic identity, training a reward decoder to minimize
only I(Y ;X,A|Rψ) will “over-fit” to the feedback Y to maximize I(Y ;Rψ), and hence may un-
derperform under a noisy feedback variable. [Indeed, we can show that when minimizing only
I(Y ;X,A|Rψ): (A1) any feedback-dependent reward decoder ψ : Y → [0, 1] attains a small value,
and (A2) the minimum is attained by a set of deterministic feedback-dependent reward decoders
ψ : Y → {0, 1} for environments where the feedback variable Y is (nearly) deterministic to the
context-action (X,A). Both cases can lead to the ”over-fitting” problem. (The theoretical analysis
can be found in Appendix B.)]

To address this overfitting issue, we propose the following regularized information-based IGL ob-
jective where β > 0 is a tunable parameter:

argmin
ψ∈Ψ

{I(Y ;X,A|Rψ)− β · I(X,A;Rψ)}. (4)

In the optimization of the above objective function, minimizing the first term I(Y ;X,A|Rψ) guides
the reward decoder to satisfy the conditional independence assumption. Furthermore, the second
term I(X,A;Rψ) will play the role of a regularization term biasing the reward decoder to carry
higher information about context-action (X,A), and hence preventing it from over-fitting to the

4



Under review as a conference paper at ICLR 2024

potentially-noisy feedback variable. To gain intuition on why Objective (4) can be robust against
noisy feedback, we note that this problem formulation translates into the following problem

argmax
ψ∈Ψ

{I(X,A;Rψ)− β−1 · I(Y ;X,A|Rψ)}

Thus, we can alternatively interpret Objective (4) as maximizing I(X,A;Rψ) under the full condi-
tional independence constrain that I(Y ;X,A|Rψ) = 0, where β−1 is the coefficient of the penalty
term on I(Y ;X,A|Rψ). Hence, under a proper selection of β, the noises present in context and ac-
tion variables cannot significantly affect the accuracy of the optimized reward decoder. As demon-
strated by our numerical results in Section 6.2, introducing this regularizer not only helps to handle
a noisy feedback variable, but also results in a more consistent algorithm performance under lower
noise levels.

4.2 VARIATIONAL INFORMATION-BASED IGL

While the previous sub-section introduces an information-theoretic objective to address the IGL-
based RL problem, optimizing (4) in complex environments can be highly challenging. The primary
challenge to solve (4) is that it requires estimating MI among continuous random variables of the
context X and the feedback Y , which is widely recognized as a statistically and computationally
difficult problem (Paninski, 2003). To derive a tractable optimization problem, we utilize the varia-
tional representation of the KL-divergence, which reduces the evaluation and estimation of MI to an
optimization task.

Proposition 2 (Variational representation of KL-divergence Nguyen et al. (2010)). Let P,Q ∈ ∆S
be two probability distributions on space S. Then,

DKL(P∥Q) = EP

[
log

(
dP
dQ

)]
≥ sup
T∈T

{
Es∼P[T (s)]− Es∼Q

[
eT (s)−1

]}
Recall that the MI between random variables Z1 ∈ Z1 and Z2 ∈ Z2 is the KL-divergence be-
tween their joint distribution PZ1Z2

and the product of their marginal distributions PZ1
⊗ PZ2

, i.e.,
I(Z1;Z2) = DKL(PZ1Z2

∥PZ1
⊗ PZ2

). Proposition 2 enables us to estimate I(Z1;Z2) through
optimizing over a class of function T : Z1 × Z2 7→ R. Therefore, we propose the variational
information-based IGL (VI-IGL) optimization problem to solve Objective (4).

Theorem 3 (VI-IGL optimization problem). Objective (4) is equivalent to the following min-max
optimization:

argmin
ψ∈Ψ

max
G∈G

min
T∈T

{
EPXAYRψ [G]− EPY |Rψ⊗PXARψ

[
eG−1

]
− β · (EPXARψ [T ])− EPXA⊗PRψ

[
eT−1

]
)
} (5)

where G ∈ G : X ×A× Y × {0, 1} 7→ R and T ∈ T : X ×A× {0, 1} 7→ R.

