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Abstract

Many recent advances in robotic manipulation have come001
through imitation learning, yet these rely largely on mimick-002
ing a particularly hard-to-acquire form of demonstrations:003
those collected on the same robot in the same room with004
the same objects as the trained policy must handle at test005
time. In contrast, large pre-recorded human video datasets006
demonstrating manipulation skills in-the-wild already exist,007
which contain valuable information for robots. Is it pos-008
sible to distill a repository of useful robotic skill policies009
out of such data without any additional requirements on010
robot-specific demonstrations or exploration? We present011
the first such system ZeroMimic, that generates immediately012
deployable image goal-conditioned skill policies for several013
common categories of manipulation tasks (opening, closing,014
pouring, pick&place, cutting, and stirring) each capable of015
acting upon diverse objects and across diverse unseen task016
setups. ZeroMimic is carefully designed to exploit recent017
advances in semantic and geometric visual understanding of018
human videos, together with modern grasp affordance detec-019
tors and imitation policy classes. After training ZeroMimic020
on the popular EpicKitchens dataset of ego-centric human021
videos, we evaluate its out-of-the-box performance in varied022
real-world and simulated kitchen settings with two different023
robot embodiments, demonstrating its impressive abilities024
to handle these varied tasks. To enable plug-and-play reuse025
of ZeroMimic policies on other task setups and robots, we026
release software and policy checkpoints of our skill policies.027

028

1. Introduction029

It is clear that animals and humans are able to observe third-030
person experiences to acquire functional sensorimotor skills,031
often “zero-shot” with limited or no need for additional prac-032
tice. For example, one can learn to cook pasta, use a wood033
lathe, plant a garden, or tie a necktie, with reasonable profi-034
ciency by watching how-to video demonstrations on the web.035
While “imitation learning” has also been instrumental in036
many recent successes for robotic manipulation [1–4], these037

robots largely rely on a much stronger kind of demonstration 038
— gathered by manually operating the very same robot in 039
the same small set of scenarios (scenes, viewpoints, objects, 040
lighting, background textures, and distractors) to perform 041
the task of interest. This is an immediate stumbling block 042
on the road to developing general-purpose robots: gathering 043
robot- and scenario-specific demonstrations scales poorly. 044

Learning robot skills from in-the-wild human videos of- 045
fers the enticing prospect that data would no longer be a 046
bottleneck: videos of humans demonstrating varied manipu- 047
lation tasks in diverse scenarios are already available on the 048
web, it is easy to gather many more if needed, and further, 049
the same videos could be re-used for many robots. However, 050
there are serious challenges. Robots differ from humans 051
in embodiments, action spaces, and hardware capabilities. 052
Individual web videos often do not conveniently present all 053
the details of how to perform a task (e.g. occlusions, out- 054
of-frame objects and actions, or shaky moving cameras). 055
Finally, the distribution of in-the-wild videos spans very 056
large variations that may be hard to handle. 057

We present an approach, ZeroMimic, that systematically 058
overcomes these challenges and distills in-the-wild egocen- 059
tric videos from EpicKitchens [5] into a repository of off-the- 060
shelf deployable image goal-conditioned robotic manipula- 061
tion skill policies that transfer across scenarios. Briefly, we 062
abstract the action spaces of humans and standard robot arms 063
with two-fingered grippers to permit coarse action transfer, 064
we exploit video activity understanding and pre-existing vi- 065
suomotor robot primitives such as grasping to transfer the 066
finer details of control, we exploit modern structure-from- 067
motion systems to maintain 3D maps of noisy and shaky 068
in-the-wild egocentric human videos, and demonstrate that 069
large policy classes can digest the diversity of web video 070
to learn useful behaviors. The resulting system empirically 071
demonstrates zero-shot robotic manipulation capabilities to 072
perform a wide range of skills with diverse objects. In sum- 073
mary, our contributions are: 074

1. We develop ZeroMimic, a system that distills robotic 075
manipulation skills from web videos that can be de- 076
ployed zero-shot in diverse everyday environments. 077

1



CVPR
#10

CVPR
#10

CVPR 2025 Submission #10. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 1: ZeroMimic distills robotic manipulation skills from egocentric web videos for zero-shot deployment across diverse real-world and
simulated environments, a variety of objects, and different robot embodiments.

Figure 2: Representative related work organized by Generality
of Source Human Videos and Level of Knowledge Transfer.
ZeroMimic learns diverse zero-shot policies from in-the-wild web
videos.

2. We evaluate ZeroMimic on 9 different skills and show078
that ZeroMimic achieves 71.0% out-of-the-box success079
rate in the real world, 73.8% success rate in simulation,080
can generalize to new objects unseen in our curated081
web video, and can be deployed across different robot082
embodiments.083

3. Our ablation studies reveal important lessons of what084
is important in learning and executing robotic skills085
purely from in-the-wild human videos.086

2. Related Work087

Popular recent approaches [1–3] for enabling robot manip-088
ulation often rely on costly high-quality in-domain robot089
demonstrations. Therefore, recent works in robot learn-090

ing have increasingly focused on leveraging unstructured 091
or out-of-domain data. Some works have demonstrated the 092
zero-shot capabilities of models trained on large robotics 093
datasets [6–14], but the curation of such datasets incurs a sig- 094
nificant cost. Some have exploited recent advances in VLMs, 095
trained on “web” data without any connection to robotics, 096
and directly elicit zero-shot robotic actions [15–21]. These 097
policies are limited by the lack of physical understanding 098
and slow inference speed of VLMs, as demonstrated by our 099
experiments in Section 4.4. Human web videos [5, 22–26], 100
due to their abundance, diversity, and rich information about 101
interactions, emerge as a promising source of data for robotic 102
skill acquisition. 103

