

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

GUIDED STAR-SHAPED MASKED DIFFUSION

Anonymous authors

Paper under double-blind review

ABSTRACT

The performance of pre-trained masked diffusion models is often constrained by their sampling procedure, which makes decisions irreversible and struggles in low-step generation regimes. We introduce a novel sampling algorithm that works with pre-trained models and, after a lightweight fine-tuning of a single layer, significantly improves sample quality and efficiency. Our method reformulates the generation process using a star-shaped paradigm, which inherently allows for error correction. To make this process effective, we augment it with a learnable re-masking scheduler that intelligently identifies and revises likely errors. This approach yields a substantial quality boost, particularly when using a small number of sampling steps. We extensively ablate key components of our approach and show its usability in different scenarios. In comprehensive experiments on text, and code generation, our sampling algorithm outperforms or matches existing methods.

1 INTRODUCTION

Diffusion probabilistic models have demonstrated remarkable success in generating high-fidelity data, particularly in continuous domains such as image and video synthesis (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020; Sahoo et al., 2024b). A key reason for their effectiveness is the principle of iterative refinement. By progressively denoising a sample from a simple prior distribution, these models effectively sculpt data, making small adjustments at each step. This allows for a robust error correction mechanism; a mistake made early in the trajectory can be gradually amended in subsequent steps, leading to state-of-the-art results.

This elegant property, however, is largely absent in the discrete domain. While discrete diffusion models are making significant strides in areas like natural language processing (Lou et al., 2024; Sahoo et al., 2024a; Schiff et al., 2024), the most successful variants, based on token masking, are built on a foundation that precludes iterative refinement. In a masked diffusion setup, the generation of each token is a one-way street: once a [MASK] is replaced with a concrete token, the model commits to that decision. The token is then frozen and cannot be revisited or updated, even if later steps reveal it to be suboptimal in the broader context. This sequence of irreversible commitments prevents the model from correcting its own mistakes, imposing a fundamental ceiling on sample quality, sampling speed, and the potential for fine-grained, controlled generation.

Recognizing this limitation, several recent works have proposed mechanisms to enable token revision. For instance, ReMDM (Wang et al.) introduces a simple yet effective strategy: randomly re-masking a fraction of already-generated tokens during the sampling process. While this approach yields substantial quality improvements in text generation, its stochastic nature is fundamentally inefficient. The selection process is indiscriminate; it is just as likely to re-mask a correct token as an erroneous one, unnecessarily slowing convergence and requiring a large number of sampling steps. An alternative approach, explored by GIDD (von Rütte et al., 2025), combines masked diffusion with a uniform diffusion process to allow for token refinement toward the end of generation. However, this hybrid strategy has not achieved yet competitive sample quality. These pioneering efforts highlight the need for an error correction mechanism, yet they also reveal the limitations of non-selective revision, motivating our targeted approach.

To address these shortcomings, we propose a new sampling framework founded on the star-shaped paradigm (Okhotin et al., 2023). Instead of a direct, irreversible step from state \mathbf{x}_t to \mathbf{x}_s , our sampler first predicts a complete version of the clean data, $\hat{\mathbf{x}}_0 \sim p_\theta(\cdot \mid \mathbf{x}_t)$, and then gener-

ates the next, less noisy state by sampling from the forward process conditional on this prediction, $\mathbf{x}_s \sim q(\cdot \mid \hat{\mathbf{x}}_0)$. This two-step process inherently breaks the chain of immutable decisions, allowing already-generated tokens to be re-masked and refined. Crucially, this formulation is compatible with pre-trained Masked Diffusion Language Models (MDLMs), allowing us to enhance existing pretrained models with a new sampling procedure.

To unlock the full potential of the reversible star-shaped sampler, we replace its inefficient unguided remasking with a lightweight, learnable module trained to target tokens predicted to be erroneous. The resulting method, Guided Star-Shaped Masked Diffusion (G-Star), yields a substantial quality boost, particularly in computationally constrained, few-step generation regimes.

Our main contributions are threefold:

- We propose a star-shaped formulation for masked discrete diffusion that enables iterative refinement and error correction.
- We introduce a learned masking scheduler that adaptively identifies and remasks tokens predicted to be erroneous. This intelligent error targeting mechanism significantly accelerates inference and improves final sample quality.
- We demonstrate empirically that our approach achieves superior sampling performance across a diverse set of domains, including text and code generation.

2 PRELIMINARIES

Our work builds upon masked diffusion models, which operate by progressively masking and unmasking tokens.

Masked diffusion models. We consider discrete tokens represented as one-hot vectors $\mathbf{x} \in \{0, 1\}^{|V|}$, where $|V|$ is the vocabulary size. A special `[MASK]` token is denoted by \mathbf{m} . The forward process corrupts an input \mathbf{x}_0 by progressively masking tokens over T timesteps according to a noise schedule α_t . The marginal distribution of the noisy state \mathbf{x}_t is given by:

$$q(\mathbf{x}_t \mid \mathbf{x}_0) = \text{Cat}(\mathbf{x}_t; \alpha_t \mathbf{x}_0 + (1 - \alpha_t) \mathbf{m}). \quad (1)$$

The reverse process is parameterized by a neural network, $f_\theta(\mathbf{x}_t, t)$, which is trained to predict the probability distribution over the original data, $p_\theta(\mathbf{x}_0 \mid \mathbf{x}_t)$. This predicted distribution then conditions the analytical posterior:

$$q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0) = \begin{cases} \delta_{\mathbf{x}_t}(\mathbf{x}_{t-1}), & \text{if } \mathbf{x}_t \neq \mathbf{m} \\ \text{Cat} \left(\mathbf{x}_{t-1}; \frac{(1 - \alpha_{t-1})\mathbf{m} + (\alpha_{t-1} - \alpha_t)\mathbf{x}_0}{1 - \alpha_t} \right), & \text{if } \mathbf{x}_t = \mathbf{m} \end{cases} \quad (2)$$

The first case of this posterior, where an unmasked token is deterministically preserved ($\delta_{\mathbf{x}_t}$), reveals the model’s core limitation: once a token is generated, it is frozen, making iterative error correction impossible. The network f_θ is typically trained by minimizing a weighted cross-entropy loss to predict \mathbf{x}_0 from \mathbf{x}_t .

ReMasking diffusion models. To address this limitation, ReMDM (Wang et al.) introduces new sampling process that allows already-unmasked tokens to be reverted to a `[MASK]` state. This is achieved by modifying the posterior:

$$q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0) = \begin{cases} \text{Cat}(\mathbf{x}_{t-1}; (1 - \sigma_t)\mathbf{x}_0 + \sigma_t \mathbf{m}), & \text{if } \mathbf{x}_t \neq \mathbf{m} \\ \text{Cat} \left(\mathbf{x}_{t-1}; \frac{\alpha_{t-1} - (1 - \sigma_t)\alpha_t}{1 - \alpha_t} \mathbf{x}_0 + \frac{1 - \alpha_{t-1} - \sigma_t \alpha_t}{1 - \alpha_t} \mathbf{m} \right), & \text{if } \mathbf{x}_t = \mathbf{m} \end{cases} \quad (3)$$

Here, the hyperparameter $\sigma_t \in [0; \min\{1, \frac{1 - \alpha_{t-1}}{\alpha_t}\}]$ controls the re-masking probability for already unmasked tokens. A key practical challenge of this method is that σ_t is determined by one of several proposed schedules, each governed by a hyperparameter η that must be carefully tuned (see Appendix C.1). While this enables error correction that is compatible with pre-trained models, its effectiveness is limited by the non-selective nature of the remasking schedule, motivating a more targeted approach.

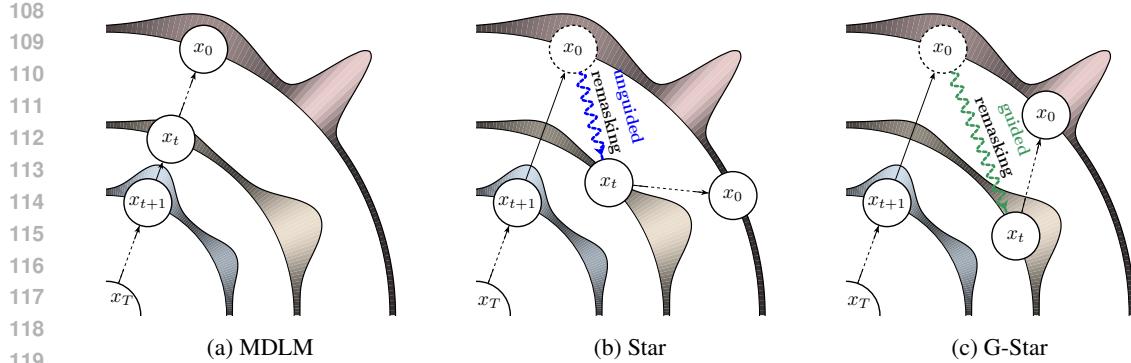


Figure 1: Comparison of three sampling trajectories for refining text from a noisy state (x_T) to a clean state (x_0). The orbits represent the probability of partially denoised text x_t at each step. (a) **MDLM** follows a one-way, step-by-step path; it is stable but unable to correct past mistakes. (b) **Star sampler** allows revision by predicting x_0 and then **randomly re-masking** tokens, regardless of whether they are correct or incorrect. This allows for correction but is suboptimal and can harm text coherence. (c) **G-Star sampler** is an improved path that also predicts x_0 but uses an error predictor to **selectively re-mask** likely incorrect tokens, enabling efficient error correction while preserving text quality.

