SATBench: Benchmarking LLLMs’ Logical Reasoning
via Automated Puzzle Generation from SAT Formulas

Anjiang Wei'*" Yuheng Wu'* Yingjia Wan? Tarun Suresh®
Huanmi Tan* Zhanke Zhou' Sanmi Koyejo' Ke Wang’ Alex Aiken!

IStanford University ~2UCLA 3UIUC *CMU >Nanjing University

Abstract

We introduce SATBench, a benchmark for evaluating the logical reasoning capa-
bilities of large language models (LLMs) through logical puzzles derived from
Boolean satisfiability (SAT) problems. Unlike prior work that focuses on inference
rule-based reasoning, which often involves deducing conclusions from a set of
premises, our approach leverages the search-based nature of SAT problems, where
the objective is to find a solution that fulfills a specified set of logical constraints.
Each instance in SATBench is generated from a SAT formula, then translated
into a puzzle using LLMs. The generation process is fully automated and allows
for adjustable difficulty by varying the number of clauses. All 2100 puzzles are
validated through both LLLM-based and solver-based consistency checks, with
human validation on a subset. Experimental results show that even the strongest
model, 04-mini, achieves only 65.0% accuracy on hard UNSAT problems, close to
the random baseline of 50%. Our error analysis reveals systematic failures such
as satisfiability bias, context inconsistency, and condition omission, highlighting
limitations of current LLMs in search-based logical reasoning. Our code and data
are publicly available at https://github.com/Anjiang-Wei/SATBench,

1 Introduction

Logical reasoning is a fundamental component of human intelligence and continues to be a significant
challenge in the field of artificial intelligence. The growing interest in the reasoning capabilities of
large language models (LLMs) highlights the pressing need for robust benchmarks and evaluation
methods [1]].

While many datasets have been proposed to evaluate logical reasoning capabilities of LLMs, earlier
datasets do not exclusively evaluate logical reasoning in isolation, e.g., LogiQA [2]], and ReClor [3],
which combine logical reasoning with commonsense reasoning.

Recently, new datasets have been introduced to assess logical reasoning in isolation, such as FO-
LIO [4] and P-FOLIO [5]. These datasets are manually curated by researchers and focus on logical
problems based on inference rules, which involve deriving conclusions from a set of premises.

In this work, we introduce SATBench, a benchmark designed to create logical puzzles from Boolean
satisfiability (SAT) problems [6, 7] with LLMs. Unlike benchmarks based on inference rules,
SAT problems are characterized as search-based logical reasoning tasks, where the objective is to
determine a truth assignment that fulfills a specified set of logical constraints [8]]. This approach to
logical reasoning emphasizes a search process akin to backtracking used in SAT solvers. Unlike other

*Equal contribution.
"Correspondence to: anjiang @cs.stanford.edu

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: The 1st Workshop on
Efficient Reasoning.

https://github.com/Anjiang-Wei/SATBench

Generation Pipeline
Story Background
In a small town, there are three ' LLM

musicians who are preparing for 2(2,1) A ~z(0,0) A (z(0, 1)V Ln B A 0

® © ® Formula Sampling

performances in two genres ... % SAT solver Equwalent'
LLM b 2
Conditions
1. Carol decides to perform in rock. Condition 1 z(2,1)
2. Alice does not perform in jazz... Condition2 * —z(0,0) (1'(2, 1) A —z(0,0) A (2(0,1) v (1, 1)))

Evaluation Pipeline
Variable Assignment

Background & o
00 SAT. Q LLM Clause Result
Conditions ({55 A feasible - 2(2,1) True
as assignmentis ... Check &
Question) LLMunder 8 Result)
Evaluation esults Check Reasoning Trace

Figure 1: Overview of the SATBench methodology. The generation pipeline begins with sampling
Conjunctive Normal Form (CNF) formulas, followed by LLM-driven creation of story backgrounds
and conditions. To ensure the logical puzzle’s quality, both LLM-assisted and solver-based consistency
validations are employed. The evaluation pipeline then examines the puzzle’s prediction outcomes
and checks its reasoning process.

search-based benchmarks such as ZebralLogic [9]], which presuppose the existence of a valid solution,
SAT problems can result in either a satisfiable solution (SAT) or no solution (UNSAT).

As shown in Figure |1} starting from a SAT formula in Conjunctive Normal Form (CNF), such as
(AV —B) A (=CV —D), our framework uses LLMs to generate a story context and define a mapping
between formula variables and entities in the story. Each clause is then translated into a natural
language condition based on this mapping. By sampling CNF formulas with varying numbers of
clauses, we can control puzzle difficulty. To ensure the quality of resulting logical puzzles, we reverse
the generation process: LLMs translate the natural language conditions back into logical formulas,
which are then compared to the originals using a combination of LLM-assisted and solver-based
consistency checks. In the evaluation pipeline, we check the result and employ the LL.M-as-a-judge
strategy to assess the reasoning trace. To validate the overall process of story generation and reasoning
trace evaluation, we manually checked 100 examples, with passing rates above 90%, which increases
confidence in the quality of the dataset and evaluation protocol.

The evaluation on our generated 2100 logical puzzle dataset demonstrates that reasoning models
exhibit strong performance on SATBench, with the o4-mini model achieving the highest accuracy.
However, as the complexity of the problems increases, with a larger number of conditions in the logical
puzzles, there is a noticeable decline in model performance. Specifically, the o4-mini model achieves
an average accuracy of 65.0% for the hard subset of UNSAT problems. This highlights the challenges
posed by our benchmark, particularly for hard instances, where even the best-performing model
only marginally surpasses the random baseline of 50%, leaving significant room for improvement.
Moreover, our analysis shows that while models often achieve higher accuracy on SAT than UNSAT
problems, their reasoning traces are less reliable in the SAT setting, frequently predicting satisfiability
without a valid assignment. To better understand these failures, we conduct an error analysis that
identifies systematic patterns such as satisfiability bias, context inconsistency, and condition omission
(Section[5.3)). These findings show that SATBench exposes limitations in current LLMs’ ability to
perform search-based logical reasoning. We further explore prompting and fine-tuning to improve
performance on SATBench (Section[6.2). In summary, our work makes the following contributions:

» Task: We present SATBench, a benchmark that uses large language models to generate
logical puzzles from Boolean satisfiability (SAT) problems. The benchmark highlights
the search-based nature of logical reasoning by focusing on finding truth assignments that
satisfy given constraints.

Table 1: Comparison of existing logical reasoning benchmarks. An ideal evaluation framework
should meet the following six criteria: (1) Logic Isolation: the benchmark exclusively evaluates
logical reasoning in isolation; (2) Automated Generation: the benchmark construction is automated
and scalable; (3) Difficulty Control: the difficulty levels of the benchmark questions are adjustable;
(4) Natural Language: the questions are written in natural language rather than formal formulas;
(5) Template-Free: the benchmark does not rely on expert-designed templates, enhancing diversity;
(6) Reasoning Evaluation: the benchmark evaluates both the accuracy of model predictions and the
correctness of their reasoning traces.