Since generating robot policies from out-of-domain hu- 104
man videos directly is difficult, many works instead train 105
representations [27–29] (e.g. R3M [27]), rewards [30–33] 106
(e.g. VIP [31]), or affordances [34–60] (See Fig 2). Some 107
works [34–45] (e.g. MimicPlay [34], WHIRL [36], and 108
ATM [39]) explored learning afoordances from in-domain 109
human videos. Recent works [46–60] (e.g. VRB [53], 110
Track2Act [57], LAPA [60]) extended these approaches to 111
learning from in-the-wild human videos. Since these visual 112
representations, reward functions, and affordances are not ex- 113
plicitly actionable for robots, they still depend on in-domain 114
robot data to learn manipulation policies. 115

Very limited prior work [61–66] such as DITTO [61], 116
R+X [64] and OKAMI [65] has aimed to directly generate 117
policies from human videos without any in-domain data. 118
These methods typically require the distribution of human 119
demonstrations to be similar enough to the test-time robot 120
environment and assumes knowledge of ground truth camera 121
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and depth information, making them unsuitable for learning122
from diverse and unstructured web data. Some methods also123
rely on heuristic-based mappings from human hand poses124
to robot gripper actions during data collection [64] or have125
manually defined constraint formulations [66], limiting the126
range of demonstrations and tasks these methods can handle.127

As Figure 2 shows, to our knowledge, the only prior work128
that attempts zero-shot policies from truly in-the-wild videos129
is H2R [67], which learns plausible 3D hand trajectories130
from egocentric in-the-wild EpicKitchens [5] videos and131
retarget them to robot end effector for zero-shot deployment132
in real-world settings. We too train policies on EpicKitchens133
data, but with critical pre-processing steps that ground the134
data in 3D and generate higher quality policies. Further, we135
design a robust system that combines learned pre-contact136
interaction affordances and learned post-contact action poli-137
cies. As our experiments show, these method improvements138
translate to dramatic gains in the ability to generate func-139
tional out-of-the-box performance for manipulation skills in140
the real world.141

3. Method142

We focus on manipulation skills that permit decomposition143
into two phases: the grasping phase that consists of ap-144
proaching and grasping an object of interest appropriately145
for the target task, and the post-grasp phase which consists146
of a rigid manipulation of the object while stably held in the147
gripper. This encompasses such diverse skills as pick&place,148
slide opening and closing, hinge opening and closing, pour-149
ing, cutting, and stirring. ZeroMimic pretrains components150
specific to these two phases, as described in Sec 3.1 and 3.2151
before combining them, as in Figure 3. We focus on distill-152
ing human videos from EpicKitchens [5] into robotic skills.153
Pre-training on off-the-shelf human data naturally constrains154
our approach to be not tied to any specific robotic system155
design: we target static robot arms with 2-fingered grip-156
pers, observing the scene with an RGB-D camera from any157
egocentric-like vantage point of the robot workspace. See158
Appendix 6 for images and more details of our experiment159
setups.160

3.1. Human Affordance-Based Grasping161

For this phase, we use human videos to learn to identify the162
appropriate region of the scene to seek to execute a grasp163
in, i.e., affordance prediction. Subsequent to this, given that164
human videos are of limited use in selecting the grasp itself165
due the vastly different embodiment of the robot’s gripper166
and the human hand, we use an approach trained on robot167
data to identify suitable grasps for a 2-fingered gripper within168
that region, i.e. grasp selection.169

For affordance prediction, we use VRB [53] to generate a170
3D point of intended contact. VRB is pre-trained on EpicK-171
itchens [5]. It generates pixel-space grasp locations, given172

an RGB image and a task description in natural language, 173
e.g. “open drawer”. Next, to select a grasp close to this 174
chosen location, we use AnyGrasp [68], a widely used grasp 175
generation model pre-trained on robot data for our 2-fingered 176
robotic grippers. Once a grasp is chosen, we plan a linear 177
end-effector motion through free space to execute it. See Fig- 178
ure 3 for examples of intermediate outputs after each stage 179
of processing above, and the resulting grasp execution. 180

3.2. Human Movement-Based Post-Grasp Robot 181
Policy 182

Once the robot has grasped the object, it must decide what 183
6D end-effector trajectory to execute to accomplish the task. 184
ZeroMimic’s post-grasp module is an imitation policy that 185
distills this information from in-the-wild human videos. We 186
first extract human wrist trajectories grounded in world 3D 187
coordinates by reconstructing the hand pose and the ego- 188
centric camera, Given a skill, we take the corresponding 189
subset of the data and train a skill model to predict 6D wrist 190
trajectory. 191

Extracting Human Wrist Trajectories From Web Videos 192
To curate diverse and large-scale human behavior, we use 193
EpicKitchens [5], an in-the-wild egocentric vision dataset. 194
It contains 20M frames in 100 hours of daily activities in the 195
kitchen. To extract wrist trajectories from EpicKitchens, we 196
run HaMeR [69], a state-of-the-art pre-trained hand-tracking 197
model, to obtain 3D hand pose reconstruction. HaMeR out- 198
puts the locations and orientations of all hand joints relative 199
to a canonical hand, along with camera parameters corre- 200
sponding to a translation t ∈ R3. We use camera parameters 201
inferred through the COLMAP [70] structure-from-motion 202
algorithm, as provided in EPIC-Fields [71], to convert these 203
pixel-coordinate-based hand pose outputs into world 3-D 204
coordinates. We consider only the wrist joint, and the result 205
is 6D wrist trajectories {ht = (xt ,yt ,zt ,αt ,βt ,γt)}T

t=1 for a 206
T -frame clip that is expressed in the world coordinate. See 207
our website for videos of ZeroMimic’s hand reconstructions. 208

