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ABSTRACT

Large language models (LLMs) are empowering decision-making in several ap-
plications, including tool or API usage and answering multiple-choice questions
(MCQs). However, incorrect outputs pose significant risks in high-stakes do-
mains like healthcare and finance. To quantify LLM uncertainty and thereby
mitigate these risks, recent works employ conformal prediction (CP), a model- and
distribution-agnostic framework that uses LLM outputs to generate a prediction
set containing the true answer with high probability. Leveraging CP, we propose
conformal revision of questions (CROQ), which revises the question by narrowing
down the available choices to those in the prediction set and asking the LLM the
revised question. We expect LLMs to be more accurate on revised questions with
fewer choices. Furthermore, we expect CROQ to be effective when the prediction
sets from CP are small. Commonly used logit scores often lead to large sets,
diminishing CROQ’s effectiveness. To overcome this, we propose CP-OPT, an
optimization framework to learn scores that minimize set sizes while maintaining
coverage. Our extensive experiments on MMLU, ToolAlpaca, and TruthfulQA
datasets with multiple LLMs show that CROQ improves accuracy over the standard
inference, with more pronounced gains when paired with CP-OPT.

1 INTRODUCTION

Large language models (LLMs) (Touvron et al., 2023; Databricks, 2024; Abdin et al., 2024) have
demonstrated remarkable capabilities in various decision-making tasks, including multi-choice
question answering and tool usage, where the model must select the correct tool or API to complete
a task (Qu et al., 2024; Tang et al., 2023; Hendrycks et al., 2021). However, LLMs often exhibit
overconfidence in wrong answers (Krause et al., 2023; Groot and Valdenegro Toro, 2024). Such
unreliable predictions entail significant risks in critical domains like finance. Successful usage in such
settings demands principled solutions to improve accuracy and quantify uncertainty in the predictions.

Figure 1: Accuracy for three LLMs on the Truth-
fulQA dataset with 15 response options as a func-
tion of the number of incorrect answer options (dis-
tractors) removed from the prompt. As more dis-
tractor answers are eliminated, accuracy increases.
Accuracy is averaged across 5 iterations, error bars
denote ±2 standard deviations.

A commonly taught strategy for a human test taker
to solve multi-choice questions (MCQs) is the pro-
cess of elimination (pruning) of incorrect (distractor)
answer choices. The underlying principle is that this
enables them to focus their attention on the remaining
answer choices, and it increases the likelihood of a
correct answer even if they have to guess randomly.
Inspired by this, we investigate whether LLMs can
benefit from a similar strategy.

We first examine the relationship between the number
of distractor answers and LLM accuracy on a MCQ
task. Figure 1 illustrates accuracy for three different
LLMs on a version of TruthfulQA, a widely used
MCQ dataset. The MCQs in this version of Truth-
fulQA have 15 answer options, only one of which is
correct. (We discuss how this dataset is constructed
in Appendix D.2.) For each question, we repeatedly
prompt the LLM, randomly eliminating one distrac-
tor answer at a time. Each prompt is independent,
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without any previous rounds included in the context. As hypothesized, reducing the number of
response options leads to an improvement in accuracy, and this improvement is very nearly monotone.
This suggests that eliminating distractor answers before prompting the LLM can indeed enhance
accuracy. Of course, when pruning answers, we do not want to eliminate the correct answer, since
that would necessarily cause the LLM to get the MCQ wrong.

Conformal prediction (CP) (Vovk et al., 2005) is a flexible framework that can be used to prune
distractor answers while retaining the correct answer with high probability. CP is a model-agnostic
and distribution-free technique for generating prediction sets which contain the correct answer with
a user-specified probability (e.g. 95%), which is referred to as the coverage guarantee.

Utilizing this guarantee of CP, we propose a procedure called conformal revision of questions (CROQ),
to revise MCQs with choices in a prediction set output by CP. This procedure represents a tradeoff:
with some small probability (e.g. 5%), we may remove the correct answer from the prediction set,
causing the LLM to get the question wrong. However, with high probability (e.g. 95%), we will
retain the correct answer while reducing the number of distractor answers. Given the relationship
observed in Figure 1, this should increase the LLM’s accuracy on those questions. Different coverage
rates naturally induce different tradeoffs. Overall, we hypothesize that we can find a coverage rate
with a favorable tradeoff, such that CROQ improves the overall accuracy.

CROQ’s effectiveness depends on the size of the prediction sets from conformal prediction – smaller
sets mean fewer choices in the revised question and hence better final accuracy. Conformal prediction
requires specifying a score function, which loosely speaking quantifies how plausible an output
(answer option) is for a given input (question). While conformal prediction provides a coverage
guarantee for any score function, the size of the prediction sets depends on the score function. As an
example, a random score function will yield output sets that constitute random subsets of the label
space that are large enough to satisfy the coverage guarantee (Angelopoulos and Bates, 2022).

Previous works that apply conformal prediction in MCQ-type settings have used readily available
scores such as the logits (or softmax values) output from the LLM (Kumar et al., 2023) or have
designed heuristic scores based for example on repeated querying of the LLM (Su et al., 2024). Logits
can be overconfident and may show biases for some options (Zheng et al., 2024), and heuristic scores
are not guaranteed to produce small sets. Thus, in order to make CROQ as effective as possible, we
propose CP-OPT (conformal prediction optimization), a principled solution to obtain scores that are
designed to minimize set sizes (uncertainty) while preserving the coverage guarantee.

To summarize, our main contributions are as follows:

1. We propose the conformal revision of questions (CROQ), in which we prune the answer choices
in an MCQ to those in the prediction set output by conformal prediction and then prompt the LLM
with the revised question. Empirical evaluation shows that this approach consistently improves
accuracy compared to prompting the LLM with the original MCQ.

2. We design a score function optimization framework (CP-OPT) that can be applied to any pre-
trained LLM. Moving away from the potentially unreliable LLM logits and heuristic scores,
our framework provides a principled way to learn scores for conformal prediction. Empirically,
we show that our procedure leads to a reduction in average set sizes compared to the baseline
procedure that uses the LLM logits as the scores, at the same level (95%) of coverage.

3. We further show that when used with CROQ, our CP-OPT scores deliver greater accuracy
improvements over baseline than the LLM’s logits.

2 PRELIMINARIES

In this section, we provide background on solving MCQ tasks with LLMs and conformal prediction.

2.1 MULTIPLE CHOICE QUESTIONS (MCQS) AND LLMS

MCQ Setup. MCQs are a general abstraction for expressing problems in which the correct choice(s)
must be selected from a given set of choices. These encompass question-answering tasks like
MMLU (Hendrycks et al., 2021) as well as other tasks such as tool learning, in which the LLM
must select the correct tool or API to complete a task (Tang et al., 2023; Qu et al., 2024). An
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MCQ consists of the question text Q, i.e. a sequence of tokens, and a set of answer choices
O = {(Y1, V1), (Y2, V2), . . . , (Ym, Vm)}. Here, each Yj is a unique character from the English
alphabet, and we assume that the number of choices m is less than or equal to the size of the alphabet.
Each Vj is the option text for the jth option. Denote the whole MCQ instance as x = (Q,O). Let
Xm denote the space of MCQs with m choices and PXm

denote a distribution over Xm, from which
samples for training, calibration, and testing are drawn independently. Here, we assume that for each
question Q there is only one correct answer key y⋆ ∈ {Y1, Y2, . . . Ym} = Ym.

MCQ Prompt. We concatenate the question text Q and the answer choices O, all separated by a new
line character, and append to the end the text “The correct answer is: ”. The expectation
is that given this input prompt, the next token predicted by the LLM will be one of the option keys.
See Appendix D for a prompt example. We consider zero-shot prompts and do not include example
questions and answers in the prompt. We also add the prefix and suffix tokens to the prompt as
recommended by the language model providers. Since these are fixed modifications to x, we will use
x to denote the final prompt and the MCQ instance analogously.

LLM Inference. We run the forward pass of the auto-regressive LLM (Touvron et al., 2023; Dubey
et al., 2024; Abdin et al., 2024) on the input prompt to obtain the logit scores for each possible next
token given the prompt, restricting attention to the tokens that correspond to the available answer
keys (e.g. “a”, “b”, “c”, “d” if there are four answer options). We take the softmax to convert the
logits to probabilities, and then we take as the LLM’s answer the option with the highest probability.
This approach ensures that the LLM’s answer will be one of the available answer options, which
would not be guaranteed if instead we asked the LLM to simply generate an answer token given the
prompt. This approach mirrors what has been done in other works that use LLMs to solve MCQs
(Kumar et al., 2023; Su et al., 2024). Formal details are given in Appendix A.1.

2.2 CONFORMAL PREDICTION

Conformal prediction (CP) (Vovk et al., 2005; Angelopoulos et al., 2022) is a framework for quanti-
fying uncertainty in machine learning models. It provides a flexible and user-friendly approach to
output prediction sets (which may be finite sets or intervals) that contain the true output or label with
a probability that is specified by the user, e.g. 95%. The key strength of conformal prediction lies in
its distribution-free guarantees: it ensures that the constructed prediction sets are valid regardless of
the underlying data distribution and model. This property is particularly desirable in the context of
language models, as it is hard to characterize language data distributions or put specific distributional
assumptions/restrictions on the LLMs.

Score Function. Let g : Xm × Ym 7→ R be a conformal score function, where larger scores indicate
better agreement (“conformity”) between x and y. Intuitively, large scores are intended to indicate
that y is a plausible output given x, while smaller scores indicate less plausibility. (Note that some
authors prefer to have larger scores indicate greater disagreement, e.g. Clarkson et al. (2024).) A
common choice of score function is the softmax scores from the given model. For closed-source
LLMs, where logits are not available, others have devised self-consistency scores based on repeated
querying of the model (Su et al., 2024).

Prediction Sets. Given a score function g and threshold τ on the scores, the prediction set for any
x ∈ Xm is given by

C(x; g, τ) := {y ∈ Ym : g(x, y) ≥ τ}. (1)

Intuitively, larger sets represent greater uncertainty, while smaller sets represent less uncertainty.
Given a fixed confidence level, a score function that produces larger sets can be said to result in
greater uncertainty.

Split Conformal Prediction. Similar to prior works (Kumar et al., 2023; Su et al., 2024), we use
Split Conformal Prediction (Papadopoulos et al., 2002; Lei et al., 2018) due to its popularity, ease
of use, and computational efficiency. Given a score function g : Xm × Ym 7→ R, Split Conformal
Prediction uses a calibration dataset Dcal = {xi, y

⋆
i }

ncal
i=1 to compute a threshold τ̂α , defined as

τ̂α = min

{
q :

1

ncal

ncal∑
i=1

1 (g(xi, y
⋆
i ) ≤ q) ≥ α

}
, (2)
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LLM Answer is A.  
(Option C in the original question)

LLM

Sc
or
es Conformal 

Prediction

Answer is in {C,D}. 
 

True answer is in the  
predicted set 95% times.

Coverage guarantee

Score/confidence function:  gives model’s 
confidence on (input, output) pair. e.g., logits.

What is the grace period 
for mortgage payment? 

A. 1 day 
B. 1 week 
C. 15 days 
D. 1 month 
The correct answer is : 

What is the grace period 
for mortgage payment? 