Search- Logic Automated Difficulty Natural Template- Reasoning

Benchmark Based Isolation Generation Control Language Free Evaluation

LogiQA [2]
BIG-bench [18]
ReClor [3]
RuleTaker [14]
LogicNLI [17]
FOLIO [4]
P-FOLIO [5]
LogicPro [19]
Zebralogic [9]
AutoLogi [16]
PARAT [7]
LogicBench [20]
LogicAsker [21]
Unigram-FOL [22]
Multi-LogiEval [23]
SATBench (ours)

N3 33X 3} NN N X X X X X X X X
AN NN N N N N N 0 N N N N
AN NN N N N N N
NN X % 3% NN N X X X X N X XX
SSANNIXSNNNSNSNSNNANANSN
AR TN N N N N N N NN
X X X XN\ XX NN XX XXXX

e Dataset: Our generation process is fully automated and features adjustable difficulty
levels by varying the number of clauses in SAT formulas. We ensure the quality of the
2100 generated logical puzzles through LLM-based and solver-based checks, with human
validation showing passing rates above 90%.

* Analysis: We show that accuracy declines sharply on the hard UNSAT problems and that
reasoning traces for SAT are often unreliable. Our error analysis reveals systematic failures
such as satisfiability bias, context inconsistency, and condition omission, highlighting
limitations of current LLMs in search-based logical reasoning.

2 Related Work

Logical Reasoning Benchmarks for LLMs Reasoning is a longstanding focus in NLP, with
many benchmarks developed to assess model performance. Early efforts targeted natural language
inference [10] and commonsense reasoning [[L1], while recently there has been increasing atten-
tion to assessing logical reasoning, as seen in LogiQA [2], ReClor [3], BoardgameQA [12], and
CLUTRR [13]. These typically involve reasoning that relies on real-world knowledge. In contrast,
datasets like FOLIO [4], RuleTaker [14]], and P-FOLIO [J5] aim to isolate formal logical reason-
ing from commonsense knowledge. Logical puzzles have emerged as a compelling testbed in this
area [[15]], with benchmarks including ZebralLogic [9], AutoLogi [16]], and LogicNLI [[17]. PARAT [7]]
examines LLMs directly on SAT formulas, whereas our benchmark frames SAT problems as natural
language puzzles, a more realistic setting given LLMs’ training on text and the availability of efficient
SAT solvers for formula inputs. Unlike AutoLogi, which builds on existing corpora and risks data
contamination, our dataset is generated entirely from scratch with solver and human validation to
ensure correctness and diversity. A systematic comparison of these benchmarks is provided in Table[T]

Logical Reasoning with Language Models Recent work investigates how large language models
engage in logical reasoning via prompting techniques, supervised training on reasoning datasets,
and translation into formal logic. A prominent line of research focuses on prompting methods that
elicit step-by-step reasoning, including chain-of-thought prompting [24], tree-of-thought prompt-
ing [25]], along with other methods [26H30]. Another approach involves fine-tuning LLMs on datasets
specifically designed for logical reasoning [31} 132} [1| 133 34], which has demonstrated improved

XX Sample CNF Formula
z(2,1) A -z(0,0) A (—=z(1,0)Vz(0,0)) A (—=z(2,1)Vz(1,0))

Story Background

In a small town, there are three musicians who are preparing for performances in two genres: jazz and
rock. Each musician can independently choose whether to perform in one or both genres, or not at all.

Variable Mapping (%, j) Conditions
- - - A . 1. Carol decides to perform in rock. Clause
(i=e 1=l i=2] J=6 3=1 |5 Alice does not perform in jazz. Translation
e e) e 3. Either Bob does not perform in jazz, or Alice performs in jazz.

9 Consistency Validation 4. Either Carol does not perform in rock, or Bob perforrns in jazz.
Question: Is there a way for all these performance choices to work?

Figure 2: Benchmark curation pipeline. The process starts with sampling SAT formulas, followed
by using an LLM to generate variable mappings and a story background. Clauses in the formula are
then translated into narrative conditions. Consistency between the original formula and the generated
puzzle is ensured through both LLM-based and solver-based validation.

performance on formal reasoning benchmarks. Complementary to these methods, some work treats
LLMs as semantic parsers that convert natural language reasoning tasks into formal logical represen-
tations, which are then executed or verified by external solvers or theorem provers [35, 36]. In our
evaluation, we use chain-of-thought prompting and prohibit models from invoking external tools;
solvers are used only during dataset generation for validation.

3 Method

Our objective is to create logical puzzles derived from Boolean satisfiability (SAT) formulas, ensuring
the quality of the dataset through both LLM-based and solver-based consistency checks. We further
validate each LLM-involved process with human review. The generation method is divided into
three stages: SAT formula sampling (Section[3.T)), LLM-based story generation (Section [3.2)), and
consistency validation (Section [3.3). In the evaluation phase, we assess the correctness of the
reasoning trace (Section [3.4).

3.1 SAT formula Sampling

Conjunctive Normal Form (CNF) Conjunctive Normal Form is a structured way of expressing
logical formulas, where a formula is a conjunction (AND) of one or more disjunctions (OR) of literals.
Each disjunction is referred to as a clause, and each clause consists of literals, which can be either a
variable or its negation. For instance, the formula (x(2,1)) A (-2(1,0) V 2(0,0)) A (=z(0,0)) A
(—x(2,1) vV 2(1,0)) is in CNF. Here, x represents a two-dimensional array with boolean elements,
indicating true or false values. The SAT problem expressed in CNF form involves determining
whether there exists an assignment of boolean values to the variables that satisfies the entire formula,
making it true. If such an assignment exists, the formula is satisfiable. Conversely, if no such
assignment can be found, the formula is unsatisfiable, and an UNSAT-Core can be identified, which is
a subset of clauses that are inherently unsatisfiable. This approach constructs puzzles that challenge
LLMs to determine if all conditions can be satisfied.

Automation and Difficulty Control The SAT problem can be solved using a SAT solver, which
provides a soundness guarantee and allows for an automated and scalable solution. To systematically
generate problems with varying levels of difficulty, we can sample formulas that differ in the number
of boolean variables and clauses. Additionally, we can increase the dimensionality of the array
to create more complex story contexts. By increasing the number of boolean variables, we can
generate more clauses to be translated into story conditions. This approach effectively controls the
difficulty level by expanding the search space and adding complexity to the constraints, making the
search-based logical reasoning more challenging.

3.2 Puzzle Story Generation

Background and Variable Mapping To transform the sampled SAT formula into a narrative
context, we utilize a language model, such as GPT-4o, to generate a story background and establish a
mapping of variables. For example, as shown in Figure[2] given the SAT formula, the language model
creates a scenario involving three musicians: Alice, Bob, and Carol. These musicians are deciding on
their performances in two musical genres, jazz and rock. Each musician can independently choose
whether to perform in one or both genres, or not at all. The musicians and the genres correspond to
the two dimensions of the array x. This mapping is defined as:

z(i,7) — “musician ¢ performs in genre j”

For example:

* 2(0,0): Alice performs in jazz
* 2(1,0): Bob performs in jazz

* 2(2,1): Carol performs in rock

Clause-to-Condition Mapping To transform each clause of the CNF formula into a narrative
condition, we employ a large language model (e.g., GPT-40). This transformation leverages the
previously established story background and variable mapping. For example, the clause —z(0, 0)
is translated to the condition “Alice does not perform in jazz,” while the clause —~x(2,1) V z(1,0)
is expressed as “Either Carol does not perform in rock, or Bob performs in jazz.” The final puzzle
integrates the story background with these translated conditions and concludes with a question like “Is
there a way for all these performance choices to work?” This question serves to assess the satisfiability
of the conditions in the logical puzzle.