Policy Training, Execution, and Implementation Details 209
A major challenge for learning to predict trajectories from 210
web videos is the highly multi-modal nature of human 211
demonstrations – there are multiple ways to manipulate 212
objects in a scene given the same image observation. To 213
model this multi-modality, we use the recently popular ac- 214
tion chunking transformer (ACT) [1] policy class to learn a 215
generative model over action sequences. The input of our 216
model is the current image It , goal image Ig, and the cur- 217
rent wrist pose ht , and our model outputs future wrist poses 218
{hi}t+n+1

i=t+i , where n is the prediction chunk size. We use the 219
last frame in the task-relevant clip as the goal image. See 220
Figure 3 for an illustration. Since at test time, we perform 221
robot experiments with a static camera, we relieve the burden 222
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Figure 3: ZeroMimic is composed of the grasping phase and the post-grasp phase. The grasping phase (top) leverages human affordance-
based grasping to execute a task-relevant grasp. The post-grasp phase (bottom) is an imitation policy trained on web videos to predict 6D
wrist trajectories. We deploy this trained model directly on the robot.

of the model to predict camera parameters by transforming223
all current and future wrist poses into the current frame’s224
camera coordinate using the camera extrinsics of each frame.225
See Figure 4 for qualitative visualization of generated wrist226
trajectories on unseen human videos. We train one model227
for each skill, obtaining a set of 9 skill policies. Our model228
predicts relative 6D wrist poses with a chunk size of n = 10,229
and we discuss the impact of these choices in Section 4.2.230
We train each skill policy for 1000 epochs, which takes231
approximately 18 hours on an NVIDIA RTX 3090 GPU.232

Retargeting Human Wrist Policy to the Robot We de-233
ploy our trained post-grasp policies directly on the robot to234
generate 6D gripper trajectories (See Figure 3). We use a235
single image of a human achieving the desired outcome as236
the “goal image” for all trials of a task. In addition to the237
goal image, we provide the policy with the current RGB ob-238
servation and the current gripper pose in the camera’s frame.239
The model predicts 6D trajectories in the same camera frame,240
which is converted to the robot frame for execution. The241
robot executes all actions in a chunk before prompting the242
model for the next round of inference.243

(a) Open drawer (b) open cupboard

Figure 4: 6D wrist post-grasp policy outputs on unseen images.
The red, green, and blue arrows denote the x,y,z coordinates of the
wrist orientation in the camera frame.

4. Experiments 244

We evaluate ZeroMimic skill policies out-of-the-box on 245
a diverse set of real-world and simulation objects with 246
two different robot embodiments. See our website ze- 247
romimic.github.io/anonymous.html for videos. Our ex- 248
periments aim to answer the following questions: 249

1. How important is each component of ZeroMimic to its 250
eventual performance? 251

2. How well do ZeroMimic skill policies perform when 252
deployed zero-shot to perform varied skills in diverse 253
real-world and simulation environments? 254

3. How does ZeroMimic compare to other state-of-the-art 255
zero-shot robotic system? 256

4. What are the failure modes and causes of ZeroMimic? 257

4.1. Experiment Setup 258

We use the text annotations of EpicKitchens [5] to curate 259
human video data corresponding to each manipulation skill. 260
Having trained the 9 ZeroMimic skill policies on in-the-wild 261
human videos, we evaluate them on our robot in real-world 262
and simulation environments. Our real-world evaluation 263
spans 30 distinct scenarios across 18 object categories in 6 264
kitchen scenes. In simulation, we evaluate 4 skill policies, 265
randomizing kitchen scenes across trials. Figure 5 show the 266
results. See Appendix 7 for a detailed breakdown of skills, 267
robots, object categories, scenarios, and success rates. None 268
of the object instances or scenarios used in our experiments 269
feature in our training data. 270

Real-world experiment setup All real-world experiments 271
are performed in 3 different real kitchens on the UPenn 272
campus and two different robots, a Franka Emika Panda 273
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Figure 5: ZeroMimic Zero-Shot Performance Overview. ZeroMimic demonstrates strong generalization capabilities, achieving consistent
success across diverse tasks, robot embodiments, and both real-world and simulated environments. The evaluation spans 34 distinct scenarios
across 18 object categories in 7 kitchen scenes, highlighting the adaptability and robustness of the system. For a detailed breakdown of
performance by skills, robots, object categories, and scenarios, refer to Appendix 7.

arm and a Trossen Robotics WidowX 250 S arm. Before274
our evaluations, we position the camera and the robot at a275
camera angle roughly similar to the relative camera angle276
of the human hand appearing in egocentric videos: camera277
at human height, and gripper within human arm’s reach of278
the camera. We perform 10 trials with varying camera and279
robot positions to generally resemble a human’s egocentric280
viewpoint. The success of all experiments is determined281
by their consistency with the goal provided by the human282
goal image. Visualizations of the trial positions are avail-283
able on our website through an experiment time-lapse. See284
Appendix 6.1 for more details of our real-world experiment285
setup and images of our real kitchen scenes.286

Simulation experiment setup We conduct our simulation287
experiments in RoboCasa [72]. We evaluate 4 ZeroMimic288
skill policies, each across 20 randomized kitchen trials. For289
each trial, we vary the camera and robot positions, back-290
ground objects, and kitchen styles (e.g., textures, object291
placements). We select camera views most similar to a hu-292
man egocentric perspective. See Appendix 6.2 for more293
details of our simulation experiment setup and images of our294
simulated kitchen scenes.295

