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ABSTRACT

Time-series forecasting serves as a linchpin in a myriad of applications, spanning
various domains. With the growth of deep learning, this arena has bifurcated into
two salient branches: one focuses on crafting specific neural architectures tailored
for time series, and the other harnesses advanced deep generative models for prob-
abilistic forecasting. While both branches have made significant progress, their
differences across data scenarios, methodological focuses, and decoding schemes
pose profound, yet unexplored, research questions. To bridge this knowledge
chasm, we introduce ProbTS, a pioneering toolkit developed to synergize and
compare these two distinct branches. Endowed with a unified data module, a mod-
ularized model module, and a comprehensive evaluator module, ProbTS allows
us to revisit and benchmark leading methods from both branches. The scrutiny
with ProbTS highlights their distinct characteristics, relative strengths and weak-
nesses, and areas that need further exploration. Our analyses point to new avenues
for research, aiming for more effective time-series forecasting.1

1 INTRODUCTION

Time-series forecasting serves as a cornerstone in many application scenarios across a plethora of
domains, such as energy forecasting in solar applications (Rajagukguk et al., 2020), traffic predic-
tion (Ghosh et al., 2009), climate projections (Angryk et al., 2020), and sustainable systems (Tai
et al., 2023). Each scenario is unique, with distinct nuances in forecasting horizons, inherent tem-
poral dependencies, and variations in data distributions.

With the meteoric rise of deep learning techniques in recent years (LeCun et al., 2015), deep
time-series forecasting methods have increasingly gained traction. Diving deep into the existing
methodologies, two salient research branches in this domain have emerged (Lim & Zohren, 2021).
The first branch propelled by the groundbreaking success of customized neural network architec-
tures in image and language domains, such as ResNets (He et al., 2016) and Transformer archi-
tectures (Vaswani et al., 2017). This branch focuses on crafting neural architectures tailored for
time-series data representation (Oreshkin et al., 2020; Nie et al., 2023). On the other hand, the
second branch is rooted in the advancements of deep generative models (Dinh et al., 2017; Papa-
makarios et al., 2017; Ho et al., 2020), looking to harness advanced probabilistic estimation methods
for capturing intricate data distributions (Rasul et al., 2021b; Tashiro et al., 2021).

Given the diverse nature of time series forecasting tasks, these branches have pursued multiple
avenues of innovation: from catering to different data characteristics and forecasting horizons to
devising methodological focuses ranging from point forecasting via intricate neural architectures
to probabilistic forecasting with nuanced density estimations. Furthermore, the branches exhibit
distinct decoding schemes for multi-horizon forecasting, with the former majorly adopting non-
autoregressive strategies and the latter inclining towards auto-regressive schemes.

Delving into the details, the first branch, with studies such as Zhou et al. (2021); Wu et al. (2021);
Zhang et al. (2022); Challu et al. (2023); Nie et al. (2023), predominantly targets long-term forecast-
ing, where data often reveals strong trends and seasonality patterns. Contrarily, the second branch,
as showcased by works like (Salinas et al., 2019; Rasul et al., 2021b; Tashiro et al., 2021), is more

1This toolkit will be open-sourced.
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oriented towards short-term forecasting, focusing on capturing detailed local variations and omit-
ting significant trends or seasonality. Since different data characteristics and forecasting horizons
may prefer widely different designs, this divergence naturally begs the question: how would the
methodologies from one branch perform in scenarios traditionally addressed by the other?

From a methodological viewpoint, while the first branch specializes in neural network architecture
design with inductive biases specifically for time-series data, they often restrict themselves to point
forecasts. In contrast, the second branch, even with its keen interest in probabilistic forecasting,
leans towards conventional neural network designs. The mystery then arises: what are the rela-
tive strengths and weaknesses of these two branches? And, can we integrate the strengths of both
branches to revolutionize time-series forecasting?

Moreover, the decoding schemes chosen by these two branches exhibit a pronounced divergence.
Methods in the first branch predominantly favor the non-autoregressive approach, projecting all
future horizons in a single step. Whereas many methodologies in the second branch, illustrated
by studies like (Salinas et al., 2019; Rasul et al., 2021b;a), adhere to the autoregressive scheme,
generating forecasts step by step. This stark contrast between the two branches raises a compelling
question: what underlying motivations and considerations steer this distinctive choice in decoding
schemes? And, crucially, in the arena of time-series forecasting, which scheme showcases superior
performance under diverse data scenarios?

Addressing these pressing research questions is paramount, as it can offer invaluable insights into
the challenges and budding opportunities that come from harmonizing these two distinct research
branches. Yet, despite the pressing need, there is an evident gap in the literature: no solution cur-
rently bridges the chasm between these branches, especially given the vast divergences in data sce-
narios, methodological focuses, and decoding schemes.

To enable comprehensive investigations on these inspiring research questions and to empower fu-
ture research towards more effective time-series forecasting, this paper introduces ProbTS, an in-
novative toolkit tailored to unify and compare the research branch emphasizing neural architecture
designs with the one focusing on advanced probabilistic estimations. At its core, ProbTS offers a
unified data module, a modularized model module, and a holistic evaluator module. By harness-
ing ProbTS, we provide a comprehensive benchmark of some of the most pivotal methods from
both branches, spanning a multitude of data scenarios and evaluation metrics. The outcomes of our
analysis not only shed light on the previously stated research challenges but also unravel overlooked
limitations in existing studies, charting the course for future time-series forecasting endeavors.

Contributions. We present ProbTS, a novel toolkit bridging two distinct time-series forecast-
ing branches. It enables a thorough analysis and evaluation of top methodologies across various
scenarios and metrics. Using ProbTS, we reveal insights into previously challenging questions:

• Our study discerns that long-term forecasting scenarios primarily exhibit stronger trends
and seasonality, while short-term scenarios often manifest more complex data distributions.
These differences in data characteristics profoundly influence the method designs of those
two research branches.

• We recognize the strengths and shortcomings of various methodological focuses. Proba-
bilistic forecasting methods excel in modeling complex data distributions, yet may yield
subpar point forecasts despite superior distribution-level metrics. Conversely, customized
network architectures, specifically tailored for trends and seasonality, display remarkable
performance in long-term scenarios. However, their effectiveness in complex short-term
forecasting scenarios remains unexplored. Furthermore, we observe that different decod-
ing schemes have varying performances depending on specific data characteristics. These
findings hint at a promising research potential, particularly in merging these two research
branches across diverse data scenarios.

• We underscore the significance of a unified approach in both evaluation and learning. A sin-
gular focus on optimizing either probabilistic or non-probabilistic metrics may undermine
the other’s performance. This observation necessitates comprehensive evaluation metrics
encompassing both distributional estimations and point-level forecasts, suggesting poten-
tial research into hybrid learning strategies that proficiently balance different measures.
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Table 1: Comparison of two research branches in time-series forecasting. Comparison dimensions
include forecasting horizons, forecasting paradigms, architecture designs, and decoding schemes.

Studies Fore. Horizon Fore. Paradigm Arch. Design Dec. Scheme
Short Long Point Prob. General Customized Auto. Non-auto.

N-BEATS (Oreshkin et al., 2020) % ✓ ✓ % % ✓ % ✓
Autoformer (Wu et al., 2021) % ✓ ✓ % % ✓ % ✓
Informer (Zhou et al., 2021) % ✓ ✓ % % ✓ % ✓
Pyraformer (Liu et al., 2022) % ✓ ✓ % % ✓ % ✓
N-HiTS (Challu et al., 2023) % ✓ ✓ % % ✓ % ✓
LTSF-Linear (Zeng et al., 2023) % ✓ ✓ % % ✓ % ✓
PatchTST (Nie et al., 2023) % ✓ ✓ % % ✓ % ✓
TimesNet (Wu et al., 2023) ✓ ✓ ✓ % % ✓ % ✓

DeepAR (Salinas et al., 2020) ✓ % % ✓ ✓ % ✓ %

GP-copula (Salinas et al., 2019) ✓ % % ✓ ✓ % ✓ %

LSTM NVP (Rasul et al., 2021b) ✓ % % ✓ ✓ % ✓ %

LSTM MAF (Rasul et al., 2021b) ✓ % % ✓ ✓ % ✓ %

Trans MAF (Rasul et al., 2021b) ✓ % % ✓ ✓ % ✓ %

TimeGrad (Rasul et al., 2021a) ✓ % % ✓ ✓ % ✓ %

CSDI (Tashiro et al., 2021) ✓ % % ✓ % ✓ % ✓
SPD (Bilos et al., 2023) ✓ % % ✓ ✓ % % ✓

ProbTS (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2 RELATED WORK

Time-series forecasting has witnessed significant advancements in recent years, giving rise to two
distinct research branches: one focused on effective network architecture designs, and the other
dedicated to advancing probabilistic estimation. In Table 1, we present representative studies from
these two branches and compare them with ProbTS across various aspects. In the following, we
provide a comprehensive review of these two branches and discuss existing time-series forecasting
toolkits, highlighting the unique features of ProbTS.

