
Compute Where It Counts: Adaptive Compute Allocation for Large
Language Models via Learned Granular Sparsity

Anonymous ACL submission

Abstract001

The inference of Large Language Models002
(LLMs) requires massive amounts of compu-003
tation. Sparsity-aware inference pipelines can004
alleviate this cost by reducing the number of005
parameters used in each forward pass. We in-006
troduce “granular sparsity”, a novel method for007
reducing compute requirements. By decompos-008
ing matrix columns, the standard unit of spar-009
sity, into smaller stripes, we create a flexible010
method of conditional computation that is more011
expressive than existing sparsity strategies.012

Furthermore, we introduce a novel method for013
learning and controlling sparsity, which is in-014
spired by sparse autoencoders. Notably, our015
method allows the model to designate differ-016
ent levels of sparsity to different input and lay-017
ers. We validate our methods by distilling 2-6x018
more compute-efficient sparse language mod-019
els from Llama 3.2 1B. Interestingly, we show020
evidence that our model allocates more com-021
putation to answering questions that humans022
deem more difficult.023

1 Introduction024

Large Language Models (LLMs) have revolution-025

ized the field of machine learning, and have been026

scaled to unprecedented size and training costs. As027

a result, large compute budgets are now allocated028

for inference, in addition to training. To minimize029

these impacts, a great deal of recent research has030

been devoted to improving LLM inference effi-031

ciency. Approaches include Mixture of Experts032

(MoE) models, model distillation, quantization,033

and sparsification.034

Most if not all of these techniques allocate a035

uniform number of active parameters or FLOPs036

(floating-point operations) towards ingesting and037

generating tokens. In contrast, we believe that cer-038

tain tasks and sequences are fundamentally more039

or less “challenging” and should therefore receive040

compute budget allocations to match.041

In this paper, we introduce the granular sparsity 042

operation as a more expressive alternative to the 043

commonly used column sparsity pattern (Lee et al., 044

2024). Furthermore, we demonstrate a method 045

to train models that dynamically allocate different 046

amounts of compute for different tokens and dif- 047

ferent layers. To do this, we directly learn sparsity 048

thresholds and include a sparsity penalty in the loss 049

function. 050

We convert and distill a Llama 3.2 1B Instruct 051

model (Grattafiori et al., 2024) into “granular” mod- 052

els that consume 2x-6x fewer FLOPs per token. 053

Examining the FLOPs assigned by the “granular” 054

models to benchmark tasks reveals that these mod- 055

els naturally allocate less compute to “easier” to- 056

kens (such as role tokens, filler words, system 057

prompt) and sequences (such as questions from 058

ARC-Easy vs ARC-Challenge (Clark et al., 2018)). 059

2 Related Work 060

2.1 Activation Sparsity 061

Relufication (Mirzadeh et al., 2024) involves replac- 062

ing pretrained LLM activation functions with Re- 063

LUs and inserting ReLUs elsewhere in the model. 064

After finetuning to recover performance, Relufica- 065

tion can reduce FLOP counts by up to 50% with 066

almost no degradation. Deja Vu (Liu et al., 2023) 067

predicts sparsity on the fly by training small auxil- 068

iary MLPs. Q-Sparse (Wang et al., 2024) discards 069

all but the top-K largest channels of input vectors 070

when computing linear layers. They demonstrate 071

better performance compared to a dense model with 072

the same amount of compute, and also show that 073

sparsity degrades performance less on larger mod- 074

els. Most similar to our work is CATS (Lee et al., 075

2024), which uses fixed thresholds to determine 076

sparsity. 077

1

2.1.1 Mixture of Experts078

The Mixture of Experts (MoE) conditional com-079

puting paradigm activates certain sections of the080

neural network ("experts") to reduce the active pa-081

rameter count. Unlike activation sparsity methods,082

MoE architectures typically use a learned routing083

mechanism to choose which experts to activate.084

Sparsely-Gated Mixture-of-Experts (Shazeer et al.,085

2017) proposed a gating network that incentivizes086

sparse, yet balanced, expert selection for language087

modeling and machine translation. DeepSeekMoE088

(Dai et al., 2024) demonstrated that combinatorial089

expert selection with a larger number of experts090

leads to better performance. Expert Choice Rout-091

ing (Zhou et al., 2022) demonstrates that higher092

performance can be achieved if different tokens093

can receive different amounts of compute. Com-094

peteSMoE (Pham et al., 2024) demonstrates that095

choosing the experts with the largest output magni-096

tude is an effective routing strategy.097

2.2 Sparse Autoencoders098

Sparse Autoencoders (SAEs) can faithfully recon-099

struct the hidden state of a neural network while100

activating a very small percentage of their features.101

Variants include top-k SAEs (Gao et al., 2024) that102

explicitly keep only the k largest activations, and103

JumpReLU (Rajamanoharan et al., 2024) SAEs104

that pass activations features through a ReLU ac-105

tivation and keep only the activations that exceed106

a learned threshold. Notably, JumpReLU makes107

sparsity learnable, and allows different numbers of108

features to activate for different examples. Other109

work (Ayonrinde, 2024) has also shown that re-110

construction fidelity is improved when different111

numbers of features can be activated for different112

tokens.113

3 Methods114

3.1 Granular Sparsity115

Existing sparsity methods (Mirzadeh et al., 2024;116

Wang et al., 2024; Lee et al., 2024) exploit column117

sparsity (sometimes transposed and described as118

row sparsity) in matrix multiplications: when an119

input vector has an element that is exactly zero, the120

computation for the corresponding matrix column121

can be skipped. Here, a column is either entirely122

used or entirely unused. Drawing from the insight123

of DeepSeekMoE (Dai et al., 2024) that more con-124

ditional computation combinations leads to better125

performance, we create a more expressive spar-126

Figure 1: Given a 4x4 matrix, using column sparsity
results in 16 configurations. Combining contiguous
sets of two rows into stripes where each stripe can be
independently controlled results in significantly more
configurations.