4.2. Contribution of Each System Component to296
ZeroMimic297

We first validate the design of the ZeroMimic procedure by298
measuring the importance of each of its components on two299
real-world tasks with the Franka robot: Open Drawer and300
Open Cupboard. To do this, we construct ablated variants of301
ZeroMimic that either drop a component or replace it with302
simpler alternatives. More details about the setup of these303
variants can be found in Appendix 8.304

Grasping Methods ZeroMimic employs the human inter- 305
action affordance provided VRB [53] to select which grasp 306
produced by AnyGrasp [68] to execute. We compare our 307
approach to two simpler alternatives: (1) selecting the best 308
grasp directly using AnyGrasp’s grasp score (Ours w/o in- 309
teraction affordance), as done in [73], and (2) moving the 310
end effector to the 2D contact point lifted to 3D with depth, 311
and close the gripper (Ours w/o grasp model), as done in 312
[53, 54]. The results in Table 1 indicate that ours is clearly 313
the best method. Ours w/o interaction affordance fails by 314
proposing grasps on irrelevant scene regions, while Ours 315
w/o grasp model struggles due to incorrect gripper orienta- 316
tions and imprecise contact predictions. 317

Grasping Task Ours Ours w/o
Affordance

Ours w/o
Grasp Model

Drawer Handle 8/10 0/10 0/10
Cupboard Handle 7/10 4/10 6/10

Table 1: Success rates for different grasping methods.

Wrist Post-Grasp Policy After grasping the object, we 318
deploy our 6D post-grasp policy to execute the task. H2R 319
[67] also trains 6D wrist post-grasp policy on web videos, 320
however the key difference is that it does not account for 321
the impact of camera motion on the human hand motions 322
detected in the video frames. We consider a strengthened 323
version of H2R (ours w/o SfM) by simply removing camera 324
extrinsics and intrinsics when processing our training data. 325
Next, VRB is trained on web videos to produce post-contact 326
trajectories only in terms of 2D pixel locations on the image, 327
rather than 6-DOF wrist trajectories. To execute it on the 328
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robot, we sample a target end-point depth at random and329
interpolate the trajectory while fixing the gripper orientation.330

We evaluate the task success rate of our model and two331
alternatives after a successful grasp, and the results in Ta-332
ble 2 show the superiority of our model, highlighting the333
importance of camera information from SfM and predict-334
ing dimensions beyond pixel coordinates. Both compared335
methods in this paragraph were designed as ablations of the336
post-contact wrist trajectory component of ZeroMimic; as337
such, they benefit from ZeroMimic’s robust grasping phase.338
Without this, they would struggle still further: H2R cannot339
execute grasps in the original paper, and VRB does not pro-340
vide grasp orientation even though it generates a contact341
point.342

Task Ours Ours w/o SfM VRB

Open drawer 10/10 4/10 2/10
Open cupboard 10/10 6/10 0/10

Table 2: Success rates for different post-grasp policies after a
successful grasp.

Additionally, to understand critical factors for predicting343
wrist trajectories from web videos, we evaluate several de-344
sign choices of the post-grasp module using teleoperated suc-345
cessful grasps. We find that ACT [1] and Diffusion Policy [2]346
policy architectures yield similar performance. Regarding347
action representation, relative actions in both translation and348
orientation significantly outperform absolute representations.349
Detailed results of these experiments are provided in Ap-350
pendix 9.351

4.3. ZeroMimic Zero-Shot Deployment Perfor-352
mance353

Having established the robustness of ZeroMimic’s system354
design above, we proceed to evaluate all 9 ZeroMimic skill355
policies zero-shot in varied real-world and simulated scenes356
with diverse objects and viewpoints. They achieve an im-357
pressive overall success rate of 71.9% in the real word with358
the Franka arm, 65.0% in the real world with the WidowX359
arm, and 73.8% in simulation. See Figure 5 for a breakdown360
of success rates by skills. These results indicate that Ze-361
roMimic is capable of distilling a diverse set of unique skills362
from web videos. The results are best viewed in the videos363
presented on our website.364

The slide closing/opening and hinge closing/opening365
skills require grasping the object handle and reasoning about366
the object articulation affordances. Articulated objects of-367
ten have handles of different shapes, sizes, and orientations,368
which our grasping module needs to appropriately adjust to.369
Furthermore, slide and hinge skills require different move-370
ments with respect to the object’s articulation axis: trans-371
lation and rotation, respectively. Hinge skills in particular372
require the model to determine if an object should be ma-373

nipulated clockwise or counterclockwise along the axis (e.g. 374
the left and right door of a cupboard). 375

For the picking and placing skills, ZeroMimic needs to 376
reason about the target object pose provided in the goal 377
image. Picking has the elevated complexity of grasping the 378
object first, resulting in worse performance than the placing 379
skill. 380

ZeroMimic is also able to learn to use tools and perform 381
pouring and cutting skills at a high level. Pouring requires 382
reasoning about the target pour location and subsequently 383
moving towards the location while rotating the object along 384
the correct axis. Similarly, cutting requires reasoning about 385
the cutting angle on the object given the initial knife pose and 386
the target object pose. Afterwards, the robot needs to rotate 387
the knife to align the edge and the object at the optimal angle 388
and perform a swift downward motion. Interestingly, we 389
observe that instead of always cutting straight down, which 390
may result in an undesired cut on the object (e.g. slicing a 391
vertically placed banana along its longer axis), our model is 392
aware of the relative placements between the knife and the 393
object and it learns to adjust its motion plan properly. 394

