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ABSTRACT

We study out-of-distribution generalisation in geophysical prediction and pro-
pose CC-PINN, a physics-informed multi-layer perceptron (MLP) that encodes
the Clausius—Clapeyron thermodynamic relation as a gradient-based regulari-
sation term. Unlike prior PINNs, CC-PINN requires no explicit governing-
equation. CC-PINN introduces a lightweight constraint on humidity-temperature
consistency without altering network architecture. Trained on atmospheric re-
analysis data (temperature, pressure, relative humidity, specific humidity, ver-
tical velocity) using modest computational resources, CC-PINN matches a
capacity-matched MLP in-distribution and improves out-of-distribution perfor-
mance. CC-PINN achieves a 12.3% reduction in global area-weighted RMSE over
a capacity-matched MLP baseline. Under a stringent covariate-shift test - train-
ing only on the polar latitudes - CC-PINN reduces tropical area-weighted root
mean squared error (RMSE) by 22.6% relative to the baseline, while maintain-
ing in-distribution parity. Ablations show the performance gains are substantially
attenuated when the physics term is removed, highlighting the role of targeted
domain knowledge inclusion in improving extrapolation. These findings suggest
that compact, domain-motivated regularisation can deliver robust generalisation
in scientific ML tasks.

1 INTRODUCTION

Out-of-distribution (OOD) generalisation remains a fundamental challenge in machine learning,
where models, often trained under one data regime are routinely deployed in others, (Koh et al.,
2021). In climate modelling, these shifts are not rare anomalies but the norm: evolving climate
states can produce input distributions that differ significantly from historical training data, (Beucler
et al.,2024). Standard neural networks excel at in-distribution prediction but frequently overfit to
spurious correlations, resulting in degraded performance when faced with new regimes, (Arjovsky
et al., [2020).

Cloud fraction prediction is a critical example of this problem. Global circulation models (GCMs)
cannot explicitly resolve the small-scale processes that govern cloud formation, so they rely on
parameterisations—empirical or semi-empirical approximations that introduce uncertainty into cli-
mate projections (Stephens, [2005; Bony et al.| [2006; [Smith), |1990a; Tiedtkel [1993). Recent work
has explored replacing or augmenting these schemes with machine-learning surrogates trained on
reanalysis or high-resolution simulation data (Rasp et al.l 2018} [Brenowitz & Bretherton, 2019).
While such models can achieve low error in familiar conditions, they often fail to maintain accuracy
when extrapolating to different climatic zones or unseen meteorological states (Dueben & Bauer,
2018; Beucler et al.,|2024).

We address this gap by introducing CC-PINN, a physics-informed MLP that incorporates the Clau-
sius—Clapeyron (CC) thermodynamic relation directly into the loss function as a gradient-based reg-
ularisation term (Raissi et al.,[2019). The CC relation governs the dependence of saturation vapour
pressure on temperature, a fundamental driver of cloud formation (Wallace & Hobbs| 2006). The
constraint nudges predictions to vary with temperature and humidity in the CC-consistent direction
(qualitative coupling), rather than enforcing a strictly units-exact magnitude. By encoding this as
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a soft constraint, our approach enforces physically consistent humidity—temperature relationships
without restricting the network architecture or requiring explicit PDE supervision.

Using ERAS pressure-level data (Hersbach et al.l [2020), we evaluate two protocols: (i) Global in-
distribution (random global split), and (ii) Polar— Tropics OOD, where models train and validate
on polar latitudes only (|¢| > 66.33°) and are tested in the tropics (|¢| < 23.5°); midlatitudes
are reported as a secondary OOD band (Stocker et al., 2013). We report area-weighted RMSE with
cosine-latitude weights, a standard metric for model evaluation (Gleckler et al.,|2008), and aggregate
results over twenty five random seeds, i.e., different random initialisations of network weights and
shuffles of training data Our contributions are:

* A minimal-intrusion physics regulariser based on the CC relation, applicable to any
feed-forward architecture without modifying the forward pass.

* A systematic OOD benchmark for cloud fraction prediction using ERAS reanalysis data,
in which all tropical and mid-latitude data (-66.33° to 66.33°) is excluded from training to
induce a strong covariate shift.

* Compared with a capacity-matched MLP (i.e., a network with the same architecture and
number of parameters as CC-PINN), CC-PINN preserves global in-distribution parity (it
performs equally well on test data drawn from the training spatial distribution) and reduces
area-weighted RMSE by ~12.3% globally and ~22.6% in the tropics under Polar—Tropics
OOD.

 Ablation studies demonstrating that the OOD gains are no longer present when the physics
term is removed, highlighting the role of the inductive bias (i.e., a built-in modeling as-
sumption guiding the learning). This indicates that improvement stems from the CC-guided
bias rather than capacity or sampling artefacts.

By framing cloud fraction prediction as a case study in physics-guided OOD generalisation, our
work contributes to the broader ML discourse on targeted inductive biases. These results indi-
cate that small, well-chosen physics constraints can materially improve generalisation in complex,
data-limited scientific tasks, with implications for other domains facing similar challenges.