3 GUIDED STAR-SHAPED MASKED DIFFUSION

The fundamental limitation of standard masked diffusion, as outlined in Section 2, is its irreversible structure. To enable iterative refinement, we must break this chain of immutable decisions. In this section, we introduce a star-shaped paradigm for masked diffusion that allows for token revision, and then present a learned scheduler that makes this revision process efficient and targeted.

3.1 STAR-SHAPED MASKED DIFFUSION

We redefine the joint distribution of the forward process. Instead of conditioning each latent state \mathbf{x}_t on its immediate predecessor \mathbf{x}_{t-1} , we make all latent states conditionally independent given the original data \mathbf{x}_0 :

$$q(\mathbf{x}_{1:T} \mid \mathbf{x}_0) = \prod_{t=1}^T q(\mathbf{x}_t \mid \mathbf{x}_0). \quad (4)$$

Here, each $q(\mathbf{x}_t \mid \mathbf{x}_0)$ is the same marginal distribution defined in Equation 1. This "star-shaped" structure, where all latents connect directly to \mathbf{x}_0 , fundamentally alters the process dynamics. It explicitly permits non-monotonic transitions; for instance, a token can be masked at a timestep s and become unmasked at a later timestep $t > s$, a scenario forbidden in the standard Markovian chain for masked diffusion.

This change simplifies the reverse posterior: $q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0) = q(\mathbf{x}_{t-1} \mid \mathbf{x}_0)$. Following the standard diffusion paradigm, we construct the generative transition $p_\theta(\mathbf{x}_{t-1} \mid \mathbf{x}_t)$ by first predicting an estimate of the clean data, $\hat{\mathbf{x}}_0 \sim \text{Cat}(\cdot, f_\theta(\mathbf{x}_t, t))$, and then sampling from the corresponding posterior:

$$p_\theta(\mathbf{x}_{t-1} \mid \mathbf{x}_t) = q(\mathbf{x}_{t-1} \mid \mathbf{x}_0 = \hat{\mathbf{x}}_0). \quad (5)$$

Intuitively, each step of the generative process involves two stages: (1) the model examines the current state \mathbf{x}_t and forms a complete hypothesis about the final, clean data $\hat{\mathbf{x}}_0$; (2) it then generates the next, less noisy state \mathbf{x}_{t-1} by applying the forward noising process to this hypothesis, effectively remasking it to the appropriate noise level. This step is what allows the model to revise its previous decisions (see Figure 1b).

Notably, this star-shaped sampling process establishes a direct connection to the ReMDM framework (Wang et al.). Specifically, our sampler is mathematically equivalent to the ReMDM sampler when its probability is set to $\sigma_t = 1 - \alpha_s$. As we demonstrate in our analysis (Appendix C.1 and Section 4.4), this hyperparameter requires an extensive, per-schedule tuning process to be effective.

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

Our formulation avoids this costly search and allows our sampler to perform on par with a carefully optimized ReMDM.

A crucial consequence of this formulation is its compatibility with existing models. The variational lower bound (VLB) for this process can be simplified to a weighted cross-entropy objective, structurally identical to that used for standard masked diffusion models:

$$\mathcal{L} \approx \mathbb{E}_{t, \mathbf{x}_0, \mathbf{x}_t} [-w'_t \log p_\theta(\mathbf{x}_0 \mid \mathbf{x}_t)]. \quad (6)$$

Claim 1. *The VLB for the star-shaped process simplifies to the objective in Eq. equation 6, which has the same functional form as the standard masked diffusion objective but with different timestep-dependent weights w'_t . (Proof in Appendix A).*

The structural similarity between our training objective and the standard MDLM loss motivates the reuse of pre-trained MDLM weights as an effective practical strategy. We empirically confirm this approach, finding that it allows our sampler to achieve strong performance without any fine-tuning.

3.2 LEARNED ERROR-TARGETED

While the sampler described in Equation 5 enables error correction, it is inefficient. The remasking process is non-selective — it samples from $q(\mathbf{x}_{t-1} \mid \hat{\mathbf{x}}_0)$, which is just as likely to mask a correct token as an incorrect one. This negatively impacts both sampling efficiency and final sample quality.

To rectify this, we introduce a secondary model: an error predictor g_ϕ , which learns to identify which tokens the primary diffusion model f_θ is likely to get wrong. This allows us to focus the procedure on probable errors.

Training the error predictor. The purpose of the error predictor, g_ϕ , is to learn to identify which tokens the main diffusion model, f_θ , is likely to generate incorrectly. To train it, we simulate this error-making process. First, we take a clean text from the training data and apply the forward diffusion process to corrupt it with [MASK] tokens, creating a noisy input that mimics a state during generation. Next, we feed this masked text to our pre-trained diffusion model, f_θ , which predicts a probability distribution over the clean text. By sampling from this distribution, we obtain a discrete candidate sequence. This candidate will inevitably contain some errors where the model’s prediction does not match the ground truth. The error predictor’s task is to learn to spot these mistakes: it is trained to take the candidate sequence as input and predict which of its tokens are incorrect. The entire procedure is detailed in Algorithm 1.

Inference with targeted. During generation, we incorporate the trained error predictor g_ϕ to guide the remasking process, replacing the sampler’s indiscriminate selection of tokens with a targeted procedure (see Figure 1c). The process for each sampling step from \mathbf{x}_t to \mathbf{x}_s , detailed in Algorithm 2, proceeds as follows. First, the main diffusion model f_θ generates a clean data candidate,

Algorithm 1 Training the error predictor g_ϕ

```

1: Input: Dataset  $\mathcal{D}$ , pre-trained diffusion model  $f_\theta$ , learning rate  $\eta$ , denoiser temperature  $\tau_{\text{denoiser}}$ .
2: Output: Trained error predictor  $g_\phi$ 
3: while not converged do
4:   Sample batch  $\{\mathbf{x}_0\} \sim \mathcal{D}$ 
5:    $\triangleright$  Simulate denoising and identify errors  $y$ 
6:    $t \sim \mathcal{U}(0, 1)$ 
7:    $\mathbf{x}_t \sim q(\cdot \mid \mathbf{x}_0)$ 
8:    $\hat{p}_0 \leftarrow \text{Softmax}(\frac{f_\theta(\mathbf{x}_t)}{\tau_{\text{denoiser}}})$ 
9:    $\hat{\mathbf{x}}_0 \sim \text{Cat}(\cdot; \hat{p}_0)$ 
10:   $y \in \{0, 1\}^L$ , where  $y_i = \mathbb{I}(\hat{\mathbf{x}}_{0,i} \neq \mathbf{x}_{0,i})$ 
11:   $\triangleright$  Train the error predictor
12:   $p \leftarrow \text{Softmax}(g_\phi(\hat{\mathbf{x}}_0))$ 
13:   $\mathcal{L}_\phi \leftarrow -\frac{1}{L} \sum_{i=1}^L [y_i \log p_i + (1 - y_i) \log(1 - p_i)]$ 
14:   $\phi \leftarrow \phi - \eta \nabla_\phi \mathcal{L}_\phi$ 
15: return  $g_\phi$ 

```

Algorithm 2 Guided sampling step

```

1: Input: Current state  $\mathbf{x}_t$ , current time  $t$ , diffusion model  $f_\theta$ , error predictor  $g_\phi$ , denoiser temperature  $\tau_{\text{denoiser}}$ , nucleus probability  $p_{\text{nucleus}}$ , error predictor temperature  $\tau_{\text{remask}}$ 
2: Output: Next state  $\mathbf{x}_{t-1}$ 
3:  $\triangleright$  Predict and sample a proposal clean state
4:  $\hat{p}_0 \leftarrow \text{NucleusFilter}(\text{Softmax}(\frac{f_\theta(\mathbf{x}_t)}{\tau_{\text{denoiser}}}), p_{\text{nucleus}})$ 
5:  $\hat{\mathbf{x}}_0 \sim \text{Cat}(\cdot; \hat{p}_0)$ 
6:  $\triangleright$  Identify and select most likely errors
7:  $\text{logits}_{\text{err}} \leftarrow g_\phi(\hat{\mathbf{x}}_0)$ 
8:  $N \leftarrow \lceil (1 - \alpha_{t-1}) \cdot L \rceil$ 
9:  $\mathcal{M} \leftarrow \text{SampleKNoRep}(\frac{\text{logits}_{\text{err}}}{\tau_{\text{remask}}}, N)$ 
10:  $\triangleright$  Construct next state via targeted remasking
11:  $\mathbf{x}_{t-1,i} \leftarrow \begin{cases} \mathbf{m}, & \text{if } i \in \mathcal{M} \\ \hat{\mathbf{x}}_{0,i}, & \text{otherwise} \end{cases}$ 
12: return  $\mathbf{x}_{t-1}$ 

