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ABSTRACT

The performance of pre-trained masked diffusion models is often constrained by
their sampling procedure, which makes decisions irreversible and struggles in low-
step generation regimes. We introduce a novel sampling algorithm that works
with pre-trained models and, after a lightweight fine-tuning of a single layer, sig-
nificantly improves sample quality and efficiency. Our method reformulates the
generation process using a star-shaped paradigm, which inherently allows for er-
ror correction. To make this process effective, we augment it with a learnable
re-masking scheduler that intelligently identifies and revises likely errors. This
approach yields a substantial quality boost, particularly when using a small num-
ber of sampling steps. We extensively ablate key components of our approach
and show its usability in different scenarios. In comprehensive experiments on
text, and code generation, our sampling algorithm outperforms or matches exist-
ing methods.

1 INTRODUCTION

Diffusion probabilistic models have demonstrated remarkable success in generating high-fidelity
data, particularly in continuous domains such as image and video synthesis (Sohl-Dickstein et al.,
2015; Song & Ermon, 2019; Ho et al., 2020; Sahoo et al., 2024b). A key reason for their effective-
ness is the principle of iterative refinement. By progressively denoising a sample from a simple prior
distribution, these models effectively sculpt data, making small adjustments at each step. This al-
lows for a robust error correction mechanism; a mistake made early in the trajectory can be gradually
amended in subsequent steps, leading to state-of-the-art results.

This elegant property, however, is largely absent in the discrete domain. While discrete diffusion
models are making significant strides in areas like natural language processing (Lou et al., 2024;
Sahoo et al., 2024a; Schiff et al., 2024), the most successful variants, based on token masking, are
built on a foundation that precludes iterative refinement. In a masked diffusion setup, the generation
of each token is a one-way street: once a [MASK] is replaced with a concrete token, the model
commits to that decision. The token is then frozen and cannot be revisited or updated, even if later
steps reveal it to be suboptimal in the broader context. This sequence of irreversible commitments
prevents the model from correcting its own mistakes, imposing a fundamental ceiling on sample
quality, sampling speed, and the potential for fine-grained, controlled generation.

Recognizing this limitation, several recent works have proposed mechanisms to enable token re-
vision. For instance, ReMDM (Wang et al.) introduces a simple yet effective strategy: randomly
re-masking a fraction of already-generated tokens during the sampling process. While this approach
yields substantial quality improvements in text generation, its stochastic nature is fundamentally
inefficient. The selection process is indiscriminate; it is just as likely to re-mask a correct token
as an erroneous one, unnecessarily slowing convergence and requiring a large number of sampling
steps. An alternative approach, explored by GIDD (von Rütte et al., 2025), combines masked dif-
fusion with a uniform diffusion process to allow for token refinement toward the end of generation.
However, this hybrid strategy has not achieved yet competitive sample quality. These pioneering
efforts highlight the need for an error correction mechanism, yet they also reveal the limitations of
non-selective revision, motivating our targeted approach.

To address these shortcomings, we propose a new sampling framework founded on the star-shaped
paradigm (Okhotin et al., 2023). Instead of a direct, irreversible step from state xt to xs, our
sampler first predicts a complete version of the clean data, x̂0 ∼ pθ(· | xt), and then gener-
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ates the next, less noisy state by sampling from the forward process conditional on this prediction,
xs ∼ q(· | x̂0). This two-step process inherently breaks the chain of immutable decisions, allow-
ing already-generated tokens to be re-masked and refined. Crucially, this formulation is compatible
with pre-trained Masked Diffusion Language Models (MDLMs), allowing us to enhance existing
pretrained models with a new sampling procedure.

To unlock the full potential of the reversible star-shaped sampler, we replace its inefficient unguided
remasking with a lightweight, learnable module trained to target tokens predicted to be erroneous.
The resulting method, Guided Star-Shaped Masked Diffusion (G-Star), yields a substantial quality
boost, particularly in computationally constrained, few-step generation regimes.

Our main contributions are threefold:

• We propose a star-shaped formulation for masked discrete diffusion that enables iterative
refinement and error correction.

• We introduce a learned masking scheduler that adaptively identifies and remasks tokens
predicted to be erroneous. This intelligent error targeting mechanism significantly acceler-
ates inference and improves final sample quality.

• We demonstrate empirically that our approach achieves superior sampling performance
across a diverse set of domains, including text and code generation.

2 PRELIMINARIES

Our work builds upon masked diffusion models, which operate by progressively masking and un-
masking tokens.

Masked diffusion models. We consider discrete tokens represented as one-hot vectors x ∈
{0, 1}|V |, where |V | is the vocabulary size. A special [MASK] token is denoted by m. The forward
process corrupts an input x0 by progressively masking tokens over T timesteps according to a noise
schedule αt. The marginal distribution of the noisy state xt is given by:

q(xt | x0) = Cat(xt; αtx0 + (1− αt)m). (1)

The reverse process is parameterized by a neural network, fθ(xt, t), which is trained to predict
the probability distribution over the original data, pθ(x0 | xt). This predicted distribution then
conditions the analytical posterior:

q(xt−1 | xt,x0) =

δxt
(xt−1), if xt ̸= m

Cat
(
xt−1;

(1−αt−1)m+(αt−1−αt)x0

1−αt

)
, if xt = m

(2)

The first case of this posterior, where an unmasked token is deterministically preserved (δxt ), reveals
the model’s core limitation: once a token is generated, it is frozen, making iterative error correction
impossible. The network fθ is typically trained by minimizing a weighted cross-entropy loss to
predict x0 from xt.

ReMasking diffusion models. To address this limitation, ReMDM (Wang et al.) introduces new
sampling process that allows already-unmasked tokens to be reverted to a [MASK] state. This is
achieved by modifying the posterior:

q(xt−1 | xt,x0) =


Cat(xt−1; (1− σt)x0 + σtm), if xt ̸= m

Cat
(
xt−1;

αt−1−(1−σt)αt

1−αt
x0 +

1−αt−1−σtαt

1−αt
m
)
, if xt = m

(3)

Here, the hyperparameter σt ∈ [0;min{1, 1−αt−1

αt
}] controls the re-masking probability for already

unmasked tokens. A key practical challenge of this method is that σt is determined by one of
several proposed schedules, each governed by a hyperparameter η that must be carefully tuned (see
Appendix C.1). While this enables error correction that is compatible with pre-trained models, its
effectiveness is limited by the non-selective nature of the remasking schedule, motivating a more
targeted approach.
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Figure 1: Comparison of three sampling trajectories for refining text from a noisy state (xT ) to
a clean state (x0). The orbits represent the probability of partially denoised text xt at each step.
(a) MDLM follows a one-way, step-by-step path; it is stable but unable to correct past mistakes.
(b) Star sampler allows revision by predicting x0 and then randomly re-masking tokens, regard-
less of whether they are correct or incorrect. This allows for correction but is suboptimal and can
harm text coherence. (c) G-Star sampler is an improved path that also predicts x0 but uses an error
predictor to selectively re-mask likely incorrect tokens, enabling efficient error correction while
preserving text quality.

3 GUIDED STAR-SHAPED MASKED DIFFUSION

The fundamental limitation of standard masked diffusion, as outlined in Section 2, is its irreversible
structure. To enable iterative refinement, we must break this chain of immutable decisions. In this
section, we introduce a star-shaped paradigm for masked diffusion that allows for token revision,
and then present a learned scheduler that makes this revision process efficient and targeted.

3.1 STAR-SHAPED MASKED DIFFUSION

We redefine the joint distribution of the forward process. Instead of conditioning each latent state
xt on its immediate predecessor xt−1, we make all latent states conditionally independent given the
original data x0:

q(x1:T | x0) =

T∏
t=1

q(xt | x0). (4)

Here, each q(xt | x0) is the same marginal distribution defined in Equation 1. This ”star-shaped”
structure, where all latents connect directly to x0, fundamentally alters the process dynamics. It
explicitly permits non-monotonic transitions; for instance, a token can be masked at a timestep s
and become unmasked at a later timestep t > s, a scenario forbidden in the standard Markovian
chain for masked diffusion.