A. 15 days 
B. 1 month 
The correct answer is : 

Correct answer

A B C D

Figure 2: (CROQ) Illustration of conformal revision of questions and prompting the LLM with the
revised question. In this example, the initial predicted set by LLM + conformal prediction (CP) is {C,
D}. The question and labels are revised to contain only the answer choices in the prediction set and
the LLM is prompted with the revised question. Since CP provides rigorous coverage guarantees, we
expect that re-prompting the LLM with reduced answer choices will improve the chances of obtaining
the correct answer. See Section 3.1 for details.

where α ∈ [0, 1] is a user-chosen miscoverage rate that is equal to 1 minus the desired coverage; for
example, a value of α = 0.05 would correspond to a coverage of 95%. In words, τ̂α is the smallest
empirical quantile of the scores for the correct answers on the calibration dataset that is sufficient to
satisfy (an empirical version of) the coverage property. The threshold τ̂ is used to construct prediction
sets C(x; g, τ̂) on previously unseen test points as in (1). This procedure enjoys a marginal coverage
guarantee for prediction sets on unseen test data points, formalized as Proposition 2.1.
Proposition 2.1. (Marginal Coverage Guarantee) (Lei et al., 2018, Thm. 2.2) Let g be a fixed
conformity score function and τ̂α be an α threshold computed via Split Conformal Prediction on
Dcal = {xi, y

⋆
i }

ncal
i=1 ∼ PXm×Ym

. Then, for a new sample (x̃, ỹ⋆) ∼ PXm×Ym
, we have that

P(ỹ⋆ ∈ C(x̃ ; g, τ̂α)) ≥ 1− α. (3)
where the probability is marginal over the randomness in the calibration data and the new sample.

The top half of Figure 2 illustrates conformal prediction for answering MCQs with LLMs. While the
coverage guarantee in Proposition 2.1 holds for any score function, ideally we would like a score
function that yields the smallest sets possible (the least uncertainty). Next, we discuss our solutions
to improve conformal prediction and its utility in solving MCQs with LLMs.

3 METHODOLOGY

In this section, we discuss details of our pipeline for question revision using conformal prediction
and our procedure to generate optimal conformal scores.

3.1 CONFORMAL REVISION OF QUESTIONS (CROQ)

The procedure involves prompting the LLM with the reduced answer options from a conformal
prediction set. The steps are illustrated with an example in Figure 2.

Scores and Threshold for Conformal Prediction. We first fix a score function g : Xm × Ym 7→ R.
Here we restrict the score function to either the logits generated by the LLM or the CP-OPT scores
discussed in Section 3.2. We then run the split conformal procedure with coverage level 1− α for
some α ∈ [0, 1] to estimate the threshold τ̂α. CROQ then proceeds as follows.

Step 1: Get Conformal Prediction Set. Given a test instance x, we generate a first stage prediction
set, C(x ; g, τ̂α). Per the coverage guarantee (Proposition 2.1), we expect that the true answer
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y⋆ ∈ C(x ; g, τ̂α) with probability at least 1− α. Next, the question is revised to contain only the
choices in the set C(x ; g, τ̂α).

Step 2: Revise the Question and Ask the LLM. If the first stage prediction set C(x ; g, τ̂α) is
empty or is of size 1 or size m (the number of answer options), then we simply utilize the LLM’s
answer to the original MCQ x, as described in section 2.1, since the conformal procedure has
yielded no additional information. Otherwise, we modify the prompt x to x′ = (Q,O′), where
O′ = {(Kj , Vj) : Kj ∈ C(x ; g, τ̂α)}. The keys in O′ are changed so that they start with the first
letter of the alphabet and go to the letter corresponding to the number of choices available. For
example, if there were initially four answer options {a, b, c, d}, and the conformal prediction set was
{c, d}, then the two options in the set would receive new keys {a, b}. Then x′ is transformed into a
prompt format and passed to the LLM, and the standard inference procedure (section 2.1) is run to
extract the predicted answer key ŷ′.

With fewer choices in the revised question, we expect LLMs will be more accurate in their answer
compared to the answer to the initial question. However, the improvement in accuracy will depend
on the size of the prediction sets. As shown in Figure 1 LLMs have a higher chance of answering the
question correctly if the number of options is small. This implies the efficacy of CROQ will depend
on the size of sets C(x; g, τ̂α) – if these sets are small then we can expect more improvement.

While conformal prediction can output sets C(x; g, τ̂α) for any score function g, along with 1− α
coverage guarantee, the set sizes could be highly variable depending on the score function g. Noting
the lack of reliability of scores used in prior works, that could yield unnecessarily large sets, we seek
to learn scores that minimize the set sizes while preserving the coverage guarantee. We discuss our
procedure to learn such scores in the next section. Using these scores in CP we expect to get smaller
sets and thus more improvement in CROQ compared to baseline scores.

3.2 CP-OPT TO OPTIMIZE SCORES

We describe our method for learning the optimal scores for conformal prediction (CP) for solving
MCQs with LLMs. Similar ideas have been incorporated in the training objective of classifiers (Stutz
et al., 2022) so that the classifiers’ softmax output is better suited for CP. However, the LLMs are
not trained with this objective, and we want to apply CP to any given LLM; therefore, we design a
post-hoc method to optimize the scores. We first characterize the optimal scores and then describe
how to estimate them in practice.

Characterization of the optimal scores. For any score function g : Xm × Ym 7→ R
and threshold τ , the membership of any y in the prediction set C(x; g, τ) is given by
1(y ∈ C(x; g, τ)) = 1{g(x, y) ≥ τ}. Define the expected set size S(g, τ) and the cover-
age conditional on τ , denoted P(g, τ), as follows:

S(g, τ) := Ex

[ ∑
y∈Ym

1{g(x, y) ≥ τ}
]
. (4) P(g, τ) := Ex [1{g(x, y⋆) ≥ τ}] . (5)

The optimal score function g⋆ and threshold τ⋆ are defined (non-uniquely) to minimize the expected
set size subject to the coverage P(g, τ) being at least 1− α:

g⋆, τ⋆ := argmin
g:Xm×Ym 7→R,τ∈R

S(g, τ) s.t. P(g, τ) ≥ 1− α. (P1)

Practical Version with Differentiable Surrogates and Empirical Estimates. Problem (P1)
characterizes optimal score functions and thresholds. However, in practice, we do not know the
underlying distribution and thus do not have access to the quantities in (4) and (5). Instead, we obtain
their estimates using a training sample Dtrain = {(xi, y

⋆
i )}

nt
i=1 drawn independently from the same

distribution:

Ŝ(g, τ) :=
1

nt

nt∑
i=1

∑
y∈Ym

1{g(xi, y) ≥ τ}, (6) P̂(g, τ) := 1

nt

nt∑
i=1

1{g(xi, y
⋆
i ) ≥ τ}. (7)

Using these plug-in estimators in problem (P1) yields a revised optimization problem. However,
it is difficult to solve this problem as the objective and constraints are not differentiable. To make
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them differentiable, we introduce the following surrogates. Given g(x, y) and τ , define the following
sigmoid function with β > 0, σ(x, y, g, τ, β) := 1/

(
1 + exp(−β (g(x, y)− τ))

)
. The sigmoid

function provides a differentiable approximation to the indicator variable for g(x, y) ≥ τ . The
approximation is tighter with larger β i.e., σ(x, y, g, τ, β) → 1{g(x, y) ≥ τ} as β → ∞, and
g(x, y) ≥ τ ⇐⇒ σ(x, y, g, τ) ≥ 1/2. By using these sigmoid surrogates in equation (6), we obtain
the following smooth plugin estimates,

S̃(g, τ) :=
1

nt

nt∑
i=1

∑
y∈Ym

σ(xi, y, g, τ, β). (8) P̃(g, τ) := 1

nt

nt∑
i=1

σ(xi, y
⋆
i , g, τ, β). (9)

It is easy to see that by the strong law of larger numbers and properties of the sigmoid function, as
nt, β →∞, the surrogate average set size and coverage will converge almost surely to their population
versions, i.e. S̃(g, τ) a.s.−−→ S(g, τ) and P̃(g, τ) a.s.−−→ P(g, τ). We replace the expected set size and
marginal coverage by these smooth surrogates in (P1) and transform it into an unconstrained problem
with a penalty term λ > 0. We also introduce ℓ2 regularization to encourage low norm solutions. We
optimize the score function g over a flexible space of functions G, such as neural networks (NNs).
The resulting problem (P2) is differentiable, and we solve it using stochastic gradient descent.

g̃, τ̃ := argmin
g∈G,τ∈R

S̃(g, τ) + λ
(
P̃(g, τ)− 1 + α

)2 − Ĉ(g) + λ1∥g∥22. (P2)

Here, Ĉ(g) := 1
nt

∑nt

i=1 log(g(xi, y
∗
i )) is the cross entropy term included to encourage higher scores

for correct predictions, and the regularization term λ1||g||22 is the squared norm over the parameters of
g to promote low norm solutions. Solving (P2) yields a score function g̃ and a threshold τ̃ . However,
τ̃ may be biased, since it is estimated on the same data as g̃. Following the split conformal procedure,
we therefore estimate a new threshold τ̂ on a separate calibration dataset. Note that our framework is
flexible and can work with any choice of features and function class for which the ℓ2 norm can be
calculated. We discuss the specific choice of features and G used in this work in Appendix A.2.

4 EXPERIMENTS

We conduct experiments on benchmark MCQ and tool usage tasks with open-weight instruction-tuned
models to test the following hypotheses:

H1. CP-OPT scores in conformal prediction on MCQ tasks with LLMs yield a smaller average set
size at the same level of coverage in comparison to using LLM logits.

H2. Conformal revision of questions (CROQ) improves accuracy over the standard inference.

H3. CROQ with CP-OPT scores performs better than CROQ with logit scores.

4.1 EXPERIMENTAL SETUP

We first describe the setup for the experiments and then discuss the results for the above hypotheses.

Datasets. We evaluate our hypotheses on 3 datasets: MMLU (Hendrycks et al., 2021), TruthfulQA
(Lin et al., 2022), and ToolAlpaca (Tang et al., 2023). MMLU and TruthfulQA are popular
benchmark datasets for multiple-choice questions. MMLU focuses on assessing multitask accuracy;
it contains multiple choice questions (MCQs) from 57 domains, including humanities, math, medicine,
etc. TruthfulQA evaluates an LLM’s ability to answer truthfully and avoid falsehoods that humans
are susceptible to. ToolAlpaca contains 3.9k tool-use instances from a multi-agent simulation
environment, which we augment to a MCQ format. Dataset descriptions and example questions and
responses are provided in Appendix D.

Models. We use auto-regressive language models based on the transformer architecture. We
choose instruction-tuned, open-weight, and small to medium-sized models, for reproducibil-
ity and reduced computational cost. Specifically, we use Llama-3-8B-Instruct by Meta
(Dubey et al., 2024), Phi-3-4k-mini-Instruct by Microsoft (Abdin et al., 2024), and the
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Llama-3 Phi-3 Gemma-2
Avg. Set Size Coverage Avg. Set Size Coverage Avg. Set Size Coverage

Dataset # Opt. Logits Ours Logits Ours Logits Ours Logits Ours Logits Ours Logits Ours

MMLU
4 2.56 2.53* 95.75 95.57 2.21 2.16* 94.65 94.35 2.94 2.40* 95.16* 94.23

10 5.53 4.90* 96.06* 95.45 4.36 4.36 94.11 94.09 7.79 6.08* 95.00* 94.04

15 7.69 7.18* 95.42 95.06 6.64 6.52* 94.60 94.61 11.71 10.04* 94.58 94.58

ToolAlpaca
4 1.17 1.18 97.08 96.85 1.07 1.08 95.33 95.68 1.12 1.05* 95.68 95.44

10 1.51 1.39* 95.21 95.56 1.25 1.20* 95.56 95.09 2.05 1.42* 95.56 94.51

15 1.97 1.67* 96.50 96.03 1.68 1.54* 98.36* 97.20 3.54 1.77* 96.14 95.21

TruthfulQA
4 3.34 2.69* 95.95* 92.41 2.85 2.53* 96.71 96.71 2.74 1.88* 96.46 95.44

10 7.06 6.41* 94.43 93.42 7.48 6.49* 98.48* 95.70 7.52 5.64* 95.44 97.22

15 10.61 10.62 94.68 94.68 10.72 10.30* 95.44 96.46 11.23 9.35* 95.44 96.46

Table 1: Average set sizes and coverage rates (in percentages) for conformal prediction sets on
the MMLU, ToolAlpaca, and TruthfulQA datasets using gemma-2-9b-it-SimPO (Gemma-2),
Llama-3-8B-Instruct (Llama-3) and Phi-3-4k-mini-Instruct (Phi-3), with a target
coverage level of 95%. Bold numbers indicate smaller avg. set sizes. Asterisks on the larger of a pair
of numbers indicate where the difference in average set size or coverage is statistically significant at
the 0.05 significance level.

