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Abstract
Otto’s Wasserstein gradient flow of the exclusive KL divergence functional provides a
powerful and mathematically principled perspective for analyzing machine learning and
Bayesian inference algorithms. In contrast, algorithms for the inclusive KL inference,
i.e., minimizing KL(π|µ) w.r.t. µ for some target π, are rarely analyzed using tools from
mathematical analysis. This paper shows that a general-purpose approximate inclusive KL
inference paradigm can be constructed using the theory of gradient flows derived from PDE
analysis. We uncover some precise relationships between the inclusive KL inference and some
widely used learning algorithms, including the MMD-minimization and the Wasserstein
flow of kernel discrepancies, which are widely used in machine learning applications. For
example, a few existing sampling algorithms, such as those based on the Wasserstein flow
of kernel discrepancies, can be viewed in a unified manner as inclusive-KL inference with
approximate gradient estimators. Finally, we provide the theoretical foundation for the
Fisher-Rao type gradient flows for minimizing the inclusive KL divergence.

1. Introduction

Many learning and inference problems can be cast into the framework of minimizing the KL
divergence

min
µ∈A⊂P

DKL(µ|π). (1)

The functional DKL(µ|π) is also known as the exclusive KL divergence between µ and π,
due to its well-known property commonly referred to as mode-seeking and zero-avoiding.
This variational problem forms the foundation of modern Bayesian inference (Zellner, 1988).
For example, suppose we have a model p(Data|θ) and a prior p(θ), our goal is to infer the
posterior π(θ) := p(θ|Data). If we further restrict the feasible set A in equation 1 to be the
so-called variational family, e.g., the set of all Gaussian distributions, we obtain variational
inference (Jordan et al., 1999; Wainwright and Jordan, 2008; Blei et al., 2017). Albeit much
less popular, there also exists the inference paradigm that minimizes the inclusive KL,

min
µ∈A⊂P

DKL(π|µ). (2)

For example, algorithms such as expectation propagation (Minka, 2013), (Bishop, 2006,
Section 10.7) can be viewed as solving equation 2. Many researchers such as Naesseth
et al. (2020); Jerfel et al. (2021); McNamara et al. (2024); Zhang et al. (2022) have argued
that the solution of equation 2, if available, offers statistical advantages over equation 1,
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e.g., mass-covering with respect to the true posterior, desirable properties for applications
requiring conservative uncertainty quantification, avoid light tails that can cause instability.
We also refer to the discussion in (Dhaka et al., 2021) about the mode-covering behavior of
inclusive KL in moderate-to-high dimensions for variational inference algorithms.

However, many of existing algorithms require adhoc procedures to gain samples from
target distributions π or do not have sound mathematical analysis as backbone; see our
discussion around the Wasserstein flow equation equation iKL-WGF.

In comparison, there has been significant technical developments for the exclusive KL
minimization equation 1 recently. This is mainly due to the injection of rigorous theoretical
foundation from analysis of (PDE) gradient flows (Otto, 1996, 2001; Ambrosio et al., 2005;
Peletier, 2014; Mielke, 2023) and statistical optimal transport (Chewi et al., 2024; Peyré
and Cuturi, 2019; Panaretos and Zemel, 2019). Inference and sampling algorithms based on
equation 1 can now be studied under a unified framework and on the rigor level of applied
analysis. Can we use such principled theory to study inclusive KL minimization? This paper
answers this question affirmatively. Concretely, we list our main technical contributions as
follows:

1. A major contribution of this paper, is to reveal a fundamental connection between the
inclusive KL minimization equation 2 and some widely used paradigms in sampling,
inference, and generative models – the MMD minimization problems. While the known
connections between those problems are either elementary (e.g., moment-matching) or
heuristic, we show that the latter is an approximation (via convolution or mollification)
of the former when cast into the rigorous framework of PDE gradient-flow systems.

2. Going beyond Wasserstein geometry, we show several new results regarding the Fisher-
Rao (FR) gradient flows, especially the discovery of FR flow of the inclusive KL can be
implemented as the MMD-MMD flow. This finding gives both theoretical and practical
implications to the learning algorithms.

3. We identify the setting (and the flows) along which MMD globally decays without
imposing conditions such as log-Sobolev inequality with a positive constant, and
characterized the solution explicitly. We also give an interpretation of the MMD-
barycenter problem in the information geometry using the variational characterization.

4. Last but not least, this is the first paper that provides a gradient flow theory foundation
for inclusive KL inference. This adds a principled component and future lane of research
to the fundamental theory of Bayesian statistics and generative modeling via inclusive
KL inference, which has been missing so far.

2. Preliminary: Bayesian inference as Wasserstein gradient flow of KL

An elegant perspective of Bayesian inference is offered by the Wasserstein gradient flow
(WGF) framework of Otto (1996), which has attracted much attention from researchers in
Bayesian inference; see (Chewi et al., 2024; Trillos and Sanz-Alonso, 2018) for recent surveys.
In that framework, one can write a flow equation formally as

µ̇ = −∇WF (µ) = −KW (µ)
δF

δµ
[µ] = div(µ∇δF

δµ
[µ]). (3)

through the Wasserstein Onsager operator KW , which is defined as the inverse of the Rieman-
nian metric tensor GW of the Wasserstein space, i.e., KW (ρ) = GW (ρ)−1. Mathematically, for
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the Wasserstein space, KW (ρ) : T ∗
ρM→ TρM, ξ 7→ −div(ρ∇ξ), where TρM is the tangent

space of M+ at ρ and T ∗
ρM the cotangent space. The terminology Onsager’s operator is

due to the works of Onsager and Machlup (1953); Onsager (1931). From the mechanics
perspective, the dual functions ξ can be interpreted as the generalized thermodynamic
forces (Onsager and Machlup, 1953; Mielke et al., 2017). With those ingredients, we can
formally define the gradient systems that generate gradient flow equations such as equation 3.