This change simplifies the reverse posterior: q(xt−1 | xt,x0) = q(xt−1 | x0). Following the
standard diffusion paradigm, we construct the generative transition pθ(xt−1 | xt) by first predicting
an estimate of the clean data, x̂0 ∼ Cat(·, fθ(xt, t)), and then sampling from the corresponding
posterior:

pθ(xt−1 | xt) = q(xt−1 | x0 = x̂0). (5)

Intuitively, each step of the generative process involves two stages: (1) the model examines the
current state xt and forms a complete hypothesis about the final, clean data x̂0; (2) it then generates
the next, less noisy state xt−1 by applying the forward noising process to this hypothesis, effectively
remasking it to the appropriate noise level. This step is what allows the model to revise its previous
decisions (see Figure 1b).

Notably, this star-shaped sampling process establishes a direct connection to the ReMDM frame-
work (Wang et al.). Specifically, our sampler is mathematically equivalent to the ReMDM sampler
when its probability is set to σt = 1 − αs. As we demonstrate in our analysis (Appendix C.1 and
Section 4.4), this hyperparameter requires an extensive, per-schedule tuning process to be effective.
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Algorithm 1 Training the error predictor gϕ
1: Input: DatasetD, pre-trained diffusion model fθ ,

learning rate η, denoiser temperature τdenoiser.
2: Output: Trained error predictor gϕ
3: while not converged do
4: Sample batch {x0} ∼ D
5: ▷ Simulate denoising and identify errors y
6: t ∼ U(0, 1)
7: xt ∼ q(· | x0)

8: p̂0 ← Softmax( fθ(xt)
τdenoiser

)

9: x̂0 ∼ Cat(·; p̂0)
10: y ∈ {0, 1}L, where yi = I(x̂0,i ̸= x0,i)

11: ▷ Train the error predictor
12: p← Softmax(gϕ(x̂0))

13: Lϕ ← − 1
L

∑L
i=1

[
yi log pi
+(1− yi) log(1− pi)

]
14: ϕ← ϕ− η∇ϕLϕ

15: return gϕ

Algorithm 2 Guided sampling step
1: Input: Current state xt, current time t, diffusion

model fθ , error predictor gϕ, denoiser tempera-
ture τdenoiser, nucleus probability pnucleus, error
predictor temperature τremask

2: Output: Next state xt−1

3: ▷ Predict and sample a proposal clean state
4: p̂0 ← NucleusFilter(Softmax( fθ(xt)

τdenoiser
), pnucleus)

5: x̂0 ∼ Cat(·; p̂0)

6: ▷ Identify and select most likely errors
7: logitserr ← gϕ(x̂0)
8: N ← ⌈(1− αt−1) · L⌉
9: M← SampleKNoRep( logitserr

τremask
, N)

10: ▷ Construct next state via targeted remasking

11: xt−1,i ←

{
m, if i ∈M
x̂0,i, otherwise

12: return xt−1

Our formulation avoids this costly search and allows our sampler to perform on par with a carefully
optimized ReMDM.

A crucial consequence of this formulation is its compatibility with existing models. The variational
lower bound (VLB) for this process can be simplified to a weighted cross-entropy objective, struc-
turally identical to that used for standard masked diffusion models:

L ≈ Et,x0,xt
[−w′

t log pθ(x0 | xt)] . (6)

Claim 1. The VLB for the star-shaped process simplifies to the objective in Eq. equation 6, which
has the same functional form as the standard masked diffusion objective but with different timestep-
dependent weights w′

t. (Proof in Appendix A).

The structural similarity between our training objective and the standard MDLM loss motivates the
reuse of pre-trained MDLM weights as an effective practical strategy. We empirically confirm this
approach, finding that it allows our sampler to achieve strong performance without any fine-tuning.

3.2 LEARNED ERROR-TARGETED

While the sampler described in Equation 5 enables error correction, it is inefficient. The remasking
process is non-selective — it samples from q(xt−1 | x̂0), which is just as likely to mask a correct
token as an incorrect one. This negatively impacts both sampling efficiency and final sample quality.

To rectify this, we introduce a secondary model: an error predictor gϕ, which learns to identify
which tokens the primary diffusion model fθ is likely to get wrong. This allows us to focus the
procedure on probable errors.

Training the error predictor. The purpose of the error predictor, gϕ, is to learn to identify which
tokens the main diffusion model, fθ, is likely to generate incorrectly. To train it, we simulate this
error-making process. First, we take a clean text from the training data and apply the forward
diffusion process to corrupt it with [MASK] tokens, creating a noisy input that mimics a state during
generation. Next, we feed this masked text to our pre-trained diffusion model, fθ, which predicts a
probability distribution over the clean text. By sampling from this distribution, we obtain a discrete
candidate sequence. This candidate will inevitably contain some errors where the model’s prediction
does not match the ground truth. The error predictor’s task is to learn to spot these mistakes: it is
trained to take the candidate sequence as input and predict which of its tokens are incorrect. The
entire procedure is detailed in Algorithm 1.

Inference with targeted. During generation, we incorporate the trained error predictor gϕ to guide
the remasking process, replacing the sampler’s indiscriminate selection of tokens with a targeted
procedure (see Figure 1c). The process for each sampling step from xt to xs, detailed in Algo-
rithm 2, proceeds as follows. First, the main diffusion model fθ generates a clean data candidate,
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Figure 2: Analysis of the star-shaped (Star) sampler’s dynamics. (Left) Perplexity and (Right) step-
to-step similarity over the generation trajectory for three configurations: MDLM, Star, and our
hybrid approach (Star+), which switches from MDLM to Star at step 90 (dotted line).

x̂0. This candidate is then scored by the error predictor gϕ to obtain error logits for each token.
These logits, scaled by a temperature τremask, are then used to sample the N locations without rep-
etitions via Gumbel-Top-K trick sampling (Kool et al., 2019), where N is determined by the noise
schedule. The next state xs is then formed by reverting these targeted tokens in x̂0 back to the
[MASK] symbol. This targeted approach focuses the model’s capacity on correcting its most proba-
ble mistakes, thereby improving sampling efficiency and final quality. As we will demonstrate in our
analysis (Sections 4 and 5), integrating this targeted remasking mechanism allows for a significant
improvement in generation quality at the cost of only a minor increase in parameter overhead.

4 ANALYSIS

This section deconstructs our proposed sampling method and validates its key components through
a series of controlled experiments. We analyze: (1) the optimal scheduling for the star-shaped sam-
pler, identifying the distinct generative phases where it is most beneficial; (2) the contribution of the
guidance mechanism to improving sample quality and step efficiency; (3) the sampler’s performance
within the iterative refinement context of the ReMDM loop-schedule protocol; and (4) the architec-
tural requirements of the error predictor, confirming the efficacy of a highly parameter-efficient
design.

4.1 EXPERIMENTAL SETUP

All analytical experiments are conducted on the OpenWebText (OWT) dataset (Gokaslan & Cohen,
2019), tokenized using the standard gpt-2 tokenizer (Radford et al., 2019). For these experiments,
we fine-tuned the publicly available MDLM checkpoint from Sahoo et al. (2024a) for unconditional
generation of 128 and 512-token sequences, padding shorter outputs where necessary. We generate
5,000 samples for each configuration and assess performance using a suite of three complementary
metrics. Sample quality and local coherence are measured via Perplexity (PPL), computed using
a pre-trained GPT-2 LARGE model (Radford et al., 2019). Lexical variety is quantified by the
Diversity (DIV) score, defined as div(y) =

∏4
n=2

# unique n-grams in y
#n-grams in y . Finally, to provide a more

holistic assessment that balances quality with diversity, we report the MAUVE score (Pillutla et al.,
2021), which measures the distributional alignment between the generated and reference texts.

4.2 WHEN TO USE THE STAR-SHAPED SAMPLER?

Our initial experiments revealed a critical insight: the pure star-shaped (Star) sampler, when applied
across the entire generation trajectory, exhibits poor performance and often leads to degenerate text.
This observation motivated our central hypothesis: the generation process is not monolithic but
consists of two distinct phases, each benefiting from a different sampling strategy. We posit that
the initial phase requires a stable, structure-building sampler, while the final phase benefits from an
error-correcting one. To test this hypothesis, we first analyze this phenomenon in a simplified setting
involving the generation of 128-token sequences from the OWT dataset.

5
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Figure 3: The impact of the star-
shaped sampler’s activation time
(ton) on generation quality. We
plot the final MAUVE score for a
hybrid sampler that switches from
MDLM to Star at time ton.