```

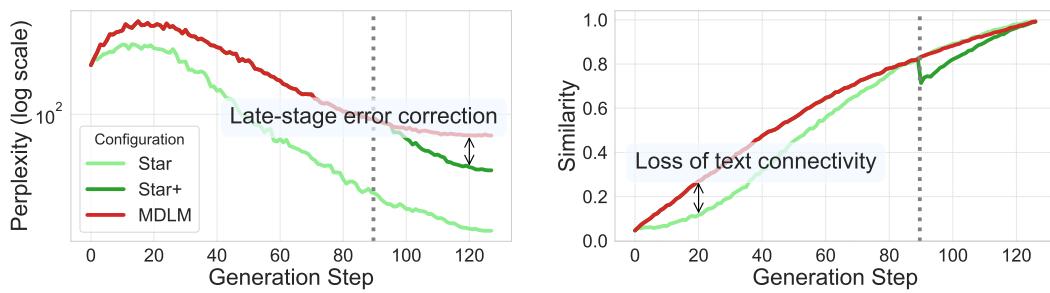


Figure 2: Analysis of the star-shaped (Star) sampler’s dynamics. (Left) Perplexity and (Right) step-to-step similarity over the generation trajectory for three configurations: MDLM, Star, and our hybrid approach (Star+), which switches from MDLM to Star at step 90 (dotted line).

\hat{x}_0 . This candidate is then scored by the error predictor g_ϕ to obtain error logits for each token. These logits, scaled by a temperature τ_{remask} , are then used to sample the N locations without repetitions via Gumbel-Top-K trick sampling (Kool et al., 2019), where N is determined by the noise schedule. The next state x_s is then formed by reverting these targeted tokens in \hat{x}_0 back to the [MASK] symbol. This targeted approach focuses the model’s capacity on correcting its most probable mistakes, thereby improving sampling efficiency and final quality. As we will demonstrate in our analysis (Sections 4 and 5), integrating this targeted remasking mechanism allows for a significant improvement in generation quality at the cost of only a minor increase in parameter overhead.

4 ANALYSIS

This section deconstructs our proposed sampling method and validates its key components through a series of controlled experiments. We analyze: (1) the optimal scheduling for the star-shaped sampler, identifying the distinct generative phases where it is most beneficial; (2) the contribution of the guidance mechanism to improving sample quality and step efficiency; (3) the sampler’s performance within the iterative refinement context of the ReMDM loop-schedule protocol; and (4) the architectural requirements of the error predictor, confirming the efficacy of a highly parameter-efficient design.

4.1 EXPERIMENTAL SETUP

All analytical experiments are conducted on the OpenWebText (OWT) dataset (Gokaslan & Cohen, 2019), tokenized using the standard gpt-2 tokenizer (Radford et al., 2019). For these experiments, we fine-tuned the publicly available MDLM checkpoint from Sahoo et al. (2024a) for unconditional generation of 128 and 512-token sequences, padding shorter outputs where necessary. We generate 5,000 samples for each configuration and assess performance using a suite of three complementary metrics. Sample quality and local coherence are measured via Perplexity (PPL), computed using a pre-trained GPT-2 LARGE model (Radford et al., 2019). Lexical variety is quantified by the Diversity (DIV) score, defined as $\text{div}(y) = \prod_{n=2}^4 \frac{\# \text{ unique } n\text{-grams in } y}{\# n\text{-grams in } y}$. Finally, to provide a more holistic assessment that balances quality with diversity, we report the MAUVE score (Pillutla et al., 2021), which measures the distributional alignment between the generated and reference texts.

4.2 WHEN TO USE THE STAR-SHAPED SAMPLER?

Our initial experiments revealed a critical insight: the pure star-shaped (Star) sampler, when applied across the entire generation trajectory, exhibits poor performance and often leads to degenerate text. This observation motivated our central hypothesis: the generation process is not monolithic but consists of two distinct phases, each benefiting from a different sampling strategy. We posit that the initial phase requires a stable, structure-building sampler, while the final phase benefits from an error-correcting one. To test this hypothesis, we first analyze this phenomenon in a simplified setting involving the generation of 128-token sequences from the OWT dataset.

270
 271 **Phase 1: the challenge of early-stage generation.** In the
 272 early stages of generation (high t), a large fraction of tokens is
 273 masked. The star-shaped sampler’s strategy of predicting a full
 274 \hat{x}_0 requires the model to generate a large number of new tokens
 275 conditioned on a very sparse context. While these newly gen-
 276 erated tokens may be individually plausible with respect to the
 277 unmasked context, they often lack mutual coherence among
 278 themselves. The problem is exacerbated by the subsequent
 279 step of the star-shaped process: the independent, random re-
 280 masking of all tokens in this new hypothesis. This process
 281 may preserve a large fraction of the newly generated, yet mu-
 282 tually incoherent, tokens while masking others that provided
 283 the original context. As a result, the input for the next iteration
 284 becomes an increasingly fragmented and incoherent context.
 285 This complicates the subsequent prediction task, causing er-
 286 rors to compound over iterations and ultimately leading to the
 287 observed text degradation.

288 This generative incoherence is empirically captured in Figure 2 (right), where the pure star-shaped
 289 (Star) sampler (light green line) demonstrates significantly lower step-to-step similarity than the
 290 standard MDLM (red line). This metric, defined as the fraction of matching tokens in the predicted
 291 clean data (\hat{x}_0) between adjacent steps,. The low score for Star sampler confirms that its generation
 292 process struggles to build upon a coherent structure. This ultimately leads to text degradation, as
 293 reflected by its near-zero MAUVE score (see Figure 3 at $t_{on} = 1.0$). In contrast, the MDLM’s
 294 incremental, token-by-token generation ensures high step-to-step similarity, allowing it to stably
 295 construct a coherent draft.

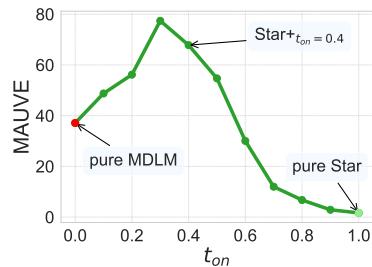
296 **Phase 2: the power of late-stage refinement.** While the MDLM’s stability is advantageous for
 297 initial structure-building, its irreversible nature limits its ability to correct errors. This is where the
 298 star-shaped paradigm excels. In the late stages of generation (low t), the vast majority of tokens are
 299 already determined, providing a strong, coherent conditioning context. Remasking a small fraction
 300 of these tokens and repredicting them from a global perspective \hat{x}_0 becomes a powerful mechanism
 301 for error correction, rather than a source of instability.

302 This effect is visible in Figure 2 (left). When our hybrid Star+ sampler switches from MDLM to star-
 303 shaped sampler at step 90 (dotted line), its perplexity (green line) begins to decrease more rapidly
 304 than the pure MDLM baseline, ultimately achieving a superior final score. This demonstrates that
 305 the Star sampler is highly effective at refining an already well-formed text.

306 **Empirical validation: finding the optimal transition point.** To validate this two-phase hypothesis
 307 and identify the optimal transition point, we conduct an ablation study on the activation time, t_{on} .
 308 The sampler operates as a standard MDLM until time t_{on} , after which it switches to the star-shaped
 309 paradigm. Figure 3 plots the final MAUVE score as a function of t_{on} . The results provide strong
 310 empirical support for our hypothesis. Performance is poor for both pure samplers ($t_{on} = 1.0$ for
 311 pure Star and $t_{on} = 0.0$ for pure MDLM) but peaks at $t_{on} \approx 0.3$. This confirms that the most
 312 effective strategy is to leverage the MDLM process for the initial 60 – 80% of the generation to
 313 build a coherent draft, and then activate the star-shaped sampler for the final 20 – 40% for global
 314 refinement.

