
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

softmax IS NOT ENOUGH
(FOR SHARP OUT-OF-DISTRIBUTION)

Anonymous authors
Paper under double-blind review

ABSTRACT

A key property of reasoning systems is the ability to make sharp decisions on their
input data. For contemporary AI systems, a key carrier of sharp behaviour is the
softmax function, with its capability to perform differentiable query-key lookups.
It is a common belief that the predictive power of networks leveraging softmax
arises from “circuits” which sharply perform certain kinds of computations con-
sistently across many diverse inputs. However, for these circuits to be robust, they
would need to generalise well to arbitrary valid inputs. In this paper, we dispel
this myth: even for tasks as simple as finding the maximum key, any learned cir-
cuitry must disperse as the number of items grows at test time. We attribute this to
a fundamental limitation of the softmax function to robustly approximate sharp
functions, prove this phenomenon theoretically, and propose adaptive temperature
as an ad-hoc technique for improving the sharpness of softmax at inference time.

1 MOTIVATION

It is no understatement to say that the softmaxθ : Rn → [0, 1]n function1:

softmaxθ(e) =

[
exp(e1/θ)∑
k exp(ek/θ)

. . .
exp(en/θ)∑
k exp(ek/θ)

]
(1)

is one of the most fundamental functions in contemporary artificial intelligence systems.

The role of softmax in deep learning is to convert any vector of logits, e ∈ Rn, into a probability
distribution, in a form that is part of the exponential family. Further, softmax allows for application
of a temperature parameter, θ ∈ R, to adjust the amount of probability mass attached to the highest
logit—a concept borrowed from the Boltzmann distribution in statistical mechanics.

Initially, the primary utilisation of softmax in deep learning was within the final layer of classifiers.
Its influence in this domain vastly expanded after it saw use in the internal layers—as a differentiable
key-value store (Graves et al., 2014) or a mechanism for attending over the most relevant parts of the
input (Bahdanau et al., 2015). This attentional framing of softmax was critical in defining important
models for sequences (Vaswani et al., 2017, Transformers), images (Dosovitskiy et al., 2021, ViTs)
and graphs (Veličković et al., 2018, GATs).

Several efforts attribute the success of softmax to its capability of modelling computations relevant
to reasoning. This can be related to the concept of circuits in theoretical computer science (Arora &
Barak, 2009). Several interpretable pieces of “circuitry” (Olah et al., 2020) have already been dis-
covered in large Transformers, primarily under the umbrella of mechanistic interpretability (Elhage
et al., 2021; Olsson et al., 2022; Wang et al., 2022).

Here we study the robustness of such circuitry, especially when going beyond the distribution the
models are trained on—a critical regime for reasoning engines. We find that, in spite of its many
successes, softmax does not have a chance to robustly generalise such circuits out of distribution,
especially as it provably cannot approximate sharpness with increasing problem size (Figure 1).

Here we call a function taking a variable number of inputs sharp if its output value can be expressed
using only a constant number of these inputs. For example, max is sharp, as its output value is equal

1Strictly speaking, the proper name for this function should be softargmax. We choose to retain the termi-
nology introduced by Bridle (1989), primarily for reasons of alignment with modern deep learning frameworks.
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Figure 1: Illustration of Theorem 2.2, one of our key results. Assuming a tokenised input from a
fixed vocabulary and a non-zero temperature, for every softmax attention head inside an architecture
comprising only MLPs and softmax self-attention layers, it must hold that, given sufficiently many
tokens, its attention coefficients will disperse, even if they were sharp for in-distribution instances.

to exactly one of its inputs’ values. The average function is not sharp, as its output value depends on
all of its input values (with factor 1/n for each of the n items).

Key theoretical result We define sharp functions by their behaviour as their number of inputs
varies. This directly motivates the out-of-distribution setting we study: generalising to different
amounts of inputs. Specifically, when we analyse neural networks that learn sharp functions, we
assume that they are trained on problem instances containing no more than n input items, and we
take a particular interest in their sharpness on instances with n′ > n items; these are considered
out-of-distribution instances because they go beyond the maximal number of inputs the model had
been prepared for. In language modelling, this setting is also known as length generalisation (Anil
et al., 2022); in graph machine learning, it is known as size generalisation (Yehudai et al., 2021).

Through one of our key theoretical results (Theorem 2.2), we demonstrate that modern deep learning
architectures, operating over a fixed vocabulary of input tokens and leveraging the softmax function,
are fundamentally incapable of learning functions that remain sharp under such out-of-distribution
instances. This is due to the fact that the coefficients emitted by the softmax function must disperse
as we increase the number of input items. Here by dispersing we mean that, as the number of input
items grows, the coefficient attached to each individual item must decay towards zero. This makes it
impossible to robustly compute functions that depend on any particular finite amount of input values,
such as the aforementioned max, as we show in Appendix B (Corollary B.1 and Remark B.2).

We hope that our results will encourage future study of alternative attentional functions, in light of
the problems we identify, especially for building reasoning engines of the future. That being said,
we also believe our findings indicate ways to modify the softmax function to support sharpness for
longer—as one simple example, we propose an adaptive temperature mechanism for softmax.

Background The analysis of attentional coefficients and attempting to attribute interpretable op-
erations to them dates back to the earliest deployments of internal softmax layers at scale; examples
include (Graves et al., 2014, Figure 6), (Bahdanau et al., 2015, Figure 3), (Vaswani et al., 2017, Fig-
ures 3–5) and (Qiu et al., 2018, Figure 5). A strong current in this space analyses the self-attentional
heads of Transformers (Voita et al., 2019; Jain & Wallace, 2019).

With the rise of large language models, mechanistic interpretability has taken charge in detecting
and elucidating various circuits in Transformers (Elhage et al., 2021). Some prominent discoveries
include induction heads (Olsson et al., 2022), indirect object identification (Wang et al., 2022),
multiple-choice heads (Lieberum et al., 2023), successor heads (Gould et al., 2023), attentional
sinks (Darcet et al., 2023), comparator heads (Hanna et al., 2024) and retrieval heads (Wu et al.,
2024). Most recently, these efforts have relied on sparse autoencoders (Kissane et al., 2024).
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The skills above are quite impressive and span many rules one might hope a robust reasoning sys-
tem would have, and the discovered heads always appear sharp when inspected on in-distribution
samples. However, it is also known that many easy tasks requiring sharp attention—such as find-
ing minima—are hard to do reliably with LLMs out-of-distribution (Markeeva et al., 2024, Fig-
ure 6). More challenging sharp order statistic tasks, such as finding the second minimum (Ong &
Veličković, 2022) may even be hard to learn in-distribution. The discrepancy of such results with
the previous paragraph motivate our study, and formalisation of softmax dispersion.

Certain dispersion effects in softmax—e.g. as an effect of increasing temperature—are already
well-understood in thermodynamics. A core contribution of our work is understanding dispersion in
a setting where the amount of logits can vary, which is relevant for generalisation in Transformers.
We are not the first to observe dispersion in this setting empirically; prior works studying the capa-
bility of Transformers to execute algorithms (Yan et al., 2020) and perform random-access lookups
(Ebrahimi et al., 2024) also note dispersion patterns. Our work is the first to rigorously prove these
effects, directly attribute them to the softmax operator, as well as propose ways to improve sharp-
ness empirically within softmax. The proof technique we will use to demonstrate this is inspired
by Barbero et al. (2024), though unlike their work, our key results apply regardless of whether the
computational graph is bottlenecked or not.