Stirring is arguably the hardest skill to learn since it re- 395
quires a particular set of motions where the translational 396
position remains roughly the same but the orientation contin- 397
uously moves in the same direction. Also, there is not much 398
information about the desired motions in the goal image. In 399
evaluation, ZeroMimic can rotate a ladle and stir solid food 400
objects as well as liquid in a container without excessive 401
translational movements. 402

Having been trained exclusively on in-the-wild human 403
videos, ZeroMimic demonstrates remarkable generalization 404
when deployed across object instances, categories, scenes, 405
and robot embodiments. Notably, it successfully executes 406
tasks involving object categories unseen in the human train- 407
ing data, such as Pour Salt from Spoon into Pan and Cut 408
Cake. ZeroMimic skill policies perform comparably on the 409
WidowX and Franka arms for most tasks, except for the stir- 410
ring skill, which is challenging due to the limited workspace 411
of the smaller WidowX robot. Additionally, ZeroMimic ex- 412
hibits robustness to the real-to-sim gap, with no significant 413
performance differences observed between real-world and 414
simulation experiments. 415

Task ZeroMimic ReKep [20]

Open Drawer 8/10 0/10
Close Drawer 6/10 6/10

Place Pasta Bag into Drawer 8/10 4/10
Pour Food from Bowl into Pan 8/10 0/10

Table 3: Success rates for different tasks using ZeroMimic and
ReKep.
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4.4. Comparison to Other Zero-Shot Robotic Sys-416
tem417

Concurrent work ReKep [20] optimizes keypoint-based con-418
straints generated by vision-language models (VLMs) to419
achieve zero-shot robotic behavior. Similar to ZeroMimic, it420
does not require task-specific training or environment mod-421
els. To compare ZeroMimic to ReKep, we perform real-422
world experiments on 4 tasks using the Franka robot in a423
kitchen environment (Figure 8a). The Open Drawer and424
Close Drawer tasks involve reasoning about the drawer’s425
movement and articulation. The Place Pasta Bag into426
Drawer task requires spatial reasoning to understand the427
relationships between objects. The Pour Food from Bowl428
into Pan task demands reasoning about both object rotation429
and spatial relations.430

Table 3 show the results. We observe that the failure431
cases of ReKep mostly stem from two issues: the vision432
module generates inaccurate keypoints or associates incor-433
rect keypoints with target objects, and the VLM generates434
incorrect keypoint-based constraints due to its limited spatial435
reasoning capabilities. For more information about our im-436
plementation of ReKep and a detailed analysis of its failure437
cases, see Appendix 10.438

4.5. ZeroMimic Failure Breakdown439

We investigate the system errors by examining the interme-440
diate outputs of various modules and manually recording the441
cause of failure for each unsuccessful trial and aggregating442
their likelihood. Out of 87 failure trials in our real-world443
experiments, 31.1% failed at the AnyGrasp stage, 24.1%444
failed at the VRB stage, and 44.8% failed at the post-grasp445
policy stage. We present failure analysis of each module446
below and several examples of these failures on our website.447

AnyGrasp. AnyGrasp is sensitive to point cloud sensing448
failures. We use the “neural” mode of Zed depth cameras449
for more accurate and smooth depth estimates; however,450
performance still degrades with small, reflective objects or451
under poor lighting conditions (e.g., small shiny drawer452
handles). Occasionally, AnyGrasp also generates incorrect453
or unreachable grasps.454

VRB. A common issue with VRB is its difficulty in pre-455
dicting appropriate contact locations on large furniture (e.g.456
cabinets, refrigerators) and opened articulated objects. Addi-457
tionally, since VRB internally relies on Grounded SAM [74]458
for language-based segmentation, segmentation errors can459
directly result in its failures.460

Post-grasp policy. The post-grasp policy is sometimes461
sensitive to camera-robot relative positional configurations,462
especially if they deviate significantly from an egocentric463
perspective, since the policy models are trained on egocen-464
tric human data. Additionally, action reconstructions from465
human videos are inherently noisy, causing difficulties with466
fine-grained tasks such as pouring from a spoon or cutting467

small food items. 468

5. Conclusions & Limitations 469

We have presented ZeroMimic, a first step towards distilling 470
zero-shot deployable a repertoire of robotic manipulation 471
skill policies from purely in-the-wild human videos, each val- 472
idated in real scenes with real objects. Presently, ZeroMimic 473
exploits a simplified pre-grasp / post-grasp skill stricture, di- 474
rectly retargets human wrist movements to the robot without 475
accounting for morphological differences, does not learn any 476
in-hand manipulations, non-prehensile interactions, or grip- 477
per release, and does not handle tasks requiring two arms. 478
Nevertheless, we have shown that it already suffices to learn 479
many useful skills. ZeroMimic builds on the very best cur- 480
rent models and hardware for grasp generation, interaction 481
affordance prediction, depth sensing, and hand detection. We 482
have shown that it is limited by their performance; as those 483
models continue to improve, they will further increase the vi- 484
ability of our approach. Finally, we have trained ZeroMimic 485
on a relatively modest 100 hrs of egocentric daily activity 486
dataset, and expanding this to include larger datasets such 487
as Ego-4D [25] and beyond could help to generate a more 488
comprehensive and performant repository of web-distilled 489
skill policies. 490
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Supplementary Material

6. Experimental Setup Details809

6.1. Real-World Experimental Setup Details810

Figure 6: Our Franka hardware setup includes a 7-DOF Franka
Emika Panda arm with a Robotiq 2-fingered gripper and a Zed 2
stereo camera mounted on the base.

Figure 7: Our WidowX hardware setup includes a 6-DOF Trossen
Robotics WidowX 250 S arm attached to a table with a 2-fingered
gripper and an Intel RealSense Depth Camera D435.