The optimization problem (5) possesses three levels: [(i) the inner level minimizes over
function class T ∈ T to estimate I(X,A;Rψ) = DKL(PXARψ ||PXA ⊗ PRψ ) =
supT∈T {EPXARψ [T (X,A,Rψ)] − EPXA⊗PRψ [exp(T (X,A,Rψ) − 1)]} by Proposition 2, (ii)
the medium level corresponds to maximizing over function class G ∈ G to estimate
I(Y ;X,A|Rψ) = DKL(PXAYRψ ||PY |Rψ ⊗ PXARψ ) = supG∈G{EPXAYRψ [G(X,A, Y,Rψ)] −
EPY |Rψ⊗PXARψ [exp(G(X,A, Y,Rψ)− 1)]}], and (iii) the outer level is a minimization problem to
find the desired reward decoder. Specifically, the inner max-min optimization problem can be solved
by simultaneously updating the variables over G and T . Given the estimated values, the outer min-
imization problem searches for the optimal reward decoder. In practice, the functions T and G and
the reward decoder ψ can be parameterized using deep neural networks that can express complex
functions. Through the application of expressive neural networks, we can efficiently parameterize
and solve Objective (5) by alternatively updating the parameters using a gradient descent/ascent
method.
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5 THE f -VI-IGL ALGORITHM

5.1 THE EXTENDED f -VARIATIONAL INFORMATION-BASED IGL

In this section, we first propose an extended version of the information-based objective in (4) and
the VI-IGL optimization problem (5). Recall that f -mutual information defined in Equation (3)
generalizes the standard KL-divergence-based MI to a general f -divergence-based MI. Therefore,
we can extend the standard MI-based IGL objective (4) to the following f -MI-based IGL objective:

ψ∗ := argmin
ψ∈Ψ

{If1(Y ;X,A|Rψ)− β · If2(X,A;Rψ)} (6)

where f1 and f2 are two f -divergences. Note that Objective (4) is a special case of the above formu-
lation by selecting f1(x) = f2(x) = x log x to obtain the standard KL-based mutual information.
Similar to the VI-IGL problem formulation, to derive a tractable optimization problem correspond-
ing to the above task, we adopt the variational representation of f -divergences.

Proposition 4 (Variational representation of f -divergences (Nguyen et al., 2010)). Let f : R+ 7→ R
be a convex, lower-semicontinuous function satisfying f(1) = 0. Consider P,Q ∈ ∆S as two
probability distributions on space S. Then,

Df (P∥Q) =EQ

[
f

(
dP
dQ

)]
≥ sup

T∈T
{Es∼P[T (s)]− Es∼Q[f

∗(T (s))]}

where T ⊆ {T : S 7→ R} is any class of functions and f∗(z) := supu∈R{u · z − f(u)} for any
z ∈ R+ is the Fenchel conjugate.

Utilizing Proposition 4, we propose the following min-max optimization problem to solve Objec-
tive (6).

Theorem 5 (f -VI-IGL optimization problem). Let f1 and f2 be functions satisfying the require-
ments in Proposition 4 and we denote by f∗1 and f∗2 their Fenchel conjugate, respectively. Objec-
tive (6) is equivalent to the following min-max optimization problem

min
ψ∈Ψ

max
G∈G

min
T∈T

{
EPXAYRψ [G]− EPY |Rψ⊗PXARψ [f

∗
1 (G)]

− β · (EPXARψ [T ])− EPXA⊗PRψ [f
∗
2 (T )])

} (7)

where G ∈ G : X ×A× Y × {0, 1} 7→ R and T ∈ T : X ×A× {0, 1} 7→ R.