Primer on attentional heads and Transformers Within this paper we will primarily study the
use of softmax within self-attentional neural network architectures, such as Transformers (Vaswani
et al., 2017). The core building block of such models is the (dot-product) attentional head, which
operates over a collection n of nodes (or tokens), with features x(n)

i ∈ Rk for node 1 ≤ i ≤ n, for a
given query vector q̃(n) ∈ Rk.

First, the attentional head computes key, (updated) query and value vectors via matrix multiplication:

k
(n)
i = Kx

(n)
i q(n) = Qq̃(n) v

(n)
i = Vx

(n)
i (2)

where K,Q,V ∈ Rk′×k are learnable parameter matrices. Then, dot-products between the query
and all of the key vectors are taken to compute unnormalised attentional coefficients of each item,
also known as logits, e(n)i ∈ R. These coefficients are normalised using the softmax function to
obtain attentional coefficients, α(n)

i ∈ R. Finally, the attentional coefficients are used for a weighted
sum of value vectors, which represents the output of the attentional head, y(n) ∈ Rk′

:

e
(n)
i =

(
q(n)

)⊤
k
(n)
i α

(n)
i = softmaxθ(e

(n))j y(n) =
∑

1≤i≤n

α
(n)
i v

(n)
i (3)

With regard to how attentional heads are used within Transformers, we will mainly analyse two of
the most popular strategies: BERT-style (Devlin et al., 2019) and GPT-style (Radford et al., 2018).
In both cases, each of the input nodes computes its own attentional output, i.e. there is one query
vector per node, computed as q

(n)
i = Qx

(n)
i , leading to per-node attention coefficients αij and

outputs y(n)
i by distributing Equation 3 across queries. The main difference is in the choice of keys.

In BERT-style self-attention, each node’s query vector attends over all of the key vectors, i.e. it is
obtained by directly distributing Equation 3 across all queries:

e
(n)
ij =

(
q
(n)
i

)⊤
k
(n)
j α

(n)
ij = softmaxθ(e

(n)
i )j y

(n)
i =

∑
1≤j≤n

α
(n)
ij v

(n)
j (4)

In comparison, GPT-style attention (also known as “causal masking” or the decoder-only Trans-
former) only allows information to flow forwards; each node’s query vector may only attend to the
key vectors from nodes that precede it. This yields the following modification:

e
(n)
ij =


(
q
(n)
i

)⊤
k
(n)
j j ≤ i

−∞ j > i
α
(n)
ij = softmaxθ(e

(n)
i )j y

(n)
i =

∑
1≤j≤i

α
(n)
ij v

(n)
j

(5)
Our key dispersion results hold for both styles of attention—this is mainly due to the fact that all
predictions made by GPT-style architectures are dependent on the final token embedding, y(n)

n ,
which will attend over all items, much like any BERT head. The main difference between the two
will be in qualitative effects on certain corollaries of the theory (Appendices B–C).
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Figure 2: Visualising the attentional head for the max retrieval task for a batch of 32 randomly-
sampled input sets (each represented by one of the rows), over the 16 items with largest key
(columns). If the head operates correctly, it must allocate sharp attention to the rightmost item.
From left to right, in each frame we double the number of items the head has to process.

2 DISPERSION IN softmax AND TRANSFORMERS

Figure 3: Entropy of attention heads in the first block
of Gemma 2B with prompt "What is the maximum in
the following sequence: {seq}? The maximum
is:" and varying the number of elements in seq. Each
curve is one attentional head; the blue shaded curve is
the mean and standard deviation across all of them.

To motivate our theory, we train a simple
architecture including a single attentional
head to predict a feature of the maximum
item in a set. Each item’s features are pro-
cessed with a deep MLP before attending,
and the output vector of the attention is
passed to a deep MLP predictor (see Ap-
pendix A for experimental details). We
train this model using sets of ≤ 16 items,
and in Figure 2 we visualise the head’s at-
tentional coefficients, computed over sets
of varying size at inference time.

While the model indeed attributes focus
sharply and cleanly on the maximum item,
this only holds true on the problem sizes
that the model was trained on. As we sim-
ulate an out-of-distribution setting where
the problem size increases (without chang-
ing the value distribution), the attentional
coefficients eventually disperse towards
the uniform distribution.

This effects manifests in the attention
heads of Transformers as well—we visualise the entropy (a proxy for sharpness) of Gemma 2B
(Gemma Team et al., 2024)’s heads when answering a similar maximisation task in Figure 3.

In fact, we can show that this effect is inevitable in softmax using the following Lemma:
Lemma 2.1 (softmax must disperse). Let e(n) ∈ Rn be a collection of n logits going into the
softmaxθ function with temperature θ > 0, bounded above and below s.t. m ≤ e

(n)
k ≤M for some

m,M ∈ R. Then, as more items are added (n→ +∞), it must hold that, for each item 1 ≤ k ≤ n,
softmaxθ(e

(n))k = Θ( 1n ). That is, the computed attention coefficients disperse for all items.

Proof. Let us denote the attentional coefficient assigned to k by α(n)
k = softmaxθ(e

(n))k ∈ [0, 1].
Then we can bound α(n)

k above as:

α
(n)
k =

exp(e
(n)
k /θ)∑

l exp(e
(n)
l /θ)

≤ exp(M/θ)

n exp(m/θ)
=

1

n
exp

(
M −m

θ

)
(6)

Similarly, we can bound α(n)
k below as:

α
(n)
k =

exp(e
(n)
k /θ)∑

l exp(e
(n)
l /θ)

≥ exp(m/θ)

n exp(M/θ)
=

1

n
exp

(
m−M

θ

)
(7)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Hence, if we let δ = (M −m)

1

n
exp−δ

θ
≤ α

(n)
k ≤ 1

n
exp

δ

θ
(8)

Which implies α(n)
k = Θ( 1n ) as δ and θ are both constants.

Lemma 2.1 relies on being able to bound the logit values with specific constants. The difference of
these bounds (the spread, δ = maxi e

(n)
i − minj e

(n)
j ) directly controls the rate of dispersion. In

modern Transformer LLM architectures operating over a vocabulary of possible token values, we
can actually bound the logits in every single attentional layer—implying that dispersion must happen
everywhere in a Transformer for sufficient problem sizes. We prove this important result now:
Theorem 2.2 (softmax in Transformers over vocabularies must disperse). Let X ⊂ Rm be a set
of possible m-dimensional input features, and let X(n) ∈ Xn be a matrix of input features for n
items. Further, assume that input features come from a finite set of possible values, i.e. |X | < |N|.
Let e(n)j = (q(n))⊤k

(n)
j where q(n) = ϕ(x

(n)
1 , . . . ,x

(n)
n ) and K(n) = κ(x

(n)
1 , . . . ,x

(n)
n ), where

ϕ : Xn → Rk and κ : Xn → Rn×k are continuous functions, each expressible as a composition of
L layers gL◦fL◦· · ·◦g1◦f1 where each layer contains a feedforward component fi(z1, . . . , zn)k =
fi(zk) or a self-attentional component gi(z1, . . . , zn)k =

∑
1≤l≤n αlkvi(zl) where αlk ∈ [0, 1] are

softmax-normalised attention coefficients and vi is a feedforward network. Then, for any θ > 0
and ϵ > 0, there must exist an n ∈ N such that softmaxθ(e(n))k < ϵ for all 1 ≤ k ≤ n. That is,
attention coefficients must disperse in all global Transformer heads if the input vocabulary is finite.