Our two-phase generation strategy, which begins with the creation of the story background and
variable mapping, followed by the transformation of clauses into narrative conditions, improves the
tractability and reliability of the process. This structured approach facilitates easier debugging and
human validation. Additional examples of generated puzzles are provided in Section

3.3 Consistency Validation

LLM-based Validation We utilize a large language model (GPT-40) to ensure that each condition
in the generated logical puzzle precisely matches the original SAT formula, given the specified
variable mapping. This process checks that no extra conditions are introduced and none are missing.
If the check fails, the puzzle is removed from our dataset. The validation prompt is provided in[B.T]

Solver-based Validation In addition to LLM-based checks, we adopt solver-based validation that
enforces formula-level equivalence between the reconstructed formula and the original CNF. Using
the variable mappings, an LLM first converts the narrative conditions back into a SAT formula. The
original formula formula A and the reconstructed formula B are checked for equivalence using
bidirectional entailment:
A=B iff AEB A BEA.

This condition is encoded into a SAT query and checked by the solver. Any reconstructed formula
that fails equivalence is discarded, ensuring that the generated puzzles faithfully preserve the original
logical structure.

Human Validation To ensure the quality of our dataset, we conduct human validation at two
crucial stages involving LLMs, as detailed in Section [3.2] The first stage involves the generation
of the puzzle’s background and variable mapping, where humans assess the logical coherence and
confirm that the story background accurately reflects the independence of boolean variables. The
second stage focuses on the translation of clauses into narrative conditions, where humans ensure
that no additional constraints or misinterpretations are introduced.

3.4 Reasoning Trace Evaluation

After generating the logical puzzles, we evaluate an LLM’s performance using this dataset. Our
evaluation emphasizes both the binary prediction result (SAT or UNSAT) and the validity of the

model’s reasoning trace. We adopt an LLM-as-a-judge methodology, where the model is instructed
to produce a reasoning trace to justify its prediction. Below, we detail the approach for assessing the
reasoning trace in SAT and UNSAT scenarios.

SAT Problems When a problem is identified as SAT, it indicates that there is at least one assignment
of True or False values to the variables that satisfies the CNF formula. Multiple solutions may exist.
For example, consider the CNF formula (x(0,0) V —z(1,0)) A ((1,0) V 2(2,1)). One possible
satisfying assignment is x(0,0) = True, 2:(1,0) = False, and 2:(2,1) = True. After the model
predicts a problem as SAT, it is required to generate a reasoning trace to support its prediction. We
then instruct the judging LLM to translate this reasoning into a specific variable assignment using
the given variable mapping. The judging LLM is further used to verify that each clause in the SAT
formula evaluates to True, thereby confirming the satisfiability of the entire SAT formula.

UNSAT Problems Unlike SAT problems, UNSAT problems have no variable assignment that
satisfies all clauses. A SAT solver can identify an UNSAT-Core, which is a minimal subset of
unsatisfiable clauses. When the model predicts UNSAT, it must provide a reasoning trace.

Consider the formula: (z(2,1)) A (-2(1,0) V 2(0,0)) A (-2(0,0)) A (—2(2,1) V x(1,0)). We can
demonstrate its unsatisfiability through a step-by-step analysis:

1. From the first clause, (2, 1), we must set 2:(2, 1) to true.
2. From the third clause, —x(0, 0), we must set (0, 0) to false.

3. Given that x(0,0) is false, the second clause, —x(1,0) V 2(0,0), can only be satisfied if
—z(1,0) is true, suggesting (1, 0) is false.

4. However, since (2, 1) is true, the fourth clause, —2:(2,1) V (1, 0), can only be satisfied if
x(1,0) is true.

This leads to an irreconcilable contradiction: x(1,0) is required to be both true and false simultane-
ously to satisfy all clauses, rendering the formula unsatisfiable. The example above illustrates a valid
reasoning trace for an UNSAT problem in formula format. However, since the model being evaluated
lacks access to the variable mapping during its reasoning trace generation, the judging LLM must first
translate the reasoning trace back into the variable format. It then compares this translated reasoning
with the provided UNSAT-Core to assess the accuracy of the reasoning trace.

Human Validation Given our use of an LLM-as-a-judge methodology for evaluating reasoning
traces, we incorporate a human validation process to check the correctness of the LLM’s judgments.

4 Experimental Setup

Dataset The SATBench dataset consists of 2100 logical puzzle instances. Table [3| provides statistics
on the average number of boolean variables and clauses in the sampled SAT formulas, as well as
the average number of words and sentences in the generated logical puzzles. The dataset generation
process is fully automated, allowing for the creation of additional instances as required.

Prompts We use 0-shot prompting to evaluate various
LLMs on each logical puzzle in our dataset. Each puzzle’s Figure 3: Dataset statistics for SAT-
prompt includes a story background, a set of conditions Bepch.

that must be satisfiable simultaneously, and a query about
their satisfiability. Models are required to generate a rea- Metric Value
soning trace: if they determine the instance is satisfiable,

. P . . Number of Instances 2100
they must provide a satisfying assignment for the vari- Averace Number of Variables 36.0
ables; if they find it unsatisfiable, they must explain why Average Number of Clauses 206

the conditions cannot all be true at once. The final output Average Number of Words 546.2
must clearly state either SAT or UNSAT. Detailed prompts Average Number of Sentences ~ 55.2
for the main evaluation and reasoning trace evaluation can
be found in Appendix [B.2]and Appendix respectively.

Table 2: Model accuracy on SATBench using zero-shot prompting for satisfiability prediction.
Difficulty levels are categorized as follows: Easy (4-19 clauses), Medium (20-30 clauses), and Hard
(31-50 clauses). All open-source models are instruction-tuned.

SAT UNSAT Overall

Model Easy Medium Hard | Easy Medium Hard | Easy Medium Hard Avg.
Random Baseline 50.0 50.0 50.0 | 50.0 50.0 50.0 | 50.0 50.0 50.0 | 50.0
LLaMA3.1-8B 57.9 60.0 489 | 304 14.8 17.5 | 441 374 332 | 382
DeepSeek-Distill-7B 63.9 27.6 16.8 | 69.1 43.8 42.1 | 66.5 35.7 29.5 | 439
Qwen3-1.7B 77.1 65.7 532 | 534 30.5 425 | 653 48.1 479 | 53.7
gpt-4o-mini 82.1 824 90.7 | 423 12.9 132 | 622 47.6 52.0 | 53.9
LLaMA4-Scout 84.3 76.7 66.4 | 52.0 243 37.5 | 68.1 50.5 52.0 | 56.9
LLaMA3.1-70B 82.0 55.7 454 | 552 59.0 489 | 68.6 57.4 47.1 | 57.7
gpt-40 85.5 83.3 78.6 | 543 27.1 189 | 69.9 55.2 48.8 | 58.0
LLaMA3.3-70B 90.7 89.0 757 | 39.5 27.1 30.0 | 65.1 58.1 529 | 58.7

