Compute Where It Counts: Adaptive Compute Allocation for Large
Language Models via Learned Granular Sparsity

Anonymous ACL submission

Abstract

The inference of Large Language Models
(LLMs) requires massive amounts of compu-
tation. Sparsity-aware inference pipelines can
alleviate this cost by reducing the number of
parameters used in each forward pass. We in-
troduce “granular sparsity”, a novel method for
reducing compute requirements. By decompos-
ing matrix columns, the standard unit of spar-
sity, into smaller stripes, we create a flexible
method of conditional computation that is more
expressive than existing sparsity strategies.

Furthermore, we introduce a novel method for
learning and controlling sparsity, which is in-
spired by sparse autoencoders. Notably, our
method allows the model to designate differ-
ent levels of sparsity to different input and lay-
ers. We validate our methods by distilling 2-6x
more compute-efficient sparse language mod-
els from Llama 3.2 1B. Interestingly, we show
evidence that our model allocates more com-
putation to answering questions that humans
deem more difficult.

1 Introduction

Large Language Models (LLMs) have revolution-
ized the field of machine learning, and have been
scaled to unprecedented size and training costs. As
a result, large compute budgets are now allocated
for inference, in addition to training. To minimize
these impacts, a great deal of recent research has
been devoted to improving LLLM inference effi-
ciency. Approaches include Mixture of Experts
(MoE) models, model distillation, quantization,
and sparsification.

Most if not all of these techniques allocate a
uniform number of active parameters or FLOPs
(floating-point operations) towards ingesting and
generating tokens. In contrast, we believe that cer-
tain tasks and sequences are fundamentally more
or less “challenging” and should therefore receive
compute budget allocations to match.

In this paper, we introduce the granular sparsity
operation as a more expressive alternative to the
commonly used column sparsity pattern (Lee et al.,
2024). Furthermore, we demonstrate a method
to train models that dynamically allocate different
amounts of compute for different tokens and dif-
ferent layers. To do this, we directly learn sparsity
thresholds and include a sparsity penalty in the loss
function.

We convert and distill a Llama 3.2 1B Instruct
model (Grattafiori et al., 2024) into “granular” mod-
els that consume 2x-6x fewer FLOPs per token.
Examining the FLOPs assigned by the “granular”
models to benchmark tasks reveals that these mod-
els naturally allocate less compute to “easier’ to-
kens (such as role tokens, filler words, system
prompt) and sequences (such as questions from
ARC-Easy vs ARC-Challenge (Clark et al., 2018)).

2 Related Work

2.1 Activation Sparsity

Relufication (Mirzadeh et al., 2024) involves replac-
ing pretrained LLM activation functions with Re-
LUs and inserting ReLUs elsewhere in the model.
After finetuning to recover performance, Relufica-
tion can reduce FLOP counts by up to 50% with
almost no degradation. Deja Vu (Liu et al., 2023)
predicts sparsity on the fly by training small auxil-
iary MLPs. Q-Sparse (Wang et al., 2024) discards
all but the top-K largest channels of input vectors
when computing linear layers. They demonstrate
better performance compared to a dense model with
the same amount of compute, and also show that
sparsity degrades performance less on larger mod-
els. Most similar to our work is CATS (Lee et al.,
2024), which uses fixed thresholds to determine
sparsity.

2.1.1 Mixture of Experts

The Mixture of Experts (MoE) conditional com-
puting paradigm activates certain sections of the
neural network ("experts") to reduce the active pa-
rameter count. Unlike activation sparsity methods,
MOoE architectures typically use a learned routing
mechanism to choose which experts to activate.
Sparsely-Gated Mixture-of-Experts (Shazeer et al.,
2017) proposed a gating network that incentivizes
sparse, yet balanced, expert selection for language
modeling and machine translation. DeepSeekMoE
(Dai et al., 2024) demonstrated that combinatorial
expert selection with a larger number of experts
leads to better performance. Expert Choice Rout-
ing (Zhou et al., 2022) demonstrates that higher
performance can be achieved if different tokens
can receive different amounts of compute. Com-
peteSMoE (Pham et al., 2024) demonstrates that
choosing the experts with the largest output magni-
tude is an effective routing strategy.

2.2 Sparse Autoencoders

Sparse Autoencoders (SAEs) can faithfully recon-
struct the hidden state of a neural network while
activating a very small percentage of their features.
Variants include top-k SAEs (Gao et al., 2024) that
explicitly keep only the k largest activations, and
JumpReLU (Rajamanoharan et al., 2024) SAEs
that pass activations features through a ReLLU ac-
tivation and keep only the activations that exceed
a learned threshold. Notably, JumpReLU makes
sparsity learnable, and allows different numbers of
features to activate for different examples. Other
work (Ayonrinde, 2024) has also shown that re-
construction fidelity is improved when different
numbers of features can be activated for different
tokens.