Figure 2: For each input X we multiply by a masked
version of the weights. The mask is created by checking
if a channel of x is between the thresholds and thus
a zeroed region. These thresholds are parameterized
along each input channel and repeated in groups (stripes)
along each output channel.
Repetition along output channels is important because
it allows us to avoid multiple multiply adds for only one
mask check for the whole region.

sity mechanism by breaking each column into a 127

set of stripes - with each stripe being activated in- 128

dividually. This greatly increases the number of 129

achievable sparsity configurations (see Figure 1). 130

Formally, consider the multiplication of a matrix 131

W ∈ Rm×n with the vector x ∈ Rn, resulting in 132

the vector y ∈ Rm. 133

y := Wx 134

This operation can be broken into the sum of the 135

column vectors of W (with vi denoting the i-th 136

column of W), weighted by the elements xi of x: 137

y =
n∑

i=1

xivi 138

2

Standard column-wise sparse matrix multiplication,139

which we denote as SMM(x,W,M), uses a mask140

M ∈ {0, 1}n to zero out some elements of x, so141

that only the remaining elements are required for142

the matrix multiplication. We use the set SM =143

{1 ≤ i ≤ n | Mi = 1} to denote the set of indices144

where the elements of x are not zero.145

ysparse = SMM(x,W,M) :=

n∑
i=1

Mixivi146

=
∑
i∈SM

xivi147

In our method, we partition the vector y148

into k equally sized stripes, such that y =149

[y(1), y(2), ..., y(k)]. We similarly partition the150

column vectors of vi of W such that vi =151

[v
(1)
i , v

(2)
i , ..., v

(k)
i]. With some abuse of notation,152

we use Ξ as a concatenation analogue of the sum-153

mation operator
∑

, such that y = Ξk
r=1y

(r). This154

means that the original matrix multiplication can155

be written as:156

y = Ξk
r=1

n∑
i=1

xiv
(r)
i157

Our granular sparsity operation, which we denote158

as GMM(x,W,G), uses a mask G ∈ {0, 1}k×n159

that zeroes out some of the stripes in W , as shown160

in Figure 2. We define SG = {(r, i) : 1 ≤ r ≤161

k, 1 ≤ i ≤ n | Gr,i = 1} to be the set of stripe162

indices that are not zeroed out.163

ygranular = GMM(x,W,G) := Ξk
r=1

n∑
i=1

Gr,ixiv
(r)
i164

= Ξk
r=1

∑
(r,i)∈SG

xiv
(r)
i165

Note that when k = 1, granular matrix multiplica-166

tion is the same as standard column sparsity.167

3.2 Sparsity Thresholds168

We use a different mask G for each input vector x169

(a strategy known as contextual sparsity) (Liu et al.,170

2023). To determine the G, we use the magnitudes171

of each element in x. Specifically, we learn a grid172

of thesholds θ ∈ Rk×n
+ such that Gr,i is 1 if and173

only if xi has have a magnitude of at least θr,i.174

We define this relation using the Heaviside step175

function H(z).176

H(z) :=

{
1 z ≥ 0

0 z < 0
177

Gr,i = H(|xi| − θr,i)178

We denote granular matrix multiplication parame- 179

terized by thresholds with GMM(x,W, θ): 180

ygranular = GMM(x,W ; θ) 181

:= Ξk
r=1

n∑
i=1

H(|xi| − θr,i) xiv
(r)
i 182

We initialize θ to zero at the start of training. Fur- 183

thermore, to prevent θ from becoming negative, we 184

set θ = max(0, θ) after every parameter update. Fi- 185

nally, we found that θ benefited from a significantly 186

higher learning rate than other parameters. We set 187

the learning rate of θ equal to the base learning rate 188

multiplied by ηθ
√
n, where ηθ is a hyperparameter. 189

3.3 Learning Thresholds 190

Previous works that use thresholds to determine 191

contextual sparsity masks have often relied on 192

heuristics to determine the threshold values (Lee 193

et al., 2024). Instead, we seek better optimization 194

be directly learning the thresholds. Unfortunately, 195

H(z) is not differentiable. We therefore build on 196

the ideas introduced in JumpReLU (Rajamanoha- 197

ran et al., 2024) to construct a straight-through- 198

estimator (Bengio et al., 2013) with a pseudo- 199

derivative that approximates the true derivative. 200

This pseudo-derivative is defined as follows, with 201

K representing a kernel function and ϵ representing 202

a tunable bandwidth: 203

∂

∂z
H(z) :=

1

ϵ
K
(z
ϵ

)
204

For our kernel function K, we use the rectangle 205

function seen in JumpReLU: 206

K(z) := H
(
z − 1

2

)
−H

(
z +

1

2

)
207

When calculating either ∂
∂xi

Gr,i or ∂
∂θr,i

Gr,i we set 208

the corresponding ϵi equal to the batch-wise stan- 209

dard deviation of xi (which does not receive gradi- 210

ents), scaled by a constant uniform hyperparameter 211

αϵ. 212

ϵi := αϵstd(xi) 213

For a more detailed analysis of this gradient esti- 214

mator, we refer readers to the JumpReLU paper 215

(Rajamanoharan et al., 2024). 216

3.4 Normalization 217

When initializing from a pre-trained network, we 218

found that the batch-wise scales and offsets of xi 219

3