Proof. Firstly, note that since X is a finite set of m-dimensional vectors, then it is also part of a
compact space spanning all convex combinations of those vectors. Then, all feedforward layers,
fi and vi, being continuous functions, move inputs from a compact set to another compact set.
Similarly, every self-attentional layer, gi, computes a convex combination of the outputs of vi, and
as such, if outputs of vi are on a compact space, the outputs of gi remain on the same compact space.
Therefore, if the input space of ϕ and κ is compact, then the output space of ϕ and (each row of)
κ on Rk must be compact as well, regardless of the choice of n. Further, the dot product of two
vectors (q(n))⊤k

(n)
j coming from compact spaces must be compact as well. Hence, the logits must

be bounded by m ≤ e
(n)
k ≤M for constant m and M . Then, letting δ =M −m, we know (Lemma

2.1) that softmaxθ(e(n))k ≤ 1
n exp (δ/θ), so for all n >

exp (δ/θ)

ϵ
this value will be below ϵ.

It might seem intuitive that attention head dispersion is a potentially destructive event, which forces
the Transformer into misclassifying certain inputs. We prove this intuition in Appendix B. We also
discuss the rate at which dispersion occurs at various model depths in Appendix C.

3 ADAPTIVE TEMPERATURE

Since we now know dispersion is inevitable, are there any ways we can leverage our theory’s findings
to make softmax sharper? One obvious constraint our theory rests on is the assumption that θ > 0,
i.e. that our temperature is nonzero. While zero temperature—also known as hard attention (Denil
et al., 2012; Ranzato, 2014; Mnih et al., 2014; Xu et al., 2015)—guarantees sharpness, training
large-scale Transformers with it tends to not work well in practice (Bica et al., 2024).

What about applying θ = 0 to an already-trained Transformer? We can show this is also problematic
since, for any attention head where the Transformer has learnt to induce sharpness, it necessarily did
so by increasing magnitude of its weights (see Appendix D for a proof and numerical validation):
Proposition 3.1 (Sharpness in Transformers necessitates large weights). Let e(n) ∈ Rn be a collec-
tion of n logits, computed using a dot product attention mechanism; i.e. e(n)k = ⟨Qy,Kxk⟩, where
y ∈ Rm is a query vector and Q,K ∈ Rm′×m are parameters. Let δ = max

1≤i≤n
e
(n)
i − min

1≤j≤n
e
(n)
j be

their maximum difference. Then δ is upper bounded as δ ≤ 2σ
(Q)
maxσ

(K)
max∥y∥max1≤i≤n ∥xi∥, where

σ
(Q)
max, σ

(K)
max ∈ R are the largest singular values of Q and K. That is, the sharpness of the softmax

in Transformers depends on the norm of its parameters.
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Figure 4: Entropy of the softmaxθ function for 10 elements of a power series. Entropy increases
with temperature but the rate at which it increases is heavily dependent on the attention logit distri-
bution. Degenerate cases: near λ = 0 and λ = 1 all logits are the same, leading to highest entropy.

Note that there is a common practice of leveraging operators such as layer normalisation (Ba et al.,
2016) extensively within Transformer architectures, which clamps ∥xi∥ and ∥y∥ if applied right
before the query-key mechanism, accentuating the impact of Q and K’s singular values.

However, forcing large parameters promotes overfitting, and the likelihood that the incorrect item
gets the largest logit—see Figure 2. Setting temperature to zero will then degrade accuracy—we
might prefer to make the coefficients sharper while making sure that the chosen item is not left
behind. This motivates our use of adaptive temperature, where we vary θ depending on the entropy
in the input coefficients. Adaptive temperature can be elegantly motivated by the fact that decreasing
the temperature must monotonically decrease the entropy, which is well-known in thermodynamics:

Proposition 3.2 (Decreasing temperature decreases entropy). Let e(n) ∈ Rn be a collection of n
logits. Consider the Boltzmann distribution over these n items, pi ∝ exp(−βe(n)i ) for β ∈ R,
and let H = −

∑
i pi log pi be its Shannon entropy. Then, as β’s magnitude increases, H must

monotonically decrease. Thus, since β ∝ 1
θ where θ is the temperature in softmaxθ, decreasing the

temperature must monotonically decrease the entropy.

Figure 5: The polynomial fit used to derive our adap-
tive formula for θ as a function of the Shannon entropy,
H . The fit degree-4 function was θ ≈ 1/(−1.791 +
4.917H − 2.3H2 + 0.481H3 − 0.037H4). We do not
apply the correction to θ if predicted greater than 1.

We provide a full proof in Appendix E. To
supplement Proposition 3.2 empirically,
we also provide—in Figure 4—a visuali-
sation of how the Shannon entropy varies
with temperature, for a 10-logit input with
varying spread between the logits.

To compute the approximate temperature
value as a function of entropy, we generate
a dataset of inputs to our model where the
maximal items do not obtain the highest
logit. For each such input, we find the “op-
timal” value of θ that would maximise its
probability. Then we fit an inverse degree-
4 polynomial to this data—see Figure 5—
and use it to predict temperatures to use at
inference time. Note we do not wish to in-
crease entropy; as such, we do not correct
θ to values greater than 1.
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Table 1: Improvements observed when applying adaptive temperature on the max retrieval task (with-
out changing the parameters), averaged over ten seeds. p-values computed using a paired t-test.

ID size Out-of-distribution sizes
Model 16 32 64 128 256 512 1, 024 2, 048 4, 096 8, 192 16, 384

Baseline 98.6% 97.1% 94.3% 89.7% 81.3% 70.1% 53.8% 35.7% 22.6% 15.7% 12.4%
Adaptive θ 98.6% 97.1%94.5% 89.9% 82.1% 72.5% 57.7% 39.4% 24.9%17.5% 14.0%

p-value 0.4 0.4 0.002 2 · 10−5 2 · 10−4 3 · 10−5 10−4 6 · 10−4 0.02 10−3 4 · 10−3

The JAX (Bradbury et al., 2018) implementation of our adaptive-θ softmax is provided below, and
we use it as a drop-in replacement for jax.nn.softmax in all of our experiments.

def adaptive_temperature_softmax(logits):
original_probs = jax.nn.softmax(logits)

poly_fit = jnp.array([-0.037, 0.481, -2.3, 4.917, -1.791]) # see Figure 5
entropy = jnp.sum(-original_probs * jnp.log(original_probs + 1e-9),

axis=-1, keepdims=True) # compute the Shannon entropy
beta = jnp.where( # beta = 1 / theta

entropy > 0.5, # don't overcorrect low-entropy heads
jnp.maximum(jnp.polyval(poly_fit, entropy), 1.0), # never increase entropy
1.0)

return jax.nn.softmax(logits * beta)

While this approach requires two calls to jax.nn.softmax in place of one, as well as computing
several additional intermediate tensors, we are able to implement it in a way that allows the en-
tropy correction computation to be fully streamed, and hence compatible with efficient, scalable
approaches like Flash Attention (Dao et al., 2022) that uses O(n) rather than O(n2) memory to
compute attention. We provide the derivation of our streamed algorithm in Appendix F.