3 Methods

3.1 Granular Sparsity

Existing sparsity methods (Mirzadeh et al., 2024;
Wang et al., 2024; Lee et al., 2024) exploit column
sparsity (sometimes transposed and described as
row sparsity) in matrix multiplications: when an
input vector has an element that is exactly zero, the
computation for the corresponding matrix column
can be skipped. Here, a column is either entirely
used or entirely unused. Drawing from the insight
of DeepSeekMoE (Dai et al., 2024) that more con-
ditional computation combinations leads to better
performance, we create a more expressive spar-

EEEREEEE -
B

b. Granular Sparsity

HE SIS H ﬂ%%&@
R e
PR R A P R B P
EEE EF R PR PR R 8 i e
B R R e e A A
o e e o P B R

and more.. .

a stn‘,pe

Figure 1: Given a 4x4 matrix, using column sparsity
results in 16 configurations. Combining contiguous
sets of two rows into stripes where each stripe can be
independently controlled results in significantly more
configurations.

Stnpe Actlvat|on

R -

0 50

Figure 2: For each input X we multiply by a masked
version of the weights. The mask is created by checking
if a channel of x is between the thresholds and thus
a zeroed region. These thresholds are parameterized
along each input channel and repeated in groups (stripes)
along each output channel.

Repetition along output channels is important because
it allows us to avoid multiple multiply adds for only one
mask check for the whole region.

sity mechanism by breaking each column into a
set of stripes - with each stripe being activated in-
dividually. This greatly increases the number of
achievable sparsity configurations (see Figure 1).

Formally, consider the multiplication of a matrix
W € R™*™ with the vector x € R", resulting in
the vector y € R™.

y =Wz
This operation can be broken into the sum of the

column vectors of W (with v; denoting the i-th
column of W), weighted by the elements x; of x:

n
y= wai
i=1

Standard column-wise sparse matrix multiplication,
which we denote as SMM(z, W, M), uses a mask
M € {0,1}" to zero out some elements of x, so
that only the remaining elements are required for
the matrix multiplication. We use the set Syq =
{1 <i<n| M,;=1}todenote the set of indices
where the elements of x are not zero.

Ysparse = SMM .%' W M Z M,; i LiU;

= Z Z;U;

i€SMm
In our method, we partition the vector vy
into k equally sized stripes, such that y =
[y(l),y@),...,y(k)]. We similarly partition the
column vectors of v; of W such that v; =
[vgl),v?), . Z(). With some abuse of notation,
we use = as a concatenation analogue of the sum-
mation operator » _, such that y = Eff:ly(’"). This
means that the original matrix multiplication can
be written as:

::4,,,15 fL'Z

Our granular sparsity operation, which we denote
as GMM(z, W, G), uses a mask G € {0,1}F>»
that zeroes out some of the stripes in W, as shown
in Figure 2. We define Sg = {(r,4) : 1 < r <
k, 1 <i<n| G.; =1} to be the set of stripe
indices that are not zeroed out.

Ygranular = GMM(-%' W, g

Hr 1Zg'rzxz (r)

Note that when £ = 1, granular matrix multiplica-
tion is the same as standard column sparsity.

3.2 Sparsity Thresholds

We use a different mask G for each input vector x
(a strategy known as contextual sparsity) (Liu et al.,
2023). To determine the G, we use the magnitudes
of each element in x. Specifically, we learn a grid
of thesholds § € R%*™ such that G,; is 1 if and
only if x; has have a magnitude of at least 0, ;.
We define this relation using the Heaviside step
function H (z).

1 2>0
H(Z):_{o zzo

Gri = H(|xi| —6,4)

We denote granular matrix multiplication parame-
terized by thresholds with GMM(z, W, 6):

Ygranular = GMM(CU W; 9)
= “‘r 1 Z H |‘TZ|

We initialize 6 to zero at the start of training. Fur-
thermore, to prevent # from becoming negative, we
set # = max(0,) after every parameter update. Fi-
nally, we found that 6 benefited from a significantly
higher learning rate than other parameters. We set
the learning rate of # equal to the base learning rate
multiplied by 79+/n, where 7y is a hyperparameter.

3.3 Learning Thresholds

Previous works that use thresholds to determine
contextual sparsity masks have often relied on
heuristics to determine the threshold values (Lee
et al., 2024). Instead, we seek better optimization
be directly learning the thresholds. Unfortunately,
H (z) is not differentiable. We therefore build on
the ideas introduced in JumpReLU (Rajamanoha-
ran et al., 2024) to construct a straight-through-
estimator (Bengio et al., 2013) with a pseudo-
derivative that approximates the true derivative.
This pseudo-derivative is defined as follows, with
K representing a kernel function and e representing
a tunable bandwidth:

%H(z) = 1K(f)

For our kernel function K, we use the rectangle
function seen in JumpReLU:
1 1
K(2)=H(z—5) — H(+3)

When calculating either 8 e Gy, or 89 -G,.; we set
the corresponding ¢; equal to the batch-wise stan-
dard deviation of x; (which does not receive gradi-
ents), scaled by a constant uniform hyperparameter
Qe

€; = astd(x;)

For a more detailed analysis of this gradient esti-
mator, we refer readers to the JumpReLU paper
(Rajamanoharan et al., 2024).