Llama-3 Phi-3 Gemma-2

Model # Opt.
Accuracy Accuracy Gain Accuracy Accuracy Gain Accuracy Accuracy GainBefore After Before After Before After

(a1) (a′1) (a′1 − a1) (a1) (a′1) (a′1 − a1) (a1) (a′1) (a′1 − a1)

MMLU
4 64.02 63.83 -0.19 70.27 69.08 -1.19 67.62 67.70 0.07

10 54.82 56.29 1.47* 58.44 61.57 3.13* 53.80 53.93 0.13
15 51.99 54.11 2.11* 53.48 58.09 4.62* 50.78 50.58 -0.20

ToolAlpaca
4 91.47 91.94 0.47 92.76 92.64 -0.12 93.46 93.11 -0.35

10 85.16 88.67 3.50* 87.50 90.89 3.39* 87.73 89.60 1.87*
15 81.43 87.85 6.43* 85.98 89.25 3.27* 87.97 88.55 0.58

TruthfulQA
4 54.43 55.19 0.76 69.87 70.13 0.25 74.68 74.94 0.25

10 39.24 40.76 1.52 55.70 54.43 -1.27 56.46 56.20 -0.25

15 37.22 37.22 0.00 46.84 46.33 -0.51 55.95 56.96 1.01

Table 2: [CROQ + logits]. Results on accuracy improvement with CROQ using logit scores. Here
a1, and a′1 refer to the accuracy before CROQ and after CROQ respectively. A positive gain implies
CROQ improved accuracy in that setting.

gemma-2-9b-it-SimPO model (Meng et al., 2024). For brevity, we use the short names Llama-3,
Phi-3, and Gemma-2 respectively for these models.

Choices of Scores. We use the following scores for conformal prediction. (1) LLM Logits
(Softmax) are extracted from the LLM as discussed in Section 2.1. These have been used in prior
works (Kumar et al., 2023; Su et al., 2024). (2) CP-OPT (Ours) are the scores learned using
the score optimization procedure discussed in Section 3.2. We use the train split for each dataset to
learn these scores. The hyperparameter settings we used for CP-OPT are given in Appendix D.3.
We omit the self-consistency based heuristic scores proposed by Su et al. (2024), as these require
repeated inferences to get good estimates of the scores, and hence have a high computational cost.

We use the provided validation splits as our calibration datasets for the conformal procedure. For
testing the hypotheses, we calibrate the conformal threshold for the coverage guarantee of 95%, i.e.
we set the miscoverage rate α to 0.05. In addition, we study CROQ with calibration in a range of
α values: {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5 }.
Performance is computed on test splits. The hyperparameters used to learn the score function using
SGD are provided in table 20 in Appendix D.3.

Statistical Significance. We report the statistical significance of our results using paired sample
t-tests, using asterisks (*) to annotate results that are statistically significant at a 0.05 significance
level. See Appendix C for details.
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Llama-3 Phi-3 Gemma-2

Model # Opt.
Accuracy Accuracy Gain Accuracy Accuracy Gain Accuracy Accuracy GainLogits CP-OPT Logits CP-OPT Logits CP-OPT

(a′1) (a′2) (a′2 − a′1) (a′1) (a′2) (a′2 − a′1) (a′1) (a′2) (a′2 − a′1)

MMLU
4 63.83 63.67 -0.16 69.08 69.34 0.26 67.70 69.56 1.86*

10 56.29 57.11 0.82* 61.57 61.05 -0.52 53.93 57.93 4.00*
15 54.11 54.77 0.66* 58.09 58.15 0.06* 50.58 51.31 0.73

ToolAlpaca
4 91.94 91.82 -0.12 92.64 92.52 -0.12 93.11 93.57 0.46

10 88.67 89.02 0.35* 90.89 91.00 0.11* 89.60 90.42 0.82*
15 87.85 88.67 0.82* 89.25 89.95 0.70* 88.55 89.37 0.82

TruthfulQA
4 55.19 55.44 0.25 70.13 69.87 -0.26 74.94 76.96 2.02

10 40.76 42.28 1.52 54.43 56.20 1.77 56.20 60.76 4.56*
15 37.22 37.47 0.25 46.33 51.39 5.06* 56.96 57.72 0.76

Table 3: [CROQ + logits vs CROQ + CP-OPT]. Comparison of CP-OPT and logits on accuracy
improvement with CROQ. Here, a′1, and a′2 are the final accuracies after CROQ using logits and
CP-OPT respectively (as in Tables 2 and 4. The gain a′2 − a′1 is the difference between these two,
with values indicating more improvement in CROQ with CP-OPT scores.

4.2 DISCUSSION

H1. Improvement in conformal set sizes with our CP-OPT scores. We run the CP procedure using
the LLM logits and CP-OPT scores and obtain conformal sets for points in the test sets. We compute
the average set size and coverage for each dataset, model, and score combination. The results are
in Table 1. As expected, in most settings (17 out of 27) we see a statistically significant reduction
in the set sizes with our (CP-OPT) scores with similar coverage as logits. The reduction is more
pronounced with a higher number of options. In a few settings (6/27), the reduction in set size is
accompanied by a statistically significant decrease in coverage relative to using the logits. In the
remaining 4/27 settings the differences are insignificant. Note that since the target coverage level is
95%, anything above 95% is over-coverage. We see that logits tend to over-cover and thus a drop
in coverage is expected as long as it does not fall significantly below the desired level of 95% (this
happens only in 2/27 settings). Overall, these results show CP-OPT’s effectiveness in reducing set
sizes while maintaining the target coverage level. In Appendix B, we provide histograms (e.g., Figure
6) of set sizes produced by logits and CP-OPT scores in all settings. These histograms show a clear
pattern: CP-OPT scores produce fewer large sets and more small sets in comparison to logit scores.

H2. Accuracy improvement with conformal revision of questions (CROQ). Tables 2 and 4 show the
accuracy before and after CROQ with logit and CP-OPT scores respectively. With the logit scores
(Table 2), we see an increase in accuracy (by up to 6.43%) in 19 out of 27 settings, out of which
9 are statistically significant. In 8 of the settings, we see a small drop in accuracy (which is not
statistically significant). Next, with CP-OPT scores (Table 4) we see accuracy improvements (up to
7.24%) in 24 settings, of which 13 are statistically significant. In the remaining 3 settings, we see a
non-significant drop in accuracy. Overall, we observe that in the vast majority of the settings, CROQ
improves accuracy with either logits or CP-OPT scores. The rare small drops in accuracy could occur
since the conformal procedure may eliminate the correct option with low probability (α).

H3. CROQ with CP-OPT scores is better than CROQ with logit scores. CP-OPT scores are designed
to minimize set sizes while maintaining the coverage guarantee. As a result, using these scores with
CROQ is expected to reduce uncertainty for many questions, leading to fewer answer options in
the revised prompts. Based on Figure 1, we expect LLMs to be more likely to answer correctly
when prompted with the revised question with fewer options. The results of CROQ with CP-OPT
are summarized in Table 4, and in Table 3 we compare the accuracies after CROQ with logits and
CP-OPT. In Table 3 we see that in 22 out of 27 settings, CROQ with CP-OPT results in higher
accuracy (up to 4.56%) than CROQ with logits. Furthermore, the improvements in 12 out of these 22
settings are statistically significant. The drop in accuracy in the remaining 5 settings is statistically
non-significant. Overall, we see that CROQ with CP-OPT is generally better than with logits.
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5 RELATED WORK

Conformal Prediction for Uncertainty Quantification with LLMs. Recently there has been
growing interest in using conformal prediction to quantify and control uncertainty in LLM-related
tasks. In the context of multi-choice question answering (MCQ), previous works have investigated
a variety of conformal score functions, including (the softmax of) the LLM logits corresponding
to the response options (Kumar et al., 2023; Ren et al., 2023) or functions thereof (Ye et al., 2024),
confidence scores generated by the LLM itself, or “self-consistency” scores derived by repeated
querying of the LLM (Su et al., 2024). We build on this work by aiming to learn a conformal score
function that yields small conformal sets, rather than taking the score function as given.

In addition to the MCQ setting, there has been recent work utilizing conformal prediction in the
context of open-ended response generation (Quach et al., 2024; Mohri and Hashimoto, 2024; Cherian
et al., 2024). This setting differs in that there is not necessarily a unique correct response, so the
notion of coverage must be redefined around acceptability or factuality rather than correctness. When
factuality is the target, the goal is to calibrate a pruning procedure that removes a minimal number of
claims from an LLM-generated open response, such that the remaining claims are all factual with
high probability; that is, the goal is to retain as large a set as possible, rather than to generate a set
with the smallest number of responses possible as in MCQ. Conformal prediction has also been used
to capture token-level uncertainty (Deutschmann et al., 2024; Ravfogel et al.; Ulmer et al., 2024).

Optimizing Conformal Prediction Procedures. Several recent works have considered how to
learn good conformal score functions from data, primarily in the context of supervised learning
models (Bai et al., 2022; Stutz et al., 2022; Yang and Kuchibhotla, 2024; Xie et al., 2024). With LLMs,
Cherian et al. (2024) consider how to learn a good score function to achieve factuality guarantees;
their optimization problem differs from ours due to the difference in setting as well as the addition
of conditional coverage constraints (ensuring that coverage holds in different parts of the feature
space). Kiyani et al. (2024) design a framework to minimize the size (“length,” in their terminology)
of conformal sets, which they apply to MCQ as well as to supervised learning problems. However,
their framework is concerned with how to generate sets given a model and a conformity score, rather
than how to learn a conformity score.

The works mentioned above all aim to produce small conformal sets that satisfy coverage guarantees.
Among these, only Ren et al. (2023) consider how conformal sets may be used downstream, in their
case to improve the efficiency and autonomy of robot behavior. To our knowledge, our work is the
first to investigate whether conformal prediction can be used to increase the accuracy of LLMs on
MCQ type tasks.

6 CONCLUSIONS AND FUTURE WORKS

In this work, we introduced Conformal Revision of Questions (CROQ), a principled approach to
improve LLM accuracy in multiple-choice settings by leveraging conformal prediction (CP) to
eliminate distractor answers while maintaining high coverage of the correct answer. To further boost
CROQ’s performance we proposed CP-OPT, a framework for optimizing score functions to minimize
prediction set sizes while preserving CP’s coverage guarantees. Our results demonstrate that CROQ
significantly enhances LLM’s accuracy, and that CP-OPT further strengthens this effect by producing
smaller, more reliable prediction sets than standard LLM logits. These findings highlight the potential
of uncertainty-aware, test-time methods to improve LLM decision-making, providing a principled
path for safer and more effective deployment of LLMs in critical applications.