Phase 1: the challenge of early-stage generation. In the
early stages of generation (high t), a large fraction of tokens is
masked. The star-shaped sampler’s strategy of predicting a full
x̂0 requires the model to generate a large number of new tokens
conditioned on a very sparse context. While these newly gen-
erated tokens may be individually plausible with respect to the
unmasked context, they often lack mutual coherence among
themselves. The problem is exacerbated by the subsequent
step of the star-shaped process: the independent, random re-
masking of all tokens in this new hypothesis. This process
may preserve a large fraction of the newly generated, yet mu-
tually incoherent, tokens while masking others that provided
the original context. As a result, the input for the next iteration
becomes an increasingly fragmented and incoherent context.
This complicates the subsequent prediction task, causing er-
rors to compound over iterations and ultimately leading to the
observed text degradation.

This generative incoherence is empirically captured in Figure 2 (right), where the pure star-shaped
(Star) sampler (light green line) demonstrates significantly lower step-to-step similarity than the
standard MDLM (red line). This metric, defined as the fraction of matching tokens in the predicted
clean data (x̂0) between adjacent steps,. The low score for Star sampler confirms that its generation
process struggles to build upon a coherent structure. This ultimately leads to text degradation, as
reflected by its near-zero MAUVE score (see Figure 3 at ton = 1.0). In contrast, the MDLM’s
incremental, token-by-token generation ensures high step-to-step similarity, allowing it to stably
construct a coherent draft.

Phase 2: the power of late-stage refinement. While the MDLM’s stability is advantageous for
initial structure-building, its irreversible nature limits its ability to correct errors. This is where the
star-shaped paradigm excels. In the late stages of generation (low t), the vast majority of tokens are
already determined, providing a strong, coherent conditioning context. Remasking a small fraction
of these tokens and repredicting them from a global perspective x̂0 becomes a powerful mechanism
for error correction, rather than a source of instability.

This effect is visible in Figure 2 (left). When our hybrid Star+ sampler switches from MDLM to star-
shaped sampler at step 90 (dotted line), its perplexity (green line) begins to decrease more rapidly
than the pure MDLM baseline, ultimately achieving a superior final score. This demonstrates that
the Star sampler is highly effective at refining an already well-formed text.

Empirical validation: finding the optimal transition point. To validate this two-phase hypothesis
and identify the optimal transition point, we conduct an ablation study on the activation time, ton.
The sampler operates as a standard MDLM until time ton, after which it switches to the star-shaped
paradigm. Figure 3 plots the final MAUVE score as a function of ton. The results provide strong
empirical support for our hypothesis. Performance is poor for both pure samplers (ton = 1.0 for
pure Star and ton = 0.0 for pure MDLM) but peaks at ton ≈ 0.3. This confirms that the most
effective strategy is to leverage the MDLM process for the initial 60 − 80% of the generation to
build a coherent draft, and then activate the star-shaped sampler for the final 20 − 40% for global
refinement.

4.3 GUIDED STAR-SHAPED SAMPLER

The preceding analysis established that a hybrid sampler (Star+) effectively refines text in the late
stages of generation. However, its reliance on unguided remasking is inherently sample-inefficient.
This raises a central question: can we significantly improve performance by replacing this stochastic
process with a targeted, intelligent one? In this section, we test this hypothesis by introducing our
full proposed method, the Guided Star-shaped sampler (G-Star), which uses an error predictor to
focus the refinement process exclusively on likely errors. We posit that the primary advantage of
this targeted approach will manifest in computationally constrained, few-step generation regimes,
where the efficiency of each correction step is paramount.
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Figure 4: Performance comparison in few-step gener-
ation regimes. Guided sampler (G-Star+) consistently
outperforms the unguided Star+.

To validate this, we perform a direct com-
parison between the unguided Star+ and
our guided G-Star+ (both employ the iden-
tical hybrid switching schedule, ton =
0.2) sampler on the task of generating
512-token sequences from OpenWebText,
evaluating across a range of sampling step
counts from 32 to 512. The results are pre-
sented in Figure 4.

The empirical evidence strongly supports
our hypothesis. The MAUVE scores (left
panel) show that while both hybrid sam-
plers outperform the MDLM baseline, the
guided G-Star+ variant achieves significantly higher distributional fidelity. Crucially, the perfor-
mance gap is most pronounced in the medium-step regimes of 64-256 steps. While at the 32-step
mark all samplers struggle, our guided approach still shows a modest advantage. This gap then
narrows as the step budget increases.

This dynamic has a clear and intuitive explanation. With a large number of sampling steps, even an
unguided remasking process has a high probability of eventually correcting most errors, causing the
performance of the two samplers to converge. However, when each step is critical, the intelligent
targeting provided by the error predictor becomes the deciding factor. By focusing the model’s
capacity on the most probable errors, the guidance mechanism ensures that each refinement step is
maximally impactful. This enables the generation of higher-quality text with a significantly reduced
computational budget, highlighting the practical advantage of our guided approach. A qualitative
visualization of the refinement process for both samplers is available in Appendix F.

4.4 ITERATIVE REFINEMENT REGIME

To further analyze the refinement capabilities of our sampler, we adopt the loop schedule protocol
introduced by ReMDM (Wang et al.). This specialized schedule is designed to evaluate a sampler’s
efficiency at refining an already generated text. The process consists of three distinct phases: (1)
an initial generation phase using the standard MDLM sampler to produce a coherent draft; (2) a
refinement phase, where a fixed number of ”looping” steps are performed at a constant noise level
(αt = 0.9) to iteratively improve the draft; and (3) a final generation phase to complete the sequence.

We implement this protocol for the task of generating 512-token sequences from OpenWebText
and compare our unguided (Star-loop) and guided (G-Star-loop) samplers. We test three configura-
tions with varying computational budgets, corresponding to a total of 128, 256, and 512 generation
steps. It is important to note that achieving these strong ReMDM results requires an extensive, per-
schedule search for the hyperparameter η, as detailed in Appendix C.1. This tuning process is a
significant drawback, as performance can vary from very strong to worse than the baseline MDLM.
In contrast, our unguided Star-loop sampler performs competitively without requiring any tuning
of η, highlighting a key practical advantage of the proposed star-shaped formulation.

Beyond scheduling, we also observe that the denoiser’s temperature (τdenoiser) provides an ad-
ditional and complementary axis of control over the generation process. By adjusting the softmax
temperature applied to the denoiser’s output logits, the sampler can smoothly trade off between per-
plexity and diversity: lower temperatures make the denoiser more deterministic, tightening the dis-
tribution around high-confidence tokens and leading to lower perplexity but reduced lexical variety,
while higher temperatures increase stochasticity in the predictions, yielding more diverse samples
at a cost in quality. In practice, adjusting the denoiser temperature thus provides a lightweight and
effective control knob for navigating the perplexity–diversity frontier, enabling a more thorough
examination and comparison of model behavior.

The Pareto fronts in Fig. 5a highlight the clear advantage of our guided refinement strategy. Across
all computational budgets, G-Star-loop consistently achieves a superior balance between perplexity
and diversity, outperforming both the MDLM baseline and the Star/ReMDM-loop variants. Remark-
ably, even in the severely constrained 128-step regime, G-Star-loop attains substantially lower per-
plexity while simultaneously delivering higher diversity than the best-tuned ReMDM configuration

7
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Figure 5: Pareto fronts for different methods obtained by varying the denoiser temperature. The
left plot compares MDLM, Star/ReMDM-loop, and G-Star-loop across different sampling steps,
while the right plot compares different G-Star configurations (12B–F, 12B–H, 1B–F) against
Star/ReMDM-loop and MDLM for 128 denoising steps.

with 512 steps. These findings confirm that targeted refinement, rather than stochastic remasking, is
essential for efficient quality improvements. Additional results you can find in Appendix C.4.