Neural Architecture Designs in Time-series Forecasting. A substantial body of research has
been dedicated to enhancing neural architecture designs for time-series forecasting. Notable exam-
ples include extensions of multi-layer perceptrons (Oreshkin et al., 2020; Fan et al., 2022; Zhang
et al., 2022; Challu et al., 2023; Zeng et al., 2023; Ekambaram et al., 2023), customized recurrent
or convolutional neural networks (Lai et al., 2018; LIU et al., 2022; Wu et al., 2023), and more
recently, various Transformer-based variants developed (Vaswani et al., 2017; Li et al., 2019; Zhou
et al., 2021; Wu et al., 2021; Zhou et al., 2022; Liu et al., 2022; Zhang & Yan, 2022; Cirstea et al.,
2022; Nie et al., 2023). One common characteristic of studies in this branch is their typical use of the
non-autoregressive decoding scheme, projecting into future horizons at once. Moreover, a signifi-
cant portion of these studies, especially recent Transformer variants, primarily focuses on evaluating
long-term forecasting scenarios, often characterized by prominent trending and seasonality patterns.
Despite their advancements in neural architecture designs, these studies often limit themselves to
point forecasts, capturing only the average variations of future values rather than the underlying
data distribution. While approaches like quantile regression (Wen et al., 2017; Lim et al., 2021) can
mitigate this limitation, they cannot replace the inherent capture of the data distribution.

Probabilistic Estimation in Time-series Forecasting. In contrast to the first branch, which pre-
dominantly considers point forecasts, the second branch, commonly referred to as deep probabilistic
time-series forecasting, aims to leverage deep neural networks to capture the complex data distribu-
tion of future time series. This branch has garnered broad research attention, ranging from early ap-
proaches employing pre-defined likelihood functions (Rangapuram et al., 2018; Salinas et al., 2020)
or Gaussian copulas (Salinas et al., 2019; Drouin et al., 2022) to more recent methods harnessing
advanced deep generative models (Rasul et al., 2021b;a; Tashiro et al., 2021; Bilos et al., 2023).
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While studies in this branch can produce probabilistic forecasts, including distributional informa-
tion about future time-series variations, they primarily evaluate short-term forecasting scenarios,
inevitably overlooking the challenges posed by long-term trending or seasonality. A noteworthy ob-
servation is that, unlike studies in the first branch, which consistently prefer the non-autoregressive
scheme, studies in this branch have employed both autoregressive (Rasul et al., 2021b;a) and non-
autoregressive (Tashiro et al., 2021; Li et al., 2022) decoding schemes. Furthermore, in contrast
to the flourishing development of specific neural architecture designs in the first branch, this re-
search focus is relatively underexplored in the second branch. While a few methods (Tashiro et al.,
2021; Li et al., 2022; Bergsma et al., 2022) incorporate customized neural architectures, more stud-
ies (de Bézenac et al., 2020; Rasul et al., 2021b;a; Bilos et al., 2023; Drouin et al., 2022) leverage
standardized neural architectures to encode time-series representations.

Time-series Forecasting Toolkits. Parallel to the divergence of time-series research into two
branches, we have also witnessed the emergence of two types of toolkits for time-series forecasting.
The first type, primarily oriented towards point forecasting, includes Prophet (Taylor & Letham,
2018), sktime (Löning et al., 2019), tsai (Oguiza, 2022), TSlib (Wu et al., 2023), as well as other
open-source implementations of studies from the first research branch. The second type, emphasiz-
ing probabilistic forecasting, encompasses GluonTS (Alexandrov et al., 2020) and PyTorchTS (Ra-
sul et al., 2021b). However, these two types of toolkits, each specializing in a single forecasting
paradigm, fall short of our research objective to unify the two distinct research branches. Two excep-
tions to this are PyTorchForecasting2 and NeuralForecast3, both of which incorporate customized
neural architectures and probabilistic forecasters. Although these two toolkits come close to our
work, they only cover a limited range of approaches, notably lacking more advanced probabilistic
forecasting methods (Rasul et al., 2021b;a; Tashiro et al., 2021), and their pipelines are ill-suited for
direct investigations into our research questions of interest. In contrast, ProbTS is purpose-built
to unify and compare the latest research in neural architecture designs with cutting-edge studies in
probabilistic forecasting. Most importantly, ProbTS aims to uncover overlooked limitations in ex-
isting approaches and identify new opportunities for future research to enhance the effectiveness of
time-series forecasting.

3 THE PROBTS TOOLKIT

This section starts with a formal description of time series forecasting, then provides a concise
overview of the ProbTS toolkit. To better illustrate the insights obtained by unifying customized
neural architecture designs and advanced probabilistic estimations for deep time-series forecasting,
we leave the detailed module descriptions to the Appendix A.

Problem Formulation. Formally, we denote an element of a multivariate time series as xk
t ∈ R,

where k represents the variate index and t denotes the time index. At time step t, we have a mul-
tivariate vector xt ∈ RK . Each xk

t is associated with covariates ckt ∈ RN , which encapsulates
auxiliary information about the observations. Given a length-T forecast horizon a length-L observa-
tion history xt−L:t and corresponding covariates ct−L:t, the objective in time series forecasting is to
generate the vector of future values xt+1:t+T . In ProbTS, we decouple a model into an encoder fϕ
and a forecaster pθ. An encoder is tasked with generating expressive hidden states h ∈ RD. Under
autoregressive decoding scheme, encoder forecasts variates using their past values, which can be
formulated as ht = fϕ(xt−1, ct,ht−1). Under the non-autoregressive scheme, the encoder gener-
ates all the forecasts in one step, which can be expressed as ht+1:t+T = fϕ(xt−L:t, ct−L:t+T ). A
forecaster pθ is employed either to directly estimate point forecasts as x̂t = pθ(ht), or to perform
sampling based on the estimated probabilistic distributions as x̂t ∼ pθ(xt|ht).

An Overview of ProbTS. The ProbTS toolkit comprises several integral modules designed to
provide a comprehensive and fair evaluation. The Data module unifies diverse data scenarios, em-
ploys standardized pre-processing techniques. The Model module offers flexibility by accommodat-
ing various neural network architectures, forecasting paradigms, and decoding schemes, allowing

2https://github.com/jdb78/pytorch-forecasting
3https://github.com/Nixtla/neuralforecast
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Figure 1: An overview of ProbTS.

the construction of diverse models. The Evaluator module integrates a diverse array of evalua-
tion metrics, facilitating both point-level and distribution-level accuracy assessments. To maintain
result integrity, we follow a standardized implementation process, including unified data splitting,
standardization techniques, and fair hyperparameter tuning settings. Detailed information on each
module and the experimental setup can be found in Appendix A and Appendix D, respectively.

4 PROBE DEEP TIME SERIES FORECASTING

In this section, we embark on a comparative study of deep time series forecasting methods, initiating
with the selection of baseline models. We then provide an overview of our unique insights derived
from ProbTS (Section 4.1), achieved through a collective comparison of different aspects of these
models. Subsequently, we include detailed discussions on data scenarios (Section 4.2), different
methodological focuses (Sections 4.3 and 4.4), decoding schemes (Section 4.5), and the efficiencies
of these approaches (Section 4.6).

Baseline Selection. We incorporate a diverse range of models for our baseline analysis. For prob-
abilistic approaches, we include models employing advanced density estimation techniques such as
normalizing flows (GRU NVP, GRU MAF, and Trans MAF) and diffusion models (TimeGrad and
CSDI). To assess the impact of probabilistic modeling, we consider general neural network archi-
tectures like Linear, GRU, and Transformer, coupled with a linear forecaster devoid of probabilistic
estimation. We integrate global mean and batch mean as baselines to evaluate forecasting difficulty.
Moreover, we incorporate TimesNet and PatchTST, models with architectures refined for time se-
ries, and N-HiTS and LTSF-Linear (NLinear and DLinear), recognized for their unique designs for
modeling time series data.

4.1 INSIGHTS UNCOVERED WITH PROBTS: AN OVERVIEW

Utilizing the unified perspective afforded by ProbTS, we revisit two significant research branches
in deep time-series forecasting and unveil critical insights.