DeepSeek-Distill-14B | 82.9 514 41.1 | 857 59.0 51.8 | 843 552 464 | 62.0
LLaMA4-Maverick 80.2 86.2 86.1 | 76.8 25.7 17.9 | 78.5 56.0 520 | 62.1

Qwen3-4B 84.1 78.1 78.6 | 80.7 31.9 22.1 | 82.4 55.0 504 | 62.6
Qwen3-8B 82.7 76.7 67.5 | 81.6 34.8 32.1 | 82.1 55.7 49.8 | 62.6
DeepSeek-Distill-32B | 84.5 53.8 42.1 | 90.0 68.1 586 | 87.2 61.0 504 | 66.2
Qwen3-14B 87.1 72.9 80.0 | 88.9 47.6 22.1 | 88.0 60.2 51.1 | 66.4
Qwen3-235B-Int8 90.0 83.3 83.2 | 86.1 46.2 19.6 | 88.0 64.8 514 | 68.1
Qwen-QwQ-32B 92.5 75.7 59.3 | 84.1 51.9 464 | 883 63.8 529 | 68.3
Claude-3.7-Sonnet 88.4 77.6 83.6 | 93.8 63.3 42.1 | 91.1 70.5 629 | 74.8
DeepSeek-V3 93.6 83.8 714 | 975 83.3 743 | 955 83.6 729 | 84.0
DeepSeek-R1 94.8 87.1 73.6 | 982 89.5 83.6 | 96.5 88.3 78.6 | 87.8
04-mini 97.0 96.7 91.1 | 98.2 88.1 65.0 | 97.6 924 78.0 | 89.3
Average | 84.1 732 66.7 | 72.9 46.4 393 | 785 59.8 53.0 [6338

Metrics In our evaluation, satisfiability is treated as a binary classification task, where random
guessing results in a baseline accuracy of 50%. The primary metric we use is the accuracy of the
predicted satisfiability label. Besides, we also evaluate the correctness of the model’s reasoning trace,
but only if the satisfiability label is correct. We employ GPT-40 to determine whether the provided
explanation logically supports the predicted outcome, as detailed in Section [3.4}

Models We evaluate both proprietary and open-source language models. The proprietary models
include GPT-40 [37], GPT-40-mini, 04-mini, and Claude 3.7 Sonnet. The open-source models cover a
range of recent ones from the Qwen [38]], Llama [39], and DeepSeek families [40,41]]. For reasoning
trace evaluation, we focus on the 5 top-performing models, and use GPT-40 as the judge.

5 Results

5.1 Main Results

Table 2| presents the accuracy on SATBench using zero-shot prompting for satisfiability prediction.
Our findings are as follows.

Reasoning models excel in performance. The o4-mini model stands out with a remarkable
accuracy of 89.3%. Close behind are the open-source models DeepSeek-R1 and DeepSeek-V3, with
accuracies of 87.8% and 84.0%, respectively. Overall, reasoning models excel in our benchmark.

Model performance decreases with increasing problem difficulty. We categorize difficulty levels
as Easy (4-19 clauses), Medium (20-30 clauses), and Hard (31-50 clauses). Notably, even the
top-performing model, o4-mini, sees its accuracy fall to 78.0% on hard instances. Across all models,
the average accuracy for hard problems is 53.0%, which is nearly equivalent to the random baseline.
More analysis of difficulty is provided in Section[5.2]

SATBench is a challenging benchmark. For the hard instances, even the state-of-the-art model
04-mini only achieves 78.0% accuracy, only a moderate improvement over the 50% random baseline.
For the UNSAT instances, its accuracy is only 65.0%, leaving significant room for improvement.

Model Scale & Average Accuracy

70
. 2 . .
o0 o = Difficulty Analysis
60 s - 1004 -
> - =
8 ./‘ ~4~ DeepSeek-R1
5 0 904 —4— Claude-3.7-Sonnet
[9) —
£ / R
s — 801
9
40 ©
A é 701
20 21 22 23 4 35 26. . 27 28 29 g col
Model Parameters (Billion)
Model Families 501
® Qwen3 Llama-3.1

10 20 30 40 50

B Llama4 4 DeepSeek-Distill-Qwen Number of Clauses

Figure 4: Scaling trend on SATBench. Figure 5: Impact of clause quantity on accuracy.

Scaling Trends. Figure 4] shows that across model families such as Qwen3, Llama3.1, Mixtral,
Llama4, and DeepSeek-Distill-Qwen, larger models generally achieve higher accuracy. Yet this trend
does not hold uniformly across difficulty levels. On the hard instances, accuracy plateaus around
50-53% even for the largest models in these families. Thus, the observed scaling gains are largely
limited to easier problems. For the hardest cases, simply increasing model size yields little to no gain.
These findings reinforce that SATBench remains a difficult and discriminative benchmark.

5.2 Analysis of Difficulty

SAT versus UNSAT The “average” row in Table [2] highlights a notable disparity in model accuracy
between SAT and UNSAT subsets. Models perform better on SAT problems, achieving an accuracy
of 66.7% on the hard instances, while only reaching 39.3% on hard UNSAT problems. This suggests
that SAT instances are generally easier for models to guess. Intuitively, the primary reason for this
difference is that SAT is an existential property (there exists at least one satisfying assignment) while
UNSAT is a universal property (all assignments fail to satisfy the formula).

Impact of Clause Quantity We examine the effect of the number of clauses on model accuracy. As
shown in Figure[5] there is a noticeable inverse relationship: model accuracy decreases as the clause
count increases. For example, the GPT-40 model experiences a significant drop in performance,
nearing random guess accuracy of 50% as it approaches 30 clauses. This pattern suggests that a
higher number of clauses adds complexity, demonstrating that our dataset generation methodology
can effectively control difficulty levels.

5.3 Reasoning Traces and Error Analysis

Trace Evaluation We evaluate the reasoning trace validity of various models with GPT-40, and
the results are shown in Table[3] A notable observation is the disparity in trace accuracy between
the SAT and UNSAT subsets. Models generally exhibit a more pronounced drop in trace accuracy
on SAT problems compared to UNSAT ones. This suggests that higher prediction accuracy on SAT
problems does not necessarily imply a valid variable assignment. Instead, models often show a bias
toward predicting SAT outcomes without a valid assignment as evidence.

Error Analysis To provide a deeper understanding of model failures, we conducted a qualitative
error classification of incorrect predictions, defining four major error types:
« Satisfiability Bias: Models answer SAT but give an invalid assignment.

* Context Inconsistency: Models contradict their earlier reasoning, such as assigning con-
flicting values across steps.

* Condition Omission: Models ignore one or more conditions in the reasoning trace.

* Spurious Priors: Models introduce commonsense assumptions that are absent from the
given constraints.