4.5 ERROR PREDICTOR CAPACITY AND EFFICIENCY

We investigate the trade-off between the error predictor’s model capacity and its performance. To
this end, we evaluate three architectural configurations initialized from the pre-trained MDLM: a
lightweight model using one (1B,F) transformer block with full fine-tuning, and full 12-block mod-
els with either all weights fine-tuned (12B,F) or only the classification head trained (12B,H). Using
the same Pareto-front evaluation setup as before, but restricting the sampler to the 128-step regime,
the results in Fig. 5b lead to two main conclusions. First, the parameter-efficient head-only variant
(12B,H) closely tracks the performance of the fully fine-tuned model (12B,F) across the entire
frontier, indicating that the pre-trained MDLM representations already provide strong features for
error prediction. Second, the lightweight 1B,F predictor is clearly less competitive: it only out-
performs the MDLM and Star/ReMDM-loop baselines in the low-diversity, low-temperature corner
of the frontier and matches their performance elsewhere without providing additional gains. Over-
all, this suggests that while head-only training offers an excellent efficiency–quality trade-off, more
aggressive capacity reduction can noticeably degrade refinement performance.

5 EMPIRICAL EVALUATION

Having analyzed the internal mechanics and key components of our sampler on the OWT dataset, we
now turn to evaluating its performance and general applicability in a broader context. In this section,
we benchmark G-Star on two challenging generative tasks: (1) large-scale language modeling,
where we assess performance on downstream benchmarks to validate its effectiveness at scale, and
(2) source code generation on the Conala benchmark (Yin et al., 2018).

5.1 APPLICATION TO LARGE-SCALE INSTRUCTION-TUNED MODEL

In this section we investigate whether our guided sampler can enhance the performance of an
instruction-tuned large language model. For this purpose, we integrate our G-Star sampler into
the Dream-Instruct 7B (Ye et al., 2025b) model and evaluate it on a diverse suite of complex
downstream benchmarks. We establish our baseline by evaluating the Dream-Instruct model with
the authors’ official configuration. As shown in Table 1, our reproduced scores vary slightly from
the originally published results and serve as the direct point of comparison for our method.
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Table 1: Downstream benchmark results for
Dream-Instruct 7B. The best result is marked in
bold.

Dream-Ins.
(Paper)

Dream-Ins.
(Reproduced)

+ G-Star
(Ours)

MMLU 67.0 69.9 71.2
MMLU-PRO 43.3 46.9 47.9
GSM8K 81.0 81.5 81.6
GPQA 33.0 31.0 32.8
HumanEval 55.5 53.7 54.9
MBPP 58.8 58.0 59.4
IFEval 62.5 56.4 59.3

Table 2: Conditional perplexity on the Conala
benchmark for different samplers and step
counts. Best and second-best results are high-
lighted.

Algorithm Qwen2.5B-Coder ppl ↓

32 steps 64 steps 128 steps

MDLM 29.8 25.5 26.7
ReMDM-loopη=0.02 30.1 25.0 20.4
ReMDM-capη=0.04 27.3 22.5 19.1
G-Star-loop 22.5 17.8 17.8
G-Star+ton=0.3 20.4 18.9 16.4

For our approach, we augment the Dream-Instruct baseline with our G-Star sampler, integrating it
via a loop-based refinement strategy. We keep the total number of diffusion steps identical to the
baseline but designate 10% of them as refinement steps executed by G-Star at a specific noise level
αon. The error predictor is configured for maximum parameter efficiency: we freeze the 7B model’s
backbone and train only a lightweight classification head on the Tulu 3 (Lambert et al., 2024) dataset.
Detailed configurations for each benchmark are provided in Appendix E.

As summarized in Table 1, our G-Star sampler yields consistent performance gains across all seven
evaluated benchmarks. We observe noteworthy improvements on complex reasoning tasks such as
MMLU (+1.3 points) and GPQA (+1.8 points), as well as on instruction following (IFEval, +2.9
points). It validates that highly capable models still benefit from a dedicated mechanism for targeted
error correction, further enhancing their reasoning and generation capabilities.

5.2 CODE GENERATION

We evaluate our method on conditional code generation using the Conala benchmark (Yin et al.,
2018), where the task is to generate a Python snippet from a natural language prompt. We first train
a conditional MDLM baseline on the Conala train split. The error predictor for our G-Star sampler
is then trained on a disjoint hold-out split, also conditioned on a prompt. Further implementation
details are provided in Appendix E.

Performance is measured by conditional perplexity under a pre-trained Qwen2.5B-Coder
model (Hui et al., 2024). This metric evaluates the fluency and semantic relevance of the generated
code snippet with respect to the input prompt. As shown in Table 2, our G-Star sampler outperforms
both the MDLM and ReMDM baselines, achieving a lower (better) conditional perplexity. This
confirms the effectiveness of our guided approach for structured generation tasks.

6 CONCLUSION

We introduced G-Star, a sampling method that enables efficient error correction for masked diffusion
models. By using a trained error predictor to target tokens for revision, our method outperforms stan-
dard and stochastic refinement baselines like MDLM and ReMDM in computationally constrained,
few-step generation regimes. We demonstrated its effectiveness and versatility across a wide range
of tasks and validated its ability to enhance a state-of-the-art 7B instruction-tuned language model.
The core contribution of our work is to show that targeted, intelligent refinement is a more princi-
pled and sample-efficient approach than unguided correction, paving the way for more practical and
powerful discrete diffusion models.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide the source code for our samplers and error
predictor training in the supplementary material. All experimental details, including dataset prepro-
cessing, model architectures, and specific hyperparameter configurations for every table and figure,
are thoroughly documented in Appendix E. Furthermore, our experiments are built upon publicly
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available datasets (e.g., OpenWebText, Conala) and pre-trained model checkpoints to ensure our
experimental setups are accessible and verifiable by the community.

REFERENCES

Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autore-
gressive and diffusion language models. arXiv preprint arXiv:2503.09573, 2025.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021a.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021b.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. Advances in Neural
Information Processing Systems, 35:28266–28279, 2022.

Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
arXiv preprint arXiv:2402.04997, 2024.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
image transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11315–11325, 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
coherent english? arXiv preprint arXiv:2305.07759, 2023.

Yifeng Gao, Ziang Ji, Yuxuan Wang, Biqing Qi, Hanlin Xu, and Linfeng Zhang. Self speculative
decoding for diffusion large language models. arXiv preprint arXiv:2510.04147, 2025.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
Yaron Lipman. Discrete flow matching. arXiv preprint arXiv:2407.15595, 2024.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Shansan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and
Yizhe Zhang. Diffucoder: Understanding and improving masked diffusion models for code gen-
eration. arXiv preprint arXiv:2506.20639, 2025.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. Advances in neural
information processing systems, 28, 2015.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

10

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Daniel Israel, Guy Van den Broeck, and Aditya Grover. Accelerating diffusion llms via adaptive
parallel decoding. arXiv preprint arXiv:2506.00413, 2025.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferran-
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A PROOF OF CLAIM 1

In this section, we prove Claim 1: The Variational Lower Bound (VLB) for the star-shaped process
simplifies to a weighted cross-entropy objective, which has the same functional form as the standard
masked diffusion objective but with different timestep-dependent weights.

We begin with the standard VLB formulation for a non-Markovian process, which seeks to maximize
the log-likelihood log pθ(x0):

log pθ(x0) ≥ Eq(x1:T |x0)

[
log

pθ(x0:T )

q(x1:T | x0)

]
=: LVLB (7)

By parameterizing the generative process as pθ(x0:T ) = p(xT )
∏T

t=1 pθ(xt−1 | xt) and defining
our star-shaped forward process as q(x1:T | x0) =

∏T
t=1 q(xt | x0), we can decompose the VLB:

LVLB = Eq

[
log pθ(x0 | x1)−

T∑
t=2

KL
(
q(xt−1 | x0)

∥∥pθ(xt−1 | xt)
)]

−KL(q(xT | x0)∥p(xT )).

(8)
The final term is a constant with respect to the model parameters θ and can be ignored during
optimization. The first term, Eq[log pθ(x0 | x1)], is a reconstruction term, which already matches
the form of a cross-entropy loss. Our goal is to show that the summation of KL divergence terms
can also be simplified into this form.

Let’s analyze a single KL divergence term from the summation for a given timestep t:

Lt = KL
(
q(xt−1 | x0)

∥∥pθ(xt−1 | xt)
)
. (9)

We substitute the definitions for the distributions involved:

• The true posterior is q(xt−1 | x0) = Cat(xt−1; αt−1x0 + (1− αt−1)m).
• The model’s reverse transition is pθ(xt−1 | xt) = q(xt−1 | x0 = x̂0), where x̂0 =
fθ(xt, t). This gives pθ(xt−1 | xt) = Cat(xt−1; αt−1x̂0 + (1− αt−1)m).