5.2 ALGORITHM DESCRIPTION

Here, we present f -VI-IGL Algorithm 1 as an optimization method to solve the f -VI-IGL op-
timization problem (7) for continuous random variables of the context X and the feedback Y .
The algorithm optimizes over three function classes G, T , and Ψ. Specifically, function class
Ψ = {ψθ}θ∈Θ consists of the reward decoders parameterized by θ ∈ Θ. Function class G = {Gω1

}
parameterized by ω1 ∈ Ω1 is the estimator of f1-MI If1(Y ;X,A|Rψθ ). In addition, function
class T = {Tω2

}ω2∈Ω2
parameterized by ω2 ∈ Ω2 is the estimator of f2-MI If2(X,A;Rψθ ).

We focus on learning in the batch mode, where the algorithm has access to an offline dataset
Dtrain = {(xt, at, yt)}Tt=1 consisting of the context-action-feedback tuples, which is collected by
the behavior policy πb interacting with the environment.

At each epoch, f -VI-IGL first uses a mini-batch of data to estimate the value of Objective (7) (Lines
2-4). One difficulty is that estimating If1(Y ;X,A|Rψθ ) requires sampling (x, a, y) ∼ PRψθ ⊗
PY |Rψθ ⊗ PXA|Rψθ , where PY |Rψθ and PXA|Rψθ can be intractable for continuous random vari-
ables of the context X and the feedback Y . To address the problem, we first augment each data
point (xt, at, yt) for N times to {(xt, at, yt, rit)}Ni=1, where rit ∼ Bernoulli(ψθ(xt, at, yt)) and N is
a small positive integer (e.g. 5 in our experiments). To sample, e.g., the feedback y ∼ PY |Rψθ=1,
we randomly sample a data point from {(xt, at, yt, rjt ) : j ∈ [N ], rjt = 1}Tt=1, i.e., the “augmented”
data points whose random decoded reward is 1. Given the estimated objective value, we alterna-
tively update the parameters for the f -MI estimators and the reward decoder (Line 5). At the end of
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Algorithm 1 f -Variational Information-based IGL (f -VI-IGL)
Require: parameter β > 0, batch dataset Dtrain = {(xt, at, yt)}Tt=1 collected by the behavior pol-

icy πb, reward decoders Ψ = {ψθ : X × A × Y 7→ [0, 1]}θ∈Θ, divergence measure f1 for
If1(Y ;X,A|Rψ) and the estimators G = {Gω1

: X ×A×Y ×{0, 1} 7→ R}ω1∈Ω1
, divergence

measure f2 for If (X,A;Rψ) and the estimators T = {Tω2
: X ×A× {0, 1} 7→ R}ω2∈Ω2

.
1: for epoch k = 1, 2, · · · ,K do
2: Sample a mini-batch Dmini ∼ Dtrain.
3: Construct datasets with distributions PY ⊗ PRψθ and PY ⊗ PXARψθ using Dmini (See the

algorithm description).
4: Estimate the f -MI terms

Îf1(X,A;Rψθ )← EPXARψθ
[T ]− EPXA⊗PRψθ

[f∗1 (T )]

and
Îf2(Y ;X,A|Rψθ )← EPXAYRψθ

[G]− EPY |Rψθ
⊗PXARψθ

[f∗2 (G)]

5: Alternatively update the parameters of f -MI estimators T and G (for a fixed ψθ)

ω1 ← ω1 + η · ∇ω1

{
Îf1(X,A;Rψ)

}
, ω2 ← ω2 + η · ∇ω2

{
Îf2(X,A;Rψ)

}
by gradient ascent and the reward decoder ψθ (for a fixed Tω1

and Gω2
)

θ ← θ − η · ∇θ
{
Îf1(Y ;X,A|Rψθ )− β · Îf2(X,A;Rψθ )

}
by gradient descent, where η is the learning rate.