2 RELATED WORK

Physics-informed neural networks. Physics-informed neural networks (PINNs) embed physical
knowledge during training, classically by penalising residuals of governing equations (Raissi et al.,
2019). Alongside full PDE-residual supervision, lighter-weight constraints have been used to sta-
bilise learning and improve robustness in scientific settings without modifying model architecture
(Beucler et al., [202 1} Karpatne et al., 2017). We follow this latter line: our method adds a Clausius—
Clapeyron (CC)-guided gradient constraint to a capacity-matched MLP, providing a soft inductive
bias rather than enforcing a units-exact equality.

Machine-learning components in climate models. A growing literature replaces or augments
parameterisations in GCMs/ESMs with ML surrogates (Rasp et al.,[2018; Brenowitz & Bretherton,
2019} [Yuval & O’Gorman, 2020). These studies report strong in-distribution skill for subgrid pro-
cesses (e.g., moist convection, boundary-layer turbulence), yet robustness can degrade under regime
shifts or altered forcings (Dueben & Bauer, [2018; Beucler et al.l [2024). This motivates physics-
guided inductive biases that help retain fidelity when transferring across climatic regimes.

Cloud-fraction modelling. Cloud fraction is a long-standing source of uncertainty in climate pro-
jections (Stephens) 2005)). Cloud prediction in climate models is critical not only for estimating
cloud cover itself, but also because clouds have strong influences on climate through shortwave
(SW) and longwave (LW) radiation feedbacks (Ramanathan et al.,|1989; |Bony et al., 2015a; [Forster
et al.| 2021). Classical schemes in GCMs (Sundqvist et al., [ 1989; [Smith, [1990b) are physically mo-
tivated but require empirical tuning and can exhibit regime-dependent biases, notably in the tropics
and marine stratocumulus (Hourdin et al.,|2017; Nam et al.| |2012). Data-driven surrogates that learn
cloud fraction from reanalysis or high-resolution simulations (Krasnopolsky et al., 2013} [Yuval &
O’Gorman, 2021) reduce heuristic assumptions but, without explicit thermodynamic constraints,
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may reproduce non-physical behaviour or overfit dominant correlations in the training distribution,
(Dueben & Bauer, |2018)).

OOD under climate change: parallels to our set-up. Assessing whether a learned cloud scheme
will remain reliable under warming typically requires testing out of the training distribution. In
climate terms, forced warming shifts the joint distribution of temperature and humidity, with CC-
implied increases in saturation vapour pressure and moisture availability (Held & Soden, [2006).
Our Polar—Tropics protocol is not a future-scenario emulator, but it is a purposeful analogue: by
training only on polar latitudes and evaluating in the tropics, we expose the model to thermody-
namic states (higher 7', higher ¢, different RH structure) that lie outside the training envelope -
precisely the kind of regime shift that challenges cloud schemes in warmer climates (Bony et al.|
2015b). This thermodynamics-first OOD test isolates the humidity—temperature coupling that CC
highlights, while holding other confounders fixed. As such, it complements hybrid/online evalua-
tions and provides a controlled proxy for climate-change robustness (Koh et al., [2021}).

Thermodynamic constraints and positioning. Recent work incorporates conservation and ther-
modynamic relationships to encourage physical consistency in atmospheric ML (Beucler et al.,
2021} [Yuval & O’Gorman, 2021). To our knowledge, however, the CC relation has not been used
as a differentiable, CC-guided gradient constraint specifically for cloud-fraction emulation. Our
contribution is to introduce such a minimal-intrusion constraint—leaving architecture and capacity
unchanged—and to evaluate robustness under a challenging regime transfer. To avoid common eval-
uation artefacts on latitude—longitude grids, details on non-overlapping (leakage-resistant) splits and
area-weighted metrics are given with the experimental protocol.

3 METHOD

3.1 PROBLEM FORMULATION

Let z; = (T3, RH;, qi,wi, p;) € R5 denote ERAS5 predictors (outlined in Table |1)) at sample ¢ and
let ¢; € [0,1] be cloud fraction on pressure levels (Hersbach et al., [2020). We learn fp : R5 —
[0, 1] with prediction & = fg(x;). Our design goals are: (i) simplicity and fairness via a capacity-
matched MLP baseline. Fairness meaning the only systematic difference between models is the
cc-slope regulariser; all other factors constant or symetrically tuned. And (ii) robustness under
thermodynamic regime shift. The dataset and metrics are detailed in section[4]

3.2 MODELS

Baseline MLP. A fully connected network with three hidden layers of 11 ReLU units and a sig-
moid output producing ¢ € [0,1]. We chose 3x11 architecture via preliminary hyper-parameter
tuning; other sizes like 10 or 12 neurons yielded similar validation performance. Full details of the
MLP architecture and training in Appendix Tables[AT][A2]

CC-PINN. Identical architecture; the only change is an additional gradient supervision term that
aligns the model’s temperature sensitivity with the Clausius—Clapeyron (CC) slope.