Table 3: Accuracy in prediction and reasoning Table 4: Error type distribution in 04-mini and

trace evaluation. DeepSeek-R1.
Model SAT UNSAT Overall Error Type 04-mini (%) DS-R1 (%)
Pred. Trace | Pred. Trace Trace - — -
Satisfiability Bias 68.7 40.5
QwQ 75.5 523 | 607 524 52.4 Context Inconsistency 17.0 44.7
Claude-3.7 | 832 474 | 664 6l.1 54.2 Condition Omission 14.3 12.6
DS-V3 829 657 | 8.0 711 68.4 Spurious Priors 0.0 21

04-mini 947 74.6 83.6 741 74.4
DS-R1 852 738 | 903 821 78.0

We used GPT-4o to automatically classify errors into these categories, and the distribution for two
representative models is shown in Table @] The observed patterns highlight core challenges in
search-based logical reasoning, including failures in backtracking, difficulty in maintaining context,
and reliance on prior knowledge rather than provided constraints. See examples in Section [C]

6 Discussion

6.1 SAT in Natural Language

SATBench frames SAT problems as natural language puz-

zles rather than evaluating LLMs directly on SAT formulas. Taple 5: Comparison of model accuracy
Testing only on symbolic inputs overlooks how reasoning o narrative puzzles versus direct SAT
arises in practice, since real-world tasks are almost always Formula inputs. Natural language fram-

expressed in natural language. Additionally, our goal is jng consistently increases task difficulty.
not to replace SAT solvers, but to examine whether LLMs

can reason about SAT structures when expressed in natural Puzzle Formula
language, something classical solvers cannot address. Model Ace. (%) Acc. (%)
To test this distinction, we also evaluated models directly GPT-40-mini 53.6 54.8
on CNF formulas. As shown in Table[5] accuracy was con- ~ GPT-40 58.2 59.2
sistently higher on raw SAT inputs than on narrative puz- ~ DeepSeek-V3 84.0 87.3
zles, showing that natural language introduces additional ~_©4-mini 89.4 94.3

complexity and makes the benchmark more challenging.

6.2 Improving Performance on SATBench

Prompting Building on our error analysis in Section[5.3] we designed error-aware prompts that
explicitly remind models to avoid common pitfalls. Re-evaluating the previously misclassified cases
under this setting led to substantial gains: for 04-mini, 60.4% of failing cases were corrected, and
for DeepSeek-R1, the rate is 73.2%. These results show that making failure patterns explicit can
significantly improve model performance.

Fine-tuning Using 1100 correct traces from o4-mini, we applied LoRA fine-tuning on Qwen?2.5-
14B-Instruct, raising accuracy from 51.9% to 53.6%. While modest relative to prompting, this
indicates that supervised fine-tuning can help, with greater gains expected from larger datasets and
reinforcement learning.

7 Conclusion

We present SATBench, a benchmark for assessing LLMs’ logical reasoning via SAT-derived puzzles.
Our dataset features search-based logical reasoning tasks, with controls difficulty and correctness
checked by solvers and LLMs. SATBench contains 2100 logical puzzles, and we evaluate both
satisfiability prediction and reasoning trace validity. Our findings show model performance drops
with increased difficulty, with 04-mini scoring 65.0% on the hard UNSAT cases, near the 50% random
baseline. We also conduct an error analysis that identifies systematic patterns such as satisfiability
bias, context inconsistency, and condition omission. These findings show that SATBench exposes
limitations in current LLMs’ ability to perform search-based logical reasoning.

Acknowledgments

We thank Yuan Liu, Xiaohan Wang, and Gabriel Poesia for their discussions. This work was partially
supported by a Google Research Award.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

M. Luo, S. Kumbhar, M. Shen, M. Parmar, N. Varshney, P. Banerjee, S. Aditya, and
C. Baral, “Towards logiglue: A brief survey and A benchmark for analyzing logical reasoning
capabilities of language models,” CoRR, vol. abs/2310.00836, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2310.00836

J. Liu, L. Cui, H. Liu, D. Huang, Y. Wang, and Y. Zhang, “Logiqa: A challenge dataset for
machine reading comprehension with logical reasoning,” in Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence, IJCAI 2020, C. Bessiere, Ed.
ijcai.org, 2020, pp. 3622-3628. [Online]. Available: https://doi.org/10.24963/ijca1.2020/501

W. Yu, Z. Jiang, Y. Dong, and J. Feng, “Reclor: A reading comprehension dataset requiring
logical reasoning,” in 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. [Online]. Available:
https://openreview.net/forum?id=HJgJtT4tvB

S. Han, H. Schoelkopf, Y. Zhao, Z. Qi, M. Riddell, W. Zhou, J. Coady, D. Peng, Y. Qiao,
L. Benson, L. Sun, A. Wardle-Solano, H. Szabé, E. Zubova, M. Burtell, J. Fan, Y. Liu, B. Wong,
M. Sailor, A. Ni, L. Nan, J. Kasai, T. Yu, R. Zhang, A. R. Fabbri, W. Kryscinski, S. Yavuz,
Y. Liu, X. V. Lin, S. Joty, Y. Zhou, C. Xiong, R. Ying, A. Cohan, and D. Radev, “FOLIO: natural
language reasoning with first-order logic,” in Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2024, Miami, FL, USA, November 12-16,
2024,Y. Al-Onaizan, M. Bansal, and Y. Chen, Eds. Association for Computational Linguistics,
2024, pp. 22017-22031. [Online]. Available: https://aclanthology.org/2024.emnlp-main.1229

S. Han, A. Yu, R. Shen, Z. Qi, M. Riddell, W. Zhou, Y. Qiao, Y. Zhao, S. Yavuz, Y. Liu, S. Joty,
Y. Zhou, C. Xiong, D. Radev, R. Ying, and A. Cohan, “P-FOLIO: evaluating and improving
logical reasoning with abundant human-written reasoning chains,” in Findings of the Association
for Computational Linguistics: EMNLP 2024, Miami, Florida, USA, November 12-16, 2024,
Y. Al-Onaizan, M. Bansal, and Y. Chen, Eds. Association for Computational Linguistics, 2024,
pp- 16 553-16 565. [Online]. Available: https://aclanthology.org/2024.findings-emnlp.966

S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of the
Third Annual ACM Symposium on Theory of Computing, ser. STOC *71. New York,
NY, USA: Association for Computing Machinery, 1971, p. 151-158. [Online]. Available:
https://doi.org/10.1145/800157.805047

L. Pan, V. Ganesh, J. Abernethy, C. Esposo, and W. Lee, “Can transformers reason logically? a
study in sat solving,” arXiv preprint arXiv:2410.07432, 2024.

T. Madusanka, I. Pratt-Hartmann, and R. T. Batista-Navarro, “Natural language satisfiability:
Exploring the problem distribution and evaluating transformer-based language models,” in
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2024, pp. 15278-15294.

B. Y. Lin, R. L. Bras, K. Richardson, A. Sabharwal, R. Poovendran, P. Clark, and Y. Choi,
“Zebralogic: On the scaling limits of llms for logical reasoning,” CoRR, vol. abs/2502.01100,
2025. [Online]. Available: https://doi.org/10.48550/arXiv.2502.01100

S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning, “A large annotated corpus for learning
natural language inference,” arXiv preprint arXiv:1508.05326, 2015.

A. Talmor, J. Herzig, N. Lourie, and J. Berant, “Commonsenseqa: A question answering
challenge targeting commonsense knowledge,” arXiv preprint arXiv:1811.00937, 2018.