Note we are not the first to propose dynamically adapting temperature—Neumann et al. (2018);
Radford et al. (2021) do this in the classification layer (and hence do not have to handle an ever-
increasing amount of items), whereas Chiang & Cholak (2022); Cao et al. (2024) perform it over
intermediate attentional heads, but in a way that only depends on problem size (e.g. multiplying
logits by log n), hence not taking into account initial logit sharpness. It is important to also call out
AERO (Jha & Reagen, 2024), a method which introduces learnable temperature, and Entropix (xjdr
& doomslide, 2024), a notable library for (var)entropy-based LLM sampling.

4 EXPERIMENTAL RESULTS

To validate the utility of our proposed adaptive temperature scheme, we evaluate it on both our
previously-mentioned max retrieval task—which allows us a pristine environment for evaluating
whether adaptive temperature leads to more useful attention heads—as well as the CLRS-Text al-
gorithmic reasoning benchmark (Markeeva et al., 2024), which represents a challenging reasoning
task for decoder-only Transformers, and is hence likely to require low-entropy behaviour.

4.1 max RETRIEVAL

For this task, we first train our single attention head architecture as described in Appendix A; then,
we evaluate it at various numbers of input items, with and without applying adaptive temperature to
its sole softmax function call. Note that this is a “pure” inference time adjustment—no modifica-
tions to the learned parameters are performed!

The results—averaged over ten seeds and with statistical significance tests applied—are summarised
in Table 1. As is evident, applying adaptive temperature leads to a more performant retrieval head
on out-of-distribution inputs, with statistical significance ascertained via a paired t-test.
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Figure 6: Visualising the attentional head for the max retrieval task with (below) and without (above)
adaptive temperature applied, for the same batch and parameters as in Figure 2. Note the increased
sharpness in the coefficients, especially as the amount of items increases.

These results are further supplemented by a qualitative comparison of the softmax coefficients be-
fore and after applying the temperature adaptation. As can be seen in Figure 6, our proposed adaptive
temperature adaptation indeed leads to sharper coefficients out-of-distribution and higher attention
being directed to the desired item, even in situations where it did not receive the largest logit.

We have now successfully validated the predictions of our theory in a controlled environment. What
about a more challenging benchmark with a baseline model comprising many attentional heads?

4.2 CLRS-TEXT

In this benchmark, we follow the protocol established by Markeeva et al. (2024) and fine-tune
Gemma 2B models (Gemma Team et al., 2024) on the thirty algorithmic execution tasks in CLRS-
Text, plotting their performance profiles in- and out-of-distribution at various problem sizes.

While it may be tempting to directly re-apply our learned adaptive temperature function from Figure
5 solely at inference time—the same way we did in the max retrieval experiments—this approach
does not empirically work well in the CLRS-Text regime. This is due to the fact that CLRS-Text
inputs are often textual representations of floating-point numbers and therefore individual numbers
often span multiple tokens. It is therefore insufficient and inappropriate to aim for entropy levels
where all the focus would be on one token only, as was desirable in the max retrieval task.

One follow-up on this could be to perform exactly the same polynomial fit exercise leading up
to Figure 5, only this time focussing on “optimal” values of temperature for Gemma’s attentional
heads. However, in this regime, we argue this exercise is substantially less trivial to do—as we are
now dealing with a system spanning many attentional heads across many layers, it is not easy to
even discover relevant attentional heads’ behaviours, and even less so to ascertain that the model’s
robustness depends on those specific heads in those ways. As briefly discussed before, any such
individual endeavour typically leads to a brand-new research project in mechanistic interpretability,
and we do not find this to be in-scope of our paper.

That being said, there is an alternate route to make the Gemma model still benefit from our adap-
tive temperature module exactly as-is (i.e., with exactly the same polynomial fit as in Figure 5);
it just has to directly learn how to leverage it. As such, in our CLRS-Text ablation we apply
adaptive temperature both during fine-tuning and at inference time. What this means is, we re-
place all instances of jax.nn.softmax within all the attentional heads of Gemma 2B with our
adaptive temperature softmax function, both during fine-tuning of the model and during infer-
ence. This allows the model to learn how to compute key/query embeddings that can maximally
exploit the temperature adaptation.
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Figure 7: Resampling test results on CLRS-Text of variants of Gemma 2B, fine-tuned with and with-
out adaptive temperature applied, on various problem sizes. Each point on the x axis corresponds to
a particular problem size in the corresponding algorithmic task. For example, on sorting tasks, this
corresponds to the number of items being sorted; for graph tasks, it corresponds to the number of
nodes in the graph. The blue curves represent the accuracy of the baseline fine-tuned Gemma 2B
model, whereas the red curves represent the accuracy of that same model, fine-tuned with adaptive
temperature. Both Gemma 2B variants were explicitly trained on CLRS-Text tasks—the training set
sizes are denoted by red dots—and are evaluated zero-shot. Note that we limit our sample length to
2, 048 tokens, and only show performance metrics for sizes where the answer fits in this constraint.
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These final comparative results may be found in Figure 7, and they demonstrate a significant ad-
vantage of the adaptive temperature-backed model on nearly all of the thirty algorithms study. This
indicates that, even in a complex system with many interactions between attentional heads, it is
possible to extract benefits from the simple idea of dynamically adapting the temperature—and we
hope our result paves the way for more involved future investigation of such approaches.

5 CONCLUSIONS

“Energy continuously flows from being concentrated
To becoming dispersed, spread out, wasted and useless.”—The 2nd Law: Unsustainable, by Muse

In this paper, we have provided extensive theoretical and empirical evidence that the softmax—a key
function in the design of modern frontier architectures—is fundamentally unable to sustain robust
reasoning behaviours across all possible inputs, as its output coefficients are necessarily dispersing
provided sufficient input elements.

Beyond illustrating and proving these dispersion effects, we also attempted to use our theoretical
framework to propose an adaptive temperature approach that is able—at least to a certain extent—to
hold the dispersion effect at bay. It is our opinion that the favourable results we observe with adaptive
temperature warrant further investigation, and indicate that such adaptive layers are a strategy worth
dedicating further attention to in future work.

We conclude by remarking, once again, that adaptive temperature is merely an ad-hoc method and
it does not escape the conclusions of our theory! The key takeaway of our paper is not the adaptive
temperature proposal; it is the fact that we find it worthwhile to more seriously invest in research of
hybrid architectures that will not fully rely on the softmax function, at least within the confines of
the assumptions of our theory. To name a few possibilities:

• Any kind of unnormalised attention, such as linear (Schmidhuber, 1992), sigmoidal (Rama-
puram et al., 2024) or stick-breaking attention (Tan et al., 2024) does not have the dispersion
issues presented here. That being said, it becomes substantially harder to meaningfully rank
items using them, see e.g. the GATv2 paper (Brody et al., 2022).