3.4 Normalization

When initializing from a pre-trained network, we
found that the batch-wise scales and offsets of x;

values can vary throughout the network, making it
difficult to tune hyperparameters. To remedy this,
we whiten x before it enters the matrix multiplica-
tion operation. Concretely, for a batch of = vectors,
we calculate the batch-wise mean £ € R" and stan-
dard deviation o(z) € R™. Then, we then perform
the following:

Ygranular = GMM(Q? —z,W:00 0-(1-)) + Wz

Note that when 0 is composed of zeroes, this
whitening procedure does not effect the value of
Ysparse- 1O increase training stability, we track T
and o(z) on a rolling basis. For this, the hyper-
parameter [4ig is used to compute an exponential
moving average. At inference time the running =
and o(z) values from the last step of training are
used.

3.5 Straight-Through Estimation

Previous work (Wang et al., 2024) shows that
sparse models can benefit from using straight-
through estimators during training. In our case,
that means taking the gradients of x as if there
was no sparsity. Specifically, we use the following
definition for the gradients of x:
Vi Ygranular ‘= WT

Although this modification obviously leads to
biased gradients, we theorize that this estimator
improves performance by removing the variance
imparted on the grads when the values of G are
changing frequently. The STE could also fix the
vanishing gradients associated with high sparsity,
as postulated by Q-Sparse (Wang et al., 2024).

The gradients of # and W are left unchanged.

3.6 Controlling Sparsity

A key advantage of the learned threshold scheme
is that we can control the sparsity of the model
using a loss function. For this, we first calculate
the number of floating point operations (FLOPs) to
compute GMM(z, W; #), which is given by:

FLOPs(z, W, G) := %Hglh

We then define FLOPs(B) to represent the num-
ber of operations required to operate on a batch
B, FLOPspyse (B) to represent the number of oper-
ations required if we did not have sparsity, and
FLOPsyget(B) to represent the desired FLOP
count. Finally, we define the Flop Reduction Ratio

(FRR) to be the ratio between the base FLOP count
and the sparse FLOP count:

FLOPspasc (B)
FRR(B) := —————+—
(B) FLOPs(B)
FLOPspse (B)
FRRuget(B) 1= o5 ———
target() FLOPStarget(B)

Our loss is then the following:
2
Lriops = [min <FRR(B) — FRRgrger(B), 0)}

This loss was chosen because it gives us precise
control over the desired compute costs, and gives
us stable performance during training. Importantly,
we found it important to include a warmup phase
at the start of training where FLOPSge(3) is in-
crementally lowered. For this, we linearly increase
FRRarget (B) from a starting value, usually 1.5, to
our final target value.

We also found it necessary to regulate the FLOP
costs of the language modeling head. If left
unchecked, the sparsity of stripes corresponding to
infrequent tokens would approach zero. Therefore,
we detach the gradients leading to the FLOP calcu-
lation of the head once its FRR reaches a set value,
usually 10.

3.7 Feed-Forward Network Modifications

Previous works have found that the intermediate
activations of the feed-forward blocks exhibit nat-
ural sparsity (Mirzadeh et al., 2024). To leverage
this, we slightly modify our granular sparsity sys-
tem for use in the feed-forward blocks. The Llama
3 suite of models uses gated linear units (GLU)
(Shazeer, 2020) as their feedforward design. These
are parameterized by a gate matrix Wy € R4,
an up matrix Wy, € R™*? and a down matrix
Wdown € Rdxn:

a = silu(Waae)
YGLu = Wdown (Wup © CL)

In our method, we compute Wyex with the stan-
dard granular sparsity method. Then, we use our
learned threshold method to compute M € {0, 1}¢
based on the magnitudes of silu(Waex). We use
this mask as follows:

a = M © silu(GMM(z, Wye, G))

YGLU, granular = Waown (Wup O] CL)

When the operations rendered unnecessary by the
mask are filtered out, the FLOP cost of this opera-
tion is then:

d
FLOPs(G, M) = E”ng + 2n||M| |

3.8 Model Distillation

To efficiently train our sparse models, we use
knowledge distillation (Hinton et al., 2015) with a
teacher network (usually the same model that was
used to initialize the sparse model’s parameters).
For our distillation loss, we use a combination of
the forward KL divergence (FKL) and the reverse
KL divergence (RKL), which has been shown to
work better than either divergence individually (Wu
et al., 2024). For a sequence of length 7', this gives
us:

T
FKL := Z KL(pteacher(yt\yq), pstudent(yt|y<t))
t=1
T
RKL := Z KL(pstudent(yt’y<t), pteacher(yt|y<t))
t=1
1
Listin = B (FKL + RKL)

Our total loss is a weighted combination of our
distillation loss and our FLOP loss described in
subsection 3.6:

L = Laisinn + AFLops LFLOPs

4 Experiments

4.1 Setup

We tested our methods with the Llama-3.2-1B-
Instruct ' model. This model (henceforth referred
to as the “base” model) was used for both the
teacher and the initialization of the student. We
used the AdamW optimizer. Training was con-
ducted over approximately 800M tokens, taking 48
hours on a cluster of 8 H100 GPUs (for a total of
384 GPU hours). Details of our training data can be
found in Appendix A and detailed hyperparameters
can be found in Appendix B.

4.2 Ablation Studies

To determine the impact of design decisions made
in this work, we perform four ablation experiments.
First, we set the number of stripes to 1 (alterna-
tively, this ablation can be thought of as standard

"unsloth/Llama-3.2-1B-Instruct

KL Divergence between low-FLOPs models and the teacher

KL Divergence
o
3
o

T T T T T T T T
15 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
FLOPs Improvement

Figure 3: As the FRR target of the training run is in-
creased, the FKL between the thresholded model’s logits
and the teacher logits increase.

column sparsity). Second, we remove the gradual
warmup to our target FLOPs ratio (this means the
model is trained to obtain an 6x FLOP reduction
on the very first training step). Third, we remove
the normalization described above. In the fourth
ablation, we remove the limit on FRR for the lan-
guage modeling head. The performance of ablated
models is discussed in subsection 4.3.

4.3 Results

The performance of thresholded models with in-
creasing Flop Reduction Ratios (FRRs) on MMLU
(Hendrycks et al., 2021), ARC (Clark et al., 2018),
HellaSwag (Zellers et al., 2019), WinoGrande (Sak-
aguchi et al., 2019), BoolQ (Clark et al., 2019) and
SciQ (Welbl et al., 2017) is shown in Table 1. Ta-
ble 2 compares the performance of thresholded
models with state-of-the-art (fully activated) trans-
former models of similar size. All results are re-
ported from a single training and evaluation run.

Collectively, we observe a steady decrease in
performance across most benchmarks as the FRR
is increased. This is explained by the increasing
KL divergence between high FRR models and the
original model (Figure 3). Note that the stability of
performance on WinoGrande and BoolQ is because
the base model’s performance is close to random
choice.

The 2x and 6x FRR models perform similarly
to small transformer models in their compute
classes that have been trained from scratch (namely
SmolLM-360M? and SmolLM-360M?). We note
that the FRR models outperform SmolLM models

*HuggingFace TB/SmolLM-135M
SHuggingFace TB/SmolLM-360M

Step 800, Flop Ratio 2

Step 6000, Flop Ratio 6

Compared

Layer — Input x channel —

Figure 4: Activation frequencies of W, at 2x and 6x
FRR. The Weyes across layers are stacked vertically.
The rows of the matrices correspond to weight stripes.
The intensity of each column represents the frequency
that a input position passes the threshold for the column
(a darker column indicates lower frequency).

The "Compared" chart overlays the "Step 800" and
"Step 6000" charts to demonstrate how important fea-
tures (brighter columns) emerge early in training and
are magnified in relative importance over the training
run.

on MMLU, match on WinoGrande and underper-
form on ARC/HellaSwag. We believe these differ-
ences arise from differences in training data.

Table 3 presents the performance of ablated mod-
els (described in subsection 4.2) on MMLU and
ARC. Removing the FRR warm-up and restrictions
on the FRR of the language modeling head re-
sults in immediate model collapse and performance
equivalent to random choice.

5 Discussion

5.1 Sparsity Patterns

Analyzing the activation frequencies across matri-
ces and layers of the model reveals several inter-
esting patterns about the structure of circuits and
sparsity within our models.

First, we observe particularly important channels
in the residual stream. These are channels that
activate for almost every input across many layers.
They emerge very early (in as few as 100 training
steps), and stay almost unchanged for the entirety
of training. Figure 4 demonstrates this for the Wy
matrix. We believe that these channels may capture

common knowledge, and serve a similar purpose
to the shared experts used by DeepSeekMoE (Dai
et al., 2024).

Next, we notice that among the Q, K, and V
attention matrices, activation of the V matrix is the
most dense, followed by K and O (Figure 5). Note
the dip in activation frequencies across matrices
from layers 8-14 followed by a slight rise in layers
15 and 16.