Definition 1 (Gradient system (Otto, 2001; Mielke, 2023)) We refer to a tuple (M, F,K)
as a gradient system. It has the gradient structure identified by:

1. a space M,
2. an energy functional F ,
3. a dissipation geometry given by either: a distance metric defined on M, a Riemannian

metric tensor G, or a symmetric positive-definite Onsager operator K = G−1.

Note that it is also possible to define dissipation geometry via nonlinear dissipation potential
functional; cf. (Mielke et al., 2017).

Regarding Bayesian inference, we choose the energy functional as the exclusive KL
divergence as in equation 1, i.e., F (µ) = DKL(µ|π). Through elementary calculation, we
obtain from equation 3 the Fokker-Planck equation (FPE)

∂tµ = div
(
µ∇ log

µ

π

)
= ∆µ− div (µ∇ log π) . (FPE)

When we express the target as π(x) = 1
Z exp(−V (x)) where Z is a normalization constant

(partition function), the equation FPE is then ∂tµ = ∆µ + div (µ∇V ). The fact that the
evolution equation does not depend on the partition function Z is often argued to be one of
the key advantages of the KL divergence. Viewed as a dynamic system, the KL divergence
energy functional dissipates along equation FPE in the steepest descent manner. Based
on the formal definition of gradient system equation 1, we say that equation FPE has the
gradient structure that entails the following key ingredients.

Space : prob. space P
Energy functional : F (·) := DKL(·|π)
Dissipation Geometry : Wasserstein KW

(4)

3. Wasserstein gradient flows of inclusive KL and its approximation

Our starting point is the following Wasserstein gradient flow equation of the inclusive KL
inference, derived using Otto (2001)’s formal calculation analogous to the exclusive KL
case equation 3.

µ̇ = div

(
µ∇

(
1− dπ

dµ

))
. (iKL-WGF)

The relation with the exclusive KL gradient flow can be observed by comparing this PDE
with equation FPE. The two generalized force functionals agree to the first order near the
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equilibrium, i.e., log dµ
dπ ≈ 1− dπ

dµ when dπ/ dµ ≈ 1. Furthermore, the generator function
of the inclusive KL has a larger slope than that of the exclusive KL. This subtle difference
will lead to different behaviors of their gradient flows. Rewriting the right-hand side of
equation iKL-WGF, we obtain the PDE µ̇ = −∆π+div(π∇ logµ), which bears similarity to
equation FPE but with the position of π and µ exchanged on the right-hand side. Intuitively,
the gradient structure of equation iKL-WGF is given by:

Space : P
Energy functional : F (·) := DKL(π|·)
Dissipation Geometry : Wasserstein KW

(5)

While the gradient structure is clear, a main obstacle to implement the gradient flow is due
to that the function 1− dπ/ dµ, which may not be accessible or differentiable. To address
this, we consider a flow equation with a smooth approximation via the integral operator Tk,µ
defined in equation 10. The resulting kernelized flow equation is given by

µ̇ = div

(
µ∇Tk,µ

(
1− dπ

dµ

))
. (iKL-WGF-k)

Note that, the flow with a kernelized force is not necessarily a gradient flow. However, in
this case, equation iKL-WGF-k is indeed a gradient flow that has been applied to machine
learning applications. We observe the following.

Theorem 2 (Flow equation equation iKL-WGF-k has a Wasserstein gradient structure)
Suppose that initial condition satisfies π ≪ µ, i.e., π is absolutely continuous with respect to
µ. Then, equation iKL-WGF-k coincides with the Wasserstein gradient flow equation of the
MMD equation MMD-WGF,

µ̇ = div

(
µ

∫
∇2k(x, ·) d (µ− π) (x)

)
(MMD-WGF)

where ∇2 denotes the differentiation with respect to the second variable. Intuitively, equa-
tion MMD-WGF and hence equation iKL-WGF-k have the same gradient structure:

Space : P
Energy functional : F (·) := 1

2 MMD2(·, π)
Dissipation Geometry : Wasserstein KW

(6)

As discussed above, the vanilla equation iKL-WGF cannot be directly used to derive al-
gorithms due to the non-smooth nature of the function 1 − dπ/ dµ. Now, since equa-
tion iKL-WGF-k’s flow equation coincides with equation MMD-WGF, our theory suggests
that minimizing MMD through equation MMD-WGF is equivalent to simulating a kernel-
ized Wasserstein gradient descent to minimize the inclusive KL. Then, we can make use
of numerous implementations that have already been developed for MMD-minimization,
see, e.g., (Arbel et al., 2019; Chizat, 2022; Futami et al., 2019; Hagemann et al., 2023;
Neumayer et al., 2024; Galashov et al., 2024; Gladin et al., 2024; Chen et al., 2024). Thus,
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the dual-force-kernelized gradient flow equation iKL-WGF-k provides an implementable
approximation of equation iKL-WGF.

Summarizing the results so far, we offer insights into both score-based (e.g., requiring
evaluation of the score function ∇ log π) and sample-based (e.g., assuming access to samples
from π) (Bayesian) inference and sampling, providing a unifying Wasserstein gradient flow
perspective on these methods in Bayesian computation based on inclusive KL inference equa-
tion 2. Our insights provide a first-principles interpretation of these methods via gradient
flows. We also note that a wider class of gradient flows can be characterized using the kernel
Stein discrepancy; see the appendix.

4. Fisher-Rao gradient flows of the inclusive KL functional

While recent machine learning applications primarily focus on the Wasserstein geometry,
we emphasize that the gradient flow theory is more general. Prominent examples include
the Fisher-Rao and Hellinger geometries (Hellinger, 1909; Kakutani, 1948; Rao, 1945; Bhat-
tacharyya, 1946), which provide a different yet extremely impactful perspective on statistical
inference and optimization. They form an important building block for the Wasserstein-
Fisher-Rao gradient flow in the next section.

4.1. Fisher-Rao a.k.a. spherical Hellinger gradient flows of inclusive KL
functional

In this subsection, we first analyze and uncover a few remarkable properties of the Fisher-Rao
gradient flows of the inclusive KL divergence. Then, we establish a precise connection to the
MMD gradient flow of the MMD functional. This connection was not previously known, yet
machine learning algorithms have already provided empirical implications of such Fisher-Rao
gradient flow.