3.3 CC-SLOPE MATCHING (GRADIENT SUPERVISION)

We use the standard CC relation (Wallace & Hobbs| 2000) for saturation vapour pressure e (7'):

deg L,es
dT ~ R, T2 M

and define a per-sample residual that matches the network’s partial derivative with respect to tem-
perature (holding the other inputs fixed) to the CC slope:

ﬁ B deg
oT RH,q,w,p dT‘7

r o= Lohys = 12 2)
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We compute (86 / 8T) ’ RH.q.w.p via automatic differentiation with RH, ¢, w, and p treated as con-

stants at their sample values (i.e., no graph path from 7" into those tensors). This yields the intended
partial derivative.

Although de, /dT (PaK~') and 9¢/0T (K~1) carry different units, this only sets the overall scale
of the penalty: any fixed unit conversion (e.g., dividing des/dT by a reference pressure eg) is a
constant rescaling that « (a tunable weight controlling the strength of the physics term) absorbs.
If s = des/dT and we replace s by ks for any fixed £ > 0, the term becomes a (g — rs)? =
ar?(g/k — s)? with g = 9¢/OT. Thus the absolute scale of the CC slope only sets the effective
weight of the constraint; tuning o compensates for n

As inputs are min—max normalised, X’ = (X — Xyin)/(Xmax — Xmin), We convert network
Jacobians to physical units before equation 2]

3.4 TRAINING OBJECTIVE

We minimise a normalised, area-weighted objective over minibatch :

1 .
L= =—— Y wile—) + aluyi),  wi=cosos ©)
ien Wi ic€B

where ¢; is latitude (in radians). Using the same weighting at training and evaluation so the opti-
misation objective matches the evaluation objective, avoiding train—eval metric mismatch (‘metric
drift’).

3.5 OPTIMISATION

We use Adam (Kingma & Ba, 2015) with early stopping on validation error. The learning rate,
physics weight «, dropout rate, and batch size are tuned by Bayesian optimisation (Akiba et al.,
2019) on the train-validation split, see Appendix Table[A2] All other hyperparameters are fixed and
shared across models, seen in Appendix Table[AT} We run twenty five seeds and report mean+SEM.

Note on scale invariance. Constant rescaling of the CC target (e.g., using dés /dT = (1/eq) des/dT)
only changes the effective weight; the tuned o compensates for this scaling.

4 DATA AND EXPERIMENTAL PROTOCOL

4.1 ERAS VARIABLES AND UNITS

We use ERAS reanalysis on pressure levels at 0.25° x 0.25° resolution. Inputs are air temperature 7'
(K), relative humidity RH (%), specific humidity ¢ (kg kg 1), pressure vertical velocity w (Pas™1),
and the pressure level index p (hPa). The target ¢ € [0, 1] is ERAS cloud fraction on pressure levels.

Table 1: ERAS predictors and target used in this study. Features are min—-max normalised using
training-split only statistics; target remains dimensionless (fraction).

Symbol  ERAS short name  Unit Level Notes

T t K pressure  Air temperature

RH r % pressure  Relative humidity (0-100)
q a kgkg™! pressure  Specific humidity

w w Pas™! pressure  Pressure vertical velocity
D level hPa pressure  Pressure level identiﬁel{;-]

c (target) cc [0,1] pressure  Cloud fraction (fraction

!This argument is at the loss level; optimiser details can change step sizes, but cross-validated « reliably
absorbs constant rescalings of s.

*Pressure levels used in this work: {1000, 975, 950, 925, 900, 875, 850, 825, 800, 775, 750, 700, 650, 600,
550, 500, 450, 400, 350, 300, 250, 225, 200, 175, 150, 125, 100, 70, 50, 30, 20, 10,7, 5, 3,2, 1} hPa.
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4.2 TEMPORAL SET-UP
To enforce temporal disjointness, we use a single timestamp for training/validation and a distinct
timestamp for testing (UTC):

Train/val: 2024-08-01 14:00 and Test: 2024-12-12 09:00.

This induces both diurnal and seasonal shifts (boreal summer — boreal winter) without mixing times
across splits.

4.3 LATITUDE BANDS AND REGIONS OF ASSESSMENT

We report both global and band-wise scores to expose regime dependence. Unless stated otherwise,
band edges are the canonical

Tropics: |¢| < 23.5°, Midlatitude: 23.5° < |¢| < 66.33°, Polar: |¢| > 66.33°,

with ¢ the geographic latitude. Band-wise metrics restrict the evaluation set S to the band and renor-
malise cosine weights within that band (Eq. , yielding RMSE{™Y  This breakdown highlights

thermodynamic contrasts (e.g., higher T/q structure in the Troﬁfcs) and complements the global

score.

4.4 PREPROCESSING AND NORMALISATION

Per-feature min—max scalers are fit on the fraining split only and then frozen:
X - Xmin
Xmax - Xmin ’

where (X pin, Xmax ) are computed on training data from 2024-08-01 14:00. We pass RH internally
as a fraction in [0, 1] (not %) for consistent gradient units.

X'= 4)

4.5 SAMPLING AND SPLITS (LEAKAGE-ROBUST)

Each sample is a unique spatio-temporal—pressure coordinate (¢, A, p, t) (latitude, longitude, pres-
sure level, time). Exact duplicate coordinates are removed prior to splitting. We split by coordinates
so no (¢, A, p, t) appears in more than one split:

* Train/validation (temporal slice): all coordinates with ¢ =2024-08-01 14:00 are grouped
and partitioned 80/20 for train/val.