We find striking patterns in the activation fre-
quencies of the O attention matrix (Figure 6). Of-
ten, individual attention heads will have consis-
tently high or low activations across channels. We
hypothesize that the network could be learning to
implicitly "prune" unhelpful attention heads, sim-
ilar to previous work that reduces compute cost
by explicitly removing attention heads (Mugnaini
et al., 2025).

Activation Frequency Across Layers

o o
w o
< X0

i

o

FFN

FFN GATE
LM HEAD

TN | - OVERALL

o

Activation Frequency

[

o
=)

Layer

Figure 5: Activation frequency of different matrix types
across layers for a 6x FRR model. Note that FFN rep-
resents the Wy, and Wy, matrices, while FFN GATE
represents the W, matrix.

Figure 6: The sparsity levels within O heads tend to be
similar across channels. Sometimes entire heads will be
always on or always off.

Note that unlike the QKV, UP, GATE, there are no pat-
terns across layers as the input to O is not the residual
stream.

As referenced earlier, we found an important pat-
tern in the sparsity of the language modeling head:

FRR | Average | MMLU | ARC-C | ARC-E | Hellaswag | WinoGrande | BoolQ | SciQ
Ix 57.1 48.3 54.8 72.4 41.1 52.5 533 | 77.6
2x 54.5 43.6 47.5 66.8 38.8 51.9 60.1 | 72.6
3x 51.5 40.3 44.1 59.9 34.1 49.5 60.1 | 72.3
4x 48.4 37.9 38.6 57.5 334 50.3 55.3 | 655
5x 46.4 35.7 37.3 55.6 30.7 50.3 54.8 | 60.7
6x 44.0 33.8 32.1 49.8 29.4 53.0 53.6 | 564

Table 1: Model performance across benchmarks at different Flop Reduction Ratios. Note that the 1x FRR model is
simply the original model’s (unsloth/Llama-3.2-1B-Instruct) performance.

Model Type MMLU ARC Hellaswag WinoGrande
3x FRR (330M params) 40.3 44.1 34.1 49.5
SmolLM-360M 34.17 51.1 53.8 53.7
6x FRR (160M params) 33.76 32.08 29.39 53.02
SmolLM-135M 3023 43.99 42.3 52.7

Table 2: Comparison of 3x and 6x FRR models and compute-equivalent small models. SmolLM performance is

self-reported.

stripes corresponding to earlier vocabulary tokens
have higher activation frequencies. This is because
the vocabulary of the Llama model family is im-
plicitly sorted from high to low token frequency, so
frequent tokens have more compute designated to
them than infrequent tokens. This effect is so pro-
nounced that without regularization, the network
will eventually put nearly zero compute towards in-
frequent tokens, leading to representation collapse.

5.2 Variable Compute Budgets

Our use of sparsity thresholds means that different
tokens and different sequences can use different
amounts of compute.

Consider the FLOPs spent by the 6x FRR model
on processing questions from the ARC-Easy vs
ARC-Challenge dataset in Figure 7. The average
FLOPs dedicated by the 6x FRR model to process-
ing tokens of questions in the ARC-Easy and ARC-
Challenge benchmarks follow similar distributions
but with the Arc-Easy offset to the left indicating
that a significant number of the ARC-Easy ques-
tions were allocated less compute than for ARC-
Challenge questions. As evidenced by the scores of
the 6x FRR model on these benchmarks (Table 1),
the ARC-Easy questions are indeed easier for the
6x FRR model!

We can also visualize the compute spent on indi-
vidual tokens of a question-answer sequence. Fig-
ure 8 demonstrates three common trends in com-
pute allocation that we observe in general:

* Punctuation and filler words such as “How-

Distribution Comparison of Compute Used for ARC-E vs ARC Questions

m—ARCE

35 - ARC

18 19 20

17 21
Mean FLOPs Across Question Tokens

Figure 7: We calculate the FLOPs allocated to each
token in all of the questions of ARC-Easy and ARC-
Challenge. We ignore the system prompt and only con-
sider the tokens in the question and four options. These
values are averaged across tokens in a question and each
question is represented as a sample in the histogram
above. The model dedicates more compute to questions
from the ARC Challenge dataset compares to the ARC
Easy dataset.

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Cutting Knowledge Date: December 202
Today Date: 10 May 2025

<[eot_id|><|start_header_id|>user<|end_header_id|>
What is 6 * 72 And the color of the sky?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
To calculate 6 * 7, | multiply the numbers together: 6 * 7 = 42,

As for the color of the sky, the color of the sky can vary depending on the time of day and the
atmospheric conditions. However, during the daytime, the sky is typically ablue color due to

Figure 8: Active parameter count allocation across dif-
ferent token positions in a prompt and generation pair.
The thickness of the font indicates the number of active
parameters (and thus the compute budgets) allocated to
different tokens (thicker text indicates more compute).
The text following the assistant role token was gener-
ated by a 6x FRR model.