10

https://doi.org/10.48550/arXiv.2310.00836
https://doi.org/10.24963/ijcai.2020/501
https://openreview.net/forum?id=HJgJtT4tvB
https://aclanthology.org/2024.emnlp-main.1229
https://aclanthology.org/2024.findings-emnlp.966
https://doi.org/10.1145/800157.805047
https://doi.org/10.48550/arXiv.2502.01100

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

M. Kazemi, Q. Yuan, D. Bhatia, N. Kim, X. Xu, V. Imbrasaite, and D. Ramachandran,
“Boardgameqa: A dataset for natural language reasoning with contradictory information,”
in Advances in Neural Information Processing Systems 36: Annual Conference on
Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023, A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and
S. Levine, Eds., 2023. [Online]. Available: http://papers.nips.cc/paper_files/paper/2023/hash/
7adce80e86aa841490e6307109094de5- Abstract-Datasets_and_Benchmarks.html

K. Sinha, S. Sodhani, J. Dong, J. Pineau, and W. L. Hamilton, “CLUTRR: A diagnostic
benchmark for inductive reasoning from text,” in Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), K. Inui, J. Jiang, V. Ng, and X. Wan, Eds.
Hong Kong, China: Association for Computational Linguistics, Nov. 2019, pp. 4506—4515.
[Online]. Available: https://aclanthology.org/D19-1458/

P. Clark, O. Tafjord, and K. Richardson, “Transformers as soft reasoners over language,” in
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,
IJCAI 2020, C. Bessiere, Ed. ijcai.org, 2020, pp. 3882-3890. [Online]. Available:
https://doi.org/10.24963/ijcai.2020/537

P. Giadikiaroglou, M. Lymperaiou, G. Filandrianos, and G. Stamou, ‘“Puzzle solving using
reasoning of large language models: A survey,” arXiv preprint arXiv:2402.11291, 2024.

Q. Zhu, F. Huang, R. Peng, K. Lu, B. Yu, Q. Cheng, X. Qiu, X. Huang, and
J. Lin, “Autologi: Automated generation of logic puzzles for evaluating reasoning
abilities of large language models,” CoRR, vol. abs/2502.16906, 2025. [Online]. Available:
https://doi.org/10.48550/arXiv.2502.16906

J. Tian, Y. Li, W. Chen, L. Xiao, H. He, and Y. Jin, “Diagnosing the first-order logical
reasoning ability through logicnli,” in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana,
Dominican Republic, 7-11 November, 2021, M. Moens, X. Huang, L. Specia, and S. W. Yih,
Eds. Association for Computational Linguistics, 2021, pp. 3738-3747. [Online]. Available:
https://doi.org/10.18653/v1/2021.emnlp-main.303

A. Srivastava, A. Rastogi, A. Rao, A. A. M. Shoeb, A. Abid, A. Fisch, A. R. Brown, A. Santoro,
A. Gupta, A. Garriga-Alonso et al., “Beyond the imitation game: Quantifying and extrapolating
the capabilities of language models,” arXiv preprint arXiv:2206.04615, 2022.

J. Jiang, Y. Yan, Y. Liu, Y. Jin, S. Peng, M. Zhang, X. Cai, Y. Cao, L. Gao, and Z. Tang,
“Logicpro: Improving complex logical reasoning via program-guided learning,” arXiv preprint
arXiv:2409.12929, 2024.

M. Parmar, N. Patel, N. Varshney, M. Nakamura, M. Luo, S. Mashetty, A. Mitra, and C. Baral,
“Logicbench: Towards systematic evaluation of logical reasoning ability of large language
models,” in Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024,
L. Ku, A. Martins, and V. Srikumar, Eds. Association for Computational Linguistics, 2024,
pp- 13679-13707. [Online]. Available: https://doi.org/10.18653/v1/2024.acl-long.739

Y. Wan, W. Wang, Y. Yang, Y. Yuan, J.-t. Huang, P. He, W. Jiao, and M. R. Lyu, “Logicasker:
Evaluating and improving the logical reasoning ability of large language models,” 2024.
[Online]. Available: https://arxiv.org/abs/2401.00757

D. Sileo, “Scaling synthetic logical reasoning datasets with context-sensitive declarative
grammars,” 2024. [Online]. Available: https://arxiv.org/abs/2406.11035

N. Patel, M. Kulkarni, M. Parmar, A. Budhiraja, M. Nakamura, N. Varshney, and C. Baral,
“Multi-logieval: Towards evaluating multi-step logical reasoning ability of large language
models,” in Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2024, Miami, FL, USA, November 12-16, 2024, Y. Al-Onaizan, M. Bansal,
and Y. Chen, Eds. Association for Computational Linguistics, 2024, pp. 20 856-20 879.
[Online]. Available: https://aclanthology.org/2024.emnlp-main.1160

11

http://papers.nips.cc/paper_files/paper/2023/hash/7adce80e86aa841490e6307109094de5-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/7adce80e86aa841490e6307109094de5-Abstract-Datasets_and_Benchmarks.html
https://aclanthology.org/D19-1458/
https://doi.org/10.24963/ijcai.2020/537
https://doi.org/10.48550/arXiv.2502.16906
https://doi.org/10.18653/v1/2021.emnlp-main.303
https://doi.org/10.18653/v1/2024.acl-long.739
https://arxiv.org/abs/2401.00757
https://arxiv.org/abs/2406.11035
https://aclanthology.org/2024.emnlp-main.1160

[24] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou et al., “Chain-of-
thought prompting elicits reasoning in large language models,” Advances in neural information
processing systems, vol. 35, pp. 24 824-24 837, 2022.

[25] S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, and K. Narasimhan, “Tree of thoughts:
Deliberate problem solving with large language models,” Advances in neural information
processing systems, vol. 36, pp. 11 809-11 822, 2023.

[26] E. Zelikman, Y. Wu, J. Mu, and N. Goodman, “Star: Bootstrapping reasoning with reasoning,”
Advances in Neural Information Processing Systems, vol. 35, pp. 15476-15 488, 2022.

[27] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large language models are zero-shot
reasoners,” Advances in neural information processing systems, vol. 35, pp. 22 199-22 213,
2022.

[28] Y. Li, Z. Lin, S. Zhang, Q. Fu, B. Chen, J.-G. Lou, and W. Chen, “On the advance of making
language models better reasoners,” arXiv preprint arXiv:2206.02336, vol. 2, 2022.

[29] N. Tyagi, M. Parmar, M. Kulkarni, A. Rrv, N. Patel, M. Nakamura, A. Mitra, and C. Baral,
“Step-by-step reasoning to solve grid puzzles: Where do llms falter?” arXiv preprint
arXiv:2407.14790, 2024.

[30] G. Chen, W. Xu, H. Zhang, H. P. Chan, C. Liu, L. Bing, D. Zhao, A. T. Luu, and Y. Rong,
“Finereason: Evaluating and improving 1lms’ deliberate reasoning through reflective puzzle
solving,” arXiv preprint arXiv:2502.20238, 2025.