values can vary throughout the network, making it220

difficult to tune hyperparameters. To remedy this,221

we whiten x before it enters the matrix multiplica-222

tion operation. Concretely, for a batch of x vectors,223

we calculate the batch-wise mean x̄ ∈ Rn and stan-224

dard deviation σ(x) ∈ Rn. Then, we then perform225

the following:226

ygranular = GMM
(
x− x̄,W ; θ ⊙ σ(x)

)
+Wx̄227

Note that when θ is composed of zeroes, this228

whitening procedure does not effect the value of229

ysparse. To increase training stability, we track x̄230

and σ(x) on a rolling basis. For this, the hyper-231

parameter βdist is used to compute an exponential232

moving average. At inference time the running x̄233

and σ(x) values from the last step of training are234

used.235

3.5 Straight-Through Estimation236

Previous work (Wang et al., 2024) shows that237

sparse models can benefit from using straight-238

through estimators during training. In our case,239

that means taking the gradients of x as if there240

was no sparsity. Specifically, we use the following241

definition for the gradients of x:242

∇x ygranular := W⊤243

Although this modification obviously leads to244

biased gradients, we theorize that this estimator245

improves performance by removing the variance246

imparted on the grads when the values of G are247

changing frequently. The STE could also fix the248

vanishing gradients associated with high sparsity,249

as postulated by Q-Sparse (Wang et al., 2024).250

The gradients of θ and W are left unchanged.251

3.6 Controlling Sparsity252

A key advantage of the learned threshold scheme253

is that we can control the sparsity of the model254

using a loss function. For this, we first calculate255

the number of floating point operations (FLOPs) to256

compute GMM(x,W ; θ), which is given by:257

FLOPs(x,W,G) := m

k
||G||1258

We then define FLOPs(B) to represent the num-259

ber of operations required to operate on a batch260

B, FLOPsbase(B) to represent the number of oper-261

ations required if we did not have sparsity, and262

FLOPstarget(B) to represent the desired FLOP263

count. Finally, we define the Flop Reduction Ratio264

(FRR) to be the ratio between the base FLOP count 265

and the sparse FLOP count: 266

FRR(B) :=
FLOPsbase(B)

FLOPs(B)
267

FRRtarget(B) :=
FLOPsbase(B)

FLOPstarget(B)
268

269

Our loss is then the following: 270

LFLOPs =
[
min

(
FRR(B)− FRRtarget(B), 0

)]2
271

This loss was chosen because it gives us precise 272

control over the desired compute costs, and gives 273

us stable performance during training. Importantly, 274

we found it important to include a warmup phase 275

at the start of training where FLOPstarget(B) is in- 276

crementally lowered. For this, we linearly increase 277

FRRtarget(B) from a starting value, usually 1.5, to 278

our final target value. 279

We also found it necessary to regulate the FLOP 280

costs of the language modeling head. If left 281

unchecked, the sparsity of stripes corresponding to 282

infrequent tokens would approach zero. Therefore, 283

we detach the gradients leading to the FLOP calcu- 284

lation of the head once its FRR reaches a set value, 285

usually 10. 286

3.7 Feed-Forward Network Modifications 287

Previous works have found that the intermediate 288

activations of the feed-forward blocks exhibit nat- 289

ural sparsity (Mirzadeh et al., 2024). To leverage 290

this, we slightly modify our granular sparsity sys- 291

tem for use in the feed-forward blocks. The Llama 292

3 suite of models uses gated linear units (GLU) 293

(Shazeer, 2020) as their feedforward design. These 294

are parameterized by a gate matrix Wgate ∈ Rn×d, 295

an up matrix Wup ∈ Rn×d, and a down matrix 296

Wdown ∈ Rd×n: 297

a = silu(Wgatex) 298

yGLU = Wdown

(
Wup ⊙ a

)
299

In our method, we compute Wgatex with the stan- 300

dard granular sparsity method. Then, we use our 301

learned threshold method to compute M ∈ {0, 1}d 302

based on the magnitudes of silu(Wgatex). We use 303

this mask as follows: 304

a = M⊙ silu
(
GMM(x,Wgate,G)

)
305

yGLU, granular = Wdown

(
Wup ⊙ a

)
306

4

When the operations rendered unnecessary by the307

mask are filtered out, the FLOP cost of this opera-308

tion is then:309

FLOPs(G,M) =
d

k
||G||1 + 2n||M||1310

3.8 Model Distillation311

To efficiently train our sparse models, we use312

knowledge distillation (Hinton et al., 2015) with a313

teacher network (usually the same model that was314

used to initialize the sparse model’s parameters).315

For our distillation loss, we use a combination of316

the forward KL divergence (FKL) and the reverse317

KL divergence (RKL), which has been shown to318

work better than either divergence individually (Wu319

et al., 2024). For a sequence of length T , this gives320

us:321

FKL :=

T∑
t=1

KL
(
pteacher(yt|y<t), pstudent(yt|y<t)