ARC Scores (%)

FRR | Baseline | No Warmup | No LMHead Limit | No Normalization | No Stripes
2x 47.5 22.4 29.8 41.3 31.2
3x 44.1 22.4 26.0 42.4 25.7
4x 38.5 224 25.7 373 24.7
5x 37.2 22.4 25.7 33.6 23.5
6x 32.1 224 25.7 29.1 21.2

MMLU Scores (%)

FRR | Baseline | No Warmup | No LMHead Limit | No Normalization | No Stripes
2x 48.3 22.7 29.5 32.5 30.1
3x 43.6 22.6 249 29.8 24.9
4x 40.3 22.6 24.1 29.1 24.7
5x 35.7 21.0 24.1 26.2 25.6
6x 33.8 21.0 24.1 28.2 22.5

Table 3: ARC and MMLU Performance under different ablation settings across various FRR levels.

ever” are low budget.

* Behavior on system prompt and sys-
tem/user/assistant role tokens gets distilled
into very few active parameters and thus
receives a very low compute allocation.

* Semantically quoting sections of user prompt
such as “6 * 7 and “the color of the sky” uses
fewer active parameters.

5.3 Effects of Hyperparameters

We found that performance was stable with respect
to the bandwidth scale o, within a range of about
0.05 to 0.25. However, values outside of this range
caused significant training instability.

Furthermore, the choice momentum parameter
of running batch statistics [4i¢ had very little im-
pact on performance, with values tested in the range
of 0.9 to 0.99.

When calculating pseudo-derivatives, we found
that other kernel functions besides the rectangle
kernel described in subsection 3.3 gave similar per-
formance.

6 Future Work

Achieving a theoretical FLOPs reduction is not di-
rectly linked with practical CPU/GPU clock time
reductions. For large stripe sizes which are mul-
tiples of the SIMD size, acceleration of inference
of CPU is straightforward (one can first compute
the mask, then use it to skip multiply adds), but for
GPU it remains less tractable.

Our striping method groups output channels
based on their order. However, outside of attention
heads, there is no guarantee that adjacent channels

are functionally similar. Therefore, when initializ-
ing a sparse model from a pretrained one, it may
be beneficial to reorder channels in order to form
semantic groupings. This idea has already seen suc-
cess in the realm of mixture-of-expert conversions
(Elazar and Taylor, 2022).

From Figure 3 we note that the KL divergence
between the base model and FRR models remains
stable between 2x and 4.5x FRR. It then rises above
4.5x FRR. We believe performance improvements
could be realized by modifying the FRR warmup
schedule to something other than the linear one
used here.

7 Ethical Consideration & Potential Risks

Since the patterns learned by granular sparsity are
dependent on training data distributions, during in-
ference the model could under-allocate compute
to tokens that are important but were underrepre-
sented during training). This may lead to lower
robustness or bias amplification for marginalized
dialects or identity groups. In addition, any effi-
ciency gains resulting from this technique could
larger-scale deployment of LLM inference for ma-
licious applications.

Limitations

The primary limitation of our work concerns the
scale of our experiments. We did not train models
larger than 1B parameters, and we did not train for
longer than 1B tokens. We believe that significantly
better benchmark performance could be achieved
with more training. Previous work (Wang et al.,
2024) has also indicated that sparsity leads to less

performance degradation at larger scales, so our
method be be more suitable for larger models than
those tested here.

Furthermore, we only tested our method on trans-
former architectures and language modeling. The
application to other models, such as such as vision
transformers (Dosovitskiy et al., 2021) has not been
explored.

References

Loubna Ben Allal, Anton Lozhkov, Elie Bak-
ouch, Gabriel Martin Blazquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlicek,
Agustin Piqueres Lajarin, Vaibhav Srivastav, Joshua
Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clé-
mentine Fourrier, Ben Burtenshaw, Hugo Larcher,
Haojun Zhao, Cyril Zakka, Mathieu Morlon, and 3
others. 2025. Smollm2: When smol goes big — data-
centric training of a small language model. Preprint,
arXiv:2502.02737.

Guoqing Zheng Shweti Mahajan Dany Rouhana An-
dres Codas Yadong Lu Wei-ge Chen Olga Vrous-
gos Corby Rosset Fillipe Silva Hamed Khanpour
Yash Lara Ahmed Awadallah Arindam Mitra, Lu-
ciano Del Corro. 2024. Agentinstruct: Toward
generative teaching with agentic flows. Preprint,
arXiv:2407.03502.

Kola Ayonrinde. 2024. Adaptive sparse allocation with
mutual choice feature choice sparse autoencoders.
Preprint, arXiv:2411.02124.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
2013. Estimating or propagating gradients through
stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surpris-
ing difficulty of natural yes/no questions. Preprint,
arXiv:1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
Preprint, arXiv:1803.05457.