Advanced Probabilistic Methods: Achievements in Complex Data Distributions and Chal-
lenges in Long-term Forecasting. Advanced probabilistic methods have shown their strengths
in modeling complex data distributions. However, these methods encounter significant challenges
when applied to long-term forecasting scenarios. Specifically, the complex data distributions in
these scenarios are often masked by prominent trends and seasonality (Section 4.2), posing chal-
lenges for approaches focused solely on probabilistic modeling. These methods predominantly em-
ploy an auto-regressive decoding scheme, which is susceptible to substantial error propagation over
extended horizons marked by prominent trends (Section 4.5). Additionally, the non-autoregressive
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probabilistic method, CSDI, grapples with computational inefficiency and high memory require-
ments in long-term forecasting (Section 4.6). These issues, often overlooked in previous works,
highlight the need for more comprehensive evaluations and further research into advanced proba-
bilistic methods for long-term forecasting.

Customized Neural Architecture Designs: Superiority in Long-term Forecasting and Unmet
Challenges in Short-term Scenarios. Customized neural architecture designs have demonstrated
superiority in long-term forecasting scenarios, particularly those driven by prominent trends and
seasonality (Section4.4). However, short-term forecasting scenarios, characterized by their complex
data distributions, pose a different set of challenges that are not addressed by these architectures.
Surprisingly, our comparative studies reveal that even without customized network architectures,
autoregressive models can perform well in these scenarios, particularly when strong seasonality is
present (Section4.5). This finding challenges the notion of disregarding autoregressive schemes in
long-term contexts and underscores the potential for further research into customized neural archi-
tecture designs that can handle complex data distributions in short-term forecasting scenarios.

Balancing Probabilistic and Non-probabilistic Metrics: A Unified Perspective. Our study in-
dicates that a focus on optimizing either probabilistic metrics (such as CRPS) or non-probabilistic
metrics (such as NAME) may compromise the performance on the other (Section 4.3). This finding
highlights the importance of this unified study in both evaluation and learning. It underscores the
need for more comprehensive evaluation metrics that take into account both probabilistic scores and
point-level forecasts. Furthermore, it suggests potential research directions towards the development
of hybrid learning strategies that excel in both probabilistic and non-probabilistic metrics, meeting
the practical needs of both accurate distributional estimations and precise point-level forecasts.

Table 2: Quantitative assessment of intrinsic characteristics for each dataset. To eliminate ambiguity,
we use the suffix ”-S” and ”-L” to denote short-term and long-term forecasting datasets, respectively.
The JS Div denotes Jensen–Shannon divergence, where a lower score indicates closer approxima-
tions to a Gaussian distribution.

Dataset Exchange-S Solar-S Electricity-S Traffic-S Wikipedia-S ETTm1-L ETTm2-L
Trend FT 0.9982 0.1688 0.6443 0.2880 0.5253 0.9462 0.9770
Seasonality FS 0.1256 0.8592 0.8323 0.6656 0.2234 0.0105 0.0612

JS Div. 0.2967 0.5004 0.3579 0.2991 0.2751 0.0833 0.1701

Dataset ETTh1-L ETTh2-L Electricity-L Traffic-L Weather-L Exchange-L ILI-L
Trend FT 0.7728 0.9412 0.6476 0.1632 0.9612 0.9978 0.5438
Seasonality FS 0.4772 0.3608 0.8344 0.6798 0.2657 0.1349 0.6075

JS Div. 0.0719 0.1422 0.1533 0.1378 0.1727 0.1082 0.1112

4.2 DATASET SCENARIOS

By unifying data scenarios, we can ascertain how existing methods perform on previously unevalu-
ated data scenarios. This enables a deeper understanding of the motivations behind distinct designs,
which are usually influenced by varied data characteristics.

Differences in data characteristics. Table 2 reveals that certain datasets, such as Exchange and
ETT, exhibit robust trends with limited seasonality. On the other hand, datasets such as Solar and
Traffic display reduced trendiness but substantial seasonality dominance. These variations impose
distinct demands on a model’s ability to handle trends and seasonality effectively. Moreover, the
table illustrates the considerable divergences in data distributions among datasets. Typically, datasets
closely adhering to a Gaussian distribution, such as Wikipedia-S, do not require much distribution
modeling capabilities. Whereas datasets that deviate from the Gaussian distribution, e.g., Solar-S
and Electricity-S, necessitate more advanced distribution modeling designs.

Impacts of forecasting horizons. To gain intuitive insights, we present visualizations of time se-
ries instances in Appendix B. Figure 2 and Figure 3 visually convey the impacts of varying forecast-
ing horizons, showcasing instances of time series for short-term and long-term datasets respectively.
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Table 3: Results (meanstd) on short-term forecasting datasets. We obtain mean and standard error
metrics by re-training and evaluating five times.

Model Exchange Rate Solar Electricity Traffic Wikipedia
CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE

Glob. mean 0.188 0.188 1.403 1.403 0.412 0.412 0.540 0.540 0.577 0.577
Batch mean 0.012 0.012 1.244 1.244 0.365 0.365 0.503 0.503 0.336 0.336
Linear 0.012.001 0.012.001 0.704.036 0.704.036 0.138.009 0.138.009 0.327.032 0.327.032 0.874.151 0.874.151
GRU 0.013.002 0.013.002 0.594.144 0.594.144 0.134.009 0.134.009 0.193.002 0.193.002 0.394.013 0.394.013
Transformer 0.016.001 0.016.001 0.538.066 0.538.066 0.115.005 0.115.005 0.204.006 0.204.006 0.408.011 0.408.011

N-HiTS 0.012.000 0.012.000 0.572.020 0.572.020 0.074.003 0.074.003 0.193.002 0.193.002 0.332.011 0.332.011
NLinear 0.010.000 0.010.000 0.560.002 0.560.002 0.083.002 0.083.002 0.233.001 0.233.001 0.321.001 0.321.001
DLinear 0.012.001 0.012.001 0.547.009 0.547.009 0.095.006 0.095.006 0.273.012 0.273.012 1.046.037 1.046.037
PatchTST 0.010.000 0.010.000 0.496.002 0.496.002 0.076.001 0.076.001 0.202.001 0.202.001 0.257.001 0.257.001

TimesNet 0.011.001 0.011.001 0.507.019 0.507.019 0.071.002 0.071.002 0.205.002 0.205.002 0.304.002 0.304.002

GRU NVP 0.016.003 0.020.003 0.396.021 0.507.022 0.055.002 0.073.003 0.161.006 0.203.009 0.282.003 0.330.003
GRU MAF 0.015.001 0.020.001 0.386.026 0.492.027 0.051.001 0.067.001 0.131.006 0.165.009 0.281.004 0.337.005
Trans MAF 0.011.001 0.014.001 0.400.022 0.503.022 0.054.004 0.071.005 0.129.004 0.165.006 0.289.008 0.344.008
TimeGrad 0.011.001 0.014.002 0.359.011 0.445.023 0.052.001 0.067.001 0.164.091 0.201.115 0.272.008 0.327.011
CSDI 0.008.000 0.011.000 0.366.005 0.484.008 0.050.001 0.065.001 0.146.012 0.176.013 0.219.006 0.259.009

Table 4: Results (meanstd) on long-term forecasting datasets. The input sequence length is set to 36
for the ILI dataset and 96 for the others. We obtain mean and standard error metrics by re-training
and evaluating three times. Due to the excessive time consumption of CSDI in high-dimensional
scenarios, results are unavailable in partial long-term forecasting datasets.