)
322

RKL :=
T∑
t=1

KL
(
pstudent(yt|y<t), pteacher(yt|y<t)

)
323

Ldistill :=
1

2

(
FKL + RKL

)
324

Our total loss is a weighted combination of our325

distillation loss and our FLOP loss described in326

subsection 3.6:327

L = Ldistill + λFLOPsLFLOPs328

4 Experiments329

4.1 Setup330

We tested our methods with the Llama-3.2-1B-331

Instruct 1 model. This model (henceforth referred332

to as the “base” model) was used for both the333

teacher and the initialization of the student. We334

used the AdamW optimizer. Training was con-335

ducted over approximately 800M tokens, taking 48336

hours on a cluster of 8 H100 GPUs (for a total of337

384 GPU hours). Details of our training data can be338

found in Appendix A and detailed hyperparameters339

can be found in Appendix B.340

4.2 Ablation Studies341

To determine the impact of design decisions made342

in this work, we perform four ablation experiments.343

First, we set the number of stripes to 1 (alterna-344

tively, this ablation can be thought of as standard345

1unsloth/Llama-3.2-1B-Instruct

Figure 3: As the FRR target of the training run is in-
creased, the FKL between the thresholded model’s logits
and the teacher logits increase.

column sparsity). Second, we remove the gradual 346

warmup to our target FLOPs ratio (this means the 347

model is trained to obtain an 6x FLOP reduction 348

on the very first training step). Third, we remove 349

the normalization described above. In the fourth 350

ablation, we remove the limit on FRR for the lan- 351

guage modeling head. The performance of ablated 352

models is discussed in subsection 4.3. 353

4.3 Results 354

The performance of thresholded models with in- 355

creasing Flop Reduction Ratios (FRRs) on MMLU 356

(Hendrycks et al., 2021), ARC (Clark et al., 2018), 357

HellaSwag (Zellers et al., 2019), WinoGrande (Sak- 358

aguchi et al., 2019), BoolQ (Clark et al., 2019) and 359

SciQ (Welbl et al., 2017) is shown in Table 1. Ta- 360

ble 2 compares the performance of thresholded 361

models with state-of-the-art (fully activated) trans- 362

former models of similar size. All results are re- 363

ported from a single training and evaluation run. 364

Collectively, we observe a steady decrease in 365

performance across most benchmarks as the FRR 366

is increased. This is explained by the increasing 367

KL divergence between high FRR models and the 368

original model (Figure 3). Note that the stability of 369

performance on WinoGrande and BoolQ is because 370

the base model’s performance is close to random 371

choice. 372

The 2x and 6x FRR models perform similarly 373

to small transformer models in their compute 374

classes that have been trained from scratch (namely 375

SmolLM-360M2 and SmolLM-360M3). We note 376

that the FRR models outperform SmolLM models 377

2HuggingFaceTB/SmolLM-135M
3HuggingFaceTB/SmolLM-360M

5

Step 800, Flop Ratio 2

Step 6000, Flop Ratio 6

Compared

Figure 4: Activation frequencies of Wgate at 2x and 6x
FRR. The Wgates across layers are stacked vertically.
The rows of the matrices correspond to weight stripes.
The intensity of each column represents the frequency
that a input position passes the threshold for the column
(a darker column indicates lower frequency).
The "Compared" chart overlays the "Step 800" and
"Step 6000" charts to demonstrate how important fea-
tures (brighter columns) emerge early in training and
are magnified in relative importance over the training
run.

on MMLU, match on WinoGrande and underper-378

form on ARC/HellaSwag. We believe these differ-379

ences arise from differences in training data.380

Table 3 presents the performance of ablated mod-381

els (described in subsection 4.2) on MMLU and382

ARC. Removing the FRR warm-up and restrictions383

on the FRR of the language modeling head re-384

sults in immediate model collapse and performance385

equivalent to random choice.386

5 Discussion387

5.1 Sparsity Patterns388

Analyzing the activation frequencies across matri-389

ces and layers of the model reveals several inter-390

esting patterns about the structure of circuits and391

sparsity within our models.392

First, we observe particularly important channels393

in the residual stream. These are channels that394

activate for almost every input across many layers.395

They emerge very early (in as few as 100 training396

steps), and stay almost unchanged for the entirety397

of training. Figure 4 demonstrates this for the Wgate398

matrix. We believe that these channels may capture399

common knowledge, and serve a similar purpose 400

to the shared experts used by DeepSeekMoE (Dai 401

et al., 2024). 402

Next, we notice that among the Q, K, and V 403

attention matrices, activation of the V matrix is the 404

most dense, followed by K and O (Figure 5). Note 405

the dip in activation frequencies across matrices 406

from layers 8-14 followed by a slight rise in layers 407

15 and 16. 408

We find striking patterns in the activation fre- 409

quencies of the O attention matrix (Figure 6). Of- 410

ten, individual attention heads will have consis- 411

tently high or low activations across channels. We 412

hypothesize that the network could be learning to 413

implicitly "prune" unhelpful attention heads, sim- 414

ilar to previous work that reduces compute cost 415

by explicitly removing attention heads (Mugnaini 416

et al., 2025). 417

Figure 5: Activation frequency of different matrix types
across layers for a 6x FRR model. Note that FFN rep-
resents the Wup and Wdown matrices, while FFN GATE
represents the Wgate matrix.