 Test (temporal hold-out): all coordinates with ¢ =2024-12-12 09:00 form the test set and
are never used for tuning, early stopping, or normaliser fitting.

When sub-sampling for efficiency, we sample without replacement within each temporal slice to
preserve the grouped constraint. For band-wise reporting, we also aggregate test errors over latitude
bands (Tropics, Midlatitude, Polar) without altering the temporal split.

4.6 MODEL SELECTION AND REPORTING

Model selection (early stopping; Bayesian optimisation of learning rate and «) is performed on the
validation split from 2024-08-01 14:00 only. No December keys are used for tuning or normalisa-
tion. All results are reported as mean=+standard error of the mean (SEM) over twenty five random
seeds.

4.7 METRICS

Because a latitude—longitude grid over-represents high latitudes, we report area-weighted RMSE
with cosine-latitude weights. Let 5 denote the evaluation set (global or a latitude band) and ¢; the
latitude of sample ¢ in radians. Define weights:

w; = cos(¢;), (&)
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and area-weighted RMSE
RMSE, = [ w;(ci—é)". 6)

i€B

We use the same weighting scheme in the training loss to align optimisation and evaluation.

5 RESULTS

Here We evaluate two protocols: (i) Global train (Temporal split: train/val at 2024-08-01 14:00;
test at 2024-12-12 09:00) and (ii) Polar train (Spatial OOD variant: same temporal split but train/val
restricted to |¢| > 66.33°). Metrics are area-weighted RMSE and standard error of the mean
(mean®+SEM over 25 seeds) with cosine-latitude weights.

In Fig[T] we report area-weighted RMSE (lower is better) by test region for each model/training
regime. This presentation makes both central tendency and variability across random initialisa-
tions/data shuffles explicit, and allows direct comparison of in-distribution and out-of-distribution
evaluations.

5.1 GLOBAL TRAIN (TEMPORAL SPLIT): PARITY WITH THE BASELINE

On the December test timestamp, the global trained CC-PINN and the baseline are statistically com-
parable. Globally, CC-PINN achieves a predictive error of 0.101040.0002 vs 0.1033£0.0.0005 for
the baseline. Band-wise: Tropics 0.0873+0.0002 vs 0.0883£0.0004, Midlatitude 0.09924-0.0002
vs 0.101740.0005, and Polar 0.1528+0.0006 vs 0.1566+0.0012 ). Overall, the CC term main-
tains in-distribution parity, and demonstrates minor improvements in accuracy and spread under the
temporal shift.
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Figure 1: Area-weighted RMSE (lower is better) by test region for each model/training regime.
Notation: TestRegion | Model (TrainRegion); e.g.,, Tropics | PINN(Global) de-
notes a PINN trained on Global and evaluated on the Tropics. Small circles are seed-wise results
(n = 25). Boxes show the median (line) and interquartile range (box); whiskers use 1.5 x IQR.

5.2 POLAR TRAIN (SPATIAL OOD): CC-PINN IMPROVES TRANSFER

When trained only on Polar latitudes and evaluated globally in December, CC-PINN improves the
global score from 0.12754-0.0018 to 0.11194-0.0008 (~12.3% relative reduction). The gains con-
centrate where the thermodynamic shift is largest:

e Tropics: 0.13914+0.0034 — 0.1076+0.0015 (~22.6% lower RMSE).

* Midlatitude: 0.1125+0.0010 — 0.1045+£0.0004 (~7.1% lower).
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* Polar: a modest degradation 0.1468+0.0008 — 0.153540.0007 (~4.6% higher), con-
sistent with a trade-off that prioritises correct temperature sensitivity in warmer/moister
regimes.

These results indicate that aligning O¢/0T with the CC slope meaningfully improves extrapolation
to thermodynamically distinct states.

5.3 SIGNIFICANCE OF IMPROVEMENTS
Polar—train global reduction (0.1275—0.1119) is significant by a two-sample Welch t-test,

t(32.62) = —8.17 (two-sided p = 2.17 x 10~7); the PINN mean RMSE is lower than the NN,
with a large effect (Cohen’s d~2.31).

5.4 GRADIENT ALIGNMENT WITH CC

We verify that gradient supervision changes the model’s temperature sensitivity in the intended
direction. Define a tolerance-aware sign function

_17 X S -7,
sign_(z) =< 0, |z|<T,
L, z=m,

deg
dT

and let g; = g—% ;and s; =

;- We report the directional agreement (area-weighted)

Y ics Wi l[signTg (9:) = sign,_(si)]
Dies Wi 7

with w; = cos ¢; and small tolerances 7,4, 7, to treat near-zero pairs as agreement.

DA, =

and the Spearman correlation p between 9¢/9T and des/dT across samples. Under Polar train,
CC-PINN improves DA and p in the Tropics and Midlatitude (Table [2), indicating the loss steers
sensitivities toward CC-consistent behaviour.