6: end for
7: Select between ψθ and its opposite counterpart 1− ψθ based on their decoded returns of πb.
8: Train a policy π via an offline contextual bandit oracle.
9: [Output: Policy π.]

the training, we use the learned reward decoder ψθ to train a policy via an offline contextual bandit
oracle (Langford & Zhang, 2007; Dudik et al., 2011). However, note that in Objective (6), both the
optimal reward decoder ϕ∗ and its opposite counterpart 1− ϕ∗ may attain the minimum simultane-
ously (while only one of them aligns is consistent with the true latent reward). Hence, we use the
data-driven collector (Xie et al., 2021) and select the reward decoder (between the learned reward
decoder ψθ and its opposite counterpart 1− ψθ) that gives a decoded return of πb lower than 0.5.1

6 EMPIRICAL RESULTS

In this section, we empirically evaluate the f -VI-IGL algorithm on the number-guessing task (Xie
et al., 2021) with noisy feedback, whose details are as follows.

Number-guessing task with noisy feedback. In the standard setting, a random image xt (con-
text), whose corresponding number is denoted by lxt ∈ {0, 1, · · · , 9}, is drawn from the MNIST
dataset (Lecun et al., 1998) at the beginning of each round t. Upon observing xt, the learner selects
at ∈ {0, 1, · · · , 9} as the predicted number of xt (action). The latent binary reward rt = 1[xt = lxt ]
is the correctness of the prediction label. Then, a random image of digit rt ∈ {0, 1} is revealed to the
learner (feedback). In this paper, we consider four types of noisy feedback. Specifically, with prob-
ability 0.1, the feedback is replaced with (i) independent noises: a random image of letter “t” (True)
when the guess is correct or a random image of letter “f” (False) when the guess is wrong, which
is sampled from the EMNIST Letter dataset (Cohen et al., 2017); (ii) context-inclusive noises: a
random image of digit (lxt + 6 · rt − 3) mod 10, (iii) action-inclusive noises: a random image
of digit (at + 6 · rt − 3) mod 10, (iv) context-action-inclusive noises: a random image of digit
(lxt + at + 6 · rt − 3) mod 10. Note that the full conditional independence assumption does not

1Following the previous works (Xie et al., 2021; 2022), we assume the behavior policy has a low (true)
return.
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strictly hold as the feedback is also affected by the context-action pair (except for the independent
noises).

Data collection. We focus on learning in the batch mode, where a training dataset Dtrain =
{(xt, at, yt)}Tt=1 is collected by the uniform behavior policy using the training set. In all the exper-
iments, the training dataset contains 60, 000 samples, i.e., T = 60, 000. The output (linear) policy
is evaluated on a test dataset Dtest containing 10, 000 samples, which is collected by the uniform
behavior policy from the test set. Additional experimental details are provided in Appendix A.

6.1 ROBUSTNESS TO NOISES

In this section, we show that f -VI-IGL is more robust to the noisy feedback than the previous IGL
algorithm (Xie et al., 2021). We consider four types of noisy feedback in the number-guessing task.
We report both the empirical prediction accuracy and the standard deviation in Table 1, where the
VI-IGL method optimizes the standard MI-based Objective (4). We generate the same training and
test datasets in these experiments and use the same initialization of the reward decoder and the linear
policy. The results show that while the previous IGL works better when there is no noise (last row),
VI-IGL attains more robust performance in all the noisy settings.

Noises (0.1)
Methods (ave±std) VI-IGL (Objective (4)) IGL (Xie et al., 2021)

Independent 63.4± 18.1 25.0± 18.4
Action-Inclusive 62.8± 21.2 21.6± 12.4
Context-Inclusive 69.2± 13.3 15.4± 14.3
Context-Action-Inclusive 54.7± 19.8 20.6± 14.8

No Noises 76.4± 12.6 82.2± 4.3

Table 1: Robustness to Noises: The results are averaged over 16 trials.

Why previous IGL method fails. Recall that solving an appropriate reward decoder in the previous
IGL method is given by (Xie et al., 2021, Assumption 2), which states that there exists a reward
decoder that well distinguishes between the feedback (distribution) generated from a latent reward
of 0 and the one generated from a latent reward of 1. When additional noises present in the feedback,
these two distributions can be quite similar. For example, for context-inclusive noises, a latent
reward of 0 can also generate an image of digit “1” (lxt = 4 and rt = 0). Hence, the condition
easily fails and the performance degrades.