Our starting point is to replace the Wasserstein dissipation geometry in the gradient
structure equation 5 with the Fisher-Rao dissipation geometry, defined using the Fisher-Rao
Onsager operator, KFR(ρ) : T ∗

ρM → TρM, ξ 7→ −ρ
(
ξ −

∫
ξ dρ

)
. The resulting gradient

structure is 
Space : prob. measures P
Energy functional : DKL(π|·)
Dissipation Geometry : Fisher-Rao KFR

(7)

Note that the Fisher-Rao space is also referred to as the spherical Hellinger space by Laschos
and Mielke (2019) considering the historical development. Interestingly, under the inclusive
KL divergence functional, the Hellinger gradient flow overM+ stays within the probability
space P if initialized therein, i.e., the spherical projection of Laschos and Mielke (2019) is
not needed in our case; see the appendix for more details. Previously, flows in the Fisher-Rao
space have been studied in ML applications under the name of birth-death dynamics; see
(Lu et al., 2019; Rotskoff et al., 2019; Kim and Suzuki, 2024) for applications and further
discussions.

We summarize some important properties of the Fisher-Rao gradient systems in the
following proposition.
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Proposition 3 (FR gradient flow of inclusive KL) The gradient structure equation 7
generates the flow equation

µ̇ = π − µ. (RevKL-FR-GF)

Its closed-form solution is given by

µt = e−tµ0 + (1− e−t)π. (8)

This result characterizes an interesting feature of the inclusive-KL-Fisher-Rao flow: it
traverses along a straight line despite the Riemannian structure of the Fisher-Rao geometry.

A distinctive feature of the inclusive-KL-FR gradient flow is the following.

Theorem 4 (Exponential Decay of inclusive-KL divergence) There exists a constant
c > 0 such that the following Polyak-Łojasiewicz functional inequality holds globally.∥∥∥∥1− dπ

dµ

∥∥∥∥2
L2
µ

≥ c ·DKL(π|µ), ∀µ ∈M+. (Ł-RKL)

Furthermore, the inclusive KL satisfies the exponential decay estimate along the gradient
flow

DKL(π|µ(t)) ≤ e−tDKL(π|µ0) for all t > 0.

We emphasize that Theorem 4 is global and does not require the assumption of a uniform
bound on the density ratio dµ0/ dπ such as in (Lu et al., 2023). This result indicates a
remarkable feature of the inclusive KL divergence: its Fisher-Rao gradient flow is capable
of creating mass from zero-mass regions of π. In machine learning and statistics, this is a
highly desired feature as we often need to locate the support of the target measure π. An
intuition of the distinction between the exclusive KL and the inclusive KL (Theorem 4) is
indeed given by difference of their entropy generator slopes near the zero-mass region.

There is an interesting coincidence of the gradient systems equation 7 and existing
machine learning algorithms. Let us consider a seemingly unrelated gradient system where
both the energy functional F and the dissipation geometry to be MMD, i.e.,

Space : P
Energy functional : F (·) := MMD2(·, π)
Dissipation Geometry : MMD

(9)

Proposition 5 The MMD-MMD gradient flow equation, generated by the gradient system
equation 9, coincides with the inclusive-KL-Fisher-Rao gradient flow equation equation RevKL-
FR-GF. Consequently, MMD decays exponentially along the solution µt of equation RevKL-
FR-GF, i.e., MMD(µt, ν) ≤ e−t ·MMD(µ0, ν).

From a dynamical system perspective, this result also shows that the MMD is a Lyapunov
functional for the inclusive-KL Fisher-Rao flow. This proposition also shows that the same
flow equation equation RevKL-FR-GF has two different gradient structures: MMD and
Fisher-Rao.
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Appendix A. Integral operator and maximum-mean discrepancy

Given a positive measure ρ on Rd and a positive-definite kernel k, the integral operator
Tk,ρ : L2

ρ → H is defined by

Tk,ρg(x) :=
∫

k
(
x, x′

)
g
(
x′
)
dρ

(
x′
)

for g ∈ L2
ρ, (10)

where H is the reproducing kernel Hilbert space associated with the kernel k. With a slight
abuse of terminology, the following compositional operator Kρ := Id ◦Tk,ρ is also referred to
as the integral operator, albeit defined for L2(ρ)→ L2(ρ). Kρ is compact, (semi-)positive,
self-adjoint, and nuclear; cf. (Steinwart and Christmann, 2008; Hein and Bousquet, 2004;
Steinwart and Scovel, 2012). The adjoint of Tk,ρ is the embedding operator Id : H → L2(ρ),
i.e., ⟨Id f, g⟩L2(ρ) = ⟨f, Tk,ρg⟩H for all f ∈ H and g ∈ L2(ρ). When using a kernel such as
the Gaussian kernel, the image Tk,ρg can be regarded as a smooth approximation of g, which
is sometimes referred to as approximation by convolution or mollification (Wendland, 2004).
An assumption we will generally make throughout the paper is that the kernel k is bounded,
symmetric, and satisfies the integrally strict positive-definite (ISPD) condition (Sriperumbudur

et al., 2010; Steinwart and Christmann, 2008; Stewart, 1976):
∫

k(x, x′) dρ(x) dρ(x′) > 0

for any non-zero signed measure ρ. The purpose of this condition is to ensure that the
integral operator Tk,ρ is strictly positive-definite and also for technical reasons in terms of
PDE analysis. In this paper, the kernel maximum mean discrepancy (MMD) between two
positive measures µ and ν is defined as

MMD2(µ, ν) :=

∫ ∫
k(x, x′) d(µ− ν)(x) d(µ− ν)(x′)

The MMD and integral operator of a kernel are the central tools for understanding the
approximate gradient flows of the inclusive KL for practical applications.
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Appendix B. Unbalanced transport: Wasserstein-Fisher-Rao gradient
flows