Figure 6: The sparsity levels within O heads tend to be
similar across channels. Sometimes entire heads will be
always on or always off.
Note that unlike the QKV, UP, GATE, there are no pat-
terns across layers as the input to O is not the residual
stream.

As referenced earlier, we found an important pat- 418

tern in the sparsity of the language modeling head: 419

6

FRR Average MMLU ARC-C ARC-E Hellaswag WinoGrande BoolQ SciQ
1x 57.1 48.3 54.8 72.4 41.1 52.5 53.3 77.6
2x 54.5 43.6 47.5 66.8 38.8 51.9 60.1 72.6
3x 51.5 40.3 44.1 59.9 34.1 49.5 60.1 72.3
4x 48.4 37.9 38.6 57.5 33.4 50.3 55.3 65.5
5x 46.4 35.7 37.3 55.6 30.7 50.3 54.8 60.7
6x 44.0 33.8 32.1 49.8 29.4 53.0 53.6 56.4

Table 1: Model performance across benchmarks at different Flop Reduction Ratios. Note that the 1x FRR model is
simply the original model’s (unsloth/Llama-3.2-1B-Instruct) performance.

Model Type MMLU ARC Hellaswag WinoGrande
3x FRR (330M params) 40.3 44.1 34.1 49.5
SmolLM-360M 34.17 51.1 53.8 53.7
6x FRR (160M params) 33.76 32.08 29.39 53.02
SmolLM-135M 30.23 43.99 42.3 52.7

Table 2: Comparison of 3x and 6x FRR models and compute-equivalent small models. SmolLM performance is
self-reported.

stripes corresponding to earlier vocabulary tokens420

have higher activation frequencies. This is because421

the vocabulary of the Llama model family is im-422

plicitly sorted from high to low token frequency, so423

frequent tokens have more compute designated to424

them than infrequent tokens. This effect is so pro-425

nounced that without regularization, the network426

will eventually put nearly zero compute towards in-427

frequent tokens, leading to representation collapse.428

5.2 Variable Compute Budgets429

Our use of sparsity thresholds means that different430

tokens and different sequences can use different431

amounts of compute.432

Consider the FLOPs spent by the 6x FRR model433

on processing questions from the ARC-Easy vs434

ARC-Challenge dataset in Figure 7. The average435

FLOPs dedicated by the 6x FRR model to process-436

ing tokens of questions in the ARC-Easy and ARC-437

Challenge benchmarks follow similar distributions438

but with the Arc-Easy offset to the left indicating439

that a significant number of the ARC-Easy ques-440

tions were allocated less compute than for ARC-441

Challenge questions. As evidenced by the scores of442

the 6x FRR model on these benchmarks (Table 1),443

the ARC-Easy questions are indeed easier for the444

6x FRR model!445

We can also visualize the compute spent on indi-446

vidual tokens of a question-answer sequence. Fig-447

ure 8 demonstrates three common trends in com-448

pute allocation that we observe in general:449

• Punctuation and filler words such as “How-450

Figure 7: We calculate the FLOPs allocated to each
token in all of the questions of ARC-Easy and ARC-
Challenge. We ignore the system prompt and only con-
sider the tokens in the question and four options. These
values are averaged across tokens in a question and each
question is represented as a sample in the histogram
above. The model dedicates more compute to questions
from the ARC Challenge dataset compares to the ARC
Easy dataset.

Figure 8: Active parameter count allocation across dif-
ferent token positions in a prompt and generation pair.
The thickness of the font indicates the number of active
parameters (and thus the compute budgets) allocated to
different tokens (thicker text indicates more compute).
The text following the assistant role token was gener-
ated by a 6x FRR model.

7

ARC Scores (%)
FRR Baseline No Warmup No LMHead Limit No Normalization No Stripes

2x 47.5 22.4 29.8 41.3 31.2
3x 44.1 22.4 26.0 42.4 25.7
4x 38.5 22.4 25.7 37.3 24.7
5x 37.2 22.4 25.7 33.6 23.5
6x 32.1 22.4 25.7 29.1 21.2

MMLU Scores (%)
FRR Baseline No Warmup No LMHead Limit No Normalization No Stripes

2x 48.3 22.7 29.5 32.5 30.1
3x 43.6 22.6 24.9 29.8 24.9
4x 40.3 22.6 24.1 29.1 24.7
5x 35.7 21.0 24.1 26.2 25.6
6x 33.8 21.0 24.1 28.2 22.5

Table 3: ARC and MMLU Performance under different ablation settings across various FRR levels.