The KL divergence is therefore between two categorical distributions of the same family, both of
which are interpolations between a one-hot vector (the true x0 or the predicted x̂0) and the mask
token m. The KL term becomes:

Lt =

|V |∑
v=1

(αt−1x0,v + (1− αt−1)mv) log
αt−1x0,v + (1− αt−1)mv

αt−1x̂0,v + (1− αt−1)mv
(10)

Since x0 is a one-hot vector corresponding to a non-mask token (let’s say at index k), and m is a
one-hot vector for the mask token, this sum simplifies significantly.

Lt = αt−1 log
αt−1

αt−1x̂0,k
+ (1− αt−1) log

1− αt−1

1− αt−1
(11)

= αt−1 log
1

x̂0,k
+ 0 (12)

= −αt−1 log x̂0,k (13)

Since x̂0,k is the probability assigned by the model fθ(xt, t) to the true token, this is precisely the
negative log-likelihood, or cross-entropy loss:

Lt = −αt−1 log pθ(x0 | xt). (14)

Now, we can substitute this simplified form back into the full VLB expression from Eq. equation 8.
The loss to be minimized (the negative VLB) is:

Lfinal = −LVLB ≈ Eq

[
− log pθ(x0 | x1) +

T∑
t=2

Lt

]
(15)

= Eq

[
− log pθ(x0 | x1)−

T∑
t=2

αt−1 log pθ(x0 | xt)

]
(16)
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This is a sum of weighted cross-entropy losses. By writing this as a single expectation over a
timestep t sampled uniformly from {1, . . . , T}, we get:

Lfinal = Et∼U,x0,xt
[−w′

t log pθ(x0 | xt)] (17)

where w′
t are new, time-dependent weights derived from the coefficients (e.g., w′

1 = 1, and
w′

t = αt−1 for t > 1, before normalization). This confirms that the training objective for the star-
shaped process simplifies to the same functional form as the standard masked diffusion objective,
completing the proof.

B RELATED WORKS

B.1 DISCRETE DIFFUSION

Discrete diffusion extends denoising ideas from continuous domains (Sohl-Dickstein et al., 2015;
Ho et al., 2020; Song et al., 2020) to categorical spaces by defining token-level noising/posterior
transitions. Early work formalized absorbing/structured corruption for tokens (Austin et al., 2021a;
Campbell et al., 2022), while ratio-estimation and reparameterized objectives improved likelihoods
and stability for text/code (Lou et al., 2024; Zheng et al., 2023; Zhao et al., 2024a). Alternative
transport in discrete spaces—discrete flow matching and discrete flows—offers non-diffusive paths
and guidance interfaces (Gat et al., 2024; Campbell et al., 2024; Nisonoff et al., 2024). Practical
samplers and correctors further enhance decoding (Lezama et al., 2023; Zhao et al., 2024b), and
analyses clarify properties of absorbing processes and conditional distributions (Ou et al., 2024).

B.2 TEXT LATENT DIFFUSION

A complementary line runs diffusion in continuous text spaces. Diffusion-LM denoises word em-
beddings and enables controllable text via plug-and-play guidance (Li et al., 2022). Two-stage la-
tent approaches compress sequences with a pretrained autoencoder and diffuse in the compact latent
space, improving quality and reducing the step budget across unconditional and conditional tasks
(Lovelace et al., 2024; Meshchaninov et al., 2025; Shabalin et al., 2025).

B.3 MASKED DIFFUSION

Masked-token diffusion adopts BERT-style prediction with iterative unmasking for fast, parallel
generation. MaskGIT established the paradigm on tokenized images with few refinement rounds
(Chang et al., 2022). For language, simple absorbing-mask diffusion with a clean training recipe
narrows the perplexity gap to autoregressive LMs and supports flexible (semi-)autoregressive decod-
ing (Sahoo et al., 2024a). A simplified continuous-time view yields a weighted cross-entropy ELBO
and state-dependent masking schedules that improve text and discrete-image modeling (Shi et al.,
2024). Inference-time revision/guidance further boosts quality: remasking enables iterative correc-
tion (Wang et al.), discrete guidance improves controllability (Schiff et al., 2024; Nisonoff et al.,
2024), informed correctors sharpen updates (Zhao et al., 2024b), hybrids expand self-correction
regimes (von Rütte et al., 2025), and analyses examine time-agnostic behavior and sampling (Zheng
et al., 2024).

B.4 LARGE LANGUAGE DIFFUSION MODELS

Scaling diffusion for language shows competitive likelihoods and strong zero-shot behavior while
keeping parallel decoding. GPT-2–scale masked diffusion narrows the gap to autoregressive trans-
formers (Sahoo et al., 2024a), and simplified objectives with state-dependent schedules push perfor-
mance and practicality (Shi et al., 2024). Recent efforts include blockwise decoding between AR
and diffusion (Arriola et al., 2025), inference-time scaling/steering (Ma et al., 2025; Singhal et al.,
2025), and domain-focused large models for reasoning/coding (Nie et al., 2025; Zhao et al., 2025).
Prominent systems include LLaDA (Nie et al., 2025), Dream 7B (Ye et al., 2025a), and DiffuCoder
(Gong et al., 2025).
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Figure 6: Performance of ReMDM as a function of the hyperparameter η. Results are shown
for three different remasking schedules. The dashed line indicates the performance of the baseline
MDLM sampler. The plots reveal a high sensitivity to the choice of η, with suboptimal values often
performing worse than the baseline.

C ADDITIONAL RESULTS

C.1 HYPERPARAMETER TUNING IN REMDM

A significant practical limitation of the ReMDM sampler is its high sensitivity to the remasking hy-
perparameter, η. This sensitivity makes the sampler’s performance brittle and necessitates a costly,
non-trivial tuning process to achieve any benefit over simpler baselines. In this section, we empiri-
cally quantify this dependency and demonstrate that the optimal configuration for η is not universal,
but must be determined independently for each remasking schedule.

To analyze this, we conduct an ablation study on the value of η for three different remasking sched-
ules proposed by the authors: ‘cap‘, ‘loop‘, and ‘rescale‘. The experiments are performed on the
OWT dataset, generating sequences of length 512 with 128 sampling steps.

The results, presented in Figure 6, confirm our hypothesis and reveal two significant drawbacks of
the ReMDM approach. First, performance across all metrics (MAUVE, Perplexity, and Diversity) is
extremely sensitive to the choice of η. As the plots demonstrate, the relationship is non-monotonic
and exhibits a ”sweet spot”; a small deviation from this optimal value can cause a dramatic drop
in performance. Crucially, an improper configuration of η can render the remasking mechanism
actively detrimental, with performance falling significantly below that of the standard, non-refining
MDLM baseline.

Second, the optimal value for η is not universal but must be independently and carefully tuned for
each remasking schedule. Our ablation reveals that the optimal setting for the ‘cap‘ and ‘rescale‘
schedules is η = 0.08, whereas the ‘loop‘ schedule achieves its peak performance at η = 0.1. This
necessity for an extensive, per-schedule hyperparameter search represents a significant practical
limitation, as it requires numerous runs to find a configuration that provides a tangible benefit over
simpler baselines. This motivates our work on a star-shape sampler that is inherently more robust
and efficient.

C.2 ABLATION ON LOOP SIZE

As previously described, refinement process consists of: (1) an initial drafting phase with MDLM,
(2) an iterative refinement ”loop” at a fixed noise level, and (3) a final completion phase with MDLM.
In this section, we investigate how the number of steps allocated to the refinement loop (the ”loop
size”) affects generation quality.

Setup. For this experiment, we generate 512-token sequences from OWT. The steps are allocated
as follows: 115 steps for the initial MDLM draft, 13 steps for the final completion, and a variable
number of steps for the central refinement loop. We vary them across a predefined grid and compare
the performance of our guided sampler (G-Star-loop) against its unguided counterpart (Star-loop).

Results. The results, presented in Figure 7, reveal several key dynamics of the refinement process.
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Figure 7: Performance as a function of the refinement loop size. Increasing the refinement budget
generally improves quality (lower PPL, higher MAUVE) but reduces diversity. Our guided G-Star-
loop demonstrates a much steeper rate of improvement, achieving higher quality with fewer steps.
The MAUVE score eventually peaks and declines as the loss of diversity outweighs quality gains.
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Figure 8: Performance as a function of the error predictor temperature (Tremask). The plots
reveal a clear trade-off: lower temperatures improve quality (PPL) at the cost of diversity, while
higher temperatures increase diversity at the cost of quality. The MAUVE score, which balances
both, peaks at an optimal temperature of T ≈ 4− 32.