The Wasserstein geometry endows us with the mechanism to transport mass. On the other
hand, the Fisher-Rao geometry lets us create and destroy mass. One major development
in optimal transport theory is the combination of both via unbalanced transport, invented
independently by Chizat et al. (2018, 2019); Liero et al. (2018); Kondratyev et al. (2016). The
resulting metric between two non-negative measures is known as the Wasserstein-Fisher-Rao
(WFR) distance, also known as the Hellinger-Kantorovich distance, defined via the entropic
transport problem (Liero et al., 2018)

WFR2(µ1, µ2) = min
Π∈Γ(µ1,µ2)

{
α

∫
c dΠ + βDKL(π1|µ1) + βDKL(π2|µ2)

}

where α and β are two scaling parameters. Γ(µ1, µ2) is the set of all positive measures with
marginals µ1 and µ2. c is the transport cost in the standard Wasserstein distance and Dφ

is the φ-divergence (defined in equation 13). In this paper, we define the WFR gradient
structure via the Onsager operator: the WFR Riemannian metric tensor is an inf-convolution
of the Wasserstein tensor and the Fisher-Rao tensor GWFR(µ) = GW (µ)□GFR(µ) (Chizat
et al., 2019; Liero et al., 2018; Gallouët and Monsaingeon, 2017). By the Legendre transform,
its inverse, the Onsager operator, is given by the sum KWFR(µ) = KW (µ) + KFR(µ). For
conciseness, we only focus on the case of WFR distance restricted to the space of probability
measures by default. Therefore, the WFR distance should technically be referred to as
the spherical Hellinger-Kantorovich distance. Let us now consider the following gradient
structure in the WFR space

Space : P
Energy functional : inclusive KL: DKL(π|·)
Dissipation Geometry : (spherical) WFR KWFR

(11)

Using equation iKL-WFR-GF and the results in the previous two sections, the WFR gradient
flow equation generated by equation 11 is given by the reaction-diffusion-type PDE

µ̇ = α div

(
µ∇

(
1− dπ

dµ

))
︸ ︷︷ ︸

Wasserstein: transport

− βµ ·
(
1− dπ

dµ

)
︸ ︷︷ ︸

Fisher-Rao: birth-death

. (iKL-WFR-GF)

The derivation is standard; cf. the aforementioned references. Exploiting the unique properties
established in Theorem 4, we can conclude the following.

Corollary 6 The inclusive KL divergence functional decays exponentially towards zero along
the solution of the PDE equation iKL-WFR-GF.

While this result renders the WFR gradient flow equation an attractive candidate for
algorithm design, we again cannot simulate equation iKL-WFR-GF due to the function
1− dπ/ dµ. To address this, we now follow equation iKL-WGF-k to kernelize the generalized
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force in the transport velocity

µ̇ = α · div
(
µ

∫
∇2k(x, ·) d (µ− π) (x)

)
− β · (µ− π) . (IFT-GF)

Due to Proposition 5, we immediately find that:

Corollary 7 equation IFT-GF is the gradient flow equation of the squared MMD functional,
i.e., with the gradient structure

Space : P
Energy functional : 1

2 MMD2(·, π)
Dissipation Geometry : Interaction-force transport (IFT) (Gladin et al., 2024)

(12)

This has recently been studied under the name of interaction-force transport (IFT) gradient
flow by Gladin et al. (2024). It has been shown to practically accelerate and improve the
performance of the MMD minimization task with proven guarantees. Here, we have shown
that the IFT gradient flow in Gladin et al. (2024) is an approximation to the Wasserstein-
Fisher-Rao gradient flow of the inclusive-KL functional. Gladin et al. (2024) have shown
that MMD decays exponentially along the solution µt to the PDE equation IFT-GF, i.e.,
MMD(µt, ν) ≤ e−βt ·MMD(µ0, ν) . An important aspect is that this convergence does not
rely on the so-called log-concavity of the target distribution π; cf. (Chewi et al., 2024).

Appendix C. Additional derivations and proofs

By default, we work on the base space Rd. The measures that appear in this paper are
by default assumed to be absolutely continuous with respect to the Lebesgue measure. In
formal derivation, we use measures and their density interchangeably, i.e.,

∫
f · µ means the

integral w.r.t. the measure µ. We use the notation P,M+ to denote the space of probability
and non-negative measures on the closed, bounded, convex subset of Rd. For many of our
results, this domain can be generalized to Rd and the measures can be generalized to atomic
measures; see (Ambrosio et al., 2005) for more details. The first variation of a functional F
at µ ∈ M+ is defined as a function δF

δµ [µ] such that d
dϵF (µ+ ϵ · v)|ϵ=0 =

∫
δF
δµ [µ](x) dv(x)

for any valid perturbation in measure v such that µ+ ϵ · v ∈M+ when working with gradient
flows over M+ and µ + ϵ · v ∈ P over P. The mathematical proofs are formal. To avoid
confusion, we refer to the forward KL divergence DKL(π|µ) as the inclusive KL; the reverse
KL divergence DKL(µ|π) as the exclusive KL. The technicalities of PDEs such as solution
uniqueness, existence, and regularity are beyond the scope of this paper. Without further

specification, the duality pairing ⟨f, g⟩ is the L2 inner product
∫

f(x)g(x) dx.

The φ-divergence, also known as the f-divergence (Csiszár, 1967), is a class of statistical
divergences that measure the difference between a pair of measures, defined as

Dφ(µ|π) =
∫

φ

(
dµ

dπ
(x)

)
dπ(x), if µ≪ π (13)
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and +∞ otherwise; dµ/ dπ is the Radon-Nikodym derivative. The entropy generator
function φ is a convex function satisfying φ(1) = φ′(1) = 0, φ′′(1) = 1. Different choices of
φ lead to various well-known divergences, such as exclusive KL: φKL(s) := s log s− s+ 1,
inclusive KL: φrevKL(s) = s−1− log s, Hellinger: φH(s) = (

√
s−1)2, χ2: φχ2(s) = 1

2(s−1)2.
Note that our definition for measures that are not necessarily probability measures. As a
central topic of this paper, we will focus on the KL divergence evaluated in both the direction
of DKL(µ|π) and DKL(π|µ).
Proof [Proof of Theorem 2] The verification is a straightforward calculation. From the
right-hand side of equation iKL-WGF-k, we have

div

(
µ∇Tk,µ

(
1− dπ

dµ

))
= div

(
µ∇

(∫
k(x, x′)µ(x′)

(
1− dπ

dµ
(x′)

)
dx′

))
= div

(
µ∇

(∫
k(x, x′)

(
µ(x′)− π(x′)

)
dx′

))
,

which coincides with the right-hand side of equation MMD-WGF.