Model pred DLinear PatchTST GRU NVP TimeGrad CSDI
len CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE

ETTm1

96 0.282.002 0.282.002 0.272.001 0.272.001 0.383.053 0.488.058 0.522.105 0.645.129 0.236.006 0.308.005
192 0.309.004 0.309.004 0.295.001 0.295.001 0.396.030 0.514.042 0.603.092 0.748.084 0.291.025 0.377.026
336 0.338.008 0.338.008 0.323.001 0.323.001 0.486.032 0.630.029 0.601.028 0.759.015 0.322.033 0.419.042
720 0.387.006 0.387.006 0.353.001 0.353.001 0.546.036 0.707.050 0.621.037 0.793.034 0.448.038 0.578.051

ETTm2

96 0.138.000 0.138.000 0.132.001 0.132.001 0.319.044 0.413.059 0.427.042 0.525.047 0.115.009 0.146.012
192 0.163.003 0.163.003 0.157.001 0.157.001 0.326.025 0.427.033 0.424.061 0.530.060 0.147.008 0.189.012
336 0.188.001 0.188.001 0.176.000 0.176.000 0.449.145 0.580.169 0.469.049 0.566.047 0.190.018 0.248.024
720 0.219.003 0.219.003 0.205.001 0.205.001 0.561.273 0.749.385 0.470.054 0.561.044 0.239.035 0.306.040

ETTh1

96 0.352.011 0.352.011 0.328.003 0.328.003 0.379.030 0.481.037 0.455.046 0.585.058 0.437.018 0.557.022
192 0.393.001 0.393.001 0.359.002 0.359.002 0.425.019 0.531.018 0.516.038 0.680.058 0.496.051 0.625.065
336 0.419.007 0.419.007 0.384.002 0.384.002 0.458.054 0.580.064 0.512.026 0.666.047 0.454.025 0.574.026
720 0.502.029 0.502.029 0.397.002 0.397.002 0.502.039 0.643.046 0.523.027 0.672.015 0.528.012 0.657.014

ETTh2

96 0.211.027 0.211.027 0.177.000 0.177.000 0.432.141 0.548.158 0.358.026 0.448.031 0.164.013 0.214.018
192 0.238.028 0.238.028 0.201.001 0.201.001 0.625.170 0.766.223 0.457.081 0.575.089 0.226.018 0.294.027
336 0.284.008 0.284.008 0.240.001 0.240.001 0.793.319 0.942.408 0.481.078 0.606.095 0.274.022 0.353.028
720 0.307.000 0.307.000 0.252.000 0.252.000 0.539.090 0.688.161 0.445.016 0.550.018 0.302.040 0.382.030

Electricity

96 0.090.001 0.090.001 0.086.001 0.086.001 0.094.003 0.118.003 0.096.002 0.119.003 0.153.137 0.203.189
192 0.095.001 0.095.001 0.092.001 0.092.001 0.097.002 0.121.003 0.100.004 0.124.005 0.200.094 0.264.129
336 0.104.000 0.104.000 0.100.000 0.100.000 0.099.001 0.123.001 0.102.007 0.126.008 - -
720 0.122.001 0.122.001 0.116.000 0.116.000 0.114.013 0.144.017 0.108.003 0.134.004 - -

Traffic

96 0.356.009 0.356.009 0.248.001 0.248.001 0.187.002 0.231.003 0.202.004 0.234.006 - -
192 0.346.009 0.346.009 0.245.001 0.245.001 0.192.001 0.236.002 0.208.003 0.239.004 - -
336 0.350.008 0.350.008 0.257.002 0.257.002 0.201.004 0.248.006 0.213.003 0.246.003 - -
720 0.365.009 0.365.009 0.266.001 0.266.001 0.211.004 0.264.006 0.220.002 0.263.001 - -

Weather

96 0.112.001 0.112.001 0.087.002 0.087.002 0.116.013 0.145.017 0.130.017 0.164.023 0.068.008 0.087.012
192 0.122.001 0.122.001 0.090.001 0.090.001 0.122.021 0.147.025 0.127.019 0.158.024 0.068.006 0.086.007

336 0.130.002 0.130.002 0.092.002 0.092.002 0.128.011 0.160.012 0.130.006 0.162.006 0.083.002 0.098.002
720 0.144.001 0.144.001 0.094.001 0.094.001 0.110.004 0.135.008 0.113.011 0.136.020 0.087.003 0.102.005

Exchange

96 0.024.000 0.024.000 0.023.000 0.023.000 0.071.006 0.091.009 0.068.003 0.079.002 0.028.003 0.036.005
192 0.035.000 0.035.000 0.034.000 0.034.000 0.068.004 0.087.005 0.087.013 0.100.019 0.045.003 0.058.005
336 0.048.001 0.048.001 0.048.000 0.048.000 0.072.002 0.091.002 0.074.009 0.086.008 0.060.004 0.076.006
720 0.075.002 0.075.002 0.072.000 0.072.000 0.079.009 0.103.009 0.099.015 0.113.016 0.143.020 0.173.020

ILI

24 0.213.038 0.213.038 0.169.005 0.169.005 0.257.003 0.283.001 0.275.047 0.296.044 0.250.013 0.263.012
36 0.230.015 0.230.015 0.156.005 0.156.005 0.281.004 0.307.007 0.272.057 0.298.048 0.285.010 0.298.011
48 0.221.009 0.221.009 0.156.008 0.156.008 0.288.008 0.314.009 0.295.033 0.320.025 0.285.036 0.301.034
60 0.230.013 0.230.013 0.147.003 0.147.003 0.307.005 0.333.005 0.295.083 0.325.068 0.283.012 0.299.013

Figure 2 emphasizes that short-term contexts are primarily characterized by local variations. Con-
versely, Figure 3 demonstrates an augmented presence of seasonality and trends in datasets like
Traffic, Electricity, and ETT under elongated forecasting horizons, enhancing predictability. This
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shift highlights the importance of capturing local dynamics in short-term forecasting, while longer
forecasting horizons necessitate models adept at modeling extended seasonality and trends.

4.3 POINT VS. PROBABILISTIC ESTIMATION

Beyond differing data scenarios, varied methodological focuses raise essential questions about the
unique benefits of specialized model designs, especially probabilistic estimation.

Probabilistic methods excel in modeling complex data distributions. From Table 3, it is ev-
ident that probabilistic estimation methods, especially TimeGrad and CSDI, demonstrate superior
performance in both NMAE and CRPS metrics in short-term forecasting. This advantage is partic-
ularly notable in the Solar, Electricity, and Traffic datasets, which show intricate data distributions
in Table 2. This underscores the aptitude of probabilistic methods in addressing complex data dis-
tributions. Whereas for long-term forecasts, we cannot compare probabilistic and point estimation
methods solely based on data distribution since the performance is multifacetedly affected.

Probabilistic methods may produce poor point forecasts even with a superior CRPS score.
Table 4 illustrates that while probabilistic methods like CSDI demonstrate prowess in the CRPS
metric, they lag in NMAE, reflecting precise distribution approximations but weaker point forecasts.
This discrepancy is indicative of inherent limitations in current probabilistic models, shedding light
on the prevailing preference for CRPS in evaluations. It highlights substantial opportunities for re-
fining probabilistic approaches and underscores the critical need for holistic evaluation perspectives
to enhance the reliability and precision of time-series forecasting.

The complex local variations inherent to shorter forecasting horizons, as detailed in Section 4.2,
explain why most probabilistic forecasting studies opt for short-term datasets for model evalua-
tion. However, proficiency in one aspect is insufficient in real-world applications, and the ability to
handle other intrinsic data characteristics is equally crucial, which calls for a more comprehensive
evaluation setting.

4.4 CUSTOMIZED VS. GENERAL NEURAL ARCHITECTURE

In addition to exploring the advantages of probabilistic estimation, the pressing question of whether
a customized neural architecture with time-series inductive bias is essential remains unresolved.

Customized network architecture performs remarkably on long-term forecasting. Table 4
illustrates that in long-term forecasting, models with time-series inductive bias like DLinear and
PatchTST significantly outperform models that employ advanced probabilistic estimation techniques
but rely solely on general architectures. Given that data exhibit more pronounced seasonality and
trends in longer forecast horizons, as discussed in Section 4.2, we attribute this superiority to their
trend-seasonality decomposition techniques. This suggests that a general architecture is not enough
for time-series modeling, and incorporating more unique designs tailored for time-series domain
knowledge is expected.

Customized network architecture on short-term forecasting remains underexplored. Differ-
ent from long-term forecasting, Table 3 suggests short-term forecasting does not significantly benefit
from existing customized network architectures compared to general ones. Exceptions like the Ex-
change and Wikipedia datasets are influenced by their intrinsic characteristics; the former is smooth,
allowing even basic models like batch mean to succeed (see Table 4.2), while the latter includes
abundant outliers pose challenges for all models (see Table 7). Thus, the development and refine-
ment of network architectures to better apprehend short-term fluctuations represent a pivotal and
unmet challenge.

Our findings expose the performance gap of distinct designs across diverse data scenarios, explaining
the preference of different methodological focuses for unique dataset settings. This insight uncovers
a potential path to revolutionize time-series forecasting by harnessing the strengths of both neural
network architectures with time-series inductive bias and probabilistic estimation methods. Such an
amalgamation enables effective modeling of intricate data distributions while adeptly managing the
inherent periodicity and seasonality of time series.
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4.5 AUTOREGRESSIVE VS. NON-AUTOREGRESSIVE DECODING SCHEME

Since the decoding scheme is another critical aspect influencing time series forecasting performance,
this section is dedicated to elucidating the strengths and weaknesses of both decoding methods and
discussing how we should choose between them in different data scenarios.