Our Franka experiments uses the hardware setup in Fig 6,811
which is similar to that used in prior works [75]. We use812
a Franka Emika Panda arm with a Robotiq two-finger grip-813
per mounted on a mobile base, which we use to drag the814
robot across various scenes. We use a Zed 2 stereo camera815

mounted on the base to capture RGB and depth images. 816

(a) Levine Hall Kitchen (b) Grasp Lab Kitchen

(c) Towne Hall Kitchen (d) Table Top 1

(e) Table Top 2 (f) Table Top 3

Figure 8: Real-world environments used in our experiments: (a-
c) Various kitchen environments across different buildings, (d-f)
Different tabletop setups. We perform our Franka experiments
using setups (a-e), and our WidowX experiments using setup (f).

Our WidowX experiments uses the hardware setup in 817
Fig 7. The WidowX arm is attached to a stationary table. An 818
Intel RealSense Depth Camera D435 is mounted on a tripod 819
beside the table to capture RGB and depth images. 820

Figure 8 shows our real-world experimental environments. 821
We conducted experiments in three different kitchen envi- 822
ronments (Figures 8a-8c) and three tabletop setups (Figures 823
8d-8f). For the Franka robot experiments, we used environ- 824
ments (a)-(e), moving the robot between different buildings. 825
The WidowX robot experiments were conducted using the 826
stationary tabletop setup shown in (f). 827

6.2. Simulation Experimental Setup Details 828

Figure 9 shows our simulation setup in RoboCasa [72]. We 829
use a Franka Emika Panda arm with a two-finger gripper in 830
a simulated kitchen layout. We perform 20 trials for each 831
task, varying the camera position, randomizing the robot’s 832
position, altering the background object instances and their 833
positions, and selecting a random kitchen style from the 834
12 available options. Each kitchen style features unique 835
textures, distractor objects, and fixture attributes, such as 836
cabinet and drawer handle types. Figure 10 are example 837
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Real-World Results

Skill Robot Object Category Scenario Success Rate (%)

Hinge Opening Franka Cupboard Levine Hall Kitchen 6/10
Franka Cupboard Table Top 1 6/10
Franka Cupboard Table Top 2 8/10
Franka Fridge GRASP Lab Kitchen 8/10

WidowX Cupboard Table Top 3 9/10

Hinge Closing Franka Cupboard Levine Hall Kitchen 4/10
Franka Cupboard Table Top 1 8/10
Franka Cupboard Table Top 2 10/10
Franka Fridge GRASP Lab Kitchen 8/10

WidowX Cupboard Table Top 3 7/10

Slide Opening Franka Drawer Levine Hall Kitchen 8/10
Franka Drawer Towne Hall Kitchen 10/10

Slide Closing Franka Drawer Levine Hall Kitchen 6/10
Franka Drawer Towne Hall Kitchen 10/10

Pouring Franka Water from Bowl into Sink Levine Hall Kitchen 8/10
Franka Food from Bowl into Pan Levine Hall Kitchen 8/10
Franka Salt from Spoon into Pan Levine Hall Kitchen 4/10

WidowX Water from Cup into Pot Table Top 3 7/10

Picking Franka Can Levine Hall Kitchen 7/10
Franka Banana Levine Hall Kitchenn 4/10
Franka Marker Table Top 1 6/10

Placing Franka Spoon Levine Hall Kitchen 10/10
Franka Pasta Bag into Drawer Levine Hall Kitchen 4/10

Cutting Franka Tofu Levine Hall Kitchen 8/10
Franka Banana Levine Hall Kitchen 8/10
Franka Cake Levine Hall Kitchen 8/10

Stirring Franka Food in Pan Levine Hall Kitchen 6/10
Franka Pasta in Water Levine Hall Kitchen 8/10
Franka Water in Pan Table Top 1 6/10

WidowX Food in Pot Table Top 3 3/10

9 Skills 2 Robots 18 Categories 30 Total Instances 71.0%

Simulation Results

Skill Robot Object Category Scenario Success Rate (%)

Hinge Opening Franka Cupboard Simulated Kitchen 15/20

Hinge Closing Franka Cupboard Simulated Kitchen 12/20
Slide Opening Franka Drawer Simulated Kitchen 17/20

Slide Closing Franka Drawer Simulated Kitchen 15/20

4 Skills 1 Robots 2 Categories 4 Total Instances 73.8%

Table 4: Summary of skills, robots, object categories, scenarios, and success rates for real-world and simulation results.

images of different kitchen scene styles. The success of a838
trial is evaluated based on the specific success conditions839
defined for each task provided by RoboCasa.840

7. Detailed Breakdown of ZeroMimic Zero-Shot841

Deployment Performances842

Table 4 provides a comprehensive overview of ZeroMimic’s843
performance across both real-world and simulation environ-844
ments. The results are categorized by skills, robots, object845
categories, and scenarios, offering insight into the system’s846

versatility and adaptability. 847

In the real-world evaluation, we assessed 9 skills across 848
2 robots and 18 object categories, spanning 30 distinct sce- 849
narios. These evaluations resulted in an overall success rate 850
of 71.0%. Additionally, we evaluated 4 skills in a controlled 851
simulated kitchen environment using one robot across two 852
object categories, totaling four distinct scenarios. This simu- 853
lation study achieved an overall success rate of 73.8%. 854
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Figure 9: Our RoboCasa simulation setup includes a 7-DOF Franka
Emika Panda arm with a 2-fingered gripper.

Figure 10: RoboCasa environment images showcasing different
setups and configurations. Each image corresponds to a different
kitchen environment style.