Proof [Proof of Proposition 3] The calculation of the flow equation is straightforward via
Otto’s formalism.

µ̇ = −KFR(µ)

(
1− dπ

dµ
− Z

)
(14)

where Z is the normalization constant. Then,

µ̇ = −µ
(
1− dπ

dµ
− Z

)
= −(µ− π) (15)

where Z disappears due to that the gradient flow is already mass-preserving. Therefore, the
flow equation is indeed equation RevKL-FR-GF. The ODE solution is obvious.

Proof [Proof of Theorem 4] This is a corollary of the more general result by Mielke and
Zhu (2025). There, they proved that the PL inequality holds for a large class of relative
entropy functionals including the squared Hellinger distance, the inclusive KL divergence,
and the reverse χ2 divergence. Therefore, equation Ł-RKL holds globally.

Consequently, calculating the time-derivative of the inclusive KL divergence, we obtain

d

dt
DKL(π|µ) = ⟨1−

dπ

dµ
, µ̇⟩ = −⟨1− dπ

dµ
, µ · (1− dπ

dµ
)⟩

equation −RKL
≤ −c ·DKL(π|µ).

(16)

By Grönwall’s Lemma, we obtain the desired estimate.

Proof [Proof of Proposition 5] First, the equivalence between the flow equations is by direct
identification – the flow equations coincide. This is a consequence of Theorem 3.4 of (Gladin
et al., 2024). Then, using this equivalence, the MMD-decay statement follows from Theorem
3.5 of (Gladin et al., 2024) and their equation (12).
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Proof [Proof of Proposition ??] We calculate the optimality condition of the following
optimization problem equation ??.

1− dπ

dµ
+

1

η

(
1− dµl

dµ

)
= 0. (17)

By the ISPD condition of the kernel k, the integral operator Tk,µ is strictly positive-definite.
Therefore, let Tk,µ act on the both sides of the equation above, we have

Tk,µ
(
1− dπ

dµ

)
+

1

η
Tk,µ

(
1− dµl

dµ

)
= 0, (18)

which coincides with the optimality condition of the variational problem equation ?? given
Radon-Nikodym derivatives exist.

Corollary 8 1 The inclusive KL divergence functional decays exponentially towards zero
along the solution of the PDE equation iKL-WFR-GF.

Proof [Proof of Corollary 6] The proof is by exploiting the inf-convolution structure of the
WFR flow. By taking the time-derivative of the inclusive KL divergence, we have

d

dt
DKL(π|µ) = ⟨1− dπ/ dµ, µ̇⟩ = −α∥∇ (1− dπ/ dµ) ∥2L2(µ) − β∥1− dπ/ dµ∥2L2(µ)

≤ −β∥1− dπ/ dµ∥2L2(µ).

By the functional inequality equation Ł-RKL in Theorem 4, we obtain the decay result for
the inclusive KL functional.

Chewi et al. (2020)’s kernelized WGF of χ2-divergence Previously, Chewi et al.
(2020) proposed a kernelized Wasserstein gradient flow of the χ2-divergence. They considered
the following kernelized gradient flow equation:

µ̇ = div

(
µKµ∇

dµ

dπ

)
, (19)

where Kµ should be taken as the integral operator defined by Kµf = Id ◦Tk,µ. However, in
their implemented algorithm, they switched the order of the operators ∇ and Kµ, either as
a heuristic or practical means. That is, what they actually implemented (in (Chewi et al.,
2020, Section 4)) is

µ̇ = div

(
µ∇Kπ

dµ

dπ

)
. (20)

From this paper’s perspective, this is kernelizing the genralized thermodynamic force,
rather than the velocity function ∇

(
dµ
dπ − 1

)
.

1. We note that there was an error in the original statement of Corollary 6. We now correct the statement
and provide a proof.
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Using this paper’s technique, we can now derive a force-kernelized WGF of the χ2-
divergence from the first principle. Consider the gradient flow equation

µ̇ = div

(
µ∇Tk,π

(
dµ

dπ
− 1

))
. (21)

Note that the integral operator Tk,π is associated with the target measure π, rather than the
measure µ as in equation iKL-WGF-k. Nonetheless, a simple observation is that equation 21
formally coincides with equation iKL-WGF-k. Therefore, we conclude that a principled
force-kernelized flow of the χ2-divergence WGF equation 21 is equivalent to the WGF of
the MMD studied by (Arbel et al., 2019; Korba et al., 2021), which is straightforward to
implement and in contrast to using the ad-hoc scheme of (Chewi et al., 2020).

Local nonparametric regression formulation equation iKL-WGF-k can be viewed as
the following local regression estimator of the WGF of inclusive KL equation iKL-WGF.

f = argmin
θ∈Rd

{∫
µ(x′)k(x′ − x)

∣∣∣∣θ − δF

δµ
[µt] (x

′)

∣∣∣∣2 dx′
}

where the energy functional the inclusive KL divergence F = DKL(π|·). Using standard local
regression results (Tsybakov, 2009; Spokoiny, 2016; Zhu and Mielke, 2024), we obtain the
closed-form estimator

f(x) =

∫
µ(x′)

k(x′ − x)∫
µ(x′)k(x′ − x) dx′

δF

δµ
[µt] (x

′) dx′, (22)

and a fintie-sample Nadaraya-Watson estimator f̂(x) =
N∑
i=1

k(xi − x)∑N
i=1 k(xi − x)

· δF
δµ

[µt] (xi).