First, for both samplers, increasing the number of refinement steps generally leads to higher-quality
text, as evidenced by a monotonic decrease in perplexity and an initial rise in the MAUVE score.
This confirms the efficacy of iterative refinement. However, our guided G-Star-loop is substantially
more sample-efficient, achieving a much steeper improvement curve. It consistently reaches a higher
quality ceiling with fewer refinement steps compared to the unguided Star-loop.

Second, the refinement process introduces a clear trade-off between quality and diversity. As shown
in the rightmost panel, a larger loop size consistently leads to a reduction in sample diversity for both
methods. This can be interpreted as the model converging towards higher-quality modes in the data
distribution, pruning away ”noisy” or less coherent generations, but at the risk of reducing overall
variety.

Finally, this quality-diversity tension directly explains the behavior of the MAUVE score. As
MAUVE balances both aspects, it initially rises with perplexity improvements but eventually peaks
and begins to decline as the loss in diversity becomes too significant. This phenomenon is not an
artifact of a specific sampler but appears to be an inherent property of intensive iterative refinement
itself: with enough steps, any refinement process will inevitably improve perplexity at the cost of
diversity.

C.3 THE QUALITY-DIVERSITY TRADE-OFF: TUNING THE ERROR PREDICTOR TEMPERATURE

We analyze the effect of the error predictor’s temperature, Tremask, a hyperparameter that scales
the logits from gϕ before sampling. This temperature effectively controls the stochasticity of the
remasking process, acting as an intuitive control knob for the sampler’s behavior. The experiment is
conducted on the OWT dataset (512 tokens), using our guided sampler with the parameter-efficient
error predictor configuration (a frozen 12-block MDLM backbone with a trainable classification
head).
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Table 3: Unconditional generation results on OpenWebText for 512-token sequences, comparing
various samplers and error predictor architectures. For each column, the best result is marked in
bold, and the second-best is underlined.

Method Steps = 128 Steps = 256 Steps = 512

MAUVE ↑ PPL ↓ DIV ↑ MAUVE ↑ PPL ↓ DIV ↑ MAUVE ↑ PPL ↓ DIV ↑

MDLM 5.4 36.6 44.7 2.7 31.1 40.5 5.1 27.0 37.8

ReMDM-conf 5.8 41.3 47.9 12.2 36.6 45.5 13.2 35.0 45.1

ReMDM-capη=0.008 1.6 41.1 46.4 18.4 34.4 45.1 42.7 29.0 43.4
ReMDM-capη=0.08 23.4 33.5 43.8 46.1 24.1 40.0 46.5 17.6 35.7

ReMDM-loopη=0.008 2.8 45.1 48.2 4.4 38.1 46.3 25.9 31.9 44.8
ReMDM-loopη=0.1 18.1 34.9 44.7 44.7 26.7 42.1 67.7 20.7 39.3

ReMDM-rescaleη=0.015 2.0 64.7 45.1 10.3 54.3 43.6 22.7 45.3 41.7
ReMDM-rescaleη=0.08 16.1 36.4 44.8 34.7 28.4 41.7 46.9 22.0 38.5

Star-loop 18.1 34.9 44.7 44.7 26.7 42.1 67.7 20.7 39.3
Star+ton=0.2 11.7 32.4 41.5 34.3 24.5 38.3 45.5 14.7 31.3

G-Star-loop1B,F 44.8 19.7 35.3 65.0 14.7 31.4 56.3 11.6 27.5
G-Star-loop12B,H 57.3 18.4 36.2 63.8 14.1 32.4 50.1 10.7 27.9
G-Star-loop12B,F 57.3 17.2 35.4 60.9 12.7 30.9 58.6 9.9 26.4
G-Star+ton=0.2,12B 40.1 19.5 36.5 51.6 14.4 31.7 48.9 10.7 26.9

The results, presented in Figure 8, reveal a clear and non-monotonic relationship between the pre-
dictor temperature and the overall generation quality as measured by MAUVE. This behavior is a
direct consequence of an underlying trade-off between sample quality (Perplexity) and Diversity,
which the temperature directly controls.

At low temperatures (e.g., T = 1), the predictor’s output becomes more deterministic, focusing
the remasking on a small set of tokens with the highest predicted error probability. This leads to
highly precise corrections of the most obvious errors, resulting in the best perplexity scores (middle
panel). However, this precision comes at the cost of significantly reduced diversity (right panel), as
the sampler explores a much narrower set of possible revisions.

Conversely, as the temperature increases, the error probabilities become more uniform. In this
regime, the guided sampler’s behavior converges towards that of the unguided, Star-loop sampler.
This predictably increases sample diversity but degrades perplexity, as the error correction is no
longer targeted and becomes less effective.

The MAUVE score, which balances both quality and diversity, peaks at a temperature of T ≈ 4−32.
At this point, the sampler achieves an optimal balance between precise error correction and sufficient
generative variety. This analysis highlights that the predictor temperature serves as an important
lever for controlling the generation process, allowing practitioners to tailor the sampler’s behavior:
lower temperatures can be used for high-fidelity tasks where correctness is paramount, while higher
temperatures may be preferable for creative tasks where diversity is the primary goal.

C.4 UNCONDITIONAL GENERATION RESULTS ON OPENWEBTEXT

Complementary to Figure 5 in the main text, Table 3 summarizes extended unconditional genera-
tion results on OpenWebText for 512-token sequences. We adopt the full suite of ReMDM (Wang
et al.) sampling protocols and report each both with the authors’ original remasking hyperparam-
eters and with tuned alternatives, to provide a faithful comparison: ReMDM-cap with η = 0.008
(original) and η = 0.08 (tuned), ReMDM-loop with η = 0.008 (original) and η = 0.1 (tuned), and
ReMDM-rescale with η = 0.015 (original) and η = 0.08 (tuned), alongside ReMDM-conf as intro-
duced in prior work; a broader discussion on hyperparameter sensitivity in ReMDM can be found in
Appendix C.1.

Complementary to Figure 4, we additionally include Star+ and G-Star+ variants with ton = 0.2 to
contrast our optimal loop-like scheduler with simpler cap-like refinement strategy under the same
computational budgets.
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Table 4: Results for an error predictor trained on OWT and evaluated on out-of-domain datasets.
For each evaluation dataset, we report the validation perplexity (PPL val) of the OWT-pretrained
diffusion model and the binary classification metrics of the error predictor.

Evaluation
dataset Domain PPL val Accuracy AUC-ROC

OWT General ⩽ 22.89 0.88 0.94
TinyStories Stories ⩽ 12.72 0.88 0.98
OpenWebMath Math ⩽ 33.72 0.85 0.92
CNN/DailyMail News ⩽ 25.69 0.88 0.94
The Stack Python code ⩽ 31.96 0.84 0.90

C.5 ROBUSTNESS OF THE ERROR PREDICTOR

In the experiments above, the error predictor was both trained and evaluated on the same dataset.
An important question, however, is how sensitive the predictor is to the choice of training data and
to what extent it generalizes to unseen domains. To investigate this, we trained the error predictor
on the OWT dataset and evaluated it on several datasets spanning diverse domains:

• TinyStories Eldan & Li (2023): a synthetic dataset of short stories written in simple English
at the comprehension level of a typical 3–4-year-old child.

• OpenWebMath Paster et al. (2023): a dataset of high-quality mathematical text filtered
from Common Crawl.

• CNN/DailyMail Hermann et al. (2015): a dataset of news articles authored by professional
journalists at CNN and the Daily Mail.

• The Stack Kocetkov et al. (2022): a large-scale code dataset containing over 6 TB of source
code in 358 programming languages, from which we use only the Python subset.

To assess both the diffusion model’s performance and the error predictor’s generalization, we ran-
domly sampled 10,000 examples from each evaluation dataset. We analyze the diffusion model’s
behavior on these new domains by reporting its validation perplexity (PPL val). We then evaluate
the OWT-trained error predictor’s ability to identify these errors using two standard binary classi-
fication metrics: Accuracy (at a 0.5 probability threshold) and AUC-ROC. The AUC-ROC score
is particularly relevant as it measures the predictor’s quality across all thresholds, which is crucial
given that our G-Star sampler does not rely on a fixed threshold.