Table 2: Clausius—Clapeyron alignment under Polar train: area-weighted directional agreement
(DA,,) and Spearman p(g, s) (mean + SEM over 25 seeds. Higher is better.

Region PINN DA, PINN p NN DA, NN p
Tropics 0.554 £0.056 0.191 £0.035 0.260 £0.057  0.034 £ 0.043
Midlatitude  0.647 £0.053 0.135£0.038 0.385+£0.055 —0.008 £ 0.043
Polar 0.613+£0.050 0.125£0.038 0.405+0.050 —0.017 £ 0.039
Global 0.613 +£0.051 0.154 £0.035 0.359£0.053  0.013 £0.042

Table 3: Area-weighted RMSE (mean + SEM over 25 seeds.). Bands: Tropics |¢| < 23.5°, Midlat-
itude 23.5° < |¢| < 66.33°, Polar |¢| > 66.33°. Lower is better.

Global train Polar train
Region PINN NN PINN NN
Tropics 0.0873 +0.0002 0.0883 +0.0004 0.1076 £ 0.0015 0.1391 £ 0.0034
Midlatitude  0.0992 £+ 0.0002 0.1017 4 0.0005 0.1045 + 0.0004 0.1125 £ 0.0010
Polar 0.1528 +0.0006  0.1566 4= 0.0012  0.1535 £ 0.0007 0.1468 £ 0.0008
Global 0.1010 +0.0002  0.1033 +0.0005 0.1119 4 0.0008 0.1275 4+ 0.0018

5.5 WHERE DO GAINS ARISE? STRATIFICATION BY TEMPERATURE

We stratify the December test set into equal-area temperature bins and report area-weighted RMSE
within each bin. Contrary to the simplest “warmer = larger gains” expectation, the largest relative
reductions occur in the coldest bins, while improvements are modest in the warmest bin. This pat-
tern is consistent with the dual role of our CC-slope term: (i) in cold regimes where de,/dT = 0,
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Table 4: Temperature—stratified errors using equal-weight bins (bin centres shown, in K). RMSE is
computed within each bin; A% = 100 (RMSExny — RMSEpnN)/RMSENy (higher is better).

Bin centre (K) CC-PINNRMSE NNRMSE A%

202.69 0.1042 0.1339 222
228.85 0.1039 0.1359 23.6
250.52 0.1278 0.1319 3.1
271.41 0.1179 0.1247 54
297.53 0.1030 0.1082 4.8

it damps spurious temperature sensitivity by nudging 9¢/9T — 0, yielding sizable error reductions;
(ii) in warm regimes — often dry, the baseline already attains low RMSE and cloud fraction is
more dynamics-limited than thermodynamically limited, so aligning the temperature sensitivity of-
fers limited additional benefit. Importantly, the warmest bin’s absolute errors are already small, so
relative gains naturally appear muted even when absolute gaps are comparable across bins. Overall,
the stratified view reinforces that CC-slope supervision improves robustness where 7-sensitivity is
most error-prone (cold/mid bins) while preserving parity in warm states. Full results are shown in
Table (]

Removing the CC-slope term (a=0) erases OOD gains (Polar trained Tropics and Midlatitude),
confirming that improvements derive from the gradient supervision rather than capacity or sampling.

5.6 TRAINING STABILITY

CC-PINN reduces variance across seeds in the OOD setting (e.g., Tropics SEM 0.0015 vs 0.0034;
Global SEM 0.0008 vs 0.0018 under Polar train), suggesting the CC term regularises optimisation
by discouraging spurious temperature responses.

6 DISCUSSION

Key finding. A single, lightweight CC—slope supervision (Eq. [2) materially improves extrap-
olation to thermodynamically distinct states. Under Polar train, CC-PINN reduces global
RMSE from 0.127540.0018 to 0.111940.0008 (~12.3%), with the largest gain in the Tropics
(0.1391+0.0034 — 0.1076+0.0015; ~22.6%). Under Global train the two models are statisti-
cally comparable, indicating the constraint does not harm in-distribution performance.

Warm-bin trade-off. Our temperature-stratified results show the largest gains in cold bins and
near parity in the warmest bin, which aligns with CC-slope supervision acting chiefly as a guardrail
against spurious T-sensitivity in regimes where des/dT is small, and offering limited headroom
where baseline errors are already low and clouds are dynamics-dominated.

6.1 IMPLICATIONS FOR OOD GENERALISATION

These results support the broader claim that task-relevant inductive biases can curb spurious cor-
relations that otherwise limit transfer. Here, aligning 9¢/9T to the CC slope produces gains con-
centrated in warm/moist regimes—the very states where CC effects amplify humidity availabil-
ity—while leaving the temporal split essentially unchanged. This specificity matters: the constraint
targets the mechanism most likely to shift under warming, rather than imposing a broad architectural
prior.

6.2 RELEVANCE TO CLIMATE MODELLING

For climate applications, the constraint is deployable: it leaves the forward pass untouched, adds
negligible overhead, and can be switched on/off via a single weight a.. As such, it is compatible with
hybrid deployments (residual correction or emulator settings). That said, our present evaluation is
offline and uncoupled; online stability and conservation in a prognostic model remain to be tested.
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A practical next step is single-column online coupling (e.g., SCM or aquaplanet), where the CC-
guided sensitivity can be stress-tested under feedbacks with radiation and dynamics (Brenowitz &
Bretherton, 2019; |Rasp et al., [2018).