315 4.3 GUIDED STAR-SHAPED SAMPLER

316 The preceding analysis established that a hybrid sampler (Star+) effectively refines text in the late
 317 stages of generation. However, its reliance on unguided remasking is inherently sample-inefficient.
 318 This raises a central question: can we significantly improve performance by replacing this stochastic
 319 process with a targeted, intelligent one? In this section, we test this hypothesis by introducing our
 320 full proposed method, the **Guided Star-shaped sampler (G-Star)**, which uses an error predictor to
 321 focus the refinement process exclusively on likely errors. We posit that the primary advantage of
 322 this targeted approach will manifest in computationally constrained, few-step generation regimes,
 323 where the efficiency of each correction step is paramount.



324 Figure 3: The impact of the star-
 325 shaped sampler’s activation time
 326 (t_{on}) on generation quality. We
 327 plot the final MAUVE score for a
 328 hybrid sampler that switches from
 329 MDLM to Star at time t_{on} .

To validate this, we perform a direct comparison between the unguided Star+ and our guided G-Star+ (both employ the identical hybrid switching schedule, $t_{on} = 0.2$) sampler on the task of generating 512-token sequences from OpenWebText, evaluating across a range of sampling step counts from 32 to 512. The results are presented in Figure 4.

The empirical evidence strongly supports our hypothesis. The MAUVE scores (left panel) show that while both hybrid samplers outperform the MDLM baseline, the guided G-Star+ variant achieves significantly higher distributional fidelity. Crucially, the performance gap is most pronounced in the medium-step regimes of 64-256 steps. While at the 32-step mark all samplers struggle, our guided approach still shows a modest advantage. This gap then narrows as the step budget increases.

This dynamic has a clear and intuitive explanation. With a large number of sampling steps, even an unguided remasking process has a high probability of eventually correcting most errors, causing the performance of the two samplers to converge. However, when each step is critical, the intelligent targeting provided by the error predictor becomes the deciding factor. By focusing the model’s capacity on the most probable errors, the guidance mechanism ensures that each refinement step is maximally impactful. This enables the generation of higher-quality text with a significantly reduced computational budget, highlighting the practical advantage of our guided approach. A qualitative visualization of the refinement process for both samplers is available in Appendix F.

4.4 ITERATIVE REFINEMENT REGIME

To further analyze the refinement capabilities of our sampler, we adopt the **loop schedule** protocol introduced by ReMDM (Wang et al.). This specialized schedule is designed to evaluate a sampler’s efficiency at refining an already generated text. The process consists of three distinct phases: (1) an initial generation phase using the standard MDLM sampler to produce a coherent draft; (2) a refinement phase, where a fixed number of “looping” steps are performed at a constant noise level ($\alpha_t = 0.9$) to iteratively improve the draft; and (3) a final generation phase to complete the sequence.

We implement this protocol for the task of generating 512-token sequences from OpenWebText and compare our unguided (Star-loop) and guided (G-Star-loop) samplers. We test three configurations with varying computational budgets, corresponding to a total of 128, 256, and 512 generation steps. It is important to note that achieving these strong ReMDM results requires an extensive, per-schedule search for the hyperparameter η , as detailed in Appendix C.1. This tuning process is a significant drawback, as performance can vary from very strong to worse than the baseline MDLM. In contrast, our unguided Star-loop sampler performs competitively without requiring any tuning of η , highlighting a key practical advantage of the proposed star-shaped formulation.

Beyond scheduling, we also observe that the **denoiser’s temperature** (τ_{denoiser}) provides an additional and complementary axis of control over the generation process. By adjusting the softmax temperature applied to the denoiser’s output logits, the sampler can smoothly trade off between perplexity and diversity: lower temperatures make the denoiser more deterministic, tightening the distribution around high-confidence tokens and leading to lower perplexity but reduced lexical variety, while higher temperatures increase stochasticity in the predictions, yielding more diverse samples at a cost in quality. In practice, adjusting the denoiser temperature thus provides a lightweight and effective control knob for navigating the perplexity–diversity frontier, enabling a more thorough examination and comparison of model behavior.

The Pareto fronts in Fig. 5a highlight the clear advantage of our guided refinement strategy. Across all computational budgets, G-Star-loop consistently achieves a superior balance between perplexity and diversity, outperforming both the MDLM baseline and the Star/ReMDM-loop variants. Remarkably, even in the severely constrained 128-step regime, G-Star-loop attains substantially lower perplexity while simultaneously delivering higher diversity than the best-tuned ReMDM configuration

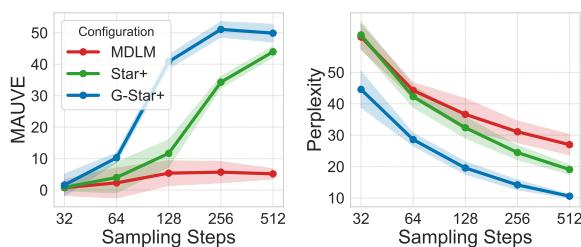


Figure 4: Performance comparison in few-step generation regimes. Guided sampler (G-Star+) consistently outperforms the unguided Star+.

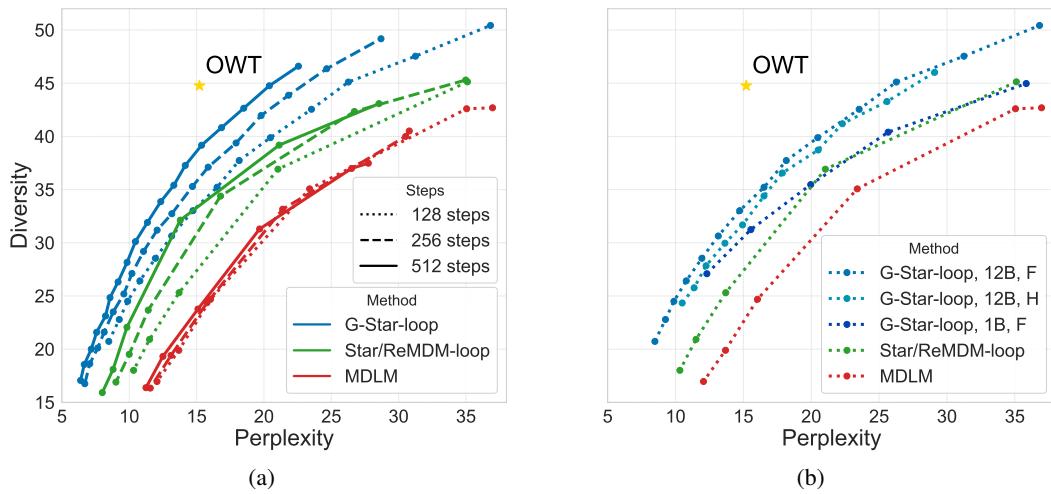


Figure 5: Pareto fronts for different methods obtained by varying the denoiser temperature. The left plot compares MDLM, Star/ReMDM-loop, and G-Star-loop across different sampling steps, while the right plot compares different G-Star configurations (12B-F, 12B-H, 1B-F) against Star/ReMDM-loop and MDLM for 128 denoising steps.

with 512 steps. These findings confirm that targeted refinement, rather than stochastic remasking, is essential for efficient quality improvements. Additional results you can find in Appendix C.4.

4.5 ERROR PREDICTOR CAPACITY AND EFFICIENCY

We investigate the trade-off between the error predictor’s model capacity and its performance. To this end, we evaluate three architectural configurations initialized from the pre-trained MDLM: a lightweight model using one (1B, F) transformer block with full fine-tuning, and full 12-block models with either all weights fine-tuned (12B, F) or only the classification head trained (12B, H). Using the same Pareto-front evaluation setup as before, but restricting the sampler to the 128-step regime, the results in Fig. 5b lead to two main conclusions. First, the parameter-efficient head-only variant (12B, H) closely tracks the performance of the fully fine-tuned model (12B, F) across the entire frontier, indicating that the pre-trained MDLM representations already provide strong features for error prediction. Second, the lightweight 1B, F predictor is clearly less competitive: it only outperforms the MDLM and Star/ReMDM-loop baselines in the low-diversity, low-temperature corner of the frontier and matches their performance elsewhere without providing additional gains. Overall, this suggests that while head-only training offers an excellent efficiency–quality trade-off, more aggressive capacity reduction can noticeably degrade refinement performance.

5 EMPIRICAL EVALUATION

Having analyzed the internal mechanics and key components of our sampler on the OWT dataset, we now turn to evaluating its performance and general applicability in a broader context. In this section, we benchmark G-Star on two challenging generative tasks: (1) **large-scale language modeling**, where we assess performance on downstream benchmarks to validate its effectiveness at scale, and (2) **source code generation** on the Conala benchmark (Yin et al., 2018).

5.1 APPLICATION TO LARGE-SCALE INSTRUCTION-TUNED MODEL

In this section we investigate whether our guided sampler can enhance the performance of an instruction-tuned large language model. For this purpose, we integrate our G-Star sampler into the **Dream-Instruct 7B** (Ye et al., 2025b) model and evaluate it on a diverse suite of complex downstream benchmarks. We establish our baseline by evaluating the Dream-Instruct model with the authors’ official configuration. As shown in Table 1, our reproduced scores vary slightly from the originally published results and serve as the direct point of comparison for our method.