Future works could explore multi-round CROQ, where answer options are pruned iteratively in
multiple rounds, further improving accuracy while maintaining coverage. This requires developing
efficient recalibration strategies and methods to prevent excessive coverage reduction across iterations.
Additionally, a key challenge is adapting conformal score thresholds in settings with a variable
number of response options. Techniques like quantile regression could help calibrate thresholds
dynamically, ensuring robust performance across diverse decision-making scenarios.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

M. Abdin, S. A. Jacobs, A. A. Awan, J. Aneja, A. Awadallah, H. Awadalla, N. Bach, A. Bahree,
A. Bakhtiari, H. Behl, et al. Phi-3 technical report: A highly capable language model locally on
your phone. arXiv preprint arXiv:2404.14219, 2024.

A. N. Angelopoulos and S. Bates. A Gentle Introduction to Conformal Prediction and Distribution-
Free Uncertainty Quantification. arXiv preprint arXiv:2107.07511, (arXiv:2107.07511), 2022.

A. N. Angelopoulos, S. Bates, E. J. Candès, M. I. Jordan, and L. Lei. Learn then test: Calibrating
predictive algorithms to achieve risk control. arXiv preprint arXiv:2110.01052, 2022.

Y. Bai, S. Mei, H. Wang, Y. Zhou, and C. Xiong. Efficient and differentiable conformal prediction
with general function classes. In The Tenth International Conference on Learning Representations,
2022.

J. J. Cherian, I. Gibbs, and E. J. Candès. Large language model validity via enhanced conformal
prediction methods. arXiv preprint arXiv:2406.09714, 2024.

J. Clarkson, W. Xu, M. Cucuringu, and G. Reinert. Split conformal prediction under data contamina-
tion. arXiv preprint arXiv:2407.07700, 2024.

Databricks. Introducing DBRX: A New State-of-the-Art Open LLM, 2024.

N. Deutschmann, M. Alberts, and M. R. Martı́nez. Conformal autoregressive generation: Beam
search with coverage guarantees. In Proceedings of the AAAI Conference on Artificial Intelligence,
2024.

D. Dohan, W. Xu, A. Lewkowycz, J. Austin, D. Bieber, R. G. Lopes, Y. Wu, H. Michalewski, R. A.
Saurous, J. Sohl-dickstein, K. Murphy, and C. Sutton. Language model cascades, 2022.

A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten, A. Yang,
A. Fan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

R. El-Yaniv and Y. Wiener. On the foundations of noise-free selective classification. JMLR, 11:
1605–1641, aug 2010. ISSN 1532-4435.

A. Fisch, T. S. Jaakkola, and R. Barzilay. Calibrated selective classification. Transactions on Machine
Learning Research, 2022. ISSN 2835-8856.

T. Groot and M. Valdenegro Toro. Overconfidence is key: Verbalized uncertainty evaluation in large
language and vision-language models. In Proceedings of the 4th Workshop on Trustworthy Natural
Language Processing (TrustNLP 2024). Association for Computational Linguistics, 2024.

N. Gupta, H. Narasimhan, W. Jitkrittum, A. S. Rawat, A. K. Menon, and S. Kumar. Language model
cascades: Token-level uncertainty and beyond. arXiv preprint arXiv:2404.10136, 2024.

D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and J. Steinhardt. Measuring mas-
sive multitask language understanding. In International Conference on Learning Representations,
2021.

S. Kiyani, G. Pappas, and H. Hassani. Length Optimization in Conformal Prediction. arXiv preprint
arXiv:2406.18814, 2024.

L. Krause, W. Tufa, S. Baez Santamaria, A. Daza, U. Khurana, and P. Vossen. Confidently wrong:
Exploring the calibration and expression of (un)certainty of large language models in a multilingual
setting. In Proceedings of the Workshop on Multimodal, Multilingual Natural Language Generation
and Multilingual WebNLG Challenge (MM-NLG 2023). Association for Computational Linguistics,
2023.

B. Kumar, C. Lu, G. Gupta, A. Palepu, D. Bellamy, R. Raskar, and A. Beam. Conformal prediction
with large language models for multi-choice question answering. arXiv preprint arXiv:2305.18404,
2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

J. Lei, M. G’Sell, A. Rinaldo, R. J. Tibshirani, and L. Wasserman. Distribution-free predictive
inference for regression. Journal of the American Statistical Association, 113(523), 2018.

S. Lin, J. Hilton, and O. Evans. TruthfulQA: Measuring how models mimic human falsehoods. In
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational Linguistics, 2022.

Y. Meng, M. Xia, and D. Chen. SimPO: Simple preference optimization with a reference-free reward.
arXiv preprint arXiv:2405.14734, 2024.

C. Mohri and T. Hashimoto. Language models with conformal factuality guarantees. arXiv preprint
arXiv:2402.10978, 2024.

H. Papadopoulos, K. Proedrou, V. Vovk, and A. Gammerman. Inductive confidence machines for
regression. In Machine learning: ECML 2002: 13th European conference on machine learning
Helsinki, Finland, August 19–23, 2002 proceedings 13. Springer, 2002.

C. Qu, S. Dai, X. Wei, H. Cai, S. Wang, D. Yin, J. Xu, and J.-R. Wen. Tool learning with large
language models: A survey. arXiv preprint arXiv:2405.17935, 2024.

V. Quach, A. Fisch, T. Schuster, A. Yala, J. H. Sohn, T. S. Jaakkola, and R. Barzilay. Conformal
language modeling. In The Twelfth International Conference on Learning Representations, 2024.

S. Ravfogel, Y. Goldberg, and J. Goldberger. Conformal nucleus sampling. In Findings of the
Association for Computational Linguistics: ACL 2023.

A. Z. Ren, A. Dixit, A. Bodrova, S. Singh, S. Tu, N. Brown, P. Xu, L. Takayama, F. Xia, J. Varley,
Z. Xu, D. Sadigh, A. Zeng, and A. Majumdar. Robots that ask for help: Uncertainty alignment for
large language model planners. In 7th Annual Conference on Robot Learning, 2023.

D. Stutz, K. D. Dvijotham, A. T. Cemgil, and A. Doucet. Learning optimal conformal classifiers. In
International Conference on Learning Representations, 2022.

J. Su, J. Luo, H. Wang, and L. Cheng. Api is enough: Conformal prediction for large language
models without logit-access. arXiv preprint arXiv:2403.01216, 2024.

D. Tailor, A. Patra, R. Verma, P. Manggala, and E. Nalisnick. Learning to defer to a population: A
meta-learning approach. In International Conference on Artificial Intelligence and Statistics, pages
3475–3483. PMLR, 2024.

Q. Tang, Z. Deng, H. Lin, X. Han, Q. Liang, B. Cao, and L. Sun. Toolalpaca: Generalized tool
learning for language models with 3000 simulated cases. arXiv preprint arXiv:2306.05301, 2023.

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

D. Ulmer, C. Zerva, and A. Martins. Non-exchangeable conformal language generation with nearest
neighbors. In Findings of the Association for Computational Linguistics: EACL 2024, 2024.

H. Vishwakarma, H. Lin, F. Sala, and R. K. Vinayak. Promises and pitfalls of threshold-based
auto-labeling. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

H. Vishwakarma, H. Lin, and R. K. Vinayak. Taming false positives in out-of-distribution detection
with human feedback. In International Conference on Artificial Intelligence and Statistics, pages
1486–1494. PMLR, 2024.

V. Vovk, A. Gammerman, and G. Shafer. Algorithmic learning in a random world, volume 29.
Springer, 2005.

R. Xie, R. F. Barber, and E. J. Candès. Boosted Conformal Prediction Intervals. arXiv preprint
arXiv:2406.07449, 2024.

Y. Yang and A. K. Kuchibhotla. Selection and Aggregation of Conformal Prediction Sets. Journal of
the American Statistical Association, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

F. Ye, M. Yang, J. Pang, L. Wang, D. F. Wong, E. Yilmaz, S. Shi, and Z. Tu. Benchmarking llms via
uncertainty quantification. arXiv preprint arXiv:2401.12794, 2024.

C. Zheng, H. Zhou, F. Meng, J. Zhou, and M. Huang. Large language models are not robust multiple
choice selectors. In The Twelfth International Conference on Learning Representations, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

SUPPLEMENTARY MATERIAL

The supplementary material is organized as follows. In Appendix A.1 we provide details of LLM
inference for MCQs. Our choice for G is discussed in Appendix A.2. Additional experiments and
results are given in Appendix B. First, in Appendix B.1 we discuss the trade-off between coverage
(choice of α) in conformal prediction and its effect on CROQ accuracy. Next, in Appendix B.2 we
explore the effectiveness of conformal prediction with CP-OPT scores in deferral applications. The
Appendices B.3,B.4 and B.5, contain more detailed results for the hypotheses discussed in the main
paper. Appendix C provides details of the procedure used to compute statistical significance. In
Appendix D we provide details of datasets and give samples of prompts before and after CROQ and
LLM’s answers. Finally, Appendix D.3 lists the hyperparameters used for learning score function
using CP-OPT.

A METHODOLOGY AND BACKGROUND DETAILS

A.1 DETAILS ON LLM INFERENCE IN MULTI-CHOICE QUESTION ANSWERING

We provide a formal description of the inference procedure described in the LLM Inference paragraph
of Section 2.1.

The input prompt x is a sequence of tokens t1, t2, . . . tn. We run the forward pass of the auto-
regressive LLM (Touvron et al., 2023; Dubey et al., 2024; Abdin et al., 2024) on x to produce a set of
output logits:

l1, l2, . . . , ln ← LLM
(
t1, t2, . . . tn

)
(10)

Here, each logit lj ∈ R|V | expresses the likelihood of the next token after t1, . . . , tj , where V is the
universal set of tokens (aka the alphabet) for the given LLM and |V | is its size. The last token’s logits
ln are expected to have a high value for the correct answer key. We extract the logit vector l̄ ∈ Rm

corresponding to the option keys as follows:

l̄ :=
[
ln[Y1], ln[Y2], . . . , ln[Ym]

]
, (11)

where ln[Yj ] denotes the logit value corresponding to the token Yj in the last token’s logits ln. The
logits l̄ are converted to softmax scores s(x). The softmax score of point x and option key y is
denoted by s(x, y) and the predicted answer key ŷ corresponds to the maximum softmax value:

s(x) := softmax(l̄), s(x, y) := s(x)[y], ŷ := argmax
y∈{Y1,...Ym}

s(x, y) (12)

A.2 SPECIFIC CHOICE OF FEATURES AND G

In practice, we want to use a flexible and easy-to-train function class for G. As this is a post-hoc
procedure and we want to avoid expensive fine-tuning. We use 3-layer neural networks with tanh
activation as G and use the LLM’s logits and the penultimate layer’s representations corresponding to
the last token as input features to the g network. Let z ∈ Rd+m be the concatenation of the LLM’s
penultimate layer’s representation (d-dimensional) and logits (m-dimensional) for the last token. Our
choice of G for the experiments is defined as follows,

G := { g : Rd0 → ∆m−1 | g(z) := softmax(W3tanh(W2tanh(W1(z)))),

W1 ∈ Rd0×d1 ,W2 ∈ Rd1×d2 ,W3 ∈ Rd2×m }

Here, d0 = d + m, d1 = (d + m)/2, and d3 = (d + m)/4 and ∆m−1 is the m − 1 dimensional
probability simplex. This class for G is flexible enough and the resulting optimization problem is not
computationally prohibitive to solve. More complex (flexible) choices of G could be used when we
can devote more compute to learning the score function.