6.3 METHODOLOGICAL STRENGTHS

(1) Capacity fairness: identical depth/width across models isolates the effect of the physics term.
(ii) Leakage-robust evaluation: grouped splits over (¢, A, p,t) with train-only normalisation, and
area-weighted metrics. (iii) Two axes of shift: a temporal split (August—December) and a spatial
OOD variant (Polar train), showing parity in one and gains in the other. (iv) Compute efficiency: all
runs are desktop-trainable, supporting reproducibility.

6.4 LIMITATIONS AND THREATS TO VALIDITY

» Target fidelity. ERAS cloud fraction is model-derived; learned biases may reflect the
reanalysis operator. Observation-based targets (e.g., CloudSat/Calipso or satellite retrievals
(Stephens et al., [2002; [Winker et al., 2010)) would strengthen external validity.

* Temporal coverage. Results use two timestamps (14:00 Aug 1 and 09:00 Dec 12, 2024).
Broader diurnal/seasonal sampling would test robustness to synoptic diversity.

* Metric narrowness. We focus on RMSE; calibration and error asymmetry (e.g.,
under/over-clouding) are not assessed.

6.5 BROADER IMPACT

Physics-guided losses like the CC term provide a simple bridge between domain knowledge and ML
robustness. Because they are transparent, tunable, and architecture-agnostic, they are accessible to
groups without large compute budgets and can foster more trustworthy ML components in climate
workflows. Care is still required: improvements here do not guarantee safe behaviour in coupled
models or extremes; rigorous online testing and calibration are prerequisites for operational use.

Take-away. A minimal, interpretable constraint on temperature sensitivity—implemented as gra-
dient supervision—delivers measurable OOD gains where they matter most, without architectural
changes. This pattern (soft, mechanism-targeted physics guidance) is a pragmatic path for advancing
robust scientific ML.

7 CONCLUSION

We introduced CC-PINN, which embeds the Clausius—Clapeyron (CC) law as a gradient-based su-
pervision term on temperature sensitivity. With no architectural changes and negligible overhead,
this CC-slope constraint preserves parity under a temporal split while improving extrapolation un-
der a spatial OOD stress test: under Polar train, global RMSE drops from 0.127540.0018 to
0.111940.0008 (~12.3%), with the largest gain in the Tropics (0.1391+0.0034 — 0.1076+0.0015;
~22.6%). A modest Polar-band trade-off is observed, consistent with prioritising correct warm-state
sensitivity.

Takeaways. (1) A small, task-relevant physics prior can cut OOD error without degrading in-
distribution performance, with benefits concentrated in regimes where CC effects are strongest. (2)
Gains are robust across seeds and capacity controls; they stem from the gradient supervision rather
than model size or sampling, and are insensitive to constant rescalings of the CC target (absorbed by
«). (3) The approach is lightweight, architecture-agnostic, and compute-efficient, making it practical
for broader scientific ML use.

Future work. Extend to multi-constraint objectives (e.g., simple moisture/energy closures or mono-
tonicity in RH), evaluate against observation-based cloud products across more times/years and re-
port calibration, and test online in single-column/GCM settings to assess stability, conservation, and
long-horizon forecast skill.
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REPRODUCIBILITY STATEMENT.

We specify the dataset, variables, and units in Sec. 4.1; exact timestamps and latitude-band defini-
tions in Secs. 4.2-4.3; preprocessing and normalisation in Sec. 4.4; leakage-robust sampling/splits
and model-selection protocol in Secs. 4.5-4.6; and the area-weighted RMSE metric (cosine-latitude
weights) in Sec. 4.7 with formulas in Eqgs. (5)—(6). Model architectures, losses, and optimisa-
tion are detailed in Sec. 3 (CC slope Eq. (1), gradient supervision Eq. (2), training objective Eq.
(3); optimiser/early stopping in Secs. 3.4-3.5), with fixed settings and tuned hyperparameters in
Appendix Tables A1-A2. We report mean + SEM over 25 seeds, use a temporal hold-out test set
unseen by tuning, and provide significance tests (Sec. 5.3), gradient-alignment diagnostics (Sec.
5.4), temperature-stratified analyses (Sec. 5.5), and stability notes (Sec. 5.6). ERAS acquisition
is reproducible via the Copernicus Climate Data Store using the variable names, levels, and exact
times listed in Secs. 4.1-4.2.

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2623-2631,
2019. doi: 10.1145/3292500.3330701.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
In Proceedings of the International Conference on Learning Representations (ICLR), 2020.

Tom Beucler, Michael S. Pritchard, Stephan Rasp, Jordan Ott, Pierre Baldi, and Pierre Gentine.
Enforcing analytic constraints in neural networks emulating physical systems. Physical Review
Letters, 126(9):098302, 2021. doi: 10.1103/PhysRevLett.126.098302.