432
 433 Table 1: Downstream benchmark results for Dream-Instruct 7B. The best result is marked in
 434 **bold**.
 435

	Dream-Ins. (Paper)	Dream-Ins. (Reproduced)	+ G-Star (Ours)
MMLU	67.0	69.9	71.2
MMLU-PRO	43.3	46.9	47.9
GSM8K	81.0	81.5	81.6
GPQA	33.0	31.0	32.8
HumanEval	55.5	53.7	54.9
MBPP	58.8	58.0	59.4
IFEval	62.5	56.4	59.3

444
 445 For our approach, we augment the Dream-Instruct baseline with our G-Star sampler, integrating it
 446 via a loop-based refinement strategy. We keep the total number of diffusion steps identical to the
 447 baseline but designate 10% of them as refinement steps executed by G-Star at a specific noise level
 448 α_{on} . The error predictor is configured for maximum parameter efficiency: we freeze the 7B model’s
 449 backbone and train only a lightweight classification head on the Tulu 3 (Lambert et al., 2024) dataset.
 450 Detailed configurations for each benchmark are provided in Appendix E.
 451

452 As summarized in Table 1, our G-Star sampler yields consistent performance gains across all seven
 453 evaluated benchmarks. We observe noteworthy improvements on complex reasoning tasks such as
 454 MMLU (+1.3 points) and GPQA (+1.8 points), as well as on instruction following (IFEval, +2.9
 455 points). It validates that highly capable models still benefit from a dedicated mechanism for targeted
 456 error correction, further enhancing their reasoning and generation capabilities.
 457

458 5.2 CODE GENERATION

459 We evaluate our method on conditional code generation using the Conala benchmark (Yin et al.,
 460 2018), where the task is to generate a Python snippet from a natural language prompt. We first train
 461 a conditional MDLM baseline on the Conala train split. The error predictor for our G-Star sampler
 462 is then trained on a disjoint hold-out split, also conditioned on a prompt. Further implementation
 463 details are provided in Appendix E.
 464

465 Performance is measured by conditional perplexity under a pre-trained Qwen2.5B-Coder
 466 model (Hui et al., 2024). This metric evaluates the fluency and semantic relevance of the generated
 467 code snippet with respect to the input prompt. As shown in Table 2, our G-Star sampler outperforms
 468 both the MDLM and ReMDM baselines, achieving a lower (better) conditional perplexity. This
 469 confirms the effectiveness of our guided approach for structured generation tasks.
 470

471 6 CONCLUSION

472 We introduced G-Star, a sampling method that enables efficient error correction for masked diffusion
 473 models. By using a trained error predictor to target tokens for revision, our method outperforms
 474 standard and stochastic refinement baselines like MDLM and ReMDM in computationally constrained,
 475 few-step generation regimes. We demonstrated its effectiveness and versatility across a wide range
 476 of tasks and validated its ability to enhance a state-of-the-art 7B instruction-tuned language model.
 477 The core contribution of our work is to show that targeted, intelligent refinement is a more prin-
 478 cipled and sample-efficient approach than unguided correction, paving the way for more practical and
 479 powerful discrete diffusion models.
 480

481 REPRODUCIBILITY STATEMENT

482 To ensure the reproducibility of our work, we provide the source code for our samplers and error
 483 predictor training in the supplementary material. All experimental details, including dataset pre-
 484 processing, model architectures, and specific hyperparameter configurations for every table and figure,
 485 are thoroughly documented in Appendix E. Furthermore, our experiments are built upon publicly
 486

Table 2: Conditional perplexity on the Conala benchmark for different samplers and step counts. **Best** and second-best results are highlighted.

Algorithm	Qwen2.5B-Coder ppl ↓		
	32 steps	64 steps	128 steps
MDLM	29.8	25.5	26.7
ReMDM-loop $_{\eta=0.02}$	30.1	25.0	20.4
ReMDM-cap $_{\eta=0.04}$	27.3	22.5	19.1
G-Star-loop	<u>22.5</u>	17.8	<u>17.8</u>
G-Star+ $t_{on}=0.3$	20.4	<u>18.9</u>	16.4

486 available datasets (e.g., OpenWebText, Conala) and pre-trained model checkpoints to ensure our
 487 experimental setups are accessible and verifiable by the community.
 488

489 **REFERENCES**
 490

- 491 Marianne Arriola, Aaron Gokaslan, Justin T Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
 492 ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autore-
 493 gressive and diffusion language models. *arXiv preprint arXiv:2503.09573*, 2025.
- 494 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
 495 denoising diffusion models in discrete state-spaces. *Advances in Neural Information Processing
 496 Systems*, 34:17981–17993, 2021a.
- 497 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
 498 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
 499 models. *arXiv preprint arXiv:2108.07732*, 2021b.
- 500 Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
 501 Arnaud Doucet. A continuous time framework for discrete denoising models. *Advances in Neural
 502 Information Processing Systems*, 35:28266–28279, 2022.
- 503 Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Generative
 504 flows on discrete state-spaces: Enabling multimodal flows with applications to protein co-design.
 505 *arXiv preprint arXiv:2402.04997*, 2024.
- 506 Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
 507 image transformer. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 508 Recognition*, pp. 11315–11325, 2022.
- 509 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
 510 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
 511 language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.
- 512 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 513 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
 514 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.
- 515 Ronen Eldan and Yuanzhi Li. Tinystories: How small can language models be and still speak
 516 coherent english? *arXiv preprint arXiv:2305.07759*, 2023.
- 517 Yifeng Gao, Ziang Ji, Yuxuan Wang, Biqing Qi, Hanlin Xu, and Linfeng Zhang. Self speculative
 518 decoding for diffusion large language models. *arXiv preprint arXiv:2510.04147*, 2025.
- 519 Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
 520 Yaron Lipman. Discrete flow matching. *arXiv preprint arXiv:2407.15595*, 2024.
- 521 Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. [http://Skylion007.github.io/
 522 OpenWebTextCorpus](http://Skylion007.github.io/OpenWebTextCorpus), 2019.
- 523 Shanshan Gong, Ruixiang Zhang, Huangjie Zheng, Jiatao Gu, Navdeep Jaitly, Lingpeng Kong, and
 524 Yizhe Zhang. Diffucoder: Understanding and improving masked diffusion models for code gen-
 525 eration. *arXiv preprint arXiv:2506.20639*, 2025.
- 526 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
 527 Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint
 528 arXiv:2009.03300*, 2020.
- 529 Karl Moritz Hermann, Tomas Kociský, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa
 530 Suleyman, and Phil Blunsom. Teaching machines to read and comprehend. *Advances in neural
 531 information processing systems*, 28, 2015.
- 532 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 533 neural information processing systems*, 33:6840–6851, 2020.

- 540 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
 541 Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. *arXiv preprint arXiv:2409.12186*,
 542 2024.
- 543 Daniel Israel, Guy Van den Broeck, and Aditya Grover. Accelerating diffusion llms via adaptive
 544 parallel decoding. *arXiv preprint arXiv:2506.00413*, 2025.
- 545 Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferran-
 546 dis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, et al. The stack: 3 tb of
 547 permissively licensed source code. *arXiv preprint arXiv:2211.15533*, 2022.
- 548 Wouter Kool, Herke Van Hoof, and Max Welling. Stochastic beams and where to find them: The
 549 gumbel-top-k trick for sampling sequences without replacement. In *International conference on
 550 machine learning*, pp. 3499–3508. PMLR, 2019.
- 551 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
 552 man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
 553 in open language model post-training. *arXiv preprint arXiv:2411.15124*, 2024.
- 554 Jose Lezama, Tim Salimans, Lu Jiang, Huiwen Chang, Jonathan Ho, and Irfan Essa. Discrete
 555 predictor-corrector diffusion models for image synthesis. In *The Eleventh International Confer-
 556 ence on Learning Representations*, 2023.
- 557 Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-
 558 lm improves controllable text generation. *Advances in Neural Information Processing Systems*,
 559 35:4328–4343, 2022.
- 560 Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
 561 of the data distribution. In *Forty-first International Conference on Machine Learning*, 2024.
- 562 Justin Lovelace, Varsha Kishore, Chao Wan, Eliot Shekhtman, and Kilian Q Weinberger. Latent
 563 diffusion for language generation. *Advances in Neural Information Processing Systems*, 36, 2024.
- 564 Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan Yang,
 565 Yandong Li, Tommi Jaakkola, Xuhui Jia, et al. Inference-time scaling for diffusion models beyond
 566 scaling denoising steps. *arXiv preprint arXiv:2501.09732*, 2025.
- 567 Viacheslav Meshchaninov, Egor Chimbulatov, Alexander Shabalin, Aleksandr Abramov, and
 568 Dmitry Vetrov. Compressed and smooth latent space for text diffusion modeling. *arXiv preprint
 569 arXiv:2506.21170*, 2025.
- 570 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
 571 Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. *arXiv preprint
 572 arXiv:2502.09992*, 2025.
- 573 Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking guidance
 574 for discrete state-space diffusion and flow models. *arXiv preprint arXiv:2406.01572*, 2024.
- 575 Andrey Okhotin, Dmitry Molchanov, Arkhipkin Vladimir, Grigory Bartosh, Viktor Ohanesian,
 576 Aibek Alanov, and Dmitry P Vetrov. Star-shaped denoising diffusion probabilistic models. *Ad-
 577 vances in Neural Information Processing Systems*, 36:10038–10067, 2023.
- 578 Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan
 579 Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean data.
 580 *arXiv preprint arXiv:2406.03736*, 2024.
- 581 Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open
 582 dataset of high-quality mathematical web text. *arXiv preprint arXiv:2310.06786*, 2023.
- 583 Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi,
 584 and Zaid Harchaoui. Mauve: Measuring the gap between neural text and human text using diver-
 585 gence frontiers. *Advances in Neural Information Processing Systems*, 34:4816–4828, 2021.