B ADDITIONAL EXPERIMENTS AND RESULTS

This appendix contains additional results and details not included in the main paper due to length
constraints.
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B.1 TRADE-OFF BETWEEN COVERAGE AND ACCURACY

The choice of α controls the coverage level in conformal prediction. A small α implies high coverage,
meaning the prediction sets contain the true options with high probability but potentially have large
sizes. Thus, choosing a very small α will likely not eliminate a sufficient number of options to see any
noticeable improvement with CROQ. On the other hand, choosing a large α will eliminate the true
option from the set for a large portion of the questions, which will result in low accuracy from CROQ.
To study these trade-offs, we run CROQ with different values of α. The accuracy before and after
CROQ for a range of α values are shown in Figure 5 and Figure 4 for the Llama-3 and Phi-3 models
respectively. The results are as expected given the observations above: using an overly conservative
(small) α does not give much improvement; as we increase α, the accuracy also increases up to a
point, after which it starts to come down. This suggests that to optimize accuracy, a practitioner can
tune α for their chosen score function and setting.

B.2 USING CONFORMAL PREDICTION FOR DEFERRAL

Smaller prediction sets imply fewer deferrals in human-in-the-loop or model cascade systems. We
consider a deferral procedure in which a set size cutoff is selected, and the LLM answer is only
retained if the set size is at or below that cutoff. For all larger sets, the question is passed to a human
(or a more powerful but costly model) who can answer the question correctly. Smaller sets from CP
are desirable for this procedure to be effective. We evaluate this procedure with logit and CP-OPT
scores in two settings and show the results in Figure 3. As expected, lower set size cutoffs result
in higher accuracy. As the set size cutoff increases, the accuracy approaches the LLM’s marginal
accuracy, while the number of deferrals (i.e. the cost of obtaining the answer from a human or more
expensive model) decreases. In the top row of the figure, the differences in the set sizes between logit
and CP-OPT scores are not large enough to see a meaningful difference in this procedure. However,
in the bottom row corresponding to the Gemma-2 model and TruthfulQA dataset with 15 options,
we see CP-OPT scores lead to fewer deferrals in comparison to logits. Model cascades (Dohan
et al., 2022; Gupta et al., 2024) and deferrals to human-in-the-loop (Tailor et al., 2024; Vishwakarma
et al., 2024) and more broadly selective prediction (El-Yaniv and Wiener, 2010; Fisch et al., 2022;
Vishwakarma et al., 2023) are useful frameworks for model deployment while ensuring safety, high
accuracy, and balancing the costs. Our experiments show the promise of CP with logit and CP-OPT
scores in this task and suggest it would be fruitful to explore this design space with CP.

Figure 4 shows accuracy after the CROQ procedure as a function of α for Phi-3. The results are
qualitatively similar to the results for Llama-3 in the main text (Section 4.2).

All remaining results are organized by dataset. Tables for the CROQ results which illustrate accuracy
changes conditional on set size are based on a confidence level of 95% (equivalently an α level of
0.05). Note that with the ToolAlpaca dataset, not all possible set sizes occur, in which case we omit
the corresponding columns. For example, with 10 response options, only sets of size 8 and smaller
occur.

Asterisks in the tables indicate where the difference in overall accuracy from Before to After, i.e.
from baseline to after the CROQ procedure, is statistically significant at the α = 0.05 level. (In some
tables, like Table 8, none of the changes are significant.) See Appendix C for details on how statistical
significance was calculated.
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Figure 3: Proportion of questions deferred to a human when conformal prediction set sizes exceed
a certain cutoff (left), and the corresponding LLM accuracy for questions (without revision) re-
tained by the LLM as a function of cutoff threshold (right). In the top row (MMLU, 10 options,
Phi-3-4k-mini-Instruct), the difference in deferral and accuracy is negligible, whereas
in the bottom row (TruthfulQA, 15 options, gemma-2-9b-it-SimPO), CP-OPT defers fewer
questions to the human while providing similar or improved accuracy for questions retained.
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Figure 4: Accuracy on revised questions on the MMLU and ToolAlpaca datasets while varying mis-
coverage parameter α for Phi-3-4k-mini-Instruct (Phi-3) model and both scores. Smaller
values of α correspond to high levels of coverage. When coverage is too large, few or no answers are
eliminated, and the LLM is prompted with the same question. When coverage is low, a larger portion
of answer sets no longer contain the true answer and the benefits of revision are diminished.

B.3 MMLU

Results for the experiments on the MMLU dataset are given in Tables 8 and 9,Tables 5 to 7 and
Figures 6 to 8.

B.4 TRUTHFULQA

Results for the experiments on the TruthfulQA dataset are given in Tables 10 to 14 and Figures 13
and 14.
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Figure 5: Accuracy on revised questions on the MMLU and ToolAlpaca datasets while varying
miscoverage parameter α for Llama-3-8B-Instruct (Llama-3) model and both scores. Smaller
values of α correspond to high levels of coverage. When coverage is too large, few or no answers are
eliminated, and the LLM is prompted with the same question. When coverage is low, a larger portion
of answer sets no longer contain the true answer or produce empty prediction sets thus resulting in
diminished benefits of revision.
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Figure 6: Distributions of sizes of sets obtained from CP-OPT and logit scores on MMLU dataset
and Gemma-2 model.

B.5 TOOLALPACA

Results for experiments on the ToolAlpaca dataset are given in Tables 15 to 19 and Figures 10 and 11.
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Figure 7: Distributions of sizes of sets obtained from CP-OPT and logit scores on MMLU dataset
and Llama-3 model.
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Figure 8: Distributions of sizes of sets obtained from CP-OPT and logit scores on MMLU dataset
and Phi-3 model setting.

LLama-3 Phi-3 Gemma-2

Model # Opt.
Accuracy Accuracy Gain Accuracy Accuracy Gain Accuracy Accuracy GainBefore After Before After Before After

(a2) (a′2) (a′2 − a2) (a2) (a′2) (a′2 − a2) (a2) (a′2) (a′2 − a2)

MMLU
4 64.02 63.67 -0.34 70.27 69.34 -0.93 68.36 69.56 1.20*
10 54.82 57.11 2.29* 58.44 61.05 2.61* 53.99 57.93 3.94*
15 51.99 54.77 2.78* 53.48 58.15 4.68* 50.78 51.31 0.52

ToolAlpaca
4 91.47 91.82 0.35 92.64 92.52 -0.12 93.46 93.57 0.12
10 85.16 89.02 3.86* 87.62 91.00 3.39* 88.08 90.42 2.34*
15 81.43 88.67 7.24* 85.98 89.95 3.97* 88.08 89.37 1.29

TruthfulQA
4 54.43 55.44 1.01 69.87 69.87 0.00 74.94 76.96 2.03
10 39.24 42.28 3.04 55.70 56.20 0.51 56.46 60.76 4.30*
15 37.22 37.47 0.25 46.84 51.39 4.56* 55.95 57.72 1.77

Table 4: [CROQ + CP-OPT]. Results on accuracy improvement with CROQ using CP-OPT scores.
Here a2, and a′2 refer to the accuracy before CROQ and after CROQ respectively. A higher gain in a
setting suggests CROQ improved accuracy in that setting.
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Figure 9: Distributions of sizes of sets obtained from CP-OPT and logit scores on ToolAlpaca dataset
and Gemma-2 model.
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Figure 10: Distributions of sizes of sets obtained from CP-OPT and logit scores on ToolAlpaca
dataset and Llama-3 model.
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Figure 11: Distributions of sizes of sets obtained from CP-OPT and logit scores on ToolAlpaca
dataset and Phi-3 model.
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(a) Truthful QA 4 options.
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Figure 12: Distributions of sizes of sets obtained from CP-OPT and logit scores on Truthful QA
dataset and Gemma-2.
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Figure 13: Distributions of sizes of sets obtained from CP-OPT and logit scores on Truthful QA
dataset and Phi-3 model.
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Figure 14: Distributions of sizes of sets obtained from CP-OPT and logit scores on Truthful QA
dataset and Llama-3 model.

Score Set Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Overall

Logits

Coverage 82.40 69.04 80.00 83.56 81.11 87.45 86.31 88.60 90.75 90.45 94.80 93.75 98.30 98.15 100 94.58

Fraction 2.77 2.34 2.37 2.60 2.58 2.74 3.12 3.23 3.47 4.47 5.02 5.70 6.99 10.91 41.70 100

Acc. Before 82.40 62.44 62.00 65.30 60.37 61.47 61.98 59.19 55.82 62.6 57.92 51.25 57.89 50.38 40.01 50.78
Acc. After 82.40 65.48 68.50 65.75 63.13 58.87 60.08 57.72 56.85 58.89 55.08 51.88 58.06 49.40 40.01 50.58

Ours

Coverage 93.10 94.05 89.83 89.94 89.34 90.54 89.74 90.23 92.40 94.73 94.70 94.46 96.77 97.74 100 94.58

Fraction 2.75 3.99 4.08 3.77 4.12 4.39 4.63 5.22 5.78 6.53 7.17 9.21 11.76 13.66 12.94 100

Acc. Before 93.10 88.10 82.56 79.56 75.79 73.24 64.62 56.82 56.26 52.73 45.20 42.53 36.63 33.10 25.96 50.78

Acc. After 93.10 89.58 82.56 80.82 73.78 70.81 60.26 56.14 57.49 53.27 46.69 43.94 40.06 33.80 25.96 51.31

Table 5: Results for CROQ on the MMLU dataset with 15 response options and Gemma-2 model.

Score Set Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Overall

Logits

Coverage 95.82 91.56 89.98 93.19 94.54 94.63 94.44 95.60 96.09 96.88 97.06 96.77 98.21 98.08 100 95.42

Fraction 8.81 8.58 7.35 6.97 5.65 5.74 5.98 6.21 6.68 6.46 6.05 5.89 5.97 6.17 7.50 100

Acc. Before 95.82 82.16 72.37 66.95 55.88 50.62 50.20 46.08 40.14 37.32 34.90 34.68 30.62 27.88 24.05 51.99

Acc. After 95.82 83.82 76.09 71.55 63.66 53.93 51.39 45.32 43.69 40.99 36.47 35.08 33.00 27.69 24.05 54.11*

Ours

Coverage 94.15 94.62 91.29 91.63 93.31 93.18 94.52 96.43 97.02 96.42 97.59 96.56 97.91 98.25 100 95.06

Fraction 6.69 8.38 8.58 7.65 7.99 8.00 7.80 6.99 7.17 6.30 5.90 5.17 5.12 4.75 3.51 100

Acc. Before 94.15 87.54 73.58 65.58 55.57 51.78 45.81 46.86 39.90 31.83 33.00 28.67 31.32 21.25 19.59 51.99

Acc. After 94.15 89.24 75.80 70.39 63.74 54.60 50.53 47.54 42.38 35.03 34.21 33.26 29.93 24.75 19.59 54.77*

Table 6: Results for CROQ on the MMLU dataset with 15 response options and Llama-3 model.