Autoregressive models excel with strong seasonality but struggle with pronounced trends.
Table 4 indicates that autoregressive methods generally exhibit inferior performance to non-
autoregressive ones in long-term datasets. However, notable exceptions exist, autoregressive models
display superior efficacy on the Traffic dataset, which is of minimal trend strength (see Table 2).
Under this situation, the autoregressive methods even surpass the state-of-the-art non-autoregressive
models. Detailed examination reveals the difficulties autoregressive models face in datasets with
significant trends like ETT, while they fare well in modeling strong seasonality, as evident in the
Electricity and Traffic datasets. This manifests the proficiency of autoregressive models in capturing
seasonal patterns but their inadequacy in modeling long-term trends.

Both decoding schemes perform equally well in short-term forecasting. Table 3 implies a com-
parable performance between two decoding schemes in short-term forecasting datasets. This is pos-
sibly attributed to the limited impact of error propagation on autoregressive methods in short-term
scenarios. Additionally, the flexibility of the autoregressive approaches makes it a feasible choice
for accommodating diverse temporal structures and complexities in short-term prediction datasets.

The experimental findings reveal that while autoregressive methods are proficient in modeling
seasonality, they falter in managing long-term trends, an area where non-autoregressive methods
demonstrate competency. This divergence in expertise serves as a guideline for selecting decoding
schemes for particular data scenarios. It also explains the preferential biases of the aforementioned
two branches towards specific decoding manner. Interestingly, there are cases where autoregressive
methods outperform non-autoregressive ones in long-term situations, especially in datasets with
strong seasonal patterns. This finding leads us to speculate that enhancing autoregressive models
to curb error propagation and adeptly handle trending data could make them strong challengers in
providing long-term forecasting solutions.

4.6 COMPUTATIONAL EFFICIENCY

The necessity to depict intricate, high-dimensional data distributions in modern applications in-
troduces considerable computational challenges in time-series forecasting, a crucial aspect often
neglected by prior research. Thus, we provide a computational efficiency analysis here.

Modeling high-dimensional probabilistic distributions demands substantial memory and is
time-intensive. In Figure 6a, a significant escalation in GPU memory consumption is observed
with the increase in the number of variates, where CSDI—integrating non-autoregressive decoding
schemes with a diffusion model—exhibits a particularly pronounced surge. Additionally, Figure 6b
reveals that methods centered on probabilistic estimation entail longer inference times, especially
the Diffusion model. These findings underscore the crucial need for optimizing memory efficiency
and reducing inference time, particularly as the prediction horizon extends.

5 CONCLUSION

In conclusion, this paper has presented ProbTS, a novel toolkit developed to advance the field of
time-series forecasting by synergizing and comparing research branches emphasizing neural archi-
tecture designs with the one focusing on advanced probabilistic estimations. Through ProbTS, we
have answered several pivotal research questions stemming from the divergences in data scenarios,
methodologies, and decoding schemes between these distinct branches. Looking ahead, there is im-
mense potential in amalgamating the strengths of both branches to redefine the future of time-series
forecasting. We anticipate that the ProbTS toolkit will act as a catalyst, expediting groundbreaking
research in this domain, and unlocking new possibilities for refined and robust forecasting models.
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A COMPONENTS OF THE PROBTS TOOLKIT

Data. The data module unifies varied data scenarios to facilitate thorough evaluation and imple-
ments standardized pre-processing techniques to ensure fair comparison. Moreover, we utilize a
quantitative approach to visually delineate datasets’ intrinsic characteristics, which employs decom-
position to assess trends and seasonality in a time series and evaluate the similarity between data
distribution and a Gaussian to depict the complexity of data distribution. Descriptions and statistics
for each dataset are listed in Table 5, and a quantitative evaluation of their inherent properties is
provided in Table 2. We attach the detailed quantitative calculation process in Appendix B.

Model. The modularized model module accommodates diverse neural network architectures, fore-
casting paradigms, and decoding schemes. Adhering to the decoupled model formulation from Sec-
tion 3, it enables the construction of various models by configuring the encoder fϕ and forecaster
pθ. For example, point estimation methods like DLinear centralize their design in the encoder, using
a linear layer or identity mapping as the forecaster, with non-autoregressive decoding. In contrast,
probabilistic models like TimeGrad incorporate general neural architectures in the encoder and ad-
vanced probabilistic techniques in the forecaster, employing autoregressive decoding.

Evaluator. The evaluator module integrates a diverse array of evaluation metrics such as Mean
Absolute Error (MAE), Normalized Mean Absolute Error (NMAE), Mean Square Error (MSE),
and Continuous Ranked Probability Score (CRPS), allowing for assessment of both point-level and
distribution-level accuracies. We employ the NMAE metric for point-level evaluation to accommo-
date different scales of errors, and unlike previous studies (Rasul et al., 2021a; Tashiro et al., 2021)
that used the CRPSsum metric, we utilize CRPS for our analysis for a refined evaluation of each
variate’s probability distribution accuracy. A detailed list of evaluation metrics and their formal
definitions can be found in Appendix C.

Implementation. To ensure the integrity of the results, ProbTS adheres to a standard imple-
mentation process, employing unified data splitting, standardization techniques, and adopting fair
settings for hyperparameter tuning across all methods. We utilize reported optimal hyperparameters
for models directly associated with specific datasets and conduct an extensive grid search to identify
the most effective settings for those hyperparameters that were not available. Details regarding the
experimental setup can be found in Appendix D.

Table 5: Dataset Summary.

Horizon Dataset #var. range freq. timesteps Description

Long-term

ETTh1/h2 7 R+ H 17,420 Electricity transformer temperature per hour
ETTm1/m2 7 R+ 15min 69,680 Electricity transformer temperature every 15 min
Electricity 321 R+ H 26,304 Electricity consumption (Kwh)

Traffic 862 (0,1) H 17,544 Road occupancy rates
Exchange 8 R+ Busi. Day 7,588 Daily exchange rates of 8 countries

ILI 7 (0,1) W 966 Ratio of patients seen with influenza-like illness
Weather 21 R+ 10min 52,696 Local climatological data

Short-term

Exchange 8 R+ Busi. Day 6,071 Daily exchange rates of 8 countries
Solar 137 R+ H 7,009 Solar power production records

Electricity 370 R+ H 5,833 Electricity consumption
Traffic 963 (0,1) H 4,001 Road occupancy rates

Wikipedia 2,000 N D 792 Page views of 2000 Wikipedia pages

B QUANTIFYING THE CHARACTERISTICS OF DATASETS

Trend & Seasonality To gain deeper insights into the dataset characteristics, we conducted a
quantitative evaluation of trend and seasonality for each dataset, drawing upon methodologies out-
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lined in the work of Wang et al. (2006). In particular, we employed a time series decomposition
model expressed as:

yt = Tt + St +Rt,

where Tt represents the smoothed trend component, St signifies the seasonal component, and Rt

denotes the remainder component. In order to obtain each component, we followed the STL decom-
position approach 4.

In the case of strongly trended data, the variation within the seasonally adjusted data should consid-
erably exceed that of the remainder component. Consequently, the ratio Var(Rt)/Var(Tt + Rt) is
expected to be relatively small. As such, the measure of trend strength can be formulated as:

FT = max

(
0, 1− Var(Rt)

Var(Tt +Rt)

)
.

The quantified trend strength, ranging from 0 to 1, characterizes the degree of trend presence. Simi-
larly, the evaluation of seasonal intensity employs the detrended data:

FS = max

(
0, 1− Var(Rt)

Var(St +Rt)

)
.

A series with FS near 0 indicates minimal seasonality, while strong seasonality is indicated by FS

approaching 1 due to the considerably smaller variance of Var(Rt) in comparison to Var(St +Rt).

Tables 6 depict the results for each dataset. Notably, the ETT datasets and the Exchange dataset man-
ifest conspicuous trends, whereas the Electricity, Solar, and Traffic datasets showcase marked sea-
sonality. Additionally, the Exchange dataset stands out with distinctive features. Figure 3 illustrates
that with shorter prediction windows, the Exchange dataset sustains comparatively minor fluctua-
tions, almost forming a linear trajectory. This enables effective forecasting through a straightforward
batch mean approach. As the forecasting horizon extends, the dataset appears a more pronounced
trend while retaining minimal seasonality.