- 594 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 595 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.
 596
- 597 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
 598 rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
 599 mark. *arXiv preprint arXiv:2311.12022*, 2023.
- 600 Subham Sekhar Sahoo, Marianne Arriola, Aaron Gokaslan, Edgar Mariano Marroquin, Alexan-
 601 der M Rush, Yair Schiff, Justin T Chiu, and Volodymyr Kuleshov. Simple and effective masked
 602 diffusion language models. In *The Thirty-eighth Annual Conference on Neural Information Pro-
 603 cessing Systems*, 2024a. URL <https://openreview.net/forum?id=L4uaAR4ArM>.
- 604 Subham Sekhar Sahoo, Aaron Gokaslan, Christopher De Sa, and Volodymyr Kuleshov. Diffu-
 605 sion models with learned adaptive noise. In *The Thirty-eighth Annual Conference on Neural
 606 Information Processing Systems*, 2024b. URL <https://openreview.net/forum?id=1oMa99A4p8>.
- 607 Yair Schiff, Subham Sekhar Sahoo, Hao Phung, Guanghan Wang, Sam Boshar, Hugo Dalla-torre,
 608 Bernardo P de Almeida, Alexander Rush, Thomas Pierrot, and Volodymyr Kuleshov. Simple
 609 guidance mechanisms for discrete diffusion models. *arXiv preprint arXiv:2412.10193*, 2024.
- 610 Alexander Shabalin, Viacheslav Meshchaninov, Egor Chimbulatov, Vladislav Lapikov, Roman Kim,
 611 Grigory Bartosh, Dmitry Molchanov, Sergey Markov, and Dmitry Vetrov. Tencdm: Under-
 612 standing the properties of the diffusion model in the space of language model encodings. In *Proceed-
 613 ings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 25110–25118, 2025.
- 614 Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K Titsias. Simplified and gener-
 615 alized masked diffusion for discrete data. *arXiv preprint arXiv:2406.04329*, 2024.
- 616 Raghad Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and
 617 Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
 618 models. *arXiv preprint arXiv:2501.06848*, 2025.
- 619 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 620 learning using nonequilibrium thermodynamics. In *International conference on machine learn-
 621 ing*, pp. 2256–2265. PMLR, 2015.
- 622 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv
 623 preprint arXiv:2010.02502*, 2020.
- 624 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 625 *Advances in neural information processing systems*, 32, 2019.
- 626 Dimitri von Rütte, Janis Fluri, Yuhui Ding, Antonio Orvieto, Bernhard Schölkopf, and Thomas
 627 Hofmann. Generalized interpolating discrete diffusion. *arXiv preprint arXiv:2503.04482*, 2025.
- 628 Guanghan Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking discrete
 629 diffusion models with inference-time scaling. In *ICLR 2025 Workshop on Deep Generative Model
 630 in Machine Learning: Theory, Principle and Efficacy*.
- 631 Chengyue Wu, Hao Zhang, Shuchen Xue, Zhijian Liu, Shizhe Diao, Ligeng Zhu, Ping Luo, Song
 632 Han, and Enze Xie. Fast-dllm: Training-free acceleration of diffusion llm by enabling kv cache
 633 and parallel decoding. *arXiv preprint arXiv:2505.22618*, 2025.
- 634 Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
 635 Kong. Dream 7b, 2025a. URL <https://hkunlp.github.io/blog/2025/dream>.
- 636 Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
 637 Kong. Dream 7b: Diffusion large language models. *arXiv preprint arXiv:2508.15487*, 2025b.
- 638 Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and Graham Neubig. Learning to
 639 mine aligned code and natural language pairs from stack overflow. In *Proceedings of the 15th
 640 international conference on mining software repositories*, pp. 476–486, 2018.

- 648 Lingxiao Zhao, Xueying Ding, Lijun Yu, and Leman Akoglu. Improving and unifying
649 discrete&continuous-time discrete denoising diffusion. *arXiv preprint arXiv:2402.03701*, 2024a.
650
- 651 Siyan Zhao, Devaansh Gupta, Qingqing Zheng, and Aditya Grover. d1: Scaling reasoning in diffusion
652 large language models via reinforcement learning. *arXiv preprint arXiv:2504.12216*, 2025.
- 653 Yixiu Zhao, Jiaxin Shi, Lester Mackey, and Scott Linderman. Informed correctors for discrete
654 diffusion models. *arXiv preprint arXiv:2407.21243*, 2024b.
- 655
- 656 Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang. Masked
657 diffusion models are secretly time-agnostic masked models and exploit inaccurate categorical
658 sampling. *arXiv preprint arXiv:2409.02908*, 2024.
- 659 Lin Zheng, Jianbo Yuan, Lei Yu, and Lingpeng Kong. A reparameterized discrete diffusion model
660 for text generation. *arXiv preprint arXiv:2302.05737*, 2023.
- 661
- 662
- 663
- 664
- 665
- 666
- 667
- 668
- 669
- 670
- 671
- 672
- 673
- 674
- 675
- 676
- 677
- 678
- 679
- 680
- 681
- 682
- 683
- 684
- 685
- 686
- 687
- 688
- 689
- 690
- 691
- 692
- 693
- 694
- 695
- 696
- 697
- 698
- 699
- 700
- 701

702	APPENDIX	
703		
704		
705		
706	A Proof of claim 1	15
707		
708	B Related works	16
709	B.1 Discrete diffusion	16
710	B.2 Text latent diffusion	16
711	B.3 Masked diffusion	16
712	B.4 Large language diffusion models	16
713	C Additional results	17
714	C.1 Hyperparameter tuning in ReMDM	17
715	C.2 Ablation on loop size	17
716	C.3 The quality-diversity trade-off: tuning the error predictor temperature	18
717	C.4 Unconditional generation results on OpenWebText	19
718	C.5 Robustness of the error predictor	20
719	D Computational overhead	20
720		
721	E Implementation details	22
722	E.1 Unconditional text generation on OpenWebText	22
723	E.2 Code generation on Conala	22
724	E.3 Large-scale experiments	22
725	F Visualizing the refinement process	23
726		
727	G Practical guidance for hyperparameter tuning	24
728		
729	H Limitations	25
730		
731		
732		
733		
734		
735		
736		
737		
738		
739		
740		
741		
742		
743		
744		
745		
746		
747		
748		
749		
750		
751		
752		
753		
754		
755		

756 A PROOF OF CLAIM 1
757

758 In this section, we prove Claim 1: *The Variational Lower Bound (VLB) for the star-shaped process*
759 *simplifies to a weighted cross-entropy objective, which has the same functional form as the standard*
760 *masked diffusion objective but with different timestep-dependent weights.*

761 We begin with the standard VLB formulation for a non-Markovian process, which seeks to maximize
762 the log-likelihood $\log p_\theta(\mathbf{x}_0)$:
763

$$764 \log p_\theta(\mathbf{x}_0) \geq \mathbb{E}_{q(\mathbf{x}_{1:T} | \mathbf{x}_0)} \left[\log \frac{p_\theta(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T} | \mathbf{x}_0)} \right] =: \mathcal{L}_{\text{VLB}} \quad (7)$$

766 By parameterizing the generative process as $p_\theta(\mathbf{x}_{0:T}) = p(\mathbf{x}_T) \prod_{t=1}^T p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t)$ and defining
767 our star-shaped forward process as $q(\mathbf{x}_{1:T} | \mathbf{x}_0) = \prod_{t=1}^T q(\mathbf{x}_t | \mathbf{x}_0)$, we can decompose the VLB:
768

$$769 \mathcal{L}_{\text{VLB}} = \mathbb{E}_q \left[\log p_\theta(\mathbf{x}_0 | \mathbf{x}_1) - \sum_{t=2}^T \text{KL} (q(\mathbf{x}_{t-1} | \mathbf{x}_0) \| p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t)) \right] - \text{KL}(q(\mathbf{x}_T | \mathbf{x}_0) \| p(\mathbf{x}_T)). \quad (8)$$

770 The final term is a constant with respect to the model parameters θ and can be ignored during
771 optimization. The first term, $\mathbb{E}_q[\log p_\theta(\mathbf{x}_0 | \mathbf{x}_1)]$, is a reconstruction term, which already matches
772 the form of a cross-entropy loss. Our goal is to show that the summation of KL divergence terms
773 can also be simplified into this form.