• Similarly, forcing the attention to be hard or local (Martins & Astudillo, 2016; Correia
et al., 2019; Peters et al., 2019) would also escape the confines of our theory. We already
briefly discussed the challenges of learning with hard attention—local attention provides a
very interesting alternative, but it must be stressed that “out-of-distribution” behaviours for
certain heads may appear even at highly “local” scales; OOD here refers to going outside
the largest problem size the head saw at training time, not the largest context deployed at
training time.

• Lastly, our key Theorem relies on the model being built out of continuous building blocks.
Inserting discontinuities in the feedforward layers—perhaps using approaches like Dudzik
et al. (2024) as inspiration—would also break the assumptions of our theory, though it
comes with obvious challenges to learning at scale.

While such approaches haven’t seen as much success at scale as the “vanilla” Transformer, we
hope our results inspire future work into making them stable, especially for constructing reasoning
systems.

REFERENCES

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Am-
brose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. Advances in Neural Information Processing Systems, 35:38546–38556,
2022.

Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge Uni-
versity Press, 2009.

Sheldon Axler. Linear algebra done right. Springer, 2015.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In ICLR, 2015. URL http://arxiv.org/abs/1409.0473.

Federico Barbero, Andrea Banino, Steven Kapturowski, Dharshan Kumaran, João GM Araújo, Alex
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algorithmic alignment with cocycles. In Learning on Graphs Conference, pp. 3–1. PMLR, 2024.

MohammadReza Ebrahimi, Sunny Panchal, and Roland Memisevic. Your context is not an array:
Unveiling random access limitations in transformers. arXiv preprint arXiv:2408.05506, 2024.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for
transformer circuits. Transformer Circuits Thread, 1(1):12, 2021.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Rhys Gould, Euan Ong, George Ogden, and Arthur Conmy. Successor heads: Recurring, inter-
pretable attention heads in the wild. arXiv preprint arXiv:2312.09230, 2023.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?: Inter-
preting mathematical abilities in a pre-trained language model. Advances in Neural Information
Processing Systems, 36, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand Rondepierre, Andreas
Steiner, and Marc van Zee. Flax: A neural network library and ecosystem for JAX, 2024. URL
http://github.com/google/flax.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Sarthak Jain and Byron C Wallace. Attention is not explanation. arXiv preprint arXiv:1902.10186,
2019.

Nandan Kumar Jha and Brandon Reagen. Aero: Softmax-only llms for efficient private inference.
arXiv preprint arXiv:2410.13060, 2024.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR (Poster),
2015. URL http://arxiv.org/abs/1412.6980.

Connor Kissane, Robert Krzyzanowski, Joseph Isaac Bloom, Arthur Conmy, and Neel Nanda. In-
terpreting attention layer outputs with sparse autoencoders. arXiv preprint arXiv:2406.17759,
2024.

Tom Lieberum, Matthew Rahtz, János Kramár, Neel Nanda, Geoffrey Irving, Rohin Shah, and
Vladimir Mikulik. Does circuit analysis interpretability scale? evidence from multiple choice
capabilities in chinchilla. arXiv preprint arXiv:2307.09458, 2023.

Larisa Markeeva, Sean McLeish, Borja Ibarz, Wilfried Bounsi, Olga Kozlova, Alex Vitvitskyi,
Charles Blundell, Tom Goldstein, Avi Schwarzschild, and Petar Veličković. The clrs-text al-
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A EXPERIMENTAL DETAILS FOR THE MAXIMUM ENTRY RETRIEVAL TASK

As briefly described in the main paper, we leverage the max retrieval task over a single attention head
as a way to empirically validate our theory, as well as assess the benefits of adaptive temperature in
a controlled setting. In this section, we describe the various aspects of our experimental setup, for
the purposes of clarity and reproducibility.

A.1 MOTIVATION

We deliberately focus on a single attention head environment and a simple selection function (max)
to remove any confounders from our observations.

Since we are using exactly one attention head, whatever coefficients it outputs can be directly related
to the network’s belief in which items are most important for the downstream prediction. This allows
us to, e.g., correlate the coefficients with the ground-truth magnitude of the items.

Since we are looking for the maximal element’s property, we are not requiring any complicated
behaviour from the coefficients: when our target task is to approximate max, the softmax coefficients
need to approximate argmax—which is exactly what they are designed to be a smooth approximation
for. As such, this choice of target task exhibits high algorithmic alignment (Xu et al., 2020).

A.2 DATA GENERATION

Let n be the number of items in the set that we wish to classify. For each item, 1 ≤ i ≤ n, we need
to define a priority value, which is used to select the maximal entry. We sample these values from a
uniform distribution; ρi ∼ U(0, 1).
We would also wish our task to be a classification rather than regression task, in order to leverage a
more robust accuracy metric. As such, let C be the desired number of classes. We can now attach
to each item a class, κi ∼ U{1, . . . , C}, sampled uniformly at random. We assume C = 10 fixed.

Then, for each input item, 1 ≤ i ≤ n, we consider its features to be xi ∈ RC+1 to be defined
as xi = ρi∥onehot(κi, C), i.e. the concatenation of these two sampled pieces of data where κi is
represented as a one-hot vector.

Lastly, since we will leverage dot-product attention, we also need a query vector. In this particular
task, the query is irrelevant, and we initialise it to a random uniformly-sampled value, q ∼ U(0, 1).
Our task is to predict, given {xi}1≤i≤n and q, the class of the maximal item, i.e., κargmaxi ρi .
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A.3 NEURAL NETWORK ARCHITECTURE

The neural network model is designed to be a simple set aggregation model (in the style of Deep
Sets (Zaheer et al., 2017)), with a single-head dot product attention as the aggregation function.

Its equations can be summarised as follows:

hi = ψx(xi) (9)
q = ψq(q) (10)

ei = (Qq)⊤(Khi) (11)

αi =
exp(ei/θ)∑

1≤j≤n exp(ej/θ)
(12)

z =
∑

1≤i≤n

αiVhi (13)

y = ϕ(z) (14)

Equations 2–3 prepare the embeddings of the items and query, using two-layer MLPs ψx and ψq

using the GeLU activation function (Hendrycks & Gimpel, 2016) and an embedding size of 128
dimensions. Then, a single-head dot-product attention (with query, key and value matrices Q, K
and V) is executed in equations 4–6. Lastly, the output class logits are predicted from the attended
vector using a two-layer GeLU MLP, ϕ. Each component is a two-layer MLP to ensure it has
universal approximation properties.