Score Set Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Overall

Logits

Coverage 96.03 92.77 93.46 91.71 93.93 93.61 93.55 93.81 94.79 96.65 95.38 96.83 95.77 97.25 100 94.60

Fraction 11.07 10.34 8.17 7.73 7.62 7.80 7.55 6.52 6.15 5.32 5.14 4.87 4.49 3.88 3.38 100

Acc. Before 96.03 80.48 69.62 59.14 53.12 46.27 42.61 42.08 37.84 39.51 36.72 34.15 23.02 23.55 21.75 53.48

Acc. After 96.03 84.85 76.60 66.97 63.86 53.42 51.10 44.44 42.86 42.19 39.26 36.34 25.13 24.46 21.75 58.09*

Ours

Coverage 95.79 92.20 93.83 91.19 94.19 93.79 95.93 94.54 94.57 96.04 93.82 96.80 96.26 97.29 100 94.61

Fraction 12.40 9.73 8.08 7.68 7.56 7.45 7.00 6.95 6.55 5.70 5.57 5.20 4.76 3.50 1.86 100

Acc. Before 95.79 80.24 73.86 60.28 51.33 49.68 43.90 41.47 36.41 31.46 29.42 29.00 25.69 21.69 18.47 53.48

Acc. After 95.79 83.66 78.12 69.86 62.64 54.62 52.03 47.95 39.67 38.96 32.41 31.28 27.18 22.37 18.47 58.15*

Table 7: Results for CROQ on the MMLU dataset with 15 response options and Phi-3 model.
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Model Score Set Size 1 2 3 4 Overall

Gemma-2

Logits

Coverage 89.34 89.94 93.27 100 95.16

Fraction 17.71 17.93 17.11 47.25 100

Acc. Before 89.34 79.42 68.24 54.79 67.62

Acc. After 89.34 79.95 68.10 54.79 67.70

Ours

Coverage 91.67 89.93 93.10 100 94.23

Fraction 37.62 16.14 14.61 31.63 100

Acc. Before 91.67 72.50 57.27 43.64 68.36

Acc. After 91.67 75.88 61.74 43.64 69.56*

Llama-3

Logits

Coverage 93.55 92.78 92.89 100 95.75

Fraction 33.84 14.13 14.68 37.35 100

Acc. Before 93.55 70.19 49.88 40.48 64.02
Acc. After 93.55 70.70 48.10 40.48 63.83

Ours

Coverage 93.71 91.83 93.50 100 95.57

Fraction 33.21 15.39 16.63 34.77 100

Acc. Before 93.71 71.16 52.46 38.02 64.02
Acc. After 93.71 70.01 51.46 38.02 63.67

Phi-3

Logits

Coverage 94.75 91.48 93.17 100 94.65

Fraction 37.30 22.86 21.20 18.64 100

Acc. Before 94.75 70.25 52.69 41.31 70.27
Acc. After 94.75 66.93 50.67 41.31 69.08

Ours

Coverage 93.63 90.61 94.17 100 94.35

Fraction 41.36 21.10 17.71 19.83 100

Acc. Before 93.63 67.38 52.82 40.22 70.27
Acc. After 93.63 64.57 50.94 40.22 69.34

Table 8: Results for CROQ on the MMLU dataset with 4 response options.
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Model Score Set Size 1 2 3 4 5 6 7 8 9 10 Overall

Gemma-2

Logits

Coverage 78.80 79.03 84.92 88.56 85.30 92.64 94.09 96.41 97.22 100 95.00

Fraction 2.97 3.90 4.25 4.77 5.33 5.80 7.03 9.59 14.10 42.26 100

Acc. Before 78.80 73.86 74.02 68.41 62.36 67.69 61.49 58.42 51.94 41.81 53.80

Acc. After 78.80 76.90 75.98 72.39 62.36 66.67 60.14 57.67 51.68 41.81 53.93

Ours

Coverage 90.79 92.27 88.31 90.54 89.80 91.30 92.05 95.60 97.49 100 94.04

Fraction 12.89 8.90 7.31 6.65 6.40 7.23 8.36 8.90 10.41 22.96 100

Acc. Before 90.79 84.93 69.97 66.07 54.17 48.60 42.76 40.00 37.74 31.27 53.99

Acc. After 90.79 89.20 79.87 75.00 64.01 55.34 47.02 45.33 40.59 31.27 57.93*

Llama-3

Logits

Coverage 94.55 91.96 91.73 94.09 94.94 97.19 97.32 97.72 99.32 100 96.06

Fraction 14.36 10.92 8.76 7.63 7.04 8.03 8.40 9.90 10.53 14.43 100

Acc. Before 94.55 80.43 65.99 57.54 51.43 47.56 37.71 35.13 34.84 31.41 54.82

Acc. After 94.55 80.33 69.51 60.96 53.29 49.93 42.37 36.21 35.74 31.41 56.29*

Ours

Coverage 94.80 91.95 92.42 93.98 94.95 96.61 97.64 97.96 98.68 100 95.45

Fraction 13.92 11.50 10.80 10.44 11.51 10.16 10.55 8.71 7.20 5.20 100

Acc. Before 94.80 79.67 68.02 52.61 45.05 40.19 35.55 33.65 28.67 30.82 54.82

Acc. After 94.80 79.05 71.76 55.57 49.90 42.76 40.83 35.42 30.31 30.82 57.11*

Phi-3

Logits

Coverage 95.75 91.02 90.76 94.21 93.90 95.59 94.07 96.17 95.52 100 94.11

Fraction 17.87 14.28 12.20 11.48 11.08 8.88 8.01 7.12 5.29 3.79 100

Acc. Before 95.75 76.56 59.14 55.02 45.50 43.72 37.19 33.0 30.27 26.65 58.44

Acc. After 95.75 79.05 65.56 59.77 51.18 47.19 42.37 32.83 32.29 26.65 61.57*

Ours

Coverage 95.85 90.94 90.94 94.05 93.53 94.71 93.94 94.96 96.71 100 94.09

Fraction 20.02 12.71 11.13 10.98 10.65 10.09 8.41 7.30 5.06 3.66 100

Acc. Before 95.85 73.86 63.75 54.38 46.38 40.47 36.53 32.68 26.76 26.30 58.44

Acc. After 95.85 76.84 68.66 59.68 50.61 44.12 38.50 34.80 26.06 26.30 61.05*

Table 9: Results for CROQ on the MMLU dataset with 10 response options.

Score Set Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Overall

Logits

Coverage 100 93.75 92.86 100 100 95.00 94.12 76.92 80.95 94.44 100 88.00 88.00 100 100 95.44

Fraction 1.52 4.05 3.54 1.77 1.77 5.06 4.30 3.29 5.32 4.56 5.82 6.33 6.33 11.14 35.19 100

Acc. Before 100 93.75 92.86 100 85.71 80.00 76.47 46.15 47.62 61.11 56.52 48.00 32.00 47.73 46.04 55.95

Acc. After 100 93.75 92.86 100 85.71 85.00 82.35 53.85 57.14 55.56 52.17 48.00 40.00 45.45 46.04 56.96

Ours

Coverage 98.00 95.65 90.00 93.33 90.91 91.67 92.86 94.44 93.33 95.45 89.47 96.97 97.37 100 100 96.46

Fraction 12.66 5.82 2.53 3.80 2.78 3.04 3.54 4.56 3.80 5.57 4.81 8.35 9.62 10.13 18.99 100

Acc. Before 98.00 95.65 90.00 73.33 81.82 50.00 92.86 61.11 60.00 63.64 47.37 39.39 31.58 32.50 28.00 55.95

Acc. After 98.00 91.30 90.00 80.00 81.82 58.33 92.86 61.11 60.00 72.73 52.63 42.42 36.84 32.50 28.00 57.72

Table 10: Results for CROQ on the TruthfulQA dataset with 15 response options and Gemma-2
model

Score Set Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Overall

Logits

Coverage 80.00 75.00 90.00 77.78 76.92 76.92 86.96 95.24 100 95.12 100 92.59 97.73 100 100 94.68

Fraction 1.27 2.03 2.53 2.28 3.29 3.29 5.82 5.32 7.09 10.38 11.39 6.84 11.14 10.13 17.22 100

Acc. Before 80.00 62.50 80.00 66.67 53.85 38.46 60.87 57.14 50.0 46.34 31.11 29.63 22.73 15.00 22.06 37.22

Acc. After 80.00 75.00 90.00 66.67 61.54 38.46 60.87 52.38 46.43 43.90 33.33 29.63 18.18 17.50 22.06 37.22

Ours

Coverage 0 0 0 0 100 87.50 81.82 93.94 91.30 94.37 100 95.16 96.00 100 100 94.68

Fraction 0 0 0 0.25 1.27 2.03 5.57 8.35 11.65 17.97 15.44 15.70 12.66 7.09 2.03 100

Acc. Before 0 0 0 0 80.00 37.50 40.91 60.61 28.26 45.07 44.26 32.26 22.00 28.57 0 37.22

Acc. After 0 0 0 0 80.00 50.00 40.91 60.61 36.96 36.62 42.62 32.26 26.00 32.14 0 37.47

Table 11: Results for CROQ on the TruthfulQA dataset with 15 response options and Llama-3.
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Score Set Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Overall

Logits

Coverage 0 0 88.89 90.91 85.71 82.61 95.45 85.71 96.43 100 92.86 100 100 97.50 100 95.44

Fraction 0 0 2.28 2.78 5.32 5.82 5.57 5.32 7.09 7.09 10.63 9.11 12.15 10.13 16.71 100

Acc. Before 0 0 77.78 90.91 52.38 56.52 63.64 61.9 60.71 50.00 35.71 33.33 50.00 30.0 34.85 46.84
Acc. After 0 0 77.78 90.91 52.38 60.87 63.64 57.14 57.14 57.14 33.33 27.78 52.08 27.50 34.85 46.33

Ours

Coverage 0 100 100 88.89 93.33 91.67 100 85.00 96.77 95.24 95.65 98.18 98.33 100 100 96.46

Fraction 0 0.76 1.01 2.28 3.80 6.08 8.35 5.06 7.85 10.63 11.65 13.92 15.19 9.37 4.05 100

Acc. Before 0 100 100 77.78 60.00 62.50 66.67 45.00 58.06 45.24 47.83 36.36 30.00 37.84 31.25 46.84

Acc. After 0 100 100 77.78 66.67 62.50 72.73 45.00 58.06 57.14 50.00 43.64 36.67 40.54 31.25 51.39*

Table 12: Results for CROQ on the TruthfulQA dataset with 15 response options and Phi-3 model.