774 Let's analyze a single KL divergence term from the summation for a given timestep t :

$$775 \mathcal{L}_t = \text{KL} (q(\mathbf{x}_{t-1} | \mathbf{x}_0) \| p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t)). \quad (9)$$

776 We substitute the definitions for the distributions involved:

- 777 • The true posterior is $q(\mathbf{x}_{t-1} | \mathbf{x}_0) = \text{Cat}(\mathbf{x}_{t-1}; \alpha_{t-1} \mathbf{x}_0 + (1 - \alpha_{t-1}) \mathbf{m})$.
- 778 • The model's reverse transition is $p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t) = q(\mathbf{x}_{t-1} | \mathbf{x}_0 = \hat{\mathbf{x}}_0)$, where $\hat{\mathbf{x}}_0 =$
779 $f_\theta(\mathbf{x}_t, t)$. This gives $p_\theta(\mathbf{x}_{t-1} | \mathbf{x}_t) = \text{Cat}(\mathbf{x}_{t-1}; \alpha_{t-1} \hat{\mathbf{x}}_0 + (1 - \alpha_{t-1}) \mathbf{m})$.

780 The KL divergence is therefore between two categorical distributions of the same family, both of
781 which are interpolations between a one-hot vector (the true \mathbf{x}_0 or the predicted $\hat{\mathbf{x}}_0$) and the mask
782 token \mathbf{m} . The KL term becomes:

$$783 \mathcal{L}_t = \sum_{v=1}^{|V|} (\alpha_{t-1} x_{0,v} + (1 - \alpha_{t-1}) m_v) \log \frac{\alpha_{t-1} x_{0,v} + (1 - \alpha_{t-1}) m_v}{\alpha_{t-1} \hat{x}_{0,v} + (1 - \alpha_{t-1}) m_v} \quad (10)$$

784 Since \mathbf{x}_0 is a one-hot vector corresponding to a non-mask token (let's say at index k), and \mathbf{m} is a
785 one-hot vector for the mask token, this sum simplifies significantly.

$$786 \mathcal{L}_t = \alpha_{t-1} \log \frac{\alpha_{t-1}}{\alpha_{t-1} \hat{x}_{0,k}} + (1 - \alpha_{t-1}) \log \frac{1 - \alpha_{t-1}}{1 - \alpha_{t-1}} \quad (11)$$

$$787 = \alpha_{t-1} \log \frac{1}{\hat{x}_{0,k}} + 0 \quad (12)$$

$$788 = -\alpha_{t-1} \log \hat{x}_{0,k} \quad (13)$$

789 Since $\hat{x}_{0,k}$ is the probability assigned by the model $f_\theta(\mathbf{x}_t, t)$ to the true token, this is precisely the
790 negative log-likelihood, or cross-entropy loss:

$$791 \mathcal{L}_t = -\alpha_{t-1} \log p_\theta(\mathbf{x}_0 | \mathbf{x}_t). \quad (14)$$

792 Now, we can substitute this simplified form back into the full VLB expression from Eq. equation 8.
793 The loss to be minimized (the negative VLB) is:

$$794 \mathcal{L}_{\text{final}} = -\mathcal{L}_{\text{VLB}} \approx \mathbb{E}_q \left[-\log p_\theta(\mathbf{x}_0 | \mathbf{x}_1) + \sum_{t=2}^T \mathcal{L}_t \right] \quad (15)$$

$$795 = \mathbb{E}_q \left[-\log p_\theta(\mathbf{x}_0 | \mathbf{x}_1) - \sum_{t=2}^T \alpha_{t-1} \log p_\theta(\mathbf{x}_0 | \mathbf{x}_t) \right] \quad (16)$$

810 This is a sum of weighted cross-entropy losses. By writing this as a single expectation over a
 811 timestep t sampled uniformly from $\{1, \dots, T\}$, we get:
 812

$$813 \quad \mathcal{L}_{\text{final}} = \mathbb{E}_{t \sim \mathcal{U}, \mathbf{x}_0, \mathbf{x}_t} [-w'_t \log p_{\theta}(\mathbf{x}_0 \mid \mathbf{x}_t)] \quad (17)$$

815 where w'_t are new, time-dependent weights derived from the coefficients (e.g., $w'_1 = 1$, and
 816 $w'_t = \alpha_{t-1}$ for $t > 1$, before normalization). This confirms that the training objective for the star-
 817 shaped process simplifies to the same functional form as the standard masked diffusion objective,
 818 completing the proof.

820 B RELATED WORKS

822 B.1 DISCRETE DIFFUSION

824 Discrete diffusion extends denoising ideas from continuous domains (Sohl-Dickstein et al., 2015;
 825 Ho et al., 2020; Song et al., 2020) to categorical spaces by defining token-level noising/posterior
 826 transitions. Early work formalized absorbing/structured corruption for tokens (Austin et al., 2021a;
 827 Campbell et al., 2022), while ratio-estimation and reparameterized objectives improved likelihoods
 828 and stability for text/code (Lou et al., 2024; Zheng et al., 2023; Zhao et al., 2024a). Alternative
 829 transport in discrete spaces—discrete flow matching and discrete flows—offers non-diffusive paths
 830 and guidance interfaces (Gat et al., 2024; Campbell et al., 2024; Nisonoff et al., 2024). Practical
 831 samplers and correctors further enhance decoding (Lezama et al., 2023; Zhao et al., 2024b), and
 832 analyses clarify properties of absorbing processes and conditional distributions (Ou et al., 2024).

834 B.2 TEXT LATENT DIFFUSION

836 A complementary line runs diffusion in continuous text spaces. Diffusion-LM denoises word em-
 837 beddings and enables controllable text via plug-and-play guidance (Li et al., 2022). Two-stage la-
 838 tent approaches compress sequences with a pretrained autoencoder and diffuse in the compact latent
 839 space, improving quality and reducing the step budget across unconditional and conditional tasks
 840 (Lovelace et al., 2024; Meshchaninov et al., 2025; Shabalin et al., 2025).

842 B.3 MASKED DIFFUSION

844 Masked-token diffusion adopts BERT-style prediction with iterative unmasking for fast, parallel
 845 generation. MaskGIT established the paradigm on tokenized images with few refinement rounds
 846 (Chang et al., 2022). For language, simple absorbing-mask diffusion with a clean training recipe
 847 narrows the perplexity gap to autoregressive LMs and supports flexible (semi-)autoregressive dec-
 848 encoding (Sahoo et al., 2024a). A simplified continuous-time view yields a weighted cross-entropy ELBO
 849 and state-dependent masking schedules that improve text and discrete-image modeling (Shi et al.,
 850 2024). Inference-time revision/guidance further boosts quality: remasking enables iterative correc-
 851 tion (Wang et al.), discrete guidance improves controllability (Schiff et al., 2024; Nisonoff et al.,
 852 2024), informed correctors sharpen updates (Zhao et al., 2024b), hybrids expand self-correction
 853 regimes (von Rütte et al., 2025), and analyses examine time-agnostic behavior and sampling (Zheng
 854 et al., 2024).

855 B.4 LARGE LANGUAGE DIFFUSION MODELS

857 Scaling diffusion for language shows competitive likelihoods and strong zero-shot behavior while
 858 keeping parallel decoding. GPT-2-scale masked diffusion narrows the gap to autoregressive trans-
 859 formers (Sahoo et al., 2024a), and simplified objectives with state-dependent schedules push per-
 860 formance and practicality (Shi et al., 2024). Recent efforts include blockwise decoding between AR
 861 and diffusion (Arriola et al., 2025), inference-time scaling/steering (Ma et al., 2025; Singhal et al.,
 862 2025), and domain-focused large models for reasoning/coding (Nie et al., 2025; Zhao et al., 2025).
 863 Prominent systems include *LLaDA* (Nie et al., 2025), *Dream 7B* (Ye et al., 2025a), and *DiffuCoder*
 (Gong et al., 2025).