Data Distribution To analyze the influence of data distribution on model performance, we mea-
sured the similarity between each dataset’s distribution and the Gaussian distribution. Specifically,
we computed the Jensen–Shannon divergence (Nielsen, 2019) within a fixed-length sliding window
for each variate. A window size of 30 was used for short-term datasets and 336 for long-term ones.
The average of these calculations yielded the overall degree of conformity of each dataset to the
Gaussian distribution. These results are summarized in Table 6.

Table 6: Quantitative assessment of intrinsic characteristics for each dataset. To eliminate ambiguity,
we use the suffix ”-S” and ”-L” to denote short-term and long-term forecasting datasets, respectively.
The JS Div denotes Jensen–Shannon divergence, where a lower score indicates closer approxima-
tions to a Gaussian distribution.

Dataset Exchange-S Solar-S Electricity-S Traffic-S Wikipedia-S ETTm1-L ETTm2-L
Trend FT 0.9982 0.1688 0.6443 0.2880 0.5253 0.9462 0.9770
Seasonality FS 0.1256 0.8592 0.8323 0.6656 0.2234 0.0105 0.0612

JS Div. 0.2967 0.5004 0.3579 0.2991 0.2751 0.0833 0.1701

Dataset ETTh1-L ETTh2-L Electricity-L Traffic-L Weather-L Exchange-L ILI-L
Trend FT 0.7728 0.9412 0.6476 0.1632 0.9612 0.9978 0.5438
Seasonality FS 0.4772 0.3608 0.8344 0.6798 0.2657 0.1349 0.6075

JS Div. 0.0719 0.1422 0.1533 0.1378 0.1727 0.1082 0.1112

Outliers Outliers are data points that are significantly distant from the rest, which pose challenges
in forecasting. We quantified outlier ratios from both global and local perspectives. The global
view treats the entire dataset as a Gaussian distribution and identifies Z-score normalized values
more than 3 standard deviations from the mean as outliers. The local perspective assesses outliers

4https://otexts.com/fpp2/stl.html
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within a sliding window, following the same criterion. For short-term datasets, a window size of
30 is employed, while for long-term forecasting datasets, the window size is set to 336. We present
the ratio of outliers in Table 7 for reference. From Table 7, we find that some datasets, such as
Wikipedia-S, possess a high local ratio of outliers, which can have a large impact on short-term
forecasting.

Table 7: Ratio of outliers (%). The suffix ”-S” denotes short-term forecasting datasets, while ”-L”
signifies long-term forecasting datasets.

Dataset Exchange-S Solar-S Electricity-S Traffic-S Wikipedia-S ETTm1-L ETTm2-L
Local 0.1718 0.2228 0.1333 0.6595 1.5435 0.4126 0.4231
Global 0.0871 0.0002 0.4210 1.6890 1.1758 1.1079 1.8764

Dataset ETTh1-L ETTh2-L Electricity-L Traffic-L Weather-L Exchange-L ILI-L
Local 0.4937 0.4707 0.1529 1.4352 0.5106 0.2021 1.2422
Global 1.2951 2.1929 0.4134 1.5885 0.8323 0.0066 1.5735

Data Visualization To offer a clearer insight into the characteristics of each dataset and the influ-
ence of varying forecasting horizons, we have illustrated instances of both short-term and long-term
forecasting datasets in Figure 2 and Figure 3 respectively. Figure 2 reveals that in short-term sce-
narios, time series are primarily governed by local variations. On the other hand, as depicted in
Figure 3, datasets like Traffic, Electricity, and ETT, under extended forecasting horizons, display
enhanced seasonality and trends, making these series more predictable.Prediction Horizon

Short-term Dataset

Long-term Datasets

Figure 2: Time series samples extracted from the short-term forecasting dataset. The range of the
x-axis is the pre-defined length of the prediction window in each dataset.

C EVALUATION METRICS

The ProbTS toolkit incorporates a comprehensive range of metrics, spanning both point-level and
distribution-level, to offer a nuanced and multifaceted evaluation of forecasting models.

C.1 POINT-LEVEL METRICS

For point-level metrics, we primarily focused on several measures that are predominantly used in
the branch devoted to optimizing neural network architecture design.

Mean Absolute Error (MAE) The Mean Absolute Error (MAE) quantifies the average absolute
deviation between the forecasts and the true values. Since it averages the absolute errors, MAE is
robust to outliers. Its mathematical formula is given by:

MAE =
1

K × T

K∑
i=1

T∑
t=1

|xi,t − x̂i,t|,

where K is the number of variates, L is the length of series, xi,t and x̂i,t denotes the ground-
truth value and the predicted value, respectively. For multivariate time series, we also provide the
aggregated version:

MAEsum =
1

T

T∑
t=1

|xsum
t − x̂sum

t |,

where xsum
t and x̂sum

t are the summation across the dimension K of xi,t and x̂i,t, respectively.
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Figure 3: Time series samples extracted from the long-term forecasting dataset. The x-axis spans
the pre-defined prediction window lengths within each dataset, with prediction lengths set to T ∈
{24, 36, 48, 60} for the ILI dataset and T ∈ {96, 192, 336, 720} for the remaining datasets.

Normalized Mean Absolute Error (NMAE) The Normalized Mean Absolute Error (NMAE) is
a normalized version of the MAE, which is dimensionless and facilitates the comparability of the
error magnitude across different datasets or scales. The mathematical representation of NMAE is
given by:

NMAE =
1

K × T

K∑
i=1

T∑
t=1

|xi,t − x̂i,t|
|xi,t|

.

Its aggregated version is:

NMAEsum =
1

T

T∑
t=1

|xsum
t − x̂sum

t |
|xsum

t |
.

Mean Squared Error (MSE) The Mean Squared Error (MSE) is a quantitative metric used to
measure the average squared difference between the observed actual value and forecasts. It is defined
mathematically as follows:

MSE =
1

K × T

K∑
i=1

L∑
t=1

(xi,t − x̂i,t)
2.

For multivariate time series, we also provide the aggregated version:

MSEsum =
1

T

L∑
t=1

(xsum
t − x̂sum

t )2.
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Normalized Root Mean Squared Error (NRMSE) The Normalized Root Mean Squared Error
(NRMSE) is a normalized version of the Root Mean Squared Error (RMSE), which quantifies the
average squared magnitude of the error between forecasts and observations, normalized by the ex-
pectation of the observed values. It can be formally written as:

NRMSE =

√
1

K×T

∑K
i=1

∑L
t=1(xi,t − x̂i,t)2

1
K×T

∑K
i=1

∑T
t=1 |xi,t|

.

For multivariate time series, we also provide the aggregated version:

NRMSEsum =

√
1
T

∑L
t=1(x

sum
t − x̂sum

t )2

1
T

∑T
t=1 |xsum

t |
.

C.2 DISTRIBUTION-LEVEL METRICS

Continuous Ranked Probability Score (CRPS) The Continuous Ranked Probability Score
(CRPS) (Matheson & Winkler, 1976) quantifies the agreement between a cumulative distribution
function (CDF) F and an observation x, represented as:

CRPS =

∫
R

(F (z)− I{x ≤ z})2dz,

where Ix ≤ z denotes the indicator function, equating to one if x ≤ z and zero otherwise.

Being a proper scoring function, CRPS reaches its minimum when the predictive distribution F

coincides with the data distribution. When using the empirical CDF of F , denoted as F̂ (z) =
1
n

∑n
i=1 I{Xi ≤ z}, where n represents the number of samples Xi ∼ F , CRPS can be precisely

calculated from the simulated samples of the conditional distribution pθ(xt|ht). In our practice, 100
samples are employed to estimate the empirical CDF.

For multivariate time series, the aggregate CRPS, denoted as CRPSsum, is derived by summing across
the K time series, both for the ground-truth data and sampled data, and subsequently averaging over
the forecasting horizon. Formally, it is represented as:

CRPSsum = Et

[
CRPS

(
F̂sum(t),

K∑
i=1

x0
i,l

)]
.

D IMPLEMENTATION DETAILS

D.1 EXPERIMENT SETTINGS

ProbTS is implemented using PyTorch Lightning (Falcon & The PyTorch Lightning team, 2019).
During the training, we sample 100 batches per epoch and train for a maximum of 50 epochs,
employing the CRPS metric as the monitor for checkpoint saving. We employ the Adam optimizer
for all experiments, which are executed on single NVIDIA Tesla V100 GPUs using CUDA 11.3. In
the evaluation phase, we sample 100 times to report the metrics on the test set.

D.2 HYPER-PARAMETERS

We carried out an extensive grid search for models, tuning hyperparameters individually for each
method. Given the large number of models, we inlude only the partial hyperparameter settings
in Table 8. All hyperparameter configurations identified for each model on every dataset will be
accessible via a GitHub repository, to be open-sourced subsequent to the paper’s publication.