The results, presented in Table 4, show several key trends. The TinyStories dataset appears to be the
simplest case for both the diffusion model and the error predictor, which is evident from its minimal
validation perplexity (12.72) and the predictor’s near-perfect AUC-ROC score (0.98). Conversely,
the CNN/DailyMail dataset seems closest to the OWT training data, as its validation perplexity
(25.69) is near the OWT baseline (22.89), and it achieves an identical AUC-ROC score (0.94).
Unsurprisingly, the most challenging domains for both models are the specialized OpenWebMath
and The Stack (Python code) datasets, which show higher perplexity and slightly lower predictor
performance. Overall, however, the drop in predictor quality across these diverse domains is not
severe. This suggests that the error predictor successfully learns general patterns of diffusion errors,
allowing it to generalize effectively even when trained on only a single dataset.

D COMPUTATIONAL OVERHEAD

Time overhead. We quantify the deployment cost of the different samplers by measuring end-to-
end wall-clock latency on OpenWebText with sequence length L = 512 and T ∈ {128, 256, 512}
diffusion steps. All runs use batch size 1 on a single H200 GPU. Table 5 reports, for each method, the
total generation time per 512-token sample and the corresponding number of effective Transformer
forward passes (NFEs), where one NFE denotes a single pass of the full backbone over a length-L
sequence.
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Table 5: Wall-clock generation time and number of Transformer forward passes (NFEs) per 512-
token sample on OpenWebText (batch size 1). Times are reported as mean ± standard deviation in
seconds.

Method Steps T Time [s] NFEs

AR (KV cache) 512 2.28± 0.03 512
AR (no KV cache) 512 2.51± 0.01 512

MDLM / ReMDM / Star 128 2.26± 0.09 128
G-Star-loop1B,F 128 2.60± 0.10 133
G-Star-loop12B,H 128 3.43± 0.10 192
G-Star-loop12B,F 128 3.43± 0.10 192
G-Star+ton=0.2,12B 128 2.71± 0.10 154

MDLM / ReMDM / Star 256 4.56± 0.03 256
G-Star-loop1B,F 256 5.24± 0.02 267
G-Star-loop12B,H 256 6.96± 0.07 384
G-Star-loop12B,F 256 6.96± 0.07 384
G-Star+ton=0.2,12B 256 5.49± 0.06 308

MDLM / ReMDM / Star 512 9.16± 0.07 512
G-Star-loop1B,F 512 10.44± 0.08 533
G-Star-loop12B,H 512 13.93± 0.08 768
G-Star-loop12B,F 512 13.93± 0.08 768
G-Star+ton=0.2,12B 512 10.84± 0.11 615

As autoregressive (AR) baselines we use a GPT-2 small (Radford et al., 2019) whose parame-
ter counts are matched to MDLM backbone. We consider a latency-optimized AR model with
key–value (KV) caching, and a variant that recomputes the full prefix at every step (“AR-w/o KV”).
The latter is closer to our diffusion setting, where each update operates on the full sequence, and
helps disentangle the effect of cache reuse from the intrinsic cost of masked diffusion. In principle,
similar KV-based accelerations (e.g., (Wu et al., 2025) could also be adapted for masked diffusion;
see Appendix H for a broader discussion of diffusion speed-up techniques.

For the diffusion baselines, MDLM, ReMDM, and Star all use the same backbone with no auxiliary
networks. Their compute therefore coincides, with NFEMDLM = NFEReMDM = NFEStar = T ; Star
only changes the masking policy and introduces no extra passes. G-Star augments this baseline with
guidance that is active only on a subset of the trajectory. Let ∆ = toff − ton be the fraction of
guided steps, and let D denote the number of Transformer blocks in the backbone while B is the
number of blocks used by the predictor. Measured in units of a full-depth pass, each guided step
then contributes (B/D) additional NFEs, so the total cost is

NFEG-Star = T + T∆
B

D
=

(
1 + ∆B

D

)
T.

In our configurations, the backbone has D = 12 blocks. G-Star-loop12B uses a full-depth predictor
(B = 12) with ton = 0.55, toff = 0.05, giving NFE = 1.5T ; G-Star-loop1B uses a single-block
predictor (B = 1) with the same ton = 0.55, toff = 0.05, yielding NFE =

(
1+0.5 · 1

12

)
T ≈ 1.04T ;

and G-Star+ uses a full-depth predictor (B = 12) with ton = 0.2, toff = 0, giving NFE = 1.2T .
The measured wall-clock times in Table 5 closely follow these ratios: the G-Star variants incur a
controlled (1 + ∆B/D)-factor overhead.

Memory overhead. Star uses exactly the same backbone and parameterization as the underlying
MDLM and therefore has no memory overhead. For G-Star, peak activation memory is essentially
unchanged: the predictor operates on the current logits and is run sequentially after the base diffusion
step, so we do not need to keep additional large activations in memory, only per-token error scores
and the index set of remasked positions.

The remaining overhead comes from parameters. In the G-Star-loop12B,F variant we store an ad-
ditional full 12-block Transformer as the predictor. In the G-Star-loop1B,F variant we only add a
single Transformer block. In the parameter-efficient G-Star-loop12B,H variant we do not store a
second backbone at all and only add a small token-wise classification head on top of the existing
model.
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Table 6: Benchmark-specific sequence lengths and the noise level αon for the refinement loop.

Benchmark Sequence Length (L) αon

MMLU 128 0.88
MMLU-PRO 128 0.88
GSM8K 256 0.95
GPQA 128 0.88
HumanEval 768 0.98
MBPP 1024 0.98
IFEval 1280 0.98

E IMPLEMENTATION DETAILS

E.1 UNCONDITIONAL TEXT GENERATION ON OPENWEBTEXT

For this experiment, we closely follow the original MDLM setup for the backbone, and only add a
linear head for error predictor training.

Error predictor head training. The error predictor head, gϕ, was trained for 50,000 steps on a
single H200 GPU approximately 48 hours using a global batch size of 512. For optimization, we
used AdamW with a learning rate of 1e-4. The learning rate was managed by a constant schedule
with warmup with 2,500 warmup steps.

E.2 CODE GENERATION ON CONALA

Dataset and preprocessing. We use the Conala benchmark (Yin et al., 2018), which contains
Python code snippets paired with natural language intents. We construct our dataset splits as follows:
the train set consists of 2,000 curated samples plus 594,000 samples from the mined subset; the hold-
out set for training the error predictor contains 380 curated samples; and the test set contains 500
samples. All prompts and code snippets were tokenized using the gpt-2 tokenizer, with sequences
truncated or padded to a maximum length of 128 tokens.

MDLM baseline training. Our baseline is a conditional Masked Diffusion Language Model
(MDLM), following the 12-layer Transformer architecture of Sahoo et al. (2024a). We employed a
two-stage training procedure. First, the model was pre-trained for 50,000 steps on the full train set
(mined and curated combined) with a batch size of 1024. Subsequently, the model was fine-tuned
for an additional 10,000 steps exclusively on the curated portion of the training data, using a smaller
batch size of 512. For both stages, we used the AdamW optimizer with a learning rate of 3e-4.

Error predictor training. The error predictor, gϕ, for our G-Star sampler was trained on the
hold-out split. We employed a parameter-efficient setup: the predictor’s backbone consists of the
full 12-layer transformer from our trained conditional MDLM with its weights frozen. We then
added a single linear classification head on top of the final layer’s token representations, and trained
only this head to predict token-level errors, conditioned on the same prompts. We used the AdamW
optimizer with a learning rate of 3e-4 and a batch size of 380. The model was trained for 500
steps.The training takes 1 hour on a single H200 GPU.

E.3 LARGE-SCALE EXPERIMENTS

This section details the experimental setup used for the large-scale evaluation on the Dream-Instruct
7B model, with results presented in Table 1.