A concise implementation of our network using JAX (Bradbury et al., 2018) and Flax (Heek et al.,
2024) is as follows:

import jax.numpy as jnp
from flax import linen as nn
from typing import Callable

class Model(nn.Module):
n_classes: int = 10
n_feats: int = 128
activation: Callable = nn.gelu

@nn.compact
def __call__(self, x, q):
x = nn.Dense(features=self.n_feats)(x)
x = self.activation(x)
x = nn.Dense(features=self.n_feats)(x)
x = self.activation(x)
q = nn.Dense(features=self.n_feats)(q)
q = self.activation(q)
q = nn.Dense(features=self.n_feats)(q)
x = nn.MultiHeadDotProductAttention(

num_heads=1,
qkv_features=self.n_feats)(
inputs_q=q,
inputs_kv=x)

x = nn.Dense(features=self.n_feats)(jnp.squeeze(x, -2))
x = self.activation(x)
x = nn.Dense(features=self.n_classes)(x)
return x

A.4 EXPERIMENTAL HYPERPARAMETERS

We train our model for 100, 000 gradient steps using the Adam SGD optimiser (Kingma & Ba, 2015)
with initial learning rate of η = 0.001. At each step, we present to the model a batch of 128 input
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sets. All sets within a batch have the same size, sampled uniformly from n ∼ U{5, . . . , 16}. The
model is trained using cross-entropy, along with L2 regularisation with hyperparameter λ = 0.001.

The mixed-size training is a known tactic, designed to better prepare the model for distribution
shifts on larger sets at inference time. Similarly, the weight decay follows the recommendation in
Proposition 3.1, as an attempt to mitigate overfitting out-of-distribution as a byproduct of sharpening
the softmax coefficients.

Both methods prove to be effective in deriving a stable baseline model.

B DISPERSION HARMS REASONING PERFORMANCE

While it is intuitive that complete coefficient dispersion is an undesirable event, it may not be imme-
diately obvious that its occurrence may have any bearing on a reasoning model’s predictive power.

In this Appendix, we provide several corollaries and remarks stemming from Theorem 2.2 that
concretise specific ways in which reasoning failures will occur as a consequence of dispersion.

Corollary B.1 (Dispersion induces reasoning failures). Let X(n) ∈ Xn be a matrix of input features
for n items, where X is a finite set of possible values. Further, assume a strict total order < on the
elements of X . Assume we are solving a reasoning task to find the rank of the highest-valued row
x
(n)
i in X(n) (according to <), using a classifier over a trained single-head attention architecture:

g
(∑

1≤i≤n α
(n)
i f

(
x
(n)
i

))
, where f and g are continuous functions implemented as feedforward

MLPs, and the coefficients α(n)
i are computed using dot-product self-attention with softmax nor-

malisation (as in Appendix A). Further, assume there are no ties in the class confidences predicted
by g when deciding how to classify X(n). Then, assuming any floating- or fixed-point datatype with
machine epsilon ϵ > 0 is used to support the architecture’s data representation, it will necessarily
start to make prediction errors beyond a certain number of items n, due to the dispersion effect.

Proof. LetK be the size of the vocabulary X = {v1, . . . ,vK}. The reasoning task presented here is
effectively aK-class classification problem, predicting the maximum rank in a set of values from X .
Any prediction of the architecture must be of the form g

(∑
1≤j≤K βjf (vj)

)
, with the constraints

that βj ≥ 0,
∑

1≤j≤K βj = 1 and βj = 0 if vj /∈ X(n).

Now, consider two specific points va and vb such that va > vb. The architecture, if trained properly,
must classify g(f(va)) into the a class, and g(f(vb)) into the b class.

Let X(n) be an input matrix formed such that x
(n)
1 = va and x

(n)
i = vb for all 1 < i ≤

n. For such an input, the desired output class is a, and the prediction must be of the form
g
(
α
(n)
1 f(va) +

(
1− α

(n)
1

)
f(vb)

)
.

Since the input features come from a fixed vocabulary and are processed only using feedforward
networks and self-attention layers, we can leverage the argument in Theorem 2.2 to conclude that
there will be a fixed spread in the trained architecture, δ, and further that αi ≤ 1

n exp δ
θ for all i.

Using this we can see that, when n > 1
ϵ exp

δ
θ , it must hold that α(n)

1 < ϵ. At this point, the value of
α
(n)
1 will be indistinguishable from zero, and the weighted sum will reduce to g(f(vb)), due to the

assumed continuity of g around f(vb).

Hence, by previous assumptions, and by the assumption that there are no ties in the class logits in
g(f(vb))

2, at least one of the following must be true once dispersion occurs:

• The input {va,vb,vb, . . . ,vb} of sufficiently large size will be misclassified into class b;

2This assumption is important in the case that g(f(vb)) gives equal logits to classes a and b. As this is a
boundary condition for the classifier, if it occurred exactly on f(vb), we would not be able to guarantee that
any two sets mapped to f(vb) will be classified identically without sacrificing local continuity around f(vb).
Note that, due to floating-point rounding errors, this assumption is rarely broken in modern deep classifiers.
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• The input {vb, . . . ,vb} (for any size) will be misclassified.

In either case, the architecture had to have made an error.

While Corollary B.1 concerns single attention heads, note that we can leverage the setting of Theo-
rem 2.2 to prove that such failures will occur in deep Transformers as well. We sketch this intuition:

Remark B.2. Given the same task as in Corollary B.1, using a deep Transformer architecture as
described in Theorem 2.2, dispersion in its attentional layers is sufficient to cause misclassifications
to occur. To see why, first, assume that the models have no residual connections. The arguments for
why such architectures must misclassify are subtly different depending on the Transformer model:

• For BERT-style Transformers, since all attention heads are global, after one dispersed
layer, any sufficiently large set {va,vb, . . . ,vb} will have identical embeddings to a set
{vb, . . . ,vb} of the same size. After this, it is impossible to classify them differently.

• For GPT-style Transformers, to simplify the argument, we assume the va element is at the
end of the input: {vb, . . . ,vb,va}. In this setting, only the final token’s attention head will
receive the features from va. If it disperses, this set will once again be indistinguishable
from a set {vb, . . . ,vb} of the same size. This argument is inspired by Barbero et al. (2024).

Residual connections (He et al., 2016) allow for preserving the information contained in va even
across dispersed layers. However, as we have assumed all heads attending over va have dispersed,
no subsequent layer will be able to meaningfully integrate this information across the set, and even-
tually the computation will hit the final layers’ attentional heads, where the final embeddings will
once again be indistinguishable across these two different sets.

We note that the only condition on the coefficients necessary for this breakdown to occur is that
they decay towards zero—the failure on sets of the kind {va,vb,vb, . . . ,vb} is not prevented even
if α(n)

1 decays substantially more slowly than the other coefficients!

Remark B.3. If we assume a dispersion setting where

α
(n)
i =

{
Θ
(

logn
n

)
i = 1

Θ
(
1
n

)
1 < i ≤ n

The failure described by Corollary B.1 still applies, following exactly the same proof, i.e. eventually
α
(n)
1 < ϵ for any machine epsilon value ϵ > 0. Note that, as per Theorem 2.2, this situation is

impossible in vocabulary-based Transformer architectures.

C HOW DOES DISPERSION INTERACT WITH DEPTH?

While Theorem 2.2 concludes that dispersion must eventually affect all global attention heads in
Transformer architectures over vocabularies, not much is said about how rapidly the dispersion must
affect heads at various depths.

Intuitively, if dispersion occurs at a particular layer, it will cause the outputs of the dispersed attention
heads to converge to the average of all value vectors. This convergence, in turn, minimises the spread
of logits, δ, that the subsequent layer will experience. As shown by Lemma 2.1, the value of the
spread directly controls at which sizes dispersion will occur.