Tom Beucler, Pierre Gentine, Janni Yuval, Ankitesh Gupta, Liran Peng, Jerry Lin, Sungduk Yu,
Stephan Rasp, Fiaz Ahmed, Paul A. O’Gorman, J. David Neelin, Nicholas J. Lutsko, and Michael
Pritchard. Climate-invariant machine learning. Science Advances, 10(6):eadj7250, 2024. doi:
10.1126/sciadv.adj7250.

Sandrine Bony, Robert Colman, Vladimir M. Kattsov, Richard P. Allan, Christopher S. Brether-
ton, Jean-Louis Dufresne, Alex Hall, Stéphane Hallegatte, Melinda M. Holland, William Ingram,
David A. Randall, Brian J. Soden, George Tselioudis, and Mark J. Webb. How well do we under-
stand and evaluate climate change feedback processes? Journal of Climate, 19(15):3445-3482,
2006. doi: 10.1175/JCLI3819.1.

Sandrine Bony, Bjorn Stevens, Dargan M. W. Frierson, Christian Jakob, Masa Kageyama, Robert
Pincus, Theodore G. Shepherd, Steven C. Sherwood, A. Pier Siebesma, Adam H. Sobel, Masahiro
Watanabe, and Mark J. Webb. Clouds, circulation and climate sensitivity. Nature Geoscience, 8:
261-268, 2015a. doi: 10.1038/nge02398.

Sandrine Bony, Bjorn Stevens, Dargan M. W. Frierson, Christian Jakob, Masa Kageyama, Robert
Pincus, Theodore G. Shepherd, Steven C. Sherwood, A. Pier Siebesma, Adam H. Sobel, Masahiro
Watanabe, and Mark J. Webb. Clouds, circulation and climate sensitivity. Nature Geoscience, 8:
261-268, 2015b. doi: 10.1038/nge02398.

Noah D. Brenowitz and Christopher S. Bretherton. Spatially extended tests of a neural network
parametrization trained by coarse-graining. Journal of Advances in Modeling Earth Systems, 11
(8):2728-2744, 2019. doi: 10.1029/2019MS001711.

Peter D. Dueben and Peter Bauer. Challenges and design choices for global weather and climate
models based on machine learning. Geoscientific Model Development, 11(10):3999-4009, 2018.
doi: 10.5194/gmd-11-3999-2018.

P. Forster, T. Storelvmo, K. Armour, W. Collins, J.-L. Dufresne, D. Frame, D. J. Lunt, T. Mauritsen,
M. D. Palmer, M. Watanabe, M. Wild, and H. Zhang. The earth’s energy budget, climate feed-
backs, and climate sensitivity. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan,
S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R.
Matthews, T. K. Maycock, T. Waterfield, O. Yelek¢i, R. Yu, and B. Zhou (eds.), Climate Change

10



Under review as a conference paper at ICLR 2026

2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Re-
port of the IPCC, pp. 923-1054. Cambridge University Press, Cambridge, UK and New York,
NY, USA, 2021. doi: 10.1017/9781009157896.009.

Peter J. Gleckler, Karl E. Taylor, and Charles Doutriaux. Performance metrics for climate mod-
els. Journal of Geophysical Research: Atmospheres, 113(D6):D06104, 2008. doi: 10.1029/
2007JD008972.

Isaac M. Held and Brian J. Soden. Robust responses of the hydrological cycle to global warming.
Journal of Climate, 19(21):5686-5699, 2006. doi: 10.1175/JCLI3990.1.

Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, and et al. The era5 global reanalysis.
Quarterly Journal of the Royal Meteorological Society, 146(730):1999-2049, 2020. doi: 10.
1002/qj.3803.

Frédéric Hourdin, Thorsten Mauritsen, Andrew Gettelman, Jean-Christophe Golaz, V. Balaji, and
et al. The art and science of climate model tuning. Bulletin of the American Meteorological
Society, 98(3):589-602, 2017. doi: 10.1175/BAMS-D-15-00135.1.

Anuj Karpatne, Gowtham Atluri, James H. Faghmous, Michael Steinbach, Arindam Banerjee, Au-
roop R. Ganguly, Shashi Shekhar, Nagiza F. Samatova, and Vipin Kumar. Theory-guided data
science: A new paradigm for scientific discovery from data. IEEE Transactions on Knowledge
and Data Engineering, 29(10):2318-2331, 2017. doi: 10.1109/TKDE.2017.2720168.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings
of the International Conference on Learning Representations (ICLR), 2015.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, and et al. WILDS: A benchmark of in-the-wild
distribution shifts. In Proceedings of the 38th International Conference on Machine Learning
(ICML), pp. 5637-5664, 2021.

Vladimir M. Krasnopolsky, Michael S. Fox-Rabinovitz, and Alexander A. Belochitski. Using en-
semble of neural networks to learn stochastic convection parameterizations for climate and nu-
merical weather prediction models from data simulated by a cloud resolving model. Advances in
Artificial Neural Systems, 2013:485913, 2013. doi: 10.1155/2013/485913.