In particular, in the inclusive KL setting, we obtain

f(x′) =

∫
k(x′ − x)∫

µ(x′)k(x′ − x) dx′

(
µ(x′)− π(x′)

)
dx′.

Given two samples {yi}Ni=1 ∼ µ and {zi}Mi=1 ∼ π, a finite-sample estimator is the difference
between two kernel density estimators

f̂(x) =
N∑
i=1

k(yi − x)∑N
i=1 k(yi − x)

−
M∑
i=1

k(zi − x)∑M
i=1 k(zi − x)

.

The resulting gradient flow equation is given by

µ̇ = div

(
µ · ∇

∫
1

Z
k(x′ − x) d

(
µ(x′)− π(x′)

))
for Z =

∫
µ(x′)k(x′ − x) dx′. (23)

Comparing with equation MMD-WGF and equation iKL-WGF-k, we can see that the
local regression estimator only differs by a constant scaling factor Z. Therefore, the force-
kernelized gradient flow equation equation iKL-WGF-k, and hence equation MMD-WGF,
can be interpreted as a flow matching implementation of the Wasserstein gradient flow of
the inclusive KL divergence equation iKL-WGF.
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Remark 9 (Approximation limit) Suppose the kernel k in equation iKL-WGF-k is a
Gaussian kernel with bandwidth σ. One might conjecture that, as the bandwidth σ approaches
zero and the integral operator tends to an identity map, equation MMD-WGF recovers
equation iKL-WGF. This potential connection could provide a new link between the two
gradient flows. However, proving rigorous Γ-convergence in this setting is mathematically
non-trivial and left for future research. We refer interested readers to relevant works on
Γ-convergence, e.g., (Craig et al., 2023; Carrillo et al., 2019; Lu et al., 2023; Zhu and Mielke,
2024).

Appendix D. Further background on Wasserstein gradient flows

We provide further background on Wasserstein gradient flows, especially on the pseudo-
Riemannian structure of the Wasserstein space.

The Onsager operator, as well as the Riemannian metric tensor GW = K−1
W , induces a

duality pairing between the tangent and cotangent spaces. We use the unweighted space for
simplicity. Note that the calculation can also be made in the weighted space L2(ρ).

duality pairing: dual⟨ξ,KW (ρ) ζ⟩primal = ⟨ξ,KW (ρ) ζ⟩L2 =

∫
ξ ·KW (ρ) ζ. (24)

The Stein geometry can also be characterized in this way. Duncan et al. (2019) proposed
the following Onsager operator that is a modification of the Otto’s Wasserstein formalism,

KStein(ρ) : T
∗
ρM→ TρM, ξ 7→ −div(ρ · Id ◦Tk,ρ∇ξ). (25)

The resulting Stein gradient flow equation is given by

∂tµ = −KStein(µ) log
dµ

dπ
= div (µKµ∇ (V + logµ)) .

We now look at the Wasserstein gradient flow of the inclusive KL divergence. The
gradient flow equation can be given by the Otto’s formal calculation,

∇WDKL(π∥µ) = KW∂DKL(π∥µ) = −div

(
µ∇

(
1− dπ

dµ

))
where KW is the Wasserstein Onsager operator, i.e., the inverse of the Riemannian metric
tensor GW of the Wasserstein manifold.

A standard characterization of the Wasserstein gradient flow is the following energy
dissipation equality in the inclusive KL setting

DKL(π|µt)−DKL(π|µs) = −
∫ t

s

∥∥∥∥∇(
1− dπ

dµr

)∥∥∥∥2
L2(µr)

dr. (26)

The dissipation of the inclusive KL divergence energy, a.k.a. the production of the relative
entropy, equals the integral of the Sobolev norm of the differential of the inclusive KL along
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the curve µr. For completeness, we provide a standard characterization via the following
differential energy dissipation equality

d

dt
DKL(π|µt) = ⟨1−

dπ

dµ
, µ̇t⟩ = ⟨1−

dπ

dµ
,KW∂DKL(π|µ)⟩

= ⟨1− dπ

dµ
,div(µ∇

(
1− dπ

dµ

)
)⟩ = −

∥∥∥∥∇(
1− dπ

dµ

)∥∥∥∥2
L2(µ)

. (27)

Integrating both sides, the integral form of EDE is then given by equation 26.

Appendix E. Further background on Fisher-Rao and Hellinger gradient
flows

We provide further background on Fisher-Rao and Hellinger gradient flows, especially on the
technicalities of the Hellinger flows over positive measuresM+.

We first consider the Hellinger flow of the exclusive (reverse) KL divergence over the
positive measuresM+. Its gradient flow equation, the reaction equation, is given by

µ̇ = −µ · log dµ

dπ
. (28)

The gradient structure is given by
Space : positive measuresM+

Energy functional : exclusive KL: DKL(·|π)
Dissipation Geometry : Hellinger

(29)

One can further restrict the gradient flow to the probability measures by modifying the
dynamics in equation 28 with a projection onto the probability measures, i.e.,

µ̇ = −µ ·
(
log

dµ

dπ
−
∫

log
dµ

dπ
dµ

)
. (30)

The resulting ODE is the gradient flow equation over the Fisher-Rao manifold of the
probability measures, also known as the spherical Hellinger manifold (Laschos and Mielke,
2019). That is, it has the following gradient structure:

Space : probability measures P
Energy functional : exclusive KL: DKL(·|π)
Dissipation Geometry : spherical Hellinger a.k.a. Fisher-Rao

(31)

For the inclusive (forward) KL divergence, as discussed in the main text, the Hellinger
flow over the positive measures M+ coincides with the Fisher-Rao flow over the probability
measures P, given the same initial condition. Specifically, the Hellinger gradient structure
over the positive measuresM+ is given by

Space : positive measuresM+

Energy functional : F (·) := DKL(π|·)
Dissipation Geometry : Hellinger

(32)
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This flow actually contains the flow equation 7 if initialized as probability measures.
For the Hellinger flows, an interesting and known analysis result is that the following

Polyak-Łojasiewicz functional inequality cannot hold globally for exclusive KL divergence
functional. in the Hellinger geometry,∥∥∥∥log dµ

dπ

∥∥∥∥2
L2
µ

≥ c ·DKL(µ(t)∥π). (Ł-KL)

Inequality equation Ł-KL differs from the typical log-Sobolev inequality in that no Sobolev
norm is involved. An elementary proof was provided by Mielke and Zhu (2025). Consequently,
we obtain the following lemma regarding the property of the Hellinger flows of the exclusive
KL by Grönwall’s Lemma. This is in sharp contrast to the case of the inclusive KL as
discussed in the main text.