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X.
Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li,
Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui,
and Wenfeng Liang. 2024. Deepseekmoe: Towards
ultimate expert specialization in mixture-of-experts
language models. Preprint, arXiv:2401.06066.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob

Uszkoreit, and Neil Houlsby. 2021. An image
is worth 16x16 words: Transformers for image
recognition at scale. Preprint, arXiv:2010.11929.

Nathan Elazar and Kerry Taylor. 2022. Implicit mixture
of interpretable experts for global and local inter-
pretability. Preprint, arXiv:2212.00471.

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel
Goh, Rajan Troll, Alec Radford, Ilya Sutskever, Jan
Leike, and Jeffrey Wu. 2024. Scaling and evaluating
sparse autoencoders. Preprint, arXiv:2406.04093.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, and 542 others. 2024. The llama 3 herd of
models. Preprint, arXiv:2407.21783.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. Preprint, arXiv:2009.03300.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network.
Preprint, arXiv:1503.02531.

Donghyun Lee, Je-Yong Lee, Genghan Zhang,
Mo Tiwari, and Azalia Mirhoseini. 2024. Cats:
Contextually-aware thresholding for sparsity in large
language models. Preprint, arXiv:2404.08763.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,
Yuandong Tian, Christopher Re, and Beidi Chen.
2023. Deja vu: Contextual sparsity for efficient llms
at inference time. Preprint, arXiv:2310.17157.

Seyed Iman Mirzadeh, Keivan Alizadeh-Vahid, Sachin
Mehta, Carlo C del Mundo, Oncel Tuzel, Golnoosh
Samei, Mohammad Rastegari, and Mehrdad Fara-
jtabar. 2024. ReLU strikes back: Exploiting activa-
tion sparsity in large language models. In The Twelfth
International Conference on Learning Representa-
tions.

Leandro Giusti Mugnaini, Bruno Lopes Yamamoto, Lu-
cas Lauton de Alcantara, Victor Zacarias, Edson Bol-
lis, Lucas Pellicer, Anna Helena Reali Costa, and Ar-
tur Jordao. 2025. Efficient llms with amp: Attention
heads and mlp pruning. Preprint, arXiv:2504.21174.

Quang Pham, Giang Do, Huy Nguyen, TrungTin
Nguyen, Chenghao Liu, Mina Sartipi, Binh T.
Nguyen, Savitha Ramasamy, Xiaoli Li, Steven Hoi,
and Nhat Ho. 2024. Competesmoe — effective train-
ing of sparse mixture of experts via competition.
Preprint, arXiv:2402.02526.

Senthooran Rajamanoharan, Tom Lieberum, Nicolas
Sonnerat, Arthur Conmy, Vikrant Varma, Janos

https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2407.03502
https://arxiv.org/abs/2407.03502
https://arxiv.org/abs/2407.03502
https://arxiv.org/abs/2411.02124
https://arxiv.org/abs/2411.02124
https://arxiv.org/abs/2411.02124
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2212.00471
https://arxiv.org/abs/2212.00471
https://arxiv.org/abs/2212.00471
https://arxiv.org/abs/2212.00471
https://arxiv.org/abs/2212.00471
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2404.08763
https://arxiv.org/abs/2404.08763
https://arxiv.org/abs/2404.08763
https://arxiv.org/abs/2404.08763
https://arxiv.org/abs/2404.08763
https://arxiv.org/abs/2310.17157
https://arxiv.org/abs/2310.17157
https://arxiv.org/abs/2310.17157
https://openreview.net/forum?id=osoWxY8q2E
https://openreview.net/forum?id=osoWxY8q2E
https://openreview.net/forum?id=osoWxY8q2E
https://arxiv.org/abs/2504.21174
https://arxiv.org/abs/2504.21174
https://arxiv.org/abs/2504.21174
https://arxiv.org/abs/2402.02526
https://arxiv.org/abs/2402.02526
https://arxiv.org/abs/2402.02526

Kramdr, and Neel Nanda. 2024. Jumping ahead: Im-
proving reconstruction fidelity with jumprelu sparse
autoencoders. Preprint, arXiv:2407.14435.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2019. Winogrande: An adver-
sarial winograd schema challenge at scale. Preprint,
arXiv:1907.10641.

Noam Shazeer. 2020. Glu variants improve transformer.
Preprint, arXiv:2002.05202.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. 2017. Outrageously large neural net-
works: The sparsely-gated mixture-of-experts layer.
Preprint, arXiv:1701.06538.

Teknium. 2023. Openhermes 2.5: An open dataset of
synthetic data for generalist 1lm assistants.

Hongyu Wang, Shuming Ma, Ruiping Wang, and
Furu Wei. 2024. Q-sparse: All large language
models can be fully sparsely-activated. Preprint,
arXiv:2407.10969.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
In Proceedings of the 3rd Workshop on Noisy User-
generated Text, pages 94-106, Copenhagen, Den-
mark. Association for Computational Linguistics.