[31] N. Young, Q. Bao, J. Bensemann, and M. Witbrock, “AbductionRules: Training
transformers to explain unexpected inputs,” in Findings of the Association for Computational
Linguistics: ACL 2022, S. Muresan, P. Nakov, and A. Villavicencio, Eds. Dublin, Ireland:
Association for Computational Linguistics, May 2022, pp. 218-227. [Online]. Available:
https://aclanthology.org/2022.findings-acl.19/

[32] T. Morishita, G. Morio, A. Yamaguchi, and Y. Sogawa, “Learning deductive reasoning
from synthetic corpus based on formal logic,” in International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, ser. Proceedings of
Machine Learning Research, A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato,
and J. Scarlett, Eds., vol. 202. PMLR, 2023, pp. 25254-25274. [Online]. Available:
https://proceedings.mlr.press/v202/morishita23a.html

[33] N. Dziri, X. Lu, M. Sclar, X. L. Li, L. Jiang, B. Y. Lin, S. Welleck, P. West, C. Bhagavatula,
R. Le Bras et al., “Faith and fate: Limits of transformers on compositionality,” Advances in
Neural Information Processing Systems, vol. 36, pp. 70293-70 332, 2023.

[34] L. Ranaldi and A. Freitas, “Aligning large and small language models via chain-of-thought
reasoning,” in Proceedings of the 18th Conference of the European Chapter of the Association
Jfor Computational Linguistics (Volume 1: Long Papers), 2024, pp. 1812-1827.

[35] X. Ye, Q. Chen, I. Dillig, and G. Durrett, “Satlm: Satisfiability-aided language models using
declarative prompting,” Advances in Neural Information Processing Systems, vol. 36, pp.
45 548-45 580, 2023.

[36] H. Ryu, G. Kim, H. S. Lee, and E. Yang, “Divide and translate: Compositional first-order logic
translation and verification for complex logical reasoning,” arXiv preprint arXiv:2410.08047,
2024.

[37] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,
J. Altenschmidt, S. Altman, S. Anadkat et al., “Gpt-4 technical report,” arXiv preprint
arXiv:2303.08774, 2023.

[38] A. Yang, A. Li, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Gao, C. Huang, C. Lv et al.,
“Qwen3 technical report,” arXiv preprint arXiv:2505.09388, 2025.

12

https://aclanthology.org/2022.findings-acl.19/
https://proceedings.mlr.press/v202/morishita23a.html

[39] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Roziere, N. Goyal,
E. Hambro, F. Azhar ef al., “Llama: Open and efficient foundation language models,” arXiv
preprint arXiv:2302.13971, 2023.

[40] A.Liu, B. Feng, B. Xue, B. Wang, B. Wu, C. Lu, C. Zhao, C. Deng, C. Zhang, C. Ruan et al.,
“Deepseek-v3 technical report,” arXiv preprint arXiv:2412.19437, 2024.

[41] D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi et al.,
“Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning,” arXiv
preprint arXiv:2501.12948, 2025.

13

Appendix

A Example of Generated Puzzles

Please see Figure 6]

B Templates

B.1 LLM Validation Prompt Template

Please see Figure

B.2 SAT/UNSAT Evaluation Prompt Template

Please see Figure|[8]

B.3 Trace Evaluation Prompt Template

Please see Figure[9)and Figure[I0]

C Error Analysis Examples
We show one representative example for each of the four error types, paraphrased for clarity.

Satisfiability Bias The model outputs an assignment such as z(1) = 1,2(2) = 1,2(3) = 0 and
prematurely declares the formula satisfiable. In reality, satisfiability requires that all clauses be
satisfied, yet several clauses remain violated. This suggests that the model often assumes satisfiability
without exhaustively checking all constraints and fails to engage in search-based logical reasoning
with backtracking.

Context Inconsistency The model produces conflicting assignments for the same variable within
one trace. For example, it first sets 2:(0) = 1 but later assigns x(0) = 0, trying to satisfy 2 (0) A —z(0).
This is impossible: a variable can only take a single value. The correct resolution is either to retain
one consistent assignment in a satisfiable case or to conclude UNSAT when no such assignment
exists.

Condition Omission The model may ignore or hallucinate conditions in its reasoning trace. For
example, given (z(0) V z(1)) A =z(0), it incorrectly reduces the formula to 2:(0) A —z(0), which is
unsatisfiable. In reality, the original formula is satisfiable with 2(0) = 0, (1) = 1. Such omissions
cause the model to misclassify satisfiable instances as UNSAT.

Spurious Priors The model introduces commonsense assumptions that are absent from the formula.
For example, with (0) V (1), the model assumes that z(0) and 2(1) cannot both be true (as if they
were “mutually exclusive”). It then treats the assignment z(0) = 1, z(1) = 1 as a contradiction and
concludes UNSAT. In reality, the formula is satisfiable and permits both variables to be true. This
is because models sometimes introduce commonsense assumptions that are absent from the given
constraints.

D Human Validation

We conducted human validation on a uniformly random sample of 100 puzzles from our generated
dataset to verify the correctness of LLM-involved steps and the reliability of our evaluation protocol.
Each puzzle contains a CNF formula, its satisfiability label (SAT or UNSAT) from a symbolic solver,
a narrative scenario with variable mappings, natural language conditions corresponding to each clause,
a reasoning trace generated by an LLM, and an LLM judgment of whether the reasoning trace is

14

logically valid. Three co-authors independently annotated the sample and resolved disagreements by
majority vote.

Annotators performed three validation tasks:

1. Scenario and Mapping Consistency: Ensuring that all entities in the scenario are covered
in the variable mapping, and that every logical variable is correctly grounded. We observed
no errors (100% accuracy).

2. Clause Translation Faithfulness: Verifying that each clause in the CNF formula is faithfully
translated into its natural language condition without omissions, additions, or misinterpreta-
tions. We found minor translation errors in three cases, yielding a 97% accuracy rate.

3. LLM Judgment Correctness: Checking whether the LLM’s judgment of the reasoning
trace is logically correct and aligned with the ground-truth formula and satisfiability label.
Here, accuracy was 93%, with occasional errors due to incomplete assignment extraction or
overly strict interpretations of valid traces.

Overall, these results confirm the robustness of our dataset and evaluation pipeline, with errors being
rare and not significantly affecting reliability.

A few failure cases were observed. In story generation, one error involved the clause (—x(2,0) V
z(2,1)) being translated as “if Dr. Brown is not assigned project 0, then Dr. Brown is assigned
project 1.” This misuses the if-then structure. The correct phrasing is “if Dr. Brown is assigned
project 0, then Dr. Brown is also assigned project 1.”

For the LLM-as-judge setting, the main error mode involved incomplete extraction of the assignment
within the trace. In some cases, the model judged that the trace was invalid, even though the trace
was logically sound. These minor errors, however, were rare and did not affect the overall robustness
of our pipeline.

15

<SAT formula>

(=x(0, @) vV x(1, @)) A (x(0, 1)) A (=x(1, 8)) A (—=x(0, 1) V x(71,
1))

A (=x(1, 1) V x(@, 0))

</SAT formula>

<satisfiable>
false
</satisfiable>

<UNSAT reason>

Frozen conflict chain: sequential forced assignments leading to
contradiction:

(x(@, 1)), (—x(0@, 1) V x(1, 1)), (—x(1, 1) V x(0, 0)),

(=x(e, 0) vV x(1, 0)), (—=x(1, @))

</UNSAT reason>

<scenario>

Two wildlife researchers, Hannah and Liam, are documenting animal
behavior at a sanctuary. They are independently recording
whether they observe two specific behaviors: feeding (©) and
social interaction (1). Each researcher decides on their own
which behavior they have observed, and they may report multiple
behaviors or none at all.