6.2 ABLATION EXPERIMENTS

1. Selection of f -divergences. Recall that in Objective (6), we use f1 and f2 as general measures
of I(Y ;X,A|Rψ) and I(X,A;R), respectively. We analyze how the selection of f -divergences
affects the performance. We test three pairs of f1-f2: (i) KL-KL: both f1 and f2 are KL divergence,
i.e., f1(x) = f2(x) = x log x (this case corresponds to Objective (4)), (ii) χ2-χ2: both f1 and
f2 are Pearson-χ2 divergence, i.e., f1(x) = f2(x) = (x − 1)2, and (iii) χ2-KL: f1(x) = x log x
is KL divergence and f2(x) = (x − 1)2 is Pearson-χ2 divergence. Note that in the last case, the
objective value, i.e., Iχ2(Y ;X,A|Rψ)− β · I(X,A;Rψ), upper bounds the value of Objective (4).2
We summarize the results in Table 2 for a feedback-dependent reward decoder and β = 1. The
results show that while different f -divergences benefit from different types of noises, both KL-KL
and χ2-KL attain robust and consistent performance across these settings.

2. Input of reward decoder. We empirically analyze how the input of the reward decoder affects the
actual performance. Particularly, we consider two types of input: (i) feedback Y and (ii) context-
action-feedback (X,A, Y ). We present the results in Table 3 for β = 1

3 and χ2-KL divergence
measure. The results show that while using a feedback-dependent reward decoder yields a higher
expected value, a context-action-feedback-dependent reward decoder leads to a smaller standard
deviation of the performance.

2By the inequality log ≤ x−1, we have that DKL(P∥Q) = EP[log(
dP
dQ )] ≤ EP[(

dP
dQ−1)] = EQ[(

dP
dQ )

2]−1 =

D2
χ(P∥Q).
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Noises (0.1)
f1-f2 (ave±std;%) KL-KL χ2-χ2 χ2-KL

Independent 63.4± 18.1 55.8± 18.1 63.5± 14.3
Action-Inclusive 62.8± 21.2 53.9± 24.1 58.5± 23.4
Context-Inclusive 69.2± 13.3 57.3± 25.7 53.3± 25.2
Context-Action-Inclusive 54.7± 19.8 62.5± 11.0 66.4± 17.9

No Noises 76.4± 12.6 77.2± 9.0 71.7± 11.5

Table 2: Selection of f -divergences: The results are averaged over 16 trials.

Noises (0.1)
Input (ave±std;%)

Y (X,A, Y )

Independent 61.1± 27.1 58.4± 13.0
Action-Inclusive 50.2± 22.3 49.2± 20.8
Context-Inclusive 61.3± 23.4 45.8± 17.2
Context-Action-Inclusive 59.8± 26.0 55.2± 20.4

No Noise 68.0± 19.4 54.3± 20.0

Table 3: Input of Reward Decoder: The results are averaged over 16 trials.

3. Value of parameter β. We present empirical results for different values of parameter β
in Objective (6). Recall that Objective (6) translates to argmaxψ∈Ψ{If2(X,A;Rψ) − β−1 ·
If1(Y ;X,A|Rψ)}. Particularly, when β = 0, Objective (6) is equivalent to minimizing only
If1(Y ;X,A|Rψ). Intuitively, a small β may not work well for noisy feedback. We run experi-
ments for β = 0, 13 , 1, 2 and provide the results in Table 4 for a feedback-dependent reward decoder
and χ2-KL divergence measure. The results align with our intuition. Larger values of β = 1, 2 out-
perform smaller β = 0, 13 in almost all cases, except for the context-inclusive noises. In addition, the
regularization term If2(X,A;Rψ) not only helps improve the robustness of the algorithm against
noisy feedback but also benefits the training without noises, regarding both the empirical accuracy
and the standard deviation. We find that β = 1 leads to consistently good performance.