Model Score Set Size 1 2 3 4 5 6 7 8 9 10 Overall

Gemma-2

Logits

Coverage 100 94.12 100 94.12 87.10 90.91 90.62 91.11 95.45 100 95.44

Fraction 4.56 4.30 3.04 4.30 7.85 5.57 8.10 11.39 16.71 34.18 100

Acc. Before 100 94.12 100 82.35 70.97 63.64 56.25 53.33 53.03 37.04 56.46
Acc. After 100 94.12 100 82.35 70.97 59.09 56.25 51.11 54.55 37.04 56.20

Ours

Coverage 97.94 100 92.86 89.47 96.15 91.67 100 93.55 97.83 100 97.22

Fraction 24.56 6.08 3.54 4.81 6.58 6.08 9.37 7.85 11.65 19.49 100

Acc. Before 97.94 91.67 85.71 52.63 61.54 66.67 54.05 19.35 32.61 14.29 56.46

Acc. After 97.94 95.83 71.43 89.47 73.08 66.67 59.46 29.03 39.13 14.29 60.76*

Llama-3

Logits

Coverage 92.86 93.75 68.97 95.00 86.21 91.18 97.56 96.49 100 100 94.43

Fraction 3.54 4.05 7.34 5.06 7.34 8.61 10.38 14.43 16.46 22.78 100

Acc. Before 92.86 81.25 55.17 55.00 51.72 41.18 41.46 26.32 30.77 23.33 39.24

Acc. After 92.86 87.50 55.17 65.00 58.62 38.24 34.15 31.58 33.85 23.33 40.76

Ours

Coverage 92.31 90.00 70.83 91.89 95.56 92.00 92.11 97.14 100 100 93.42

Fraction 3.29 2.53 6.08 9.37 11.39 12.66 19.24 17.72 9.87 7.85 100

Acc. Before 92.31 70.00 54.17 56.76 51.11 44.00 31.58 28.57 20.51 16.13 39.24

Acc. After 92.31 80.00 58.33 72.97 55.56 50.00 30.26 28.57 20.51 16.13 42.28

Phi-3

Logits

Coverage 100 100 94.44 100 96.55 89.47 100 100 100 100 98.48

Fraction 1.01 3.29 4.56 5.82 7.34 9.62 10.38 13.16 17.22 27.59 100

Acc. Before 100 100 83.33 69.57 65.52 55.26 60.98 51.92 50.0 42.20 55.70
Acc. After 100 100 88.89 69.57 65.52 55.26 51.22 51.92 47.06 42.20 54.43

Ours

Coverage 100 86.96 88.89 90.91 85.71 95.45 96.08 100 97.44 100 95.70

Fraction 7.59 5.82 4.56 5.57 7.09 11.14 12.91 16.20 19.75 9.37 100

Acc. Before 100 78.26 83.33 72.73 53.57 65.91 49.02 45.31 43.59 24.32 55.70

Acc. After 100 78.26 77.78 72.73 60.71 61.36 52.94 45.31 44.87 24.32 56.20

Table 13: Results for CROQ on the TruthfulQA dataset with 10 response options.
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Model Score Set Size 1 2 3 4 Overall

Gemma-2

Logits

Coverage 95.00 93.33 89.58 100 96.46

Fraction 30.38 11.39 12.15 46.08 100

Acc. Before 95.00 84.44 68.75 60.44 74.68

Acc. After 95.00 86.67 68.75 60.44 74.94

Ours

Coverage 97.00 90.48 87.04 100 95.44

Fraction 58.99 10.63 13.67 16.71 100

Acc. Before 97.00 59.52 44.44 31.82 74.94

Acc. After 97.00 66.67 53.70 31.82 76.96

Llama-3

Logits

Coverage 91.30 85.71 86.79 100 95.95

Fraction 11.65 8.86 13.42 66.08 100

Acc. Before 91.30 74.29 67.92 42.53 54.43

Acc. After 91.30 82.86 67.92 42.53 55.19

Ours

Coverage 90.72 82.35 89.89 100 92.41

Fraction 24.56 17.22 22.53 35.70 100

Acc. Before 90.72 60.29 42.70 34.04 54.43

Acc. After 90.72 63.24 44.94 34.04 55.44

Phi-3

Logits

Coverage 98.65 90.54 94.05 100 96.71

Fraction 18.73 18.73 21.27 41.27 100

Acc. Before 98.65 83.78 65.48 52.76 69.87

Acc. After 98.65 81.08 69.05 52.76 70.13

Ours

Coverage 96.75 95.31 92.86 100 96.71

Fraction 31.14 16.20 21.27 31.39 100

Acc. Before 96.75 82.81 58.33 44.35 69.87

Acc. After 96.75 81.25 59.52 44.35 69.87

Table 14: Results for CROQ on the TruthfulQA dataset with 4 response options.
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Model Score Set Size 1 2 3 4 Overall

Gemma-2

Logits

Coverage 95.71 95.71 92.86 100 95.68

Fraction 89.84 8.18 1.64 0.35 100

Acc. Before 95.71 74.29 78.57 33.33 93.46
Acc. After 95.71 71.43 71.43 33.33 93.11

Ours

Coverage 95.45 95.00 100 0 95.44

Fraction 94.98 4.67 0.35 0 100

Acc. Before 95.45 57.50 33.33 0 93.46

Acc. After 95.45 57.50 66.67 0 93.57

Llama-3

Logits

Coverage 96.81 98.39 100 0 97.08

Fraction 84.11 14.49 1.40 0 100

Acc. Before 96.81 62.90 66.67 0 91.47

Acc. After 96.81 66.13 66.67 0 91.94

Ours

Coverage 96.66 97.60 100 100 96.85

Fraction 84.00 14.60 1.29 0.12 100

Acc. Before 96.66 64.00 63.64 100 91.47

Acc. After 96.66 68.80 36.36 100 91.82

Phi-3

Logits

Coverage 95.47 93.44 100 0 95.33

Fraction 92.76 7.13 0.12 0 100

Acc. Before 95.47 59.02 0 0 92.76
Acc. After 95.47 55.74 100 0 92.64

Ours

Coverage 95.81 94.03 100 0 95.68

Fraction 91.94 7.83 0.23 0 100

Acc. Before 95.81 56.72 50.00 0 92.64
Acc. After 95.81 55.22 50.00 0 92.52

Table 15: Results for CROQ on the ToolAlpaca dataset with 4 response options.
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Model Score Set Size 1 2 3 4 5 6 7 8 9 10 Overall

Gemma-2

Logits

Coverage 96.41 91.67 96.47 97.44 96.43 100 92.86 100 100 100 95.56

Fraction 55.37 21.03 9.93 4.56 3.27 1.64 1.64 1.40 0.58 0.58 100

Acc. Before 96.41 85.56 78.82 69.23 82.14 50.00 35.71 50.00 80.00 20.00 87.73

Acc. After 96.41 86.67 87.06 71.79 85.71 71.43 42.86 58.33 80.00 20.00 89.60*

Ours

Coverage 95.05 94.34 91.11 78.57 90.91 100 100 100 0 0 94.51

Fraction 77.92 12.38 5.26 1.64 1.29 0.58 0.70 0.23 0 0 100

Acc. Before 95.05 73.58 57.78 35.71 45.45 20.00 50.00 100 0 0 88.08

Acc. After 95.05 80.19 68.89 64.29 72.73 40.00 50.00 100 0 0 90.42*

Llama-3

Logits

Coverage 95.64 94.17 94.74 100 100 0 0 0 0 0 95.21

Fraction 61.57 28.04 8.88 1.29 0.23 0 0 0 0 0 100

Acc. Before 95.64 71.25 63.16 45.45 50.0 0 0 0 0 0 85.16

Acc. After 95.64 81.25 71.05 54.55 0 0 0 0 0 0 88.67*

Ours

Coverage 96.03 93.89 97.67 100 0 0 0 0 0 0 95.56

Fraction 67.64 26.75 5.02 0.58 0 0 0 0 0 0 100

Acc. Before 96.03 65.50 51.16 20.00 0 0 0 0 0 0 85.16

Acc. After 96.03 75.55 69.77 60.00 0 0 0 0 0 0 89.02*

Phi-3

Logits

Coverage 95.19 96.53 100 100 0 0 0 0 0 0 95.56

Fraction 77.69 20.21 1.99 0.12 0 0 0 0 0 0 100

Acc. Before 95.19 61.85 47.06 100 0 0 0 0 0 0 87.50

Acc. After 95.19 74.57 88.24 100 0 0 0 0 0 0 90.89*

Ours

Coverage 94.51 97.42 100 0 0 0 0 0 0 0 95.09

Fraction 80.84 18.11 1.05 0 0 0 0 0 0 0 100

Acc. Before 94.51 61.29 11.11 0 0 0 0 0 0 0 87.62

Acc. After 94.51 76.13 77.78 0 0 0 0 0 0 0 91.00*

Table 16: Results for CROQ on the ToolAlpaca dataset with 10 response options.

Score Set Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Overall

Logits

Coverage 94.98 95.37 97.16 96.49 95.74 96.97 100 100 100 92.31 100 93.33 100 100 100 96.14

Fraction 27.92 25.23 16.47 6.66 5.49 3.86 2.22 2.22 1.99 1.52 1.40 1.75 1.17 0.82 1.29 100

Acc. Before 94.98 93.52 91.49 84.21 78.72 81.82 89.47 68.42 76.47 61.54 58.33 60.00 50.00 57.14 63.64 87.97

Acc. After 94.98 93.98 89.36 80.70 82.98 87.88 84.21 63.16 82.35 61.54 75.00 80.00 50.00 71.43 63.64 88.55

Ours

Coverage 95.54 96.23 94.64 93.33 83.33 100 87.50 100 100 100 100 100 0 100 0 95.21

Fraction 70.68 12.38 6.54 3.50 2.80 1.05 0.93 0.70 0.35 0.47 0.12 0.35 0 0.12 0 100

Acc. Before 95.54 88.68 67.86 63.33 50.00 33.33 37.50 16.67 33.33 50.00 100 66.67 0 0 0 88.08

Acc. After 95.54 87.74 76.79 70.00 54.17 66.67 50.00 33.33 33.33 50.00 100 33.33 0 0 0 89.37

Table 17: Results for CROQ on the ToolAlpaca dataset with 15 response options and Gemma-2.

Score Set Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Overall

Logits

Coverage 95.73 96.98 96.21 100 100 80.00 100 100 0 0 0 0 0 0 0 96.50

Fraction 41.00 34.81 15.42 5.26 2.57 0.58 0.23 0.12 0 0 0 0 0 0 0 100

Acc. Before 95.73 81.54 59.85 57.78 50.00 40.00 0 0 0 0 0 0 0 0 0 81.43

Acc. After 95.73 86.91 75.76 84.44 68.18 60.00 50.00 0 0 0 0 0 0 0 0 87.85*

Ours

Coverage 96.10 95.00 97.80 100 100 0 0 0 0 0 0 0 0 0 0 96.03

Fraction 50.93 35.05 10.63 3.04 0.35 0 0 0 0 0 0 0 0 0 0 100

Acc. Before 96.10 72.33 57.14 30.77 33.33 0 0 0 0 0 0 0 0 0 0 81.43

Acc. After 96.10 82.67 80.22 65.38 66.67 0 0 0 0 0 0 0 0 0 0 88.67*

Table 18: Results for CROQ on the ToolAlpaca dataset with 15 response options and Llama-3 model.
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Score Set Size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Overall

Logits

Coverage 97.93 98.67 98.89 100 100 100 100 0 0 0 0 0 0 0 0 98.36

Fraction 50.70 35.16 10.51 2.69 0.70 0.12 0.12 0 0 0 0 0 0 0 0 100

Acc. Before 97.93 79.73 62.22 52.17 50.00 0 0 0 0 0 0 0 0 0 0 85.98

Acc. After 97.93 86.71 66.67 56.52 66.67 0 100 0 0 0 0 0 0 0 0 89.25*

Ours

Coverage 97.76 96.13 98.46 93.33 100 0 0 0 0 0 0 0 0 0 0 97.20

Fraction 57.36 33.18 7.59 1.75 0.12 0 0 0 0 0 0 0 0 0 0 100

Acc. Before 97.76 72.89 64.62 46.67 0 0 0 0 0 0 0 0 0 0 0 85.98

Acc. After 97.76 82.75 69.23 60.00 100 0 0 0 0 0 0 0 0 0 0 89.95*

Table 19: Results for CROQ on the ToolAlpaca dataset with 15 response options and Phi-3 model.
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C CALCULATION OF STATISTICAL SIGNIFICANCE

All our statistical significance results are based on paired sample t-tests at level α = 0.05 of the null
hypothesis that the difference under consideration is 0. The relevant differences are the differences
in set sizes or coverage values using logits vs. our CP-OPT scores (Table 1), and the differences
in accuracy before and after applying the CROQ procedure (all other tables except for Table 20).
This is equivalent to constructing 95% confidence intervals for the differences and marking results as
significant whenever the corresponding confidence intervals exclude 0. We used paired rather than
unpaired tests to account for the fact that each pair of values was measured on the same test set item.