8. Ablation Experiment Details855

In Section 4.2, the Open Drawer task is performed with the856
“slide opening” skill policy, and the Open Cupboard task is857
performed with the “hinge opening” skill policy.858

8.1. Grasping Methods Ablation Details859

Ours w/o grasp model is an ablated variant of ZeroMimic860
where the end effector is moved to the 2D contact point861
proposed by VRB [53] lifted to 3D with depth, and the862
gripper is then closed. In this experiment, since VRB does863
not output orientation, we use the gripper’s initial orientation864
for the grasp pose.865

8.2. Wrist Post-Grasp Policy Ablation866

In our strengthened version of H2R (ours w/o SfM), we867
remove camera extrinsics and intrinsics when processing our868
training data. As a result, the 3D location of the wrist is869
only represented by its pixel coordinate and hand size, the870
output of depth-ambiguous monocular hand reconstruction871
methods [69, 76].872

VRB produces post-contact trajectories only in terms of873

2D pixel locations on the image. To execute it on the robot, 874
we convert VRB’s 2D outputs to 6D using the following 875
procedure: we sample a target end-point depth at random and 876
interpolate the waypoints while fixing the gripper orientation 877
as the initial post-grasp gripper orientation throughout the 878
trajectory. 879

9. Additional Post-Grasp Module Ablation Ex- 880

periments 881

To gain insight into what is critical to learning to predict 882
wrist trajectories from web videos, we teleoperate the robot 883
to obtain a successful grasp and then evaluate a number 884
of alternative post-grasp trajectory generation options and 885
present our findings in this section. 886

Imitation Policy Architecture We compare ACT [1] and 887
Diffusion Policy [2], two popular imitation learning policy 888
classes, for training our post-grasp policy on EpicKitchens. 889
As illustrated in Table 5, they perform similarly when evalu- 890
ated in the real world with the Franka robot. ACT performs 891
slightly better on skills that mostly require gripper trans- 892
lation, while Diffusion Policy is marginally better at more 893
rotation-heavy tasks. For consistency, we use ACT for all of 894
our other experiments and ablations. 895

Method Open drawer Open cupboard Pour water

ACT 10/10 8/10 7/10
DiffPo 8/10 8/10 9/10

Table 5: Success rates for different post-grasp policies after a
successful grasp.

Relative vs. Absolute Action Representation For both 896
the translation (T) dimensions and the orientation (O) di- 897
mensions, we compare training an ACT model with absolute 898
and relative action representations, resulting in four variants: 899
absT+absO, absT+relO, relT+absO, and relT+relO. Evalu- 900
ating on the real-world “pour water” task with the Franka 901
arm, their respective success rates are 1/10, 3/10, 2/10, and 902
7/10, indicating that relT+relO performs significantly better 903
than other variants. We hypothesize that the orientation dis- 904
tribution shift from the human hand to the gripper as well 905
as discontinuity in orientation space from −π to π makes it 906
harder for the model to learn meaningful absolute orientation 907
representation. 908

10. ReKep Baseline Details 909

10.1. ReKep Implementation Details 910

We adapted the publicly released simulation code of 911
ReKep [20] for OmniGibson to integrate with our real-world 912
Franka arm setup [75]. To evaluate ReKep as a zero-shot 913
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system without human intervention, we use its ”Auto” mode,914
which automatically generates keypoints and constraints,915
instead of the ”Annotation” mode, which requires manual916
annotation for both.917

As part of the adaptation, we rewrote the environment918
module, including the robot controller and keypoint registra-919
tion components. To ensure optimal performance and to use920
ReKep’s steelman version as a competitive baseline, we rely921
on teleoperated grasping for its grasping module, effectively922
minimizing grasp failures. In the perception module, we923
replace the ground-truth masks provided by the simulator924
with those generated by the Segment Anything Model 2925
(SAM2) [77]. These masks are filtered using area upper and926
lower bounds to ensure accuracy. Additionally, we modify927
ReKep’s original k-means and mean-shift clustering algo-928
rithms to refine the generated keypoints, providing the VLM929
with cleaner input data for generating keypoint constraints.930
Lastly, we replace the simulator’s ground-truth depth data931
with depth data from a ZED 2 Stereo Camera. We use its932
neural depth mode and apply band filtering to improve the933
accuracy and reliability of depth values.934

10.2. ReKep Failure Cases935

We present specific examples and a detailed analysis of936
ReKep’s failure cases across three tasks with low success937
rates: Open Drawer, Place Pasta Bag into Drawer, and Pour938
Food from Bowl into Pan.939

Figure 11: Keypoints proposed by ReKep for the Open Drawer
task.

940
1 def path_constraint1(end_effector, keypoints):941
2 """The robot must still be grasping the drawer942
3 handle (keypoint 35)."""943
4 handle_position = keypoints[35]944
5 cost = np.linalg.norm(end_effector -945

handle_position)946
6 return cost947
7948
8 def subgoal_constraint1(end_effector, keypoints):949
9 """The drawer handle (keypoint 35) should be950

displaced951
10 outward by 10cm along the x-axis."""952
11 handle_position = keypoints[35]953
12 offsetted_position = handle_position + np.array954

([-0.1, 0, 0])955

13 cost = np.linalg.norm(handle_position - 956
offsetted_position) 957

14 return cost 958959

Code Snippet 1: The constraints generated by ReKep for the Open
Drawer task instruct the end effector to move leftward in the camera
frame (Line 12). However, this direction deviates from the drawer’s
actual outward articulation axis.