ever” are low budget.451

• Behavior on system prompt and sys-452

tem/user/assistant role tokens gets distilled453

into very few active parameters and thus454

receives a very low compute allocation.455

• Semantically quoting sections of user prompt456

such as “6 * 7” and “the color of the sky” uses457

fewer active parameters.458

5.3 Effects of Hyperparameters459

We found that performance was stable with respect460

to the bandwidth scale αϵ within a range of about461

0.05 to 0.25. However, values outside of this range462

caused significant training instability.463

Furthermore, the choice momentum parameter464

of running batch statistics βdist had very little im-465

pact on performance, with values tested in the range466

of 0.9 to 0.99.467

When calculating pseudo-derivatives, we found468

that other kernel functions besides the rectangle469

kernel described in subsection 3.3 gave similar per-470

formance.471

6 Future Work472

Achieving a theoretical FLOPs reduction is not di-473

rectly linked with practical CPU/GPU clock time474

reductions. For large stripe sizes which are mul-475

tiples of the SIMD size, acceleration of inference476

of CPU is straightforward (one can first compute477

the mask, then use it to skip multiply adds), but for478

GPU it remains less tractable.479

Our striping method groups output channels480

based on their order. However, outside of attention481

heads, there is no guarantee that adjacent channels482

are functionally similar. Therefore, when initializ- 483

ing a sparse model from a pretrained one, it may 484

be beneficial to reorder channels in order to form 485

semantic groupings. This idea has already seen suc- 486

cess in the realm of mixture-of-expert conversions 487

(Elazar and Taylor, 2022). 488

From Figure 3 we note that the KL divergence 489

between the base model and FRR models remains 490

stable between 2x and 4.5x FRR. It then rises above 491

4.5x FRR. We believe performance improvements 492

could be realized by modifying the FRR warmup 493

schedule to something other than the linear one 494

used here. 495

7 Ethical Consideration & Potential Risks 496

Since the patterns learned by granular sparsity are 497

dependent on training data distributions, during in- 498

ference the model could under-allocate compute 499

to tokens that are important but were underrepre- 500

sented during training). This may lead to lower 501

robustness or bias amplification for marginalized 502

dialects or identity groups. In addition, any effi- 503

ciency gains resulting from this technique could 504

larger-scale deployment of LLM inference for ma- 505

licious applications. 506

Limitations 507

The primary limitation of our work concerns the 508

scale of our experiments. We did not train models 509

larger than 1B parameters, and we did not train for 510

longer than 1B tokens. We believe that significantly 511

better benchmark performance could be achieved 512

with more training. Previous work (Wang et al., 513

2024) has also indicated that sparsity leads to less 514

8

performance degradation at larger scales, so our515

method be be more suitable for larger models than516

those tested here.517

Furthermore, we only tested our method on trans-518

former architectures and language modeling. The519

application to other models, such as such as vision520

transformers (Dosovitskiy et al., 2021) has not been521

explored.522

References523

Loubna Ben Allal, Anton Lozhkov, Elie Bak-524
ouch, Gabriel Martín Blázquez, Guilherme Penedo,525
Lewis Tunstall, Andrés Marafioti, Hynek Kydlíček,526
Agustín Piqueres Lajarín, Vaibhav Srivastav, Joshua527
Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clé-528
mentine Fourrier, Ben Burtenshaw, Hugo Larcher,529
Haojun Zhao, Cyril Zakka, Mathieu Morlon, and 3530
others. 2025. Smollm2: When smol goes big – data-531
centric training of a small language model. Preprint,532
arXiv:2502.02737.533

Guoqing Zheng Shweti Mahajan Dany Rouhana An-534
dres Codas Yadong Lu Wei-ge Chen Olga Vrous-535
gos Corby Rosset Fillipe Silva Hamed Khanpour536
Yash Lara Ahmed Awadallah Arindam Mitra, Lu-537
ciano Del Corro. 2024. Agentinstruct: Toward538
generative teaching with agentic flows. Preprint,539
arXiv:2407.03502.540

Kola Ayonrinde. 2024. Adaptive sparse allocation with541
mutual choice feature choice sparse autoencoders.542
Preprint, arXiv:2411.02124.543

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.544
2013. Estimating or propagating gradients through545
stochastic neurons for conditional computation.546
arXiv preprint arXiv:1308.3432.547

Christopher Clark, Kenton Lee, Ming-Wei Chang,548
Tom Kwiatkowski, Michael Collins, and Kristina549
Toutanova. 2019. Boolq: Exploring the surpris-550
ing difficulty of natural yes/no questions. Preprint,551
arXiv:1905.10044.552

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,553
Ashish Sabharwal, Carissa Schoenick, and Oyvind554
Tafjord. 2018. Think you have solved question555
answering? try arc, the ai2 reasoning challenge.556
Preprint, arXiv:1803.05457.557

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X.558
Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding559
Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li,560
Panpan Huang, Fuli Luo, Chong Ruan, Zhifang Sui,561
and Wenfeng Liang. 2024. Deepseekmoe: Towards562
ultimate expert specialization in mixture-of-experts563
language models. Preprint, arXiv:2401.06066.564

Alexey Dosovitskiy, Lucas Beyer, Alexander565
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,566
Thomas Unterthiner, Mostafa Dehghani, Matthias567
Minderer, Georg Heigold, Sylvain Gelly, Jakob568

Uszkoreit, and Neil Houlsby. 2021. An image 569
is worth 16x16 words: Transformers for image 570
recognition at scale. Preprint, arXiv:2010.11929. 571