Using this argument, we can show that in BERT-style Transformers without residual connections, a
complete dispersion of all heads in a particular layer leads all subsequent layers’ attention heads to
immediately disperse.

Remark C.1. Let H(n) = {h(n)
i }1≤i≤n be the input node embeddings for an intermediate layer of

a BERT-style Transformer without residual connections. If all of this layer’s attention heads have
dispersed on that input, i.e. α(n)

ij < ϵ where ϵ is the machine epsilon, then all of that layer’s output

node embeddings will be equal to the average embedding, h̃(n)
i = 1

n

∑
1≤j≤n Vh

(n)
j . Since these
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constitute the inputs for the next layer’s attention heads, we can conclude that all of the next layer’s
key and query vectors will be identical, namely (for any feedforward layer f ):

k̃
(n)
i = K′f

 1

n

∑
1≤j≤n

Vh
(n)
j

 q̃
(n)
i = Q′f

 1

n

∑
1≤j≤n

Vh
(n)
j


As such, all logits of such a layer will themselves be equal to

ẽij =

Q′f

 1

n

∑
1≤j≤n

Vh
(n)
j

⊤K′f

 1

n

∑
1≤j≤n

Vh
(n)
j


and hence, the spread will converge to δ̃ = 0. Given Lemma 2.1, such a layer can only compute
averages for any input size n, which is equivalent behaviour to full dispersion. That is, dispersion in
a layer implies that all subsequent layers will output embeddings equivalent to fully dispersed ones.

Note that, if we introduce residual connections in BERT-style Transformers, or leverage GPT-style
Transformers, these kinds of conclusions are no longer applicable. This is because residual con-
nections, as well as the more localised attention heads in GPT-style models, ensure that not all
token embeddings will converge to the average embedding (even under dispersion). And when-
ever the output token embeddings of an attentional layer are not fully converged, any intermediate
transformations (such as the K and Q matrices) can re-amplify δ to less dispersed levels (see also
Proposition 3.1).

Note this does not mean that any global attentional layer of Transformers over finite token vocab-
ularies will escape dispersion—Theorem 2.2 proves it is inevitable—it only means that we cannot
tie the exact moment a particular layer’s heads will disperse to a preceding layer’s dispersion event.
But the dispersion of a layer will certainly play a direct part in reducing the δ value of subsequent
layers, and this may well accelerate dispersion in subsequent layers.

D PROOF OF PROPOSITION 3.1, WITH NUMERICAL VALIDATION

Proposition 3.1 (Sharpness in Transformers necessitates large weights). Let e(n) ∈ Rn be a collec-
tion of n logits, computed using a dot product attention mechanism; i.e. e(n)k = ⟨Qy,Kxk⟩, where
y ∈ Rm is a query vector and Q,K ∈ Rm′×m are parameters. Let δ = max

1≤i≤n
e
(n)
i − min

1≤j≤n
e
(n)
j be

their maximum difference. Then δ is upper bounded as:

δ ≤ 2σ(Q)
maxσ

(K)
max∥y∥ max

1≤i≤n
∥xi∥

where σ(Q)
max, σ

(K)
max ∈ R are the largest singular values of Q and K. That is, the sharpness of the

softmax in Transformers depends on the norm of its parameters.

Proof. We start by showing that the largest singular values of Q and K determine the maximum
stretch due to that matrix acting on x ∈ Rm. More precisely, we wish to show:

∥Qx∥ ≤ σ(Q)
max∥x∥ ∥Kx∥ ≤ σ(K)

max∥x∥

where ∥·∥ is the Euclidean norm. Since both inequalities have the same form, we focus on Q w.l.o.g.
Many of these statements can be derived from linear algebra textbooks (Axler, 2015). However, the
proofs are short enough that we re-derive them here for clarity.

Consider the singular value decomposition (SVD) Q = UΣV⊤, where Σ is a rectangular diagonal
matrix of singular values σ(Q)

i ∈ R. As U and V are orthogonal, ∥Ux∥ = ∥Vx∥ = ∥x∥. Therefore,
∥Qx∥ = ∥UΣV⊤x∥ = ∥Σv∥, where v = V⊤x, meaning that ∥v∥ = ∥x∥. Then we derive:

∥Σv∥ = ∥Qx∥ =

√∑
i

(
σ
(Q)
i vi

)2
≤ σ(Q)

max

√∑
i

v2i = σ(Q)
max∥x∥
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Figure 8: A plot of the logit spread, δ, against its upper bound value predicted by Proposition 3.1,
2σ

(Q)
maxσ

(K)
max∥y∥maxi ∥xi∥, for the single-head attentional experiment described in Appendix A,

with statistics computed across ten seeds. This numerically validates Proposition 3.1.

We now note that
e
(n)
k = ⟨Qy,Kxk⟩ = ∥Qy∥∥Kxk∥ cos θ

with θ the angle between the arguments of the inner product. We can now bound e(n)k from above:

e
(n)
k ≤ ∥Qy∥∥Kxk∥ ≤ σ(Q)

maxσ
(K)
max∥y∥∥xk∥

with σ(Q)
max, σ

(K)
max being the maximum singular value of Q and K, respectively, and where the last

step comes from the inequality shown above. Similarly, we obtain a lower bound, yielding:

−σ(Q)
maxσ

(K)
max∥y∥∥xk∥ ≤ e

(n)
k ≤ σ(Q)

maxσ
(K)
max∥y∥∥xk∥

This gives us the desired upper bound for δ:

δ = max
1≤i≤n

e
(n)
i − min

1≤j≤n
e
(n)
j

≤ max
1≤i≤n

σ(Q)
maxσ

(K)
max∥y∥∥xi∥ − min

1≤j≤n
−σ(Q)

maxσ
(K)
max∥y∥∥xj∥

= σ(Q)
maxσ

(K)
max∥y∥ max

1≤i≤n
∥xi∥+ σ(Q)

maxσ
(K)
max∥y∥ max

1≤j≤n
∥xj∥

= 2σ(Q)
maxσ

(K)
max∥y∥ max

1≤i≤n
∥xi∥

We remark that Proposition 3.1 lends itself to simple numerical verification as well. Accordingly, in
Figure 8, we visualise the evolution of the logit spread, as well as its predicted upper bound, as our
single-head attentional model from Appendix A is trained for increasing numbers of steps.

Indeed, we find that the upper bound is valid, and reveal a key mechanism in which our single-head
architecture gradually learns to sharpen its attention: the logit spread grows with training time, but
so does the norm of the relevant vectors and parameter matrices (in spite of our weight decay loss).

E PROOF OF PROPOSITION 3.2

Proposition 3.2 (Decreasing temperature decreases entropy). Let e(n) ∈ Rn be a collection of
n logits. Consider the Boltzmann distribution over these n items, pi ∝ exp(−βe(n)i ) for β ∈ R,
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and let H = −
∑

i pi log pi be its Shannon entropy. Then, as β’s magnitude increases, H must
monotonically decrease. Thus, since β ∝ 1

θ where θ is the temperature in softmaxθ, decreasing the
temperature must monotonically decrease the entropy.