</scenario>

<variable_mapping>

Let x(i, j) mean researcher i observes behavior j.
Here, researcher © is Hannah, and researcher 1 is Liam.
</variable_mapping>

<conditions>

1. Either Hannah does not observe feeding, or Liam observes feeding.

2. Hannah observes social interaction.

3. Liam does not observe feeding.

4. Either Hannah does not observe social interaction, or Liam
observes social interaction.

5. Either Liam does not observe social interaction, or Hannah
observes feeding.

</conditions>

<question>
Is there a way to assign observations that make this work?
</question>

Figure 6: Puzzle Example.

16

You are a logic checker.

You are given a SAT formula, a variable explanation, and a natural
language puzzle based on the formula. Your job is to check
whether the natural language conditions are logically equivalent

to the original SAT formula.

Specifically, for each clause in the SAT formula:

- Verify there is a corresponding natural language condition with
equivalent logical meaning.

- Ensure the variable usage matches the explanation format.

- Make sure there are no missing clauses, no added constraints, and
no changes in logic.

Pay special attention to logical implications and how they are
expressed in natural language. For example:

The clause (—x(2) V x(1)) is logically equivalent to: ~"If x(2) is
true, then x(1) is also true.” A common mistake is to write this
as: ~TIf —x(2) then x(1)", which is incorrect. That corresponds

to the clause (x(2) V x(1)), and changes the meaning.
Here is the information:

<scenario>
{scenario}

<variable explanation>
{variable_mapping}

<conditions>
{conditions}

<question>
{question}

<SAT formula>
{formula}

Think step by step about whether the SAT formula and the natural
language conditions match logically, clause by clause. Consider
the number of clauses, the variable usage, and the logical
operators involved.

Your job is only to evaluate whether each condition correctly
represents its corresponding clause in the SAT formula. You
should not judge whether the overall formula or the scenario is
satisfiable, solvable, or logically consistent.

Do not attempt to rewrite, fix, or invent any missing conditions. If
any clause is missing, mistranslated, or not clearly
represented, you must mark the result as [INCONSISTENT].

Finally, in the last line, output either [CONSISTENT] or [

INCONSISTENT].
Do not include anything after this label.

Figure 7: LLM Validation Prompt Template.

17

You are a logical reasoning assistant. You are given a logic puzzle.

<scenario>
{scenario}

<conditions>
{conditions}

<question>
{question}

Guidelines:

- All constraints come **only** from the <conditions> section.

- The <scenario> provides background and intuition, but *xdoes not
impose any additional rules or constraintsx*x.

- All variables represent **independent decisionsx*; there is no
mutual exclusivity or implicit linkage unless stated explicitly
in <conditions>.

- Variables not mentioned in <conditions> are considered unknown and

irrelevant to satisfiability.

Your task:

- If the puzzle is satisfiable, propose one valid assignment that
satisfies all the conditions.

- If the puzzle is unsatisfiable, explain why some of the conditions
cannot all be true at once.

Think step by step. At the end of your answer, output exactly one of
the following labels on a new line:

[SAT] - if a valid assignment exists

[UNSAT] - if the constraints cannot be satisfied

Do not add any text or formatting after the final 1label.

Figure 8: SAT/UNSAT Evaluation Prompt Template.

18

You are given a logical puzzle and a reasoning trace from a language
model .

The puzzle is also expressed as a SAT formula. Each clause is a
disjunction (OR) of literals formatted like x(i), x(i,j), or x(i
,i,k). These variables follow the meaning:

- x(i) means object or person i has some unnamed property.

- x(i,j) means object i has property or role j.

- x(i,j,k) means object i has property j in context or slot k (e.g.,
time, situation, location).

A positive literal like x(0,1) means that the property is present.
A negative literal like —x(@,1) means it is absent.

Below is the full logical puzzle and its corresponding formula:

<scenario>
{scenario}

<conditions>
{conditions}

<final question>
{question}

<variable explanation>
{variable_mapping}

<SAT formula>
{formula}

<trace from model>
{model_trace}

Your task is to extract the truth assignment implied by the model's
reasoning trace, and evaluate whether each clause in the SAT
formula is satisfied.

Go through the trace and determine whether each variable appearing
in the SAT formula is marked as True or False.

Then, for each clause, evaluate the truth value of each literal
using this assignment.

For example, if a clause in the SAT formula is (x(@) V = x(1)), and
the model says x(@) is True and x(1) is also True, then this
clause becomes [1, 0].

Think step by step. Show the variable assignments and how you
evaluate each clause.

Finally, in the *xlast line**, output a single line in the format:
Assignment: [[1, o], [e, 1, 11, [11, ...]

For any variable that is not explicitly mentioned in the reasoning
trace, assume its value is @ when constructing the assignment
list. Do not include anything after this label.

Figure 9: Trace Evaluation Prompt Template for SAT Prediction.

19

You are evaluating whether a model's reasoning trace correctly
explains an UNSAT logical puzzle.

<scenario>
{scenario}

<conditions>
{conditions}

<question>
{question}

<variable explanation>
{variable_mapping}

<reasoning trace from model>
{model_trace}

<ground-truth unsat reason>
{unsat_reason}

We already know this puzzle is UNSAT (unsatisfiable).

Your task is to judge whether the reasoning trace correctly
identifies or meaningfully reflects the cause of
unsatisfiability - that is, whether it aligns with the given
ground-truth unsat reason, even if it doesn't name it explicitly

Focus on logical precision:

- Does the trace show or imply a variable assignment or chain of
reasoning that leads to contradiction?

- Does it avoid hallucinations or irrelevant claims?

Note: The trace may present a specific variable assignment or
reasoning path that leads to a contradiction. Whether it aligns
with the given ground-truth UNSAT reason means you must judge
whether the contradiction is logically valid and reflective of
the actual cause, even if it doesn't explicitly name the minimal

core or unsat pattern.

You are **notx* evaluating whether the conclusion "UNSAT" is correct
- that is already known to be correct.

You are only evaluating whether the explanation substantively
captures why the instance is unsatisfiable.

Please think step by step. First, explain whether and how the
reasoning trace aligns with the unsat reason.
Then, in the last line, output one of the following labels:

[YES] - the reasoning trace is logically valid and correctly
captures the UNSAT cause
[NO] - the trace is flawed, incomplete, or does not match the

correct unsat reason

Do not include anything after this label.

Figure 10: Trace Evaluation Prompt Template for UNSAT Prediction.

20

	Introduction
	Related Work
	Method
	SAT formula Sampling
	Puzzle Story Generation
	Consistency Validation
	Reasoning Trace Evaluation

	Experimental Setup
	Results
	Main Results
	Analysis of Difficulty
	Reasoning Traces and Error Analysis

	Discussion
	SAT in Natural Language
	Improving Performance on SATBench

	Conclusion
	Example of Generated Puzzles
	Templates
	LLM Validation Prompt Template
	SAT/UNSAT Evaluation Prompt Template
	Trace Evaluation Prompt Template

	Error Analysis Examples
	Human Validation