Taigiang Wu, Chaofan Tao, Jiahao Wang, Runming
Yang, Zhe Zhao, and Ngai Wong. 2024. Re-
thinking kullback-leibler divergence in knowledge
distillation for large language models. Preprint,
arXiv:2404.02657.

Weizhe Yuan, Jane Yu, Song Jiang, Karthik Padthe,
Yang Li, Dong Wang, Ilia Kulikov, Kyunghyun Cho,
Yuandong Tian, Jason E Weston, and Xian Li. 2025.
Naturalreasoning: Reasoning in the wild with 2.8m
challenging questions. Preprint, arXiv:2502.13124.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can
a machine really finish your sentence? Preprint,
arXiv:1905.07830.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle
Li, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zhuohan Li, Zi Lin, Eric. P Xing, Joseph E. Gonza-
lez, Ion Stoica, and Hao Zhang. 2023. Lmsys-chat-
Im: A large-scale real-world llm conversation dataset.
Preprint, arXiv:2309.11998.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yan-
ping Huang, Vincent Zhao, Andrew Dai, Zhifeng
Chen, Quoc Le, and James Laudon. 2022. Mixture-
of-experts with expert choice routing. Preprint,
arXiv:2202.09368.

10

Setting Value
Base model Llama-3.2-1B-Instruct
Max sequence length 1024
FRR target 6
FLOPs warmup length 6000 steps
Learning rate schedule 7000 steps
Optimizer Adam
Betal 0.9
Beta2 0.95
Weight Decay 0.01
Baist 0.99
Qe 0.1
Mo 10.0
AFLOPs 1.0

Table 4: Hyperparameter settings for the default model

A Hyperparameters

The hyperparameters for our training run are pre-
sented in Table 4. Note that the default training
mode had a FLOP warmup, had normalization en-
abled and placed a limit on the FLOPs improve-
ment allowed for the LM Head. These settings
were turned off, one at a time, to conduct ablation
settings (see subsection 4.2).

B Training Data

The training data used in our distillation process is
listed below:
 OpenHermes-2.5 Training Data* (Teknium,
2023)
NaturalReasoning Dataset® (Yuan et al., 2025)
SmolTalk Dataset® (Allal et al., 2025)
Orca AgentInstruct-1M-v17 (Arindam Mitra,
2024)
LMSYS-Chat-1M Dataset® (Zheng et al.,
2023)
MMLU training split
(Hendrycks et al., 2021)
* ARC training split (repeated 5x) (Clark et al.,
2018)
* WinoGrande training split (repeated 5x) (Sak-
aguchi et al., 2019)
All data sequences were converted to the stan-
dard chat format used by Llama-3.2-1B-Instruct,
then filtered for a maximum total sequence length

(repeated 5x)

*teknium/OpenHermes-2.5
>facebook/natural_reasoning
®HuggingFaceTB/smoltalk
"microsoft/orca-agentinstruct-1M-v1
8Imsys/Imsys-chat-1m

https://arxiv.org/abs/2407.14435
https://arxiv.org/abs/2407.14435
https://arxiv.org/abs/2407.14435
https://arxiv.org/abs/2407.14435
https://arxiv.org/abs/2407.14435
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://arxiv.org/abs/2407.10969
https://arxiv.org/abs/2407.10969
https://arxiv.org/abs/2407.10969
https://doi.org/10.18653/v1/W17-4413
https://arxiv.org/abs/2404.02657
https://arxiv.org/abs/2404.02657
https://arxiv.org/abs/2404.02657
https://arxiv.org/abs/2404.02657
https://arxiv.org/abs/2404.02657
https://arxiv.org/abs/2502.13124
https://arxiv.org/abs/2502.13124
https://arxiv.org/abs/2502.13124
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/2309.11998
https://arxiv.org/abs/2309.11998
https://arxiv.org/abs/2309.11998
https://arxiv.org/abs/2202.09368
https://arxiv.org/abs/2202.09368
https://arxiv.org/abs/2202.09368

of 1024. We also packed shorter sequences together
to increase training efficiency, and used attention
masking to prevent interactions between packed
sequences.

11

	Introduction
	Related Work
	Activation Sparsity
	Mixture of Experts

	Sparse Autoencoders

	Methods
	Granular Sparsity
	Sparsity Thresholds
	Learning Thresholds
	Normalization
	Straight-Through Estimation
	Controlling Sparsity
	Feed-Forward Network Modifications
	Model Distillation

	Experiments
	Setup
	Ablation Studies
	Results

	Discussion
	Sparsity Patterns
	Variable Compute Budgets
	Effects of Hyperparameters

	Future Work
	Ethical Consideration & Potential Risks
	Hyperparameters
	Training Data