Nathan Elazar and Kerry Taylor. 2022. Implicit mixture 572
of interpretable experts for global and local inter- 573
pretability. Preprint, arXiv:2212.00471. 574

Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel 575
Goh, Rajan Troll, Alec Radford, Ilya Sutskever, Jan 576
Leike, and Jeffrey Wu. 2024. Scaling and evaluating 577
sparse autoencoders. Preprint, arXiv:2406.04093. 578

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 579
Abhinav Pandey, Abhishek Kadian, Ahmad Al- 580
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel- 581
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh 582
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi- 583
tra, Archie Sravankumar, Artem Korenev, Arthur 584
Hinsvark, and 542 others. 2024. The llama 3 herd of 585
models. Preprint, arXiv:2407.21783. 586

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 587
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 588
2021. Measuring massive multitask language under- 589
standing. Preprint, arXiv:2009.03300. 590

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. 591
Distilling the knowledge in a neural network. 592
Preprint, arXiv:1503.02531. 593

Donghyun Lee, Je-Yong Lee, Genghan Zhang, 594
Mo Tiwari, and Azalia Mirhoseini. 2024. Cats: 595
Contextually-aware thresholding for sparsity in large 596
language models. Preprint, arXiv:2404.08763. 597

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang 598
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang, 599
Yuandong Tian, Christopher Re, and Beidi Chen. 600
2023. Deja vu: Contextual sparsity for efficient llms 601
at inference time. Preprint, arXiv:2310.17157. 602

Seyed Iman Mirzadeh, Keivan Alizadeh-Vahid, Sachin 603
Mehta, Carlo C del Mundo, Oncel Tuzel, Golnoosh 604
Samei, Mohammad Rastegari, and Mehrdad Fara- 605
jtabar. 2024. ReLU strikes back: Exploiting activa- 606
tion sparsity in large language models. In The Twelfth 607
International Conference on Learning Representa- 608
tions. 609

Leandro Giusti Mugnaini, Bruno Lopes Yamamoto, Lu- 610
cas Lauton de Alcantara, Victor Zacarias, Edson Bol- 611
lis, Lucas Pellicer, Anna Helena Reali Costa, and Ar- 612
tur Jordao. 2025. Efficient llms with amp: Attention 613
heads and mlp pruning. Preprint, arXiv:2504.21174. 614

Quang Pham, Giang Do, Huy Nguyen, TrungTin 615
Nguyen, Chenghao Liu, Mina Sartipi, Binh T. 616
Nguyen, Savitha Ramasamy, Xiaoli Li, Steven Hoi, 617
and Nhat Ho. 2024. Competesmoe – effective train- 618
ing of sparse mixture of experts via competition. 619
Preprint, arXiv:2402.02526. 620

Senthooran Rajamanoharan, Tom Lieberum, Nicolas 621
Sonnerat, Arthur Conmy, Vikrant Varma, János 622

9

https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2407.03502
https://arxiv.org/abs/2407.03502
https://arxiv.org/abs/2407.03502
https://arxiv.org/abs/2411.02124
https://arxiv.org/abs/2411.02124
https://arxiv.org/abs/2411.02124
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2401.06066
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2212.00471
https://arxiv.org/abs/2212.00471
https://arxiv.org/abs/2212.00471
https://arxiv.org/abs/2212.00471
https://arxiv.org/abs/2212.00471
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2406.04093
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2404.08763
https://arxiv.org/abs/2404.08763
https://arxiv.org/abs/2404.08763
https://arxiv.org/abs/2404.08763
https://arxiv.org/abs/2404.08763
https://arxiv.org/abs/2310.17157
https://arxiv.org/abs/2310.17157
https://arxiv.org/abs/2310.17157
https://openreview.net/forum?id=osoWxY8q2E
https://openreview.net/forum?id=osoWxY8q2E
https://openreview.net/forum?id=osoWxY8q2E
https://arxiv.org/abs/2504.21174
https://arxiv.org/abs/2504.21174
https://arxiv.org/abs/2504.21174
https://arxiv.org/abs/2402.02526
https://arxiv.org/abs/2402.02526
https://arxiv.org/abs/2402.02526

Kramár, and Neel Nanda. 2024. Jumping ahead: Im-623
proving reconstruction fidelity with jumprelu sparse624
autoencoders. Preprint, arXiv:2407.14435.625

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-626
ula, and Yejin Choi. 2019. Winogrande: An adver-627
sarial winograd schema challenge at scale. Preprint,628
arXiv:1907.10641.629

Noam Shazeer. 2020. Glu variants improve transformer.630
Preprint, arXiv:2002.05202.631

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,632
Andy Davis, Quoc Le, Geoffrey Hinton, and633
Jeff Dean. 2017. Outrageously large neural net-634
works: The sparsely-gated mixture-of-experts layer.635
Preprint, arXiv:1701.06538.636

Teknium. 2023. Openhermes 2.5: An open dataset of637
synthetic data for generalist llm assistants.638

Hongyu Wang, Shuming Ma, Ruiping Wang, and639
Furu Wei. 2024. Q-sparse: All large language640
models can be fully sparsely-activated. Preprint,641
arXiv:2407.10969.642