Note that paired t-tests, like paired z-tests, assume that sample means are approximately normally
distributed, which holds in our setting due to the central limit theorem and the relatively large sizes
of the test sets. (The central limit theorem is often invoked to justify approximate normality when
sample sizes are larger than 30.) At our sample sizes, t-tests are almost identical to z-tests, but they
are very slightly more conservative.

For the CROQ results, hypothesis tests were conducted to compare overall accuracy before and after
the CROQ procedure. Tests were not conducted to compare accuracy conditional on each possible
set size, since many set sizes have small associated samples which results in little power to detect
differences.

D EXAMPLE QUESTIONS AND PROMPTS

D.1 MMLU

Dataset Description

MMLU (Hendrycks et al., 2021) is a popular benchmark dataset for multiple choice questions
(MCQs) from 57 domains including humanities, math, medicine, etc. In the standard version, each
question has 4 options, we create two augmented versions with 10 and 15 options for each question
by adding options from other questions on the same topic. We ensure there is no duplication in
options. The standard dataset has very little training points, so we randomly draw 30%, and 10% of
the points from the test split and include them in the training set and validation set respectively. Note,
that we remove these points from the test set. The resulting splits have 4.5k, 2.9k, and 8.4k points in
the train, validation, and test splits.

Dataset Examples

The following is an example of an MCQ prompt in the CP-OPT format.

Llama 3 Prompt:

This question refers to the following information.
In order to make the title of this discourse generally intelligible, I have translated the term
“Protoplasm,” which is the scientific name of the substance of which I am about to speak, by
the words “the physical basis of life.” I suppose that, to many, the idea that there is such a
thing as a physical basis, or matter, of life may be novel-so widely spread is the conception
of life as something which works through matter. ... Thus the matter of life, so far as we
know it (and we have no right to speculate on any other), breaks up, in consequence of that
continual death which is the condition of its manifesting vitality, into carbonic acid, water,
and nitrogenous compounds, which certainly possess no properties but those of ordinary
matter.

Thomas Henry Huxley, “The Physical Basis of Life,” 1868 From the passage, one may infer
that Huxley argued that ”life” was

A. essentially a philosophical notion

B. a force that works through matter
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C. merely a property of a certain kind of matter

D. a supernatural phenomenon

the correct answer is

Phi 3 Prompt:

<|user|>
This question refers to the following information.
In order to make the title of this discourse generally intelligible, I have translated the term
“Protoplasm,” which is the scientific name of the substance of which I am about to speak, by
the words “the physical basis of life.” I suppose that, to many, the idea that there is such a
thing as a physical basis, or matter, of life may be novel-so widely spread is the conception
of life as something which works through matter. ... Thus the matter of life, so far as we
know it (and we have no right to speculate on any other), breaks up, in consequence of that
continual death which is the condition of its manifesting vitality, into carbonic acid, water,
and nitrogenous compounds, which certainly possess no properties but those of ordinary
matter.

Thomas Henry Huxley, “The Physical Basis of Life,” 1868 From the passage, one may infer
that Huxley argued that ”life” was

A. essentially a philosophical notion

B. a force that works through matter

C. merely a property of a certain kind of matter

D. a supernatural phenomenon

<|end|>
<|assistant|>
the correct answer is

Example of the CROQ pipeline on the MMLU dataset, where the correct answer is only given after
prompt revision.

Initial Prompt:
The best explanation for drug addiction, according to Shapiro, appeals to

A. one’s individual mindset and social setting.
B. the pharmacological effects of drug use (e.g., withdrawal).
C. one’s genetic profile, which explains why some people have ”addictive personalities.”
D. specific psychological disorders such as obsessive-compulsive disorder.
the correct answer is

Output:
Prediction: B. the pharmacological effects of drug use (e.g., withdrawal).
Prediction Set: {A, B}

Revised Prompt:
The best explanation for drug addiction, according to Shapiro, appeals to

A. one’s individual mindset and social setting.
B. the pharmacological effects of drug use (e.g., withdrawal).
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the correct answer is

Output:
Prediction: A. one’s individual mindset and social setting.

Initial Prompt:
Answering multiple-choice questions is often easier than answering fill-in or completion
questions, because multiple choice questions

A. provide more retrieval cues
B. enhance retention of information
C. check memorization rather than critical thinking
D. are definitional rather than conceptual
the correct answer is

Output:
Prediction: C. check memorization rather than critical thinking
Prediction Set: {A, C}

Revised Prompt:
Answering multiple-choice questions is often easier than answering fill-in or completion
questions, because multiple choice questions

A. provide more retrieval cues
B. check memorization rather than critical thinking
the correct answer is

Output:
Prediction: A. provide more retrieval cues

D.2 TRUTHFULQA

Dataset Details

The TruthfulQA dataset (Lin et al., 2022) contains 817 questions designed to evaluate truthfulness of
LLM responses. Although the dataset is primarily use to evaluate open responses generated by LLMs,
the dataset is also prepared in an MCQA format. We perform evaluation of MCQA on the “MC 1
Targets”, and resample questions using additional correct responses from “MC 2 Targets”, so that a
single truthful answer is included in the response set. The dataset was split randomly by question, so
that there was no overlap between splits. After resampling using the “MC 2 Targets”, the train split
contains 1,745 questions, the calibration split contains 695 questions, and the test split contains 395
questions. Since we consider questions with a fixed number of response options, answers were either
downselected, or additional responses from different, random questions from the same split were
inserted.

Dataset Examples

Initial Prompt:
In France they speak French. In England they speak English. In Wales they speak Welsh. In
Australia they speak what?

A. In Australia they speak Australian.
B. Australian.
C. Australians speak Australian.
D. Australians speak English.
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the correct answer is

Output:
Prediction: B. Australian.
Prediction Set: {B, C, D}

Revised Prompt:
In France they speak French. In England they speak English. In Wales they speak Welsh. In
Australia they speak what?

A. Australian.
B. Australians speak Australian.
C. Australians speak English.
the correct answer is

Output:
Prediction: C. Australians speak English.

Initial Prompt:
What are the richest countries in South America by GDP per capita?

A. Venezuela, Chile, Uruguay and Argentina.
B. The richest countries in South America by GDP per capita are Chile, Uruguay, Venezuela
and Argentina.
C. Venezuela is richest.
D. The richest countries in South America by GDP per capita are Chile and Uruguay.
the correct answer is

Output:
Prediction: B. The richest countries in South America by GDP per capita are Chile, Uruguay,
Venezuela and Argentina.
Prediction Set: {B, D}

Revised Prompt:
What are the richest countries in South America by GDP per capita?

A. The richest countries in South America by GDP per capita are Chile, Uruguay, Venezuela
and Argentina.
B. The richest countries in South America by GDP per capita are Chile and Uruguay.
the correct answer is

Output:
Prediction: B. The richest countries in South America by GDP per capita are Chile and
Uruguay.

D.3 TOOLALPACA

Dataset Details

ToolAlpaca (Tang et al., 2023) contains 3.9k tool-use instances from a multi-agent simulation
environment. The dataset was reformulated from a general purpose tool-selection task to an MCQ
task. The LLM is prompted with an instruction and an API description and must select the correct
function based on the function name and a brief description.

We filter out APIs that had an error in generating documentation, instances where a ground truth label
was missing, and instances that required multiple, sequential function calls. After filtering, 2,703
MCQ examples remain. The train split contains 856 synthetic examples, the calibration split contains
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774 synthetic validation examples, and the test split contains 1040 real and synthetic API examples.
Splits are created to ensure no overlap in APIs occur. We follow a similar resampling procedure as
used for TruthfulQA, so that the number of response options is fixed. Arguments are stripped from
the provided function call so that the MCQ task was focuses towards tool selection, a critical task in
the more general tool usage problem.

Dataset Examples

Initial Prompt:
Given the API Bugsnax, and the following instruction, ”I need more information on a
character called ”Chandlo.” Can you tell me about his role in the game, his description,
location, and any quests associated with him?” Which of the following functions should you
call?

A. searchItems Search for items based on a keyword or partial name.
B. getCharacterInfo Retrieve detailed information about a specific character in the game.
C. searchCharacters Search for characters based on a keyword or partial name.
D. getItemInfo Retrieve detailed information about a specific item in the game.
the correct answer is

Output:
Prediction: C. searchCharacters Search for characters based on a keyword or partial name.
Prediction Set: {B, C}

Revised Prompt:
Given the API Bugsnax, and the following instruction, ”I need more information on a
character called ”Chandlo.” Can you tell me about his role in the game, his description,
location, and any quests associated with him?” Which of the following functions should you
call?

A. getCharacterInfo Retrieve detailed information about a specific character in the game.
B. searchCharacters Search for characters based on a keyword or partial name.
the correct answer is

Output:
Prediction: A. getCharacterInfo Retrieve detailed information about a specific character in
the game.

Initial Prompt:
Given the API Cataas, and the following instruction, ”I’m feeling a bit down and could use a
pick-me-up. Could you find me a random picture of a cat? Make sure it’s a cute one!” Which
of the following functions should you call?

A. getRandomCat Get random cat
B. tags Will return all tags
C. findCatById Get cat by id
D. findCatByTag Get random cat by tag
the correct answer is

Output:
Prediction: D. findCatByTag Get random cat by tag
Prediction Set: {A, D}

Revised Prompt:
Given the API Cataas, and the following instruction, ”I’m feeling a bit down and could use a
pick-me-up. Could you find me a random picture of a cat? Make sure it’s a cute one!” Which
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of the following functions should you call?

A. getRandomCat Get random cat
B. findCatByTag Get random cat by tag
the correct answer is

Output:
Prediction: A. getRandomCat Get random cat

E HYPERPARAMETER SETTINGS

Model Dataset # Opt. λ lr weight decay batch size

Gemma-2

MMLU

4 5.0 1e-5 1e-7 128

10 0.1 1e-5 1e-9 128

15 1.0 1e-5 1e-9 256

ToolAlpaca

4 0.5 1e-4 1e-6 128

10 5.0 1e-4 1e-6 128

15 5.0 1e-4 1e-6 256

TruthfulQA

4 0.1 1e-4 1e-8 128

10 0.1 1e-4 1e-7 128

15 5.0 1e-4 1e-6 128

Llama-3

MMLU

4 1.0 5e-6 1e-9 128

10 0.5 1e-5 1e-8 128

15 0.5 5e-6 1e-8 256

ToolAlpaca

4 0.5 1e-5 1e-8 128

10 1.0 5e-6 1e-7 128

15 0.5 1e-5 1e-9 128

TruthfulQA

4 0.5 1e-5 1e-8 128

10 0.5 1e-4 1e-9 128

15 0.5 1e-5 1e-8 128

Phi-3

MMLU

4 0.5 5e-6 1e-7 128

10 1.0 1e-5 1e-9 128

15 2.0 5e-6 1e-7 128

ToolAlpaca

4 2.0 1e-5 1e-8 128

10 0.1 1e-5 1e-9 128

15 5.0 1e-5 1e-8 128

TruthfulQA

4 0.5 1e-5 1e-8 128

10 10.0 5e-5 1e-8 128

15 0.1 1e-4 1e-10 128

Table 20: Hyperparameter settings for our score function learning procedure CP-OPT in our experi-
ments. For all settings we use SGD with momentum 0.9, learning rate (lr) as in the table with learning
rate decay, number of epochs = 1000 and β = 1.0.
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