Proof. We start by briefly acknowledging the extremal values of β: at β = 0 (i.e., θ → ∞), all
logits are weighed equally, hence pi = U(n) are uniform, and entropy is maximised. Similarly, at
β → ±∞ (i.e., θ = 0), either the minimum or the maximum logit is given a probability of 1, leading
to a distribution with minimal (zero) entropy.

Now, consider the partition function Z =
∑

i exp(−βe
(n)
i ), such that pi =

exp(−βe
(n)
i )

Z . We will
take derivatives of logZ with respect to β. Starting with the first derivative:

d

dβ
logZ =

1

Z

∑
i

−e(n)i exp(−βe(n)i ) = −
∑
i

e
(n)
i pi = −Ei∼pi

(e
(n)
i )

we recover the expected logit value sampled under the distribution. Now we differentiate again:

d2

dβ2
logZ = − d

dβ

∑
i

e
(n)
i pi

= −
∑
i

e
(n)
i

d

dβ

exp(−βe(n)i )

Z

= −
∑
i

e
(n)
i

−e(n)i exp(−βe(n)i )Z − exp(−βe(n)i )
∑

j −e
(n)
j exp(−βe(n)j )

Z2

=
∑
i

(e
(n)
i )2

exp(−βe(n)i )

Z
−
∑
j

e
(n)
j

exp(−βe(n)j )

Z

∑
k e

(n)
k exp(−βe(n)k )

Z

=
∑
i

(e
(n)
i )2pi −

∑
j

e
(n)
j pj

∑
k

e
(n)
k pk

= Ei∼pi
((e

(n)
i )2)− Ei∼pi

(e
(n)
i )2 = Vari∼pi

(e
(n)
i )

and we recover the variance of the expected logit value.

Now we turn our attention to the entropy formula:

H = −
∑
i

pi log pi = −
∑
i

pi(log exp(−βe(n)i )− logZ)

=
∑
i

pi logZ −
∑
j

−βe(n)j pj

= logZ + βEi∼pi
(e

(n)
i ) = logZ − β

d

dβ
logZ

To check the monotonicity of H as β varies, we now take the derivative of this expression w.r.t. β:

dH

dβ
=

d

dβ
logZ − d

dβ
logZ − β

d2

dβ2
logZ = −β d2

dβ2
logZ = −βVari∼pi(e

(n)
i )

Since variance can never be negative, we find that dH
dβ ≤ 0 when β ≥ 0, and −dH

dβ ≤ 0 when β ≤ 0.
As such, as the magnitude |β| grows, the value of H must monotonically decrease.

F AN ALGORITHM FOR STREAMING ATTENTIONAL ENTROPY

Computing our proposed adaptive temperature requires computing the entropy of the attentional
coefficients. A naı̈ve algorithm for doing so requires fully materialising the αij entries of the atten-
tion coefficient matrix, which requires O(n2) memory and poses scalability concerns. Fortunately,
there exists an online algorithm for computing the entropy that is not FLOP/s efficient but does not
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leverage any additional memory, allowing for a linear-space attention implementation in conjunc-
tion with Flash Attention (Dao et al., 2022). We present one such algorithm in this section. We
have successfully implemented this algorithm and numerically verified that its outputs match the
expected adaptive temperature amounts, allowing us to deploy layers with large context windows
(up to 131, 072 tokens) on a single NVIDIA A100 node.

In order to compute the adaptive temperature, we need to first compute the attentional coefficient
entropy for each row of the attentional matrix. For convenience, let us define the exponentiated logit
of token i’s attention over token j, taking into account only the first 1 ≤ N ≤ n items:

λ
(N)
ij = exp

(
q⊤
i kj −max

k<N
(q⊤

i kk)

)
where qi and ki the query and key vectors, respectively, for token i.

Now, we can rearrange the terms of the expression for the entropy, H(N)
i , of each row of the corre-

sponding matrix of attentional coefficients, taking into account the first N items, in a form that will
be more favourable for streaming:

H
(N)
i = H

{ λ
(N)
ij∑

k λ
(N)
ik

}
1≤j≤n


=
∑
j

λ
(N)
ij∑

k λ
(N)
ik

log
λ
(N)
ij∑

k λ
(N)
ik

=
∑
j

λ
(N)
ij∑

k λ
(N)
ik

(
log λ

(N)
ij − log

(∑
k

λ
(N)
ik

))

=
∑
j

λ
(N)
ij∑

k λ
(N)
ik

log λ
(N)
ij −

∑
j

λ
(N)
ij∑

k λ
(N)
ik

log

(∑
k

λ
(N)
ik

)

=

∑
j λ

(N)
ij log λ

(N)
ij∑

k λ
(N)
ik

−
∑

j λ
(N)
ij∑

k λ
(N)
ik

log

(∑
k

λ
(N)
ik

)

=

∑
j λ

(N)
ij log λ

(N)
ij∑

k λ
(N)
ik

− log

(∑
k

λ
(N)
ik

)
Next, we define two cumulative quantities:

Λ
(N)
i :=

∑
j<N

λ
(N)
ij m

(N)
i := max

j<N
q⊤
i kj

which allow us to further analyse the
∑

j λ
(N)
ij log λ

(N)
ij term as follows:∑

j<N

λ
(N)
ij log λ

(N)
ij =

∑
j<N

exp

(
q⊤
i kj −max

k
q⊤
i kk

)
log exp

(
q⊤
i kj −max

k
q⊤
i kk

)
=
∑
j<N

λ
(N)
ij

(
q⊤
i kj −m

(N)
i

)
=
∑
j<N

λ
(N)
ij q⊤

i kj −m
(N)
i Λ

(N)
i

Now we remark that we can incrementally compute Λ
(N)
i using the following iterative formula,

leveraging the same concepts as Flash Attention (Dao et al., 2022):

Λ
(N)
i :=

∑
j<N

λ
(N)
ij =

∑
j<N

exp
(
q⊤
i kj −m

(N)
i

)
Λ
(N+1)
i = Λ

(N)
i exp

(
m

(N)
i −m

(N+1)
i

)
+ λ

(N)
iN
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and we can incrementally compute the remaining term, K(N)
i =

∑
j<N λ

(N)
ij q⊤

i kj , using the fol-
lowing iterative formula:

K(N)
i :=

∑
j<N

λ
(N)
ij q⊤

i kj =
∑
j<N

exp
(
q⊤
i kj −m

(N)
i

)
q⊤
i kj

K(N+1)
i = K(N)

i exp
(
m

(N)
i −m

(N+1)
i

)
+ λ

(N)
iN q⊤

i kN

So our final result in terms of Λ(n)
i and K(n)

i (fully streamed across all n items) is:

H
(n)
i =

K(n)
i −m

(n)
i Λ

(n)
i

Λ
(n)
i

− log Λ
(n)
i

=
K(n)

i

Λ
(n)
i

−m
(n)
i − log Λ

(n)
i

This expression can be computed with O(n) memory, as we never have to materialise an entire
matrix of coefficients. Under this implementation, adaptive temperature can easily scale to large
context windows (which we have validated empirically up to 131, 072 tokens).
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