Johannes Welbl, Nelson F. Liu, and Matt Gardner. 2017.643
Crowdsourcing multiple choice science questions.644
In Proceedings of the 3rd Workshop on Noisy User-645
generated Text, pages 94–106, Copenhagen, Den-646
mark. Association for Computational Linguistics.647

Taiqiang Wu, Chaofan Tao, Jiahao Wang, Runming648
Yang, Zhe Zhao, and Ngai Wong. 2024. Re-649
thinking kullback-leibler divergence in knowledge650
distillation for large language models. Preprint,651
arXiv:2404.02657.652

Weizhe Yuan, Jane Yu, Song Jiang, Karthik Padthe,653
Yang Li, Dong Wang, Ilia Kulikov, Kyunghyun Cho,654
Yuandong Tian, Jason E Weston, and Xian Li. 2025.655
Naturalreasoning: Reasoning in the wild with 2.8m656
challenging questions. Preprint, arXiv:2502.13124.657

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali658
Farhadi, and Yejin Choi. 2019. Hellaswag: Can659
a machine really finish your sentence? Preprint,660
arXiv:1905.07830.661

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Tianle662
Li, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,663
Zhuohan Li, Zi Lin, Eric. P Xing, Joseph E. Gonza-664
lez, Ion Stoica, and Hao Zhang. 2023. Lmsys-chat-665
1m: A large-scale real-world llm conversation dataset.666
Preprint, arXiv:2309.11998.667

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yan-668
ping Huang, Vincent Zhao, Andrew Dai, Zhifeng669
Chen, Quoc Le, and James Laudon. 2022. Mixture-670
of-experts with expert choice routing. Preprint,671
arXiv:2202.09368.672

Setting Value
Base model Llama-3.2-1B-Instruct

Max sequence length 1024
FRR target 6

FLOPs warmup length 6000 steps
Learning rate schedule 7000 steps

Optimizer Adam
Beta1 0.9
Beta2 0.95

Weight Decay 0.01
βdist 0.99
αϵ 0.1
ηθ 10.0

λFLOPs 1.0

Table 4: Hyperparameter settings for the default model

A Hyperparameters 673

The hyperparameters for our training run are pre- 674

sented in Table 4. Note that the default training 675

mode had a FLOP warmup, had normalization en- 676

abled and placed a limit on the FLOPs improve- 677

ment allowed for the LM Head. These settings 678

were turned off, one at a time, to conduct ablation 679

settings (see subsection 4.2). 680

B Training Data 681

The training data used in our distillation process is 682

listed below: 683

• OpenHermes-2.5 Training Data4 (Teknium, 684

2023) 685

• NaturalReasoning Dataset5 (Yuan et al., 2025) 686

• SmolTalk Dataset6 (Allal et al., 2025) 687

• Orca AgentInstruct-1M-v17 (Arindam Mitra, 688

2024) 689

• LMSYS-Chat-1M Dataset8 (Zheng et al., 690

2023) 691

• MMLU training split (repeated 5×) 692

(Hendrycks et al., 2021) 693

• ARC training split (repeated 5×) (Clark et al., 694

2018) 695

• WinoGrande training split (repeated 5×) (Sak- 696

aguchi et al., 2019) 697

All data sequences were converted to the stan- 698

dard chat format used by Llama-3.2-1B-Instruct, 699

then filtered for a maximum total sequence length 700

4teknium/OpenHermes-2.5
5facebook/natural_reasoning
6HuggingFaceTB/smoltalk
7microsoft/orca-agentinstruct-1M-v1
8lmsys/lmsys-chat-1m

10

https://arxiv.org/abs/2407.14435
https://arxiv.org/abs/2407.14435
https://arxiv.org/abs/2407.14435
https://arxiv.org/abs/2407.14435
https://arxiv.org/abs/2407.14435
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538
https://arxiv.org/abs/1701.06538
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://arxiv.org/abs/2407.10969
https://arxiv.org/abs/2407.10969
https://arxiv.org/abs/2407.10969
https://doi.org/10.18653/v1/W17-4413
https://arxiv.org/abs/2404.02657
https://arxiv.org/abs/2404.02657
https://arxiv.org/abs/2404.02657
https://arxiv.org/abs/2404.02657
https://arxiv.org/abs/2404.02657
https://arxiv.org/abs/2502.13124
https://arxiv.org/abs/2502.13124
https://arxiv.org/abs/2502.13124
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/2309.11998
https://arxiv.org/abs/2309.11998
https://arxiv.org/abs/2309.11998
https://arxiv.org/abs/2202.09368
https://arxiv.org/abs/2202.09368
https://arxiv.org/abs/2202.09368

of 1024. We also packed shorter sequences together701

to increase training efficiency, and used attention702

masking to prevent interactions between packed703

sequences.704

11

	Introduction
	Related Work
	Activation Sparsity
	Mixture of Experts

	Sparse Autoencoders

	Methods
	Granular Sparsity
	Sparsity Thresholds
	Learning Thresholds
	Normalization
	Straight-Through Estimation
	Controlling Sparsity
	Feed-Forward Network Modifications
	Model Distillation

	Experiments
	Setup
	Ablation Studies
	Results

	Discussion
	Sparsity Patterns
	Variable Compute Budgets
	Effects of Hyperparameters

	Future Work
	Ethical Consideration & Potential Risks
	Hyperparameters
	Training Data