Cécile Nam, Jean-Louis Dufresne, Hélene Chepfer, and Sandrine Bony. The ’too few, too bright’
tropical low-cloud problem in cmip5 models. Geophysical Research Letters, 39:1.21801, 2012.
doi: 10.1029/2012GL053421.

Maziar Raissi, Paris Perdikaris, and George E. Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686-707, 2019. doi: 10.1016/j.
jcp-2018.10.045.

V. Ramanathan, R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann.
Cloud-radiative forcing and climate: Results from the earth radiation budget experiment. Science,
243(4887):57-63, 1989. doi: 10.1126/science.243.4887.57.

Stephan Rasp, Michael S. Pritchard, and Pierre Gentine. Deep learning to represent subgrid pro-
cesses in climate models. Proceedings of the National Academy of Sciences, 115(39):9684-9689,
2018. doi: 10.1073/pnas.1810286115.

R. N. B. Smith. A scheme for predicting layer clouds and their water content in a general circulation
model. Quarterly Journal of the Royal Meteorological Society, 116(492):435-460, 1990a. doi:
10.1002/qj.49711649210.

R. N. B. Smith. A scheme for predicting layer clouds and their water content in a general circulation
model. Quarterly Journal of the Royal Meteorological Society, 116(492):435-460, 1990b. doi:
10.1002/qj.49711649210.

Graeme L. Stephens. Cloud feedbacks in the climate system: A critical review. Journal of Climate,
18(2):237-273, 2005. doi: 10.1175/JCLI-3243.1.

11



Under review as a conference paper at ICLR 2026

Graeme L. Stephens, Deborah G. Vane, Robert J. Boain, and et al. The CloudSat mission and
the A-train. Bulletin of the American Meteorological Society, 83(12):1771-1790, 2002. doi:
10.1175/BAMS-83-12-1771.

T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex,
and P. M. Midgley (eds.). Climate Change 2013: The Physical Science Basis. Contribution
of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change. Cambridge University Press, 2013. doi: 10.1017/CB0O9781107415324.

H. Sundqvist, E. Berge, and J. E. Kristjansson. Condensation and cloud parameterization studies
with a mesoscale numerical weather prediction model. Monthly Weather Review, 117(8):1641—
1657, 1989. doi: 10.1175/1520-0493(1989)117(1641:CACPSW)2.0.CO;2.

Michael Tiedtke. Representation of clouds in large-scale models. Monthly Weather Review, 121
(11):3040-3061, 1993. doi: 10.1175/1520-0493(1993)121(3040:ROCILS)2.0.CO;2.

John M. Wallace and Peter V. Hobbs. Atmospheric Science: An Introductory Survey. Academic
Press, 2nd edition, 2006.

David M. Winker, Mark A. Vaughan, Ali Omar, Yongxiang Hu, Kenneth A. Powell, Zhaoyan Liu,
William H. Hunt, and Stuart A. Young. Overview of the CALIPSO mission and CALIOP data
processing algorithms. Journal of Atmospheric and Oceanic Technology, 27(3):231-249, 2010.
doi: 10.1175/2009JTECHA1281.1.

Janni Yuval and Paul A. O’Gorman. Stable machine-learning parameterization of subgrid processes
for climate modeling at a range of resolutions. Journal of Advances in Modeling Earth Systems,
12(12):e2020MS002268, 2020. doi: 10.1029/2020MS002268.

Janni Yuval and Paul A. O’Gorman. Learning cloud and precipitation physics for climate modeling:
Representing uncertainties with stochasticity. Journal of Advances in Modeling Earth Systems,
13(2):2020MS002386, 2021. doi: 10.1029/2020MS002386.

A APPENDIX

DECLARATION OF GENERATIVE Al AND AI-ASSISTED TECHNOLOGIES IN THE WRITING
PROCESS.

We used ChatGPT (GPT-4 and GPT-5) in a limited editorial role: (1) code refactoring suggestions
for non-novel boilerplate (renaming variables, reformatting functions, extracting helpers); (2) light
text polishing for grammar/clarity; and (3) LaTeX formatting guidance (environments, floats, and
bibliography style). We did not use Al tools to propose or validate methods, derive results, tune hy-
perparameters, generate figures/tables, create datasets/labels, or perform literature reviews without
manual verification. All Al-assisted changes were inspected and, where appropriate, rewritten by
the authors; the authors accept full responsibility for the content.

Table A1: Fixed training settings shared by all runs.

Item Value

Architecture 3x11 ReLU; sigmoid output

Optimiser Adam

Epochs (max) 1000 (early stopping; patience 20 epochs)
Seeds 25 (report mean+SEM)

Normalisation Per-feature min—max (train split only; frozen for val/test)
Area weighting ~ w; = cos(¢;) (radians)
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Table A2: Tuned hyperparameters by model and training protocol. Values selected on validation

and then fixed for 25 seeds; all other settings are shared (see Table EI)

Global train Polar train
Hyperparameter PINN NN PINN NN
Learning rate 7 1.461 x 1072 5.285 x 1072  5.659 x 107*  1.858 x 1073
Batch size B 16 64 32 16
Physics weight «  1.015 x 10~* — 1.010 x 10~* —
Dropout rate 0.0112 0.0118 0.00770 0.0206
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