Open Drawer Failures in the Open Drawer task arise be- 960
cause the VLM struggles with identifying the drawer’s ar- 961
ticulation axis in the camera frame, causing the gripper to 962
become stuck. Figure 11 illustrates the keypoints proposed 963
by ReKep, while Code Snippet 1 presents the corresponding 964
constraints generated by ReKep. These constraints direct 965
the end effector to move 10 cm along the negative x-axis 966
(leftward) in the camera frame. However, the actual outward 967
articulation axis of the drawer corresponds to −x (left), +y 968
(down), and −z (towards the screen) in the camera frame. As 969
a result, the actions generated by ReKep’s constraints cause 970
the gripper to become stuck, despite its attempts to move. 971

Figure 12: Keypoints proposed by ReKep for the Place Pasta Bag
into Drawer task.

972
1 def path_constraint1(end_effector, keypoints): 973
2 """ 974
3 Ensure the robot is still grasping the pasta bag 975

during the movement. 976
4 The cost is the Euclidean distance between the 977

end-effector and the pasta bag’s keypoint ( 978
keypoint 22). 979

5 """ 980
6 pasta_bag_keypoint = keypoints[22] 981
7 cost = np.linalg.norm(end_effector - 982

pasta_bag_keypoint) 983
8 return cost 984
9 985

10 def subgoal_constraint1(end_effector, keypoints): 986
11 """ 987
12 Ensure the pasta bag is inside the drawer. 988
13 The cost is the Euclidean distance between the 989

pasta bag’s keypoint (keypoint 22) 990
14 and the drawer’s keypoint (keypoint 6). 991
15 """ 992
16 pasta_bag_keypoint = keypoints[22] 993
17 drawer_keypoint = keypoints[6] 994
18 cost = np.linalg.norm(pasta_bag_keypoint - 995

drawer_keypoint) 996
19 return cost 997
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998

Code Snippet 2: For the Place Pasta Bag into Drawer task, ReKep
generates constraints based on incorrectly identified keypoints.
Specifically, it misclassifies keypoint 22, a background keypoint, as
the pasta keypoint, and keypoint 6, another background keypoint,
as the drawer keypoint. See Lines 16-17 and Figure 12 for the
misclassified keypoints.

Place Pasta Bag into Drawer Figure 12 illustrates the key-999
points proposed by ReKep, while Code Snippet 2 presents1000
the corresponding constraints. The keypoint proposal reveals1001
that ReKep’s vision module struggles to generate a reliable1002
keypoint on the inside of an empty drawer. Additionally,1003
ReKep projects 3D keypoints onto 2D images, which can re-1004
sult in spatially close keypoints overlapping and cause errors1005
in the VLM’s keypoint selection. For example, it identifies a1006
keypoint near the edge of the pasta bag but slightly outside1007
its actual boundary as belonging to the bag. This misplace-1008
ment leads to the keypoint’s depth value being incorrectly1009
interpreted as the larger background depth value. Addition-1010
ally, it sometimes associates nearby background keypoints1011
with the drawer. By generating constraints based on these1012
misidentified keypoints, ReKep produces ineffective move-1013
ment instructions for the end effector, ultimately resulting in1014
task failure.1015

Figure 13: Keypoints proposed by ReKep for the Pour Food from
Bowl into Pan task.

1016
1 def path_constraint1(end_effector, keypoints):1017
2 """1018
3 Ensure the robot continues to hold the bowl1019

during the pouring process.1020
4 This can be achieved by keeping the end-effector1021

aligned with the bowl’s keypoint (e.g., keypoint1022
48).1023

5 """1024
6 cost = np.linalg.norm(end_effector - keypoints1025

[48])1026
7 return cost1027
81028
9 def subgoal_constraint1(end_effector, keypoints):1029

10 """1030
11 Ensure the bowl is tilted to pour the object into1031

the pot.1032

12 This can be achieved by ensuring the vector 1033
formed by two keypoints on the bowl (e.g., 1034
keypoints 48 and 49) 1035

13 is at a specific angle with respect to the z-axis. 1036
1037

14 """ 1038
15 bowl_vector = keypoints[49] - keypoints[48] 1039
16 z_axis = np.array([0, 0, 1]) 1040
17 angle = np.arccos(np.dot(bowl_vector, z_axis) / ( 1041

np.linalg.norm(bowl_vector) * np.linalg.norm( 1042
z_axis))) 1043

18 desired_angle = np.pi / 4 # Tilt the bowl by 45 1044
degrees 1045

19 cost = np.abs(angle - desired_angle) 1046
20 cost = np.linalg.norm(bowl_vector) 1047
21 return cost 10481049

Code Snippet 3: The constraints generated by ReKep for the Pour
Food from Bowl into Pan task ensure that the bowl is tilted at an
angle of 45◦ with respect to the z-axis to facilitate pouring (Line
18). However, this angle is insufficient to effectively pour the food
out of the bowl.

Pour Food from Bowl into Pan Figure 13 illustrates 1050
the keypoints proposed by ReKep, while Code Snippet 3 1051
presents the corresponding constraints. In the pouring task, 1052
while ReKep correctly establishes a rotation constraint, it 1053
underestimates the numerical value of the required rotation. 1054
As a result, the bowl is only slightly tilted at 45◦, failing 1055
to achieve the intended pouring motion to empty the bowl. 1056
While ReKep demonstrates the Pour Tea task in its paper, the 1057
prompt used for the VLM in the publicly released implemen- 1058
tation includes helpful guidance on constraint construction 1059
for this task, such as suggesting that “the teapot must remain 1060
upright to avoid spilling”. This additional guidance may 1061
have enhanced ReKep’s performance on the task. While 1062
pouring tea requires only a slight tilt, pouring food from a 1063
bowl into a pan demands a significantly larger tilt, something 1064
the VLM fails to reason about effectively. 1065
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