Noises (0.1)
β (ave±std;%)

β = 0 β = 1
3 β = 1 β = 2

Independent 63.7± 24.8 61.1± 27.1 63.5± 14.3 64.0± 15.3
Action-Inclusive 50.1± 28.2 50.2± 22.3 58.5± 23.4 55.3± 23.7
Context-Inclusive 52.0± 28.4 61.3± 23.4 53.3± 25.2 56.1± 20.2
Context-Action-Inclusive 56.4± 21.4 59.8± 26.0 66.4± 17.9 62.3± 17.9

No Noises 61.9± 24.3 68.0± 19.4 71.7± 11.5 67.8± 20.5

Table 4: Value of Parameter β: The results are averaged over 16 trials.

7 DISCUSSION AND FUTURE WORK

We briefly discuss the limitations of our method. One limitation is the computation complexity.
The f -VI-IGL algorithm needs to optimize over three function classes to find the desired reward de-
coder, which may consume a considerable computing budget. Hence, how to reduce the complexity
remains to be explored. [An interesting future direction to our work is to develop a tight sample
complexity bound for our proposed neural net-based reinforcement learning algorithm.] Another
extension is to relax the full conditional independence assumption (Assumption 1). For example,
Xie et al. (2022) consider the Action-Inclusive IGL (AI-IGL), where the feedback may also be
affected by the action, i.e., Y ⊥⊥ X|A,R. In this case, the information-based objective can be
argminψ∈Ψ{I(Y ;X|Rψ, A) + β · I(X,A;Rψ)}.
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A ADDITIONAL EXPERIMENTAL DETAILS

For the f -variational estimators (functions T and G), the reward decoder ψ, and the linear policy
π, we use a 2-layer fully-connected network to process each input image (i.e., the context or the
feedback). Then, the concatenated inputs go through an additional linear layer and the final value is
output. The same network structures are used to implement the reward decoder and the policy of the
previous IGL algorithm (Xie et al., 2021). In each experiment, we train the f -VI-IGL algorithm for
1, 000 epochs with a batch size of 600. Particularly, we alternatively update the parameters of the
f -MI estimators and the reward decoders (i.e., 500 epochs of training for each). For the previous
IGL method, we follow the experimental details provided in the work of Xie et al. (Xie et al., 2021,
Appendix C) and train the algorithm for 10 epochs over the entire training datasets.

B OVERFITTING WITHOUT REGULARIZATION

We show that when minimizing only I(Y ;X,A|Rψ): (A1) any feedback-dependent reward decoder
ψ : Y → [0, 1] attains a small value, and (A2) the minimum is attained by a set of deterministic
feedback-dependent reward decoders ψ : Y → {0, 1} for environments where the feedback variable
Y is (nearly) deterministic to the context-action (X,A). Both cases can lead to the ”over-fitting”
problem. To showcase these arguments, note that minimizing I(Y ;X,A|Rψ) is equivalent to

min
ψ
L′(ψ) := (H(Rψ|X,A)−H(Rψ|X,A, Y ))− (H(Rψ)−H(Rψ|Y ))

where H is the Shannon entropy. This holds by the facts that I(Y ;X,A|Rψ) = I(Y ;Rψ|X,A) −
I(Y ;Rψ) + I(Y ;X,A) and the last term I(Y ;X,A) is independent of the reward decoder. Hence,
the value is non-positive for any reward decoder ψ : Y → [0, 1] by noting that H(Rψ|X,A, Y ) =
H(Rψ|Y ) and H(Rψ|X,A) ≤ H(Rψ). In contrast, L′ can be positive for reward decoders that
also depend on the context(-action), which justifies (A1). Further, if the feedback Y is (nearly)
deterministic to the context-action (X,A), we have thatH(Rψ|X,A) ≈ H(Rψ|Y (X,A)) ≈ 0, and
hence the minimum− log 2 is attained by any reward decoder ψ : Y → {0, 1} that assigns value 1 to
”an arbitrary half of” the feedback in the data distribution (i.e., Ex∼d0,a∼πb(·|x)[ψ(Y (x, a))] = 0.5),
which justifies (A2).
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