Lemma 10 (No global Łojasiewicz condition in Fisher-Rao flows of KL) There ex-
ists no c > 0 such that equation Ł-KL holds along the Hellinger gradient flow of the exclusive
KL divergence functional.

Remark 11 Strictly speaking, we make the following distinction:

• Fisher-Rao (FR): a Bregman divergence between parameters of the (exponential-family)
distributions generated by the suitable generator functions.

• Hellinger (He): a special φ-divergence/distance defined in our paper.

• spherical Hellinger (SHe): a distance induced by restricting the Hellinger geodesics to
the probability measures; also called Bhattacharya distance by Rao (1945) after its first
introduction by Bhattacharyya (1946). We can recover the equivalence between SHe
and FR if we consider the trivial parameterization of the probability measure by itself
(infinite-dimensional).

For more details, see the discussion in (Mielke and Zhu, 2025).

Appendix F. Kernel Stein discrepancy descent as inclusive KL inference

The original implementation of equation MMD-WGF by Arbel et al. (2019) suffers from a few
drawbacks such as mode collapse or slow convergence. Furthermore, their algorithm requires
samples from the target distribution π, which may be impractical in some applications.
For example, in Bayesian inference, one typically only has access to the posterior via the
score function ∇ log π. Instead of the MMD, authors such as Korba et al. (2021); Chen
et al. (2018); Barp et al. (2019) advocated for minimizing the kernel Stein discrepancy
(KSD) (Gorham and Mackey, 2017; Liu et al., 2016; Chwialkowski et al., 2016) for inference.
From the optimization perspective, we replace the MMD objective with the KSD objective
1
2 KSD2(µ|π) The KSD can be viewed as a special case of the MMD associated with the
Stein kernel (Gorham and Mackey, 2017; Liu et al., 2016; Chwialkowski et al., 2016). The
Wasserstein gradient flow equation of the KSD can be straightforwardly calculated as noted
by Korba et al. (2021).

µ̇ = div(µ ·
∫
∇2sπ(x, ·) dµ(x)), (KSD-WGF)
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where sπ is the Stein kernel; see the appendix. Unlike equation MMD-WGF, to implement a
discrete-time algorithm that simulates equation KSD-WGF, we only need to evaluate the
score function ∇ log π without needing the samples from π. As KSD can be viewed as a
special case of MMD with the Stein kernel, using our characterization of the MMD-WGF in
Theorem 2, we obtain the following insight.

Corollary 12 (Formal equivalence between KSD-WGF and inclusive KL inference)
The WGF equation of KSD equation KSD-WGF is equivalent to equation iKL-WGF-k, which
is the kernelized WGF of the inclusive KL divergence energy functional when the kernel is
the Stein kernel sπ.

Notably, Korba et al. (2021) empirically demonstrated that the KSD-based flow signifi-
cantly outperforms the MMD-based flow in practice. The finding in this paper unifies the
KSD-based flows and the MMD-based flows. This forms a unified framework for inclusive
KL minimization via kernelized Wasserstein gradient flows.

Appendix G. Examples and algorithmic implications

In this section, we demonstrate our gradient flow theory in stylized examples from machine
learning and statistical inference.

G.1. Inference and sampling algorithms via force-kernelized Wasserstein flows

The goal of this section is to show a general-purpose inference algorithm for the inclusive
KL inference, analog to the SVGD for the forward KL inference, can be constructed using
our gradient flow theory. Suppose our goal is to approximate a target distribution π via
the inclusive KL minimization equation 2. We consider two settings: (1) we have access
to samples from the target yi ∼ π, e.g., in generative modeling; (2) we have access to the
score function ∇ log π, e.g., in inference and sampling. Our scheme is based on discretizing
the force-kernelized Wasserstein gradient flow equation equation iKL-WGF-k, obtaining the
discret-time update scheme

Xt+1 = Xt − τ∇
∫
∇2k(x

′, x)
δF

δµ
[µt](x

′) dµt(x
′). (33)

An interacting particle system can be simulated by considering particle approximation to
the measure, µ = 1

n

∑n
i=1 δxi , xi ∈ Rd.

Setting (1): sample-based setting with flows of MMD In general, for Wasserstein
gradient flow of the energy functional F , one may implement a practical algorithm that
discretizes the PDE equation 3. As discussed in the beginning of Section 3, in the vanilla
Wasserstein gradient flow of the inclusive KL divergence equation iKL-WGF, the velocity
field ∇

(
1− dπ

dµt
(Xt)

)
cannot be implemented out of the box. Based on Theorem 2, we now

resort to equation 33 which is algorithmicly equivalent to Arbel et al. (2019)’s algorithm
which they termed MMD-flow. This amounts to simulating (in discrete time) an interacting
particle system:

Xi
t+1 = Xi

t − τ

 1

N

N∑
j=1

∇2k(X
j
t , X

i
t)−

1

M

M∑
j=1

∇2k(Y
j
t , X

i
t)

 , (34)
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where Xi
t are samples from the distribution µt; cf. (Arbel et al., 2019) for the experimental

results.