E ADDITIONAL RESULTS AND EXPERIMENTS

E.1 IMPACT OF DATA SCALE

To further explore critical characteristics of time-series forecasting, we have examed the correlation
between model performance gains, relative to the baseline model (GRU), and dataset dimensions,
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Table 8: Hyperparameter settings for Electricity-S dataset.

Model Hyperparameter

DLinear learning rate=0.01, kernel size=3, f hidden size=40

PatchTST learning rate=0.0001, stride=3, patch len=6, n layers=3, n heads=8, dropout=0.1, kernel size=3, f hidden size=32

TimesNet learning rate=0.001, n layers=2, num kernels=6, top k=5, f hidden size=64, d ff=64

GRU NVP learning rate=0.001, f hidden size=40, num layers=2, n blocks=3, hidden size=100, conditional length=200

GRU MAF learning rate=0.001, f hidden size=40, num layers=2, n blocks=4, hidden size=100, conditional length=200

Trans MAF learning rate=0.001, f hidden size=32, num heads=8, n blocks=4, hidden size=100, conditional length=200

TimeGrad learning rate=0.001, f hidden size=128, num layers=4, conditional length=100, beta end=0.1, diff steps=100

CSDI learning rate=0.001, channels=64, emb time dim=128, emb feature dim=16, num steps=50, num heads=8, n layers=4

length, and volume (see Table 9). However, our analysis does not identify a significant correlation
between these factors and model performance.

Table 9: The correlation coefficient between the data volume and the relative performance improve-
ment compared to the baseline model (GRU).

Model DLinear PatchTST GRU NVP TimeGrad CSDI
CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE

# Var. 0.2422 0.2422 -0.2676 -0.2676 -0.1856 -0.2136 -0.1665 -0.1793 -0.2315 -0.2592
# Total timestep -0.1422 -0.1422 0.3821 0.3821 0.3072 0.3329 0.2860 0.2971 0.3542 0.3826
# Var. × Timestep 0.0162 0.0162 0.0166 0.0166 -0.0068 -0.0011 0.0082 0.0117 -0.0053 -0.0133

E.2 STATISTICAL AND GRADIENT BOOSTING DECISION TREE BASELINES

To enhance the empirical robustness of our study, we integrate classical statistical models, including
ARIMA (Makridakis & Hibon, 1997) and ETS (Hyndman & Athanasopoulos, 2018), along with
the Gradient Boosting Decision Tree (GBDT) model, XGBoost, into the ProbTS framework. The
results in Table 10 clearly demonstrate the superior performance of deep learning methods over
simple statistical baselines, emphasizing the importance of capturing non-linear dependencies for
accurate forecasts. Notably, ARIMA and ETS exhibit varied performance across different data char-
acteristics. ARIMA struggles with datasets like Solar, characterized by weak trending and strong
seasonality, while ETS shows better adaptability. Conversely, in cases of strong trending and weak
seasonality, as observed in the ’Wikipedia’ dataset, ARIMA significantly outperforms ETS.

Utilizing the implementation from Elsayed et al. (2021), we find that XGBoost competes well, even
surpassing neural network models in certain scenarios. However, for datasets with more complex
distributions like ’Solar’ and ’Electricity,’ advanced probabilistic estimation methods demonstrate
a substantial advantage over traditional learning methods and point estimation techniques. This
highlights the adaptability and strength of advanced probabilistic methods in handling intricate fore-
casting scenarios.

E.3 EXPERIMENTS ON UNIVARIATE DATASETS

In pursuit of a comprehensive analysis spanning univariate and multivariate scenarios, we exam-
ined a subset of M4 (Makridakis et al., 2020), M5 (Makridakis et al., 2022), and TOURISM
datasets (Athanasopoulos et al., 2011)—crucial datasets for univariate time-series forecasting. Ta-
ble 11 provides a quantitative assessment of the intrinsic characteristics of these new datasets, fo-
cusing on trending strength, seasonality, and data distribution complexity, as detailed in our paper.
Notably, these datasets, except for M4-Daily may exhibit fewer seasonal patterns, do not introduce
particularly unique characteristics.

Table 12 presents experimental results for representative methods, consistent with our initial ob-
servations. Probabilistic estimation methods like GRU NVP and TimeGrad excel on datasets with
complex distributions (e.g., M4-Weekly and M5), while simpler point forecasting methods such

18



Under review as a conference paper at ICLR 2024

Table 10: Results of statistical models and GBDT baseline on short-term forecasting datasets.

Model Exchange Rate Solar Electricity Traffic Wikipedia
CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE

ARIMA 0.009 0.009 1.000 1.000 0.164 0.164 0.461 0.461 0.348 0.348
ETS 0.011 0.011 0.580 0.580 0.121 0.121 0.413 0.413 0.685 0.685
ETS-prob 0.008 0.011 0.795 0.695 0.123 0.129 0.380 0.433 0.625 0.697
XGBoost 0.011 0.011 0.599 0.599 0.074 0.074 0.196 0.196 - -

DLinear 0.012.001 0.012.001 0.547.009 0.547.009 0.095.006 0.095.006 0.273.012 0.273.012 1.046.037 1.046.037
PatchTST 0.010.000 0.010.000 0.496.002 0.496.002 0.076.001 0.076.001 0.202.001 0.202.001 0.257.001 0.257.001

TimesNet 0.011.001 0.011.001 0.507.019 0.507.019 0.071.002 0.071.002 0.205.002 0.205.002 0.304.002 0.304.002

GRU NVP 0.016.003 0.020.003 0.396.021 0.507.022 0.055.002 0.073.003 0.161.006 0.203.009 0.282.003 0.330.003
GRU MAF 0.015.001 0.020.001 0.386.026 0.492.027 0.051.001 0.067.001 0.131.006 0.165.009 0.281.004 0.337.005
Trans MAF 0.011.001 0.014.001 0.400.022 0.503.022 0.054.004 0.071.005 0.129.004 0.165.006 0.289.008 0.344.008
TimeGrad 0.011.001 0.014.002 0.359.011 0.445.023 0.052.001 0.067.001 0.164.091 0.201.115 0.272.008 0.327.011
CSDI 0.008.000 0.011.000 0.366.005 0.484.008 0.050.001 0.065.001 0.146.012 0.176.013 0.219.006 0.259.009

Table 11: Quantitative assessment of the intrinsic characteristics of the univariate datasets. The JS
Div denotes Jensen–Shannon divergence, where a lower score indicates closer approximations to a
Gaussian distribution.

Dataset M4-Weekly M4-Daily M5 TOURISM-Monthly
Trend FT 0.7677 0.9808 0.3443 0.7979
Seasonality FS 0.3401 0.0467 0.2480 0.6826

JS Div. 0.5106 0.4916 0.6011 0.3291

as DLinear and PatchTST perform well on datasets with relatively simple data distribution, like
TOURISM-Monthly. Both autoregressive and non-autoregressive decoding schemes show compa-
rable performance in short-term forecasting, as discussed in the main paper.”

Table 12: Results on M4, M5, and TOURISM datasets. We utilize a lookback window of 3H, with
’H’ denoting the forecasting horizon.

Model DLinear PatchTST GRU NVP TimeGrad
CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE

M4-Weekly 0.081 0.081 0.089 0.089 0.066 0.077 0.055 0.065
M4-Daily 0.034 0.034 0.035 0.035 0.030 0.038 0.026 0.032
M5 0.891 0.891 0.898 0.898 0.679 0.864 - -
TOURISM-Monthly 0.168 0.168 0.136 0.136 0.171 0.223 0.152 0.191

E.4 EXPERIMENTS ON SYNTHETIC DATASETS

To enhance the rigor of the insights presented, we employ synthetic datasets, encompassing a base-
line dataset and variants with pronounced trends, strong seasonality, and complex data distribution
(see Table 13). Each dataset comprises series generated by combining trend, seasonality, noise, and
anomaly components with controlled characteristics. Subsequent experiments on these synthetic
datasets (refer to Table 14), using representative models, validate the empirical findings established
on other datasets with ProbTS. Key observations include the declining performance of autoregres-
sive decoding models, such as TimeGrad, in the presence of increasing trends, improved perfor-
mance for models using autoregressive decoding with intensifying seasonality, and the competitive
performance of probabilistic methods like CSDI in handling more complex data distributions.