Models and benchmarks. We use the publicly available Dream-Instruct 7B model as our base
model. The evaluation is conducted on a diverse suite of seven benchmarks: MMLU (Hendrycks
et al., 2020), MMLU-PRO, GSM8K (Cobbe et al., 2021), GPQA (Rein et al., 2023), Hu-
manEval (Chen et al., 2021), MBPP (Austin et al., 2021b), and IFEval. The sequence length for
each benchmark is specified in Table 6.
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Baseline sampling configuration. Our reproduced baseline follows the official configuration from
the Dream repository. The sampling process consists of a number of steps equal to the sequence
length (T = seq len), where one mask is denoised at each step. The diffusion temperature is set to
0.1. The confidence score for selecting which token to unmask is calculated as the entropy of the
predicted logits, as specified by their ‘alg=entropy‘ setting.

G-Star sampler configuration. For our method, we augment the baseline setup by integrating a
loop-based refinement strategy within the same computational budget. The total number of sampling
steps is kept identical to the baseline (T = seq len), but we repurpose 10% of these steps for
refinement. Specifically, 90% of the steps are used for standard progressive denoising, while the
remaining 10% are dedicated to refinement loops where, at each step, we remask N = 15 tokens
identified as errors by our predictor. All other parameters, such as the diffusion temperature (0.1)
and the base confidence metric (entropy), are kept identical to the baseline for a fair comparison.
The error predictor temperature was set to 0.

Error predictor training. The error predictor gϕ for our G-Star sampler was trained on the Tulu 3
dataset (Lambert et al., 2024). We employed a parameter-efficient strategy: the predictor’s backbone
consists of the full, frozen Dream-Instruct 7B model. We added a lightweight classification head,
consisting of an RMSNorm layer and a linear layer, and trained only this head. The predictor was
trained for 70k steps on 8 H200 GPUs over 24 hours. We used a global batch size of 128 and
the AdamW optimizer with a learning rate of 3 × 10−4, β1 = 0.9, β2 = 0.999, and a constant
learning-rate schedule with a warmup of 5000 steps.

F VISUALIZING THE REFINEMENT PROCESS

To provide a qualitative and intuitive understanding of the difference between our guided sampler
and its unguided counterpart, we visualize their remasking behavior over the course of a full gen-
eration. The following figures illustrate the set of masked tokens (orange dots) at each step of the
generation process for a 512-token sequence generated in 256 steps. Both processes are divided
into two distinct phases: an initial MDLM drafting phase (steps 0-113), where tokens are progres-
sively unmasked, a subsequent refinement phase (steps 114-240), where remasking occurs, and final
MDLM generation phase (steps 241-256).

Analysis of remasking strategies. A direct comparison of Figure 10 and Figure 9 reveals the
fundamental difference between the two refinement strategies. The unguided sampler operates via
a stochastic, unstructured process, treating all tokens as equally likely candidates for revision. In
stark contrast, our guided sampler demonstrates an intelligent and structured approach. The error
predictor identifies and clusters likely errors, enabling the sampler to perform more meaningful
revisions. The emergence of ”continuous segments” in the guided plot is particularly significant; it
provides strong qualitative evidence that our method moves beyond simple token-level fixes and is
capable of performing coherent, phrase-level refinement, a feat that is extremely improbable under
the indiscriminate selection of the unguided approach.

Text generation example of G-Star sampler. In addition, in this section, we provide examples
of text generation using G-Star and the unguided Star. Figure 11 provides a visual snapshot of
the refinement process, showing steps 90 through 95. Both G-Star+ (top) and the unguided Star+
(bottom) begin this phase with an identical text draft. The tokens highlighted in red are those selected
for remasking at each step.

A clear difference in strategy is immediately visible. The unguided Star+ sampler (bottom) exhibits
an unfocused, token-level remasking, selecting apparently random tokens for revision (e.g., steps 91
and 94). This indiscriminate approach is inefficient, as it may remask already correct tokens while
failing to target problematic phrases. In stark contrast, G-Star+ (top) demonstrates a more struc-
tured and intelligent approach. Guided by the error predictor, it identifies and remasks semantically
problematic regions. For example, in the transition from step 90 to 91, it targets the weak phrase ”a
period and mostly silent” for a coherent, phrase-level revision, resulting in ”that we are”. This tar-
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Figure 9: Remasking pattern of the guided G-Star-loop sampler. The plot visualizes the masked
token positions (orange dots) at each generation step. In contrast to the unguided sampler, our guided
approach exhibits a highly structured remasking pattern. The error predictor directs the sampler to
focus on specific, clustered regions of the text. This often results in the selection of contiguous
segments for revision, as highlighted in the figure. This ability to perform coordinated, phrase-level
corrections is a key advantage of our targeted approach.

geted correction is highly unlikely to occur with the random sampling of Star+ and allows G-Star+
to perform more efficient, surgical edits to improve text quality.

G PRACTICAL GUIDANCE FOR HYPERPARAMETER TUNING

This section provides practical guidance for readers who wish to apply our method and select appro-
priate hyperparameters. The two most important parameters are the remasking schedule (i.e., when
to apply G-Star) and the sampling temperatures.

Remasking schedule. As we demonstrate in Section 4.2, text generation via masked diffusion can
be broadly divided into two phases: an initial context accumulation phase and a subsequent text
refinement phase. This two-stage structure aligns with practical observations from previous work
on remasking, such as ReMDM (Wang et al.). Based on this insight, we recommend enabling the re-
masking process (i.e., refinement) only toward the end of the generation, once the model has already
formed a coherent draft. In our experiments, we typically activated the remasking schedule within
the noise level range of t ∈ [0.1, 0.3], for both the G-Star-loop and G-Star+ strategies. For optimal
results on a specific task, we recommend tuning this starting timestep t as a key hyperparameter.

Sampling temperatures. The second set of critical hyperparameters involves the diffusion and
predictor temperatures. As discussed in Section 4.4, increasing the diffusion model’s temperature
produces more diverse and varied token predictions. This can be strategically advantageous: one
can use a higher diffusion temperature to encourage exploration (proposing a wider set of token
options), while relying on the error predictor to filter these proposals and retain only the correct ones.
Separately, the error predictor’s temperature (analyzed in Section C.3) controls its confidence.
Lowering the predictor’s temperature makes it more conservative, i.e., it will only remask tokens
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Figure 10: Remasking pattern of the Unguided Star-loop sampler. The plot visualizes the masked
token positions (orange dots) at each generation step. During the remasking phase (steps 114-240),
the pattern of selected tokens is scattered and visually resembles random noise. This illustrates the
indiscriminate nature of the unguided approach, where every token position has a roughly equal
probability of being revised at each step, without regard to the semantic or syntactic structure of the
text.

that it is highly confident are incorrect. However, since the predictor is not perfect and can also
make mistakes, setting this temperature to an extremely low value (e.g., zero) may not be ideal. We
recommend using a non-zero temperature to balance the predictor’s precision and recall.

H LIMITATIONS

Despite its effectiveness, our method has three primary limitations. First, our framework is restricted
to ”in-place” token substitution and cannot perform insertion or deletion operations. This means that
while the model can correct a token by changing its value (e.g., ‘house‘ → ‘home‘), it cannot correct
an error of omission by inserting a new token between two existing ones, as this would require
shifting the entire subsequent sequence. Extending the framework to predict and apply ”shift” or
”insert/delete” operations is a promising direction for future work.

Second, the error predictor requires a separate, sequential training stage, which adds complexity to
the overall training pipeline. This could potentially be addressed by exploring methods for jointly
training the main diffusion model and the error predictor in an end-to-end fashion, which might also
foster a tighter synergy between the generation and refinement processes.

Finally, our study does not attempt to aggressively optimize inference throughput. All samplers
are evaluated using a straightforward implementation that does not exploit recent acceleration tech-
niques for diffusion LLMs, such as KV-caching (Wu et al., 2025), self-speculative decoding (Gao
et al., 2025), or enhanced forms of parallel decoding like adaptive parallel decoding (Israel et al.,
2025). Integrating G-Star with these complementary methods represents an exciting direction for
future work and could further narrow the remaining gap to highly optimized autoregressive systems.
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Figure 11: The figure provides a snapshot of the refinement process, showing steps 90 through 95
from a 128-step generation of a 512-token sequence. Both the unguided Star+ (bottom) and our
guided G-Star+ (top) begin this phase with an identical text draft generated by a standard MDLM.
The panels display the beginning of the text sequence, with tokens remasked at each step highlighted
in red. Starting from the same draft, the two methods immediately diverge. The Star+ sampler
exhibits an indiscriminate, token-level remasking strategy that appears unfocused. In contrast, our
G-Star+ sampler demonstrates a more structured approach.
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