Setting (2): score-based setting with flows of KSD In variational inference, we
typically have access to the target π in the form of the score function ∇ log π without samples.
Discretizing the PDE equation KSD-WGF, we have

Xt+1 = Xt − τ

∫
∇2sπ(x, ·) dµ(Xt). (35)

A sample-based implementation of the above algorithm is then given by

Xi
t+1 = Xi

t − τ

 1

N

N∑
j=1

∇2sπ(X
j
t , X

i
t)

 . (36)

In summary, to solve the inclusive KL minimization equation 2, one can apply the general-
purpose algorithm via the discrete time scheme equation 33. This is implementable in practice
in both sample-based and score-based settings; cf. empirical results in (Korba et al., 2021;
Arbel et al., 2019). Hence, we have established a previously missed link between inclusive
KL inference and the gradient flows of MMD-type functionals.

G.2. Generative modeling

Recently, there is a surge of interest in formulating GANs in the fashion of Wasserstein
gradient flows Promising empirical results have been reported by Ansari et al. (2021); Yi et al.
(2023); Yi and Liu (2023); Franceschi et al. (2024); Heng et al. (2024). In addition, there
have also been a series of paper that present theoretical analysis of GAN training dynamics
as interacting gradient flows by, e.g., Hsieh et al. (2018); Domingo-Enrich et al. (2020); Wang
and Chizat (2022, 2023); Dvurechensky and Zhu (2024-05-02/2024-05-04). Using this paper’s
insight, we now uncover some previously unknown connections between generative models
and the Wasserstein gradient flow of the inclusive KL functional.

Our starting point is the standard divergence-based generative modeling training, which
solves the optimization problem

min
θ

DKL(πdata|gθ#PZ), (37)

where PZ is the latent variable distribution, e.g., standard Gaussian, and gθ is the generator
network. Note that it is also possible to work with numerous other geneartive formulations
such as models without explicit generator parameterization such as discriminator flows as
discussed in Franceschi et al. (2024). Following our force-kernelized WGF framework as in
equation iKL-WGF-k, consider a force-kernelized projected gradient flow for the inclusive
KL minimization equation 37.

θ̇ = −ΠΘ

(
−div

(
µθ∇Tk,µθ

(
1− dπ

dµθ

)))
, µθ = gθ#PZ (38)
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where KW again denotes the Wasserstein Onsager operator. ΠΘ is the projection (of the
Riemannian gradient) onto the parameter space Θ. Form equation 38, we immediately
observe that the flow can be written in the form of a flow-matching model

θ̇ = −ΠΘ (−div (µθ∇f∗(x))) , f∗(x) =

∫
k(x′, x)

(
µθ(x

′)− dπ(x′)
)
dx′. (39)

Discretizing the above PDE, we have

θl+1 ← θl − ηlΠΘ (−div (µθ∇f∗(x))) (40)

which corresponds to the training dynamics of MMD-GANs (Li et al., 2015; Dziugaite et al.,
2015; Li et al., 2017; Bińkowski et al., 2018) using the optimal test function f∗. The insight
of our paper is that, through the lens of equation 38, we can view the MMD-GAN training
dynamics as performing inclusive KL inference using an approixmate Wasserstein gradient
flow.

G.3. Discrete-time mirror descent

Recently, there have a few studies using mirror descent of the exclusive KL divergence such as
(Chopin et al., 2024; Aubin-Frankowski et al., 2022). We now provide the details of inclusive
KL minimization via mirror descent. Consider an explicit Euler scheme for the gradient flow

min
ρ∈P
⟨∂DKL(π|ρ), ρ⟩+

1

τ
DKL(ρ|ρl). (41)

where ⟨, ⟩ is the L2 inner product. Using the optimality condition of this optimization
problem, we can derive the following mirror descent update:

ρl+1(x)← 1

Z l
ρl(x) · exp

(
−τ

(
1− dπ

dρl

))
for all x ∈ Rd, (42)

where Z l is the normalization constant. We now again apply the kernel approximation of
this paper, obtaining the update rule

ρl+1(x)← 1

Z l
ρl(x) · exp

(
−τ · Tk,ρl

(
1− dπ

dρl

))
=

1

Z l
ρl(x) · exp

(
−τ ·

∫
k(x, y)

(
ρl(y)− π(y)

)
dy

)
.

Similarly, using Stein’s method, we can also perform update only via the score function
of the target ∇ log π.

ρl+1 ← 1

Z l
ρl · exp

(
−τ ·

∫
sπ(x, y)ρ

l(y) dy

)
. (43)

Appendix H. Other related works

Outside machine learning, there exists many works in interacting particle systems that uses
similar approximation methods as kernelization, such as the blob method (Carrillo et al.,
2019; Craig et al., 2023). In the optimization literature, there are a few related works using
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particle-based gradient descent methods, such as (Dai et al., 2016) and (Chizat, 2022), albeit
they are not concerned with the inclusive KL divergence. For Bayesian inference, Trillos
and Sanz-Alonso (2018) provide a variational perspective for Bayesian update, framing it in
terms of gradient flows. Therein, they primarily consider the KL, χ2, and Dirichlet energy
functional. Maurais and Marzouk (2024)’s algorithm seeks a velocity field for the ODE to
match the behavior of the Fisher-Rao flow. It is also worth noting that they assume the
setting of importance sampling where one has access to the density ratio. Vargas et al. (2024)
proposed a framework that governs many existing variational Bayesian methods. While
not directly related to our work, one part of their reversal framework is indeed a inclusive
KL inference problem. Chewi et al. (2020) propose a perspective that views SVGD as a
kernelized Wasserstein gradient flow. In the appendix, we expand on the precise relation
between this paper and the algorithm they actually implemented, which switched the order
or gradient and kernelization operation. Then, we show that the χ2 flow can be cast into our
framework without that heuristic implementation. In addition to the Wasserstein gradient
flow, there exist several works that are based on unbalanced transport and its variants, such
as (Lu et al., 2019; Mroueh and Rigotti, 2020; Lu et al., 2023; Yan et al., 2023; Gladin et al.,
2024). Instead of approximation via integral operator, a ridge-regression type of gradient flow
approximation can also be considered; cf. (He et al., 2022; Zhu and Mielke, 2024; Nüsken,
2024).
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