E.5 CASE STUDY

To intuitively demonstrate the distinct characteristics of point and probabilistic estimations, a case
study was conducted on short-term datasets. Figure 4 illustrates that point estimation yields single-
valued, deterministic estimates, in contrast to probabilistic methods, which model continuous data
distributions as depicted in Figure 5. This modeling of data distributions captures the uncertainty
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Table 13: Quantitative assessment of intrinsic characteristics for synthetic datasets. The JS Div de-
notes Jensen–Shannon divergence, where a lower score indicates closer approximations to a Gaus-
sian distribution.

Dataset Normal Strong Trend Strong Seasonality Complex Distribution
Trend FT 0.105 0.554 0.105 0.064
Seasonality FS 0.302 0.302 0.791 0.190

JS Div. 0.261 0.248 0.272 0.469

Table 14: Results on synthetic datasets. The look-back window and forecasting horizon are 30.

Model Normal Strong Trend Strong Seasonality Complex Distribution
CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE

DLinear 0.013 0.013 0.001 0.001 0.014 0.014 0.301 0.301
PatchTST 0.012 0.012 0.001 0.001 0.012 0.012 0.275 0.275
TimeGrad 0.024 0.032 0.042 0.048 0.022 0.028 0.283 0.338
CSDI 0.013 0.014 0.010 0.007 0.020 0.027 0.269 0.301

in forecasts, aiding decision-makers in fields such as weather and finance to make more informed
choices. It is also observed that while both methods align well with ground truth values in short-term
forecasting datasets, they struggle to accurately capture outliers, particularly noted in the Wikipedia
dataset.

E.6 MODEL EFFICIENCY

For reference, detailed results regarding memory usage and time efficiency for five representative
models on long-term forecasting datasets are provided here. Table 15 displays the computation
memory of various models with a forecasting horizon set to 96. Additionally, Table 16 compares the
inference time of these models on long-term forecasting datasets, illustrating the impact of changes
in the forecasting horizon.

Table 15: Computation memory. The batch size is 1 and the prediction horizon is set to 96.

Metric Dataset DLinear PatchTST LSTM NVP TimeGrad CSDI

NPARAMS (MB)

ETTm1 0.075 2.145 1.079 1.233 1.720
Electricity 0.076 2.146 3.680 3.472 1.370

Traffic 0.078 2.149 15.926 8.298 1.390
Weather 0.075 2.145 3.085 0.574 1.721

Exchange 0.075 0.135 1.979 0.488 1.720

Max GPU Mem. (GB)

ETTm1 0.002 0.009 0.010 0.012 0.027
Electricity 0.060 0.068 0.129 0.128 1.411

Traffic 0.161 0.168 0.361 0.333 9.102
Weather 0.004 0.012 0.021 0.012 0.070

Exchange 0.002 0.002 0.013 0.008 0.030

F FURTHER DISCUSSION ON CROSS-CHANNEL INTERACTIONS

We compile a summary table (Table 17) delineating how models from each branch address the mul-
tivariate aspect. Despite a thorough investigation, we have not identified a clear pattern linking the
modeling of cross-channel interactions to overall model performance. A notable trend is the preva-
lent use of a channel-mixing approach in most studies. However, findings are diverse; models like
DLinear and PatchTST suggest that processing channels independently can yield superior results,
while others like CSDI indicate that explicit modeling of cross-channel interactions offers signifi-
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Figure 4: Point forecasts from the PatchTST model and the ground-truth value on short-term fore-
casting datasets.

cant advantages. This diversity underscores the ongoing exploration of the impact of cross-channel
interactions on forecasting performance.
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Figure 5: Forecasting intervals from the TimeGrad model and the ground-truth value on short-term
forecasting datasets.

(a) Computational memory. (b) Inference time.

Figure 6: Comparison of computational efficiency. The forecasting horizon is set to 96 for calcu-
lating memory usage.
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Table 16: Comparison of inference time (sec./sample).

Model pred len DLinear PatchTST LSTM NVP TimeGrad CSDI

ETTm1

96 0.0003 ± 0.0000 0.0003 ± 0.0000 0.0352 ± 0.0007 4.1067 ± 0.0504 16.3280 ± 0.0747
192 0.0003 ± 0.0000 0.0003 ± 0.0000 0.0697 ± 0.0020 7.8979 ± 0.0403 25.8378 ± 0.3124
336 0.0003 ± 0.0000 0.0003 ± 0.0000 0.1221 ± 0.0044 13.6197 ± 0.1023 39.8832 ± 0.2157
720 0.0004 ± 0.0000 0.0003 ± 0.0000 0.2603 ± 0.0020 28.6074 ± 1.1346 86.1862 ± 0.1863

Electricity

96 0.0004 ± 0.0000 0.0045 ± 0.0001 0.1783 ± 0.0006 13.8439 ± 0.0054 388.3150 ± 0.2155
192 0.0006 ± 0.0000 0.0046 ± 0.0000 0.3700 ± 0.0010 27.6683 ± 0.0368 659.4284 ± 0.2003
336 0.0008 ± 0.0000 0.0049 ± 0.0000 0.7157 ± 0.0028 48.4456 ± 0.0279 -
720 0.0015 ± 0.0000 0.0057 ± 0.0000 2.0785 ± 0.0186 104.1473 ± 0.1465 -

Traffic

96 0.0010 ± 0.0001 0.0102 ± 0.0000 0.3695 ± 0.0022 31.7644 ± 0.0101 -
192 0.0013 ± 0.0000 0.0106 ± 0.0000 0.8287 ± 0.0094 63.5832 ± 0.0060 -
336 0.0020 ± 0.0000 0.0114 ± 0.0001 1.6945 ± 0.0026 111.4147 ± 0.0169 -
720 0.0039 ± 0.0000 0.0137 ± 0.0000 5.0963 ± 0.0018 258.1274 ± 0.6088 -

Weather

96 0.0002 ± 0.0000 0.0004 ± 0.0000 0.0800 ± 0.0016 4.1261 ± 0.0812 37.8984 ± 0.0782
192 0.0003 ± 0.0000 0.0004 ± 0.0000 0.1568 ± 0.0008 8.2913 ± 0.5544 62.0223 ± 0.2329
336 0.0003 ± 0.0000 0.0004 ± 0.0000 0.2482 ± 0.0297 14.2391 ± 0.4891 96.8704 ± 0.2258
720 0.0003 ± 0.0000 0.0005 ± 0.0000 0.5447 ± 0.0249 29.4407 ± 0.3519 216.6044 ± 0.4253

Exchange

96 0.0006 ± 0.0000 0.0004 ± 0.0000 0.0284 ± 0.0001 4.1069 ± 0.0981 17.8655 ± 0.1282
192 0.0007 ± 0.0000 0.0004 ± 0.0000 0.0563 ± 0.0008 8.1576 ± 0.0911 28.5456 ± 0.0873
336 0.0007 ± 0.0000 0.0004 ± 0.0000 0.0966 ± 0.0007 14.4593 ± 0.4466 44.9733 ± 0.3820
720 0.0007 ± 0.0000 0.0004 ± 0.0000 0.2085 ± 0.0046 30.1443 ± 0.5378 97.7417 ± 0.2606

ILI

24 0.0002 ± 0.0000 0.0008 ± 0.0001 0.0080 ± 0.0001 1.0427 ± 0.0190 12.4038 ± 0.1681
192 0.0002 ± 0.0000 0.0008 ± 0.0000 0.0121 ± 0.0003 1.5762 ± 0.0282 12.7187 ± 0.1344
336 0.0002 ± 0.0000 0.0008 ± 0.0000 0.0155 ± 0.0002 2.1344 ± 0.0660 12.7386 ± 0.1868
720 0.0002 ± 0.0000 0.0008 ± 0.0000 0.0196 ± 0.0004 2.5787 ± 0.0594 12.5407 ± 0.0481

Table 17: Summary of how existing models handle multivariate time series.

Model Research branch Process channels independently

Customized neural architectures

N-BEATS (Oreshkin et al., 2020) ✓
N-HiTS (Challu et al., 2023) ✓
Autoformer (Wu et al., 2021) %

Informer (Zhou et al., 2021) %

LTSF-Linear (Zeng et al., 2023) %/ ✓
PatchTST (Nie et al., 2023) %/ ✓
TimesNet (Wu et al., 2023) %

Probabilistic estimation

DeepAR (Salinas et al., 2020) ✓
GP-copula (Salinas et al., 2019) %

LSTM NVP (Rasul et al., 2021b) %

LSTM MAF (Rasul et al., 2021b) %

Trans MAF (Rasul et al., 2021b) %

TimeGrad (Rasul et al., 2021a) %

CSDI (Tashiro et al., 2021) %

SPD (Bilos et al., 2023) %
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