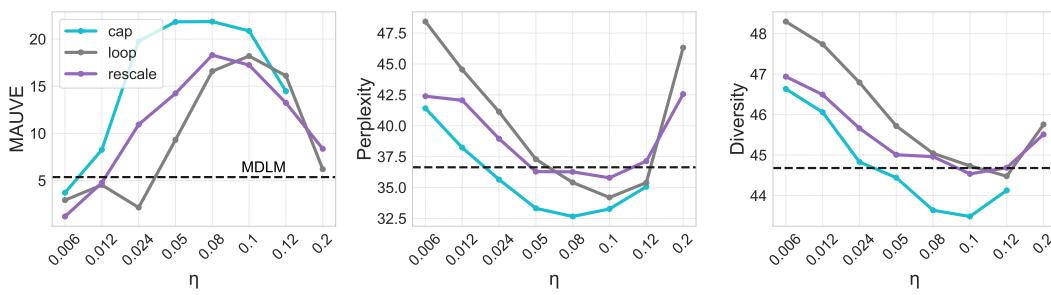


Figure 6: **Performance of ReMDM as a function of the hyperparameter η .** Results are shown for three different remasking schedules. The dashed line indicates the performance of the baseline MDLM sampler. The plots reveal a high sensitivity to the choice of η , with suboptimal values often performing worse than the baseline.

C ADDITIONAL RESULTS

C.1 HYPERPARAMETER TUNING IN REMDM

A significant practical limitation of the ReMDM sampler is its high sensitivity to the remasking hyperparameter, η . This sensitivity makes the sampler’s performance brittle and necessitates a costly, non-trivial tuning process to achieve any benefit over simpler baselines. In this section, we empirically quantify this dependency and demonstrate that the optimal configuration for η is not universal, but must be determined independently for each remasking schedule.

To analyze this, we conduct an ablation study on the value of η for three different remasking schedules proposed by the authors: ‘cap’, ‘loop’, and ‘rescale’. The experiments are performed on the OWT dataset, generating sequences of length 512 with 128 sampling steps.

The results, presented in Figure 6, confirm our hypothesis and reveal two significant drawbacks of the ReMDM approach. First, performance across all metrics (MAUVE, Perplexity, and Diversity) is extremely sensitive to the choice of η . As the plots demonstrate, the relationship is non-monotonic and exhibits a “sweet spot”; a small deviation from this optimal value can cause a dramatic drop in performance. Crucially, an improper configuration of η can render the remasking mechanism actively detrimental, with performance falling significantly below that of the standard, non-refining MDLM baseline.

Second, the optimal value for η is not universal but must be independently and carefully tuned for each remasking schedule. Our ablation reveals that the optimal setting for the ‘cap’ and ‘rescale’ schedules is $\eta = 0.08$, whereas the ‘loop’ schedule achieves its peak performance at $\eta = 0.1$. This necessity for an extensive, per-schedule hyperparameter search represents a significant practical limitation, as it requires numerous runs to find a configuration that provides a tangible benefit over simpler baselines. This motivates our work on a star-shape sampler that is inherently more robust and efficient.

C.2 ABLATION ON LOOP SIZE

As previously described, refinement process consists of: (1) an initial drafting phase with MDLM, (2) an iterative refinement “loop” at a fixed noise level, and (3) a final completion phase with MDLM. In this section, we investigate how the number of steps allocated to the refinement loop (the “loop size”) affects generation quality.

Setup. For this experiment, we generate 512-token sequences from OWT. The steps are allocated as follows: 115 steps for the initial MDLM draft, 13 steps for the final completion, and a variable number of steps for the central refinement loop. We vary them across a predefined grid and compare the performance of our guided sampler (G-Star-loop) against its unguided counterpart (Star-loop).

Results. The results, presented in Figure 7, reveal several key dynamics of the refinement process.

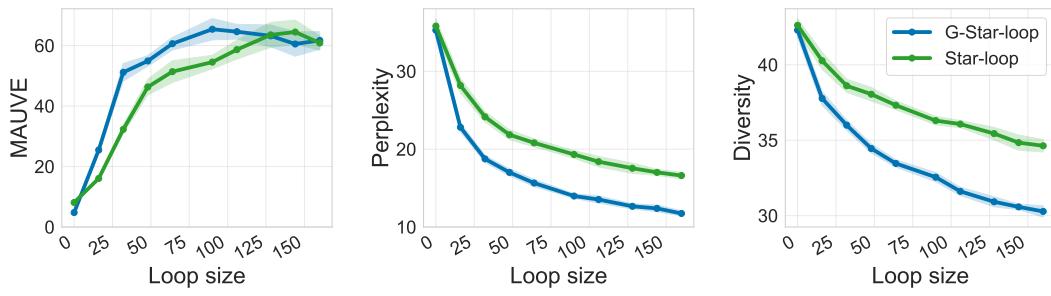


Figure 7: Performance as a function of the refinement loop size. Increasing the refinement budget generally improves quality (lower PPL, higher MAUVE) but reduces diversity. Our guided G-Star-loop demonstrates a much steeper rate of improvement, achieving higher quality with fewer steps. The MAUVE score eventually peaks and declines as the loss of diversity outweighs quality gains.

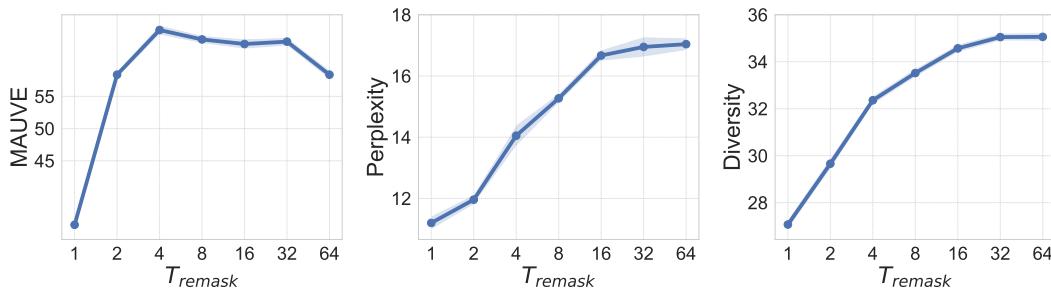


Figure 8: **Performance as a function of the error predictor temperature (T_{remask})**. The plots reveal a clear trade-off: lower temperatures improve quality (PPL) at the cost of diversity, while higher temperatures increase diversity at the cost of quality. The MAUVE score, which balances both, peaks at an optimal temperature of $T \approx 4 - 32$.

First, for both samplers, increasing the number of refinement steps generally leads to higher-quality text, as evidenced by a monotonic decrease in perplexity and an initial rise in the MAUVE score. This confirms the efficacy of iterative refinement. However, our guided G-Star-loop is substantially more sample-efficient, achieving a much steeper improvement curve. It consistently reaches a higher quality ceiling with fewer refinement steps compared to the unguided Star-loop.

Second, the refinement process introduces a clear trade-off between quality and diversity. As shown in the rightmost panel, a larger loop size consistently leads to a reduction in sample diversity for both methods. This can be interpreted as the model converging towards higher-quality modes in the data distribution, pruning away “noisy” or less coherent generations, but at the risk of reducing overall variety.

Finally, this quality-diversity tension directly explains the behavior of the MAUVE score. As MAUVE balances both aspects, it initially rises with perplexity improvements but eventually peaks and begins to decline as the loss in diversity becomes too significant. This phenomenon is not an artifact of a specific sampler but appears to be an inherent property of intensive iterative refinement itself: with enough steps, any refinement process will inevitably improve perplexity at the cost of diversity.

C.3 THE QUALITY-DIVERSITY TRADE-OFF: TUNING THE ERROR PREDICTOR TEMPERATURE

We analyze the effect of the error predictor’s temperature, T_{remask} , a hyperparameter that scales the logits from g_ϕ before sampling. This temperature effectively controls the stochasticity of the remasking process, acting as an intuitive control knob for the sampler’s behavior. The experiment is conducted on the OWT dataset (512 tokens), using our guided sampler with the parameter-efficient error predictor configuration (a frozen 12-block MDLM backbone with a trainable classification head).

972
 973 Table 3: Unconditional generation results on OpenWebText for 512-token sequences, comparing
 974 various samplers and error predictor architectures. For each column, the **best** result is marked in
 975 bold, and the second-best is underlined.
 976

Method	Steps = 128			Steps = 256			Steps = 512		
	MAUVE \uparrow	PPL \downarrow	DIV \uparrow	MAUVE \uparrow	PPL \downarrow	DIV \uparrow	MAUVE \uparrow	PPL \downarrow	DIV \uparrow
MDLM	5.4	36.6	44.7	2.7	31.1	40.5	5.1	27.0	37.8
ReMDM-conf	5.8	41.3	<u>47.9</u>	12.2	36.6	<u>45.5</u>	13.2	35.0	45.1
ReMDM-cap $_{\eta=0.008}$	1.6	41.1	46.4	18.4	34.4	45.1	42.7	29.0	43.4
ReMDM-cap $_{\eta=0.08}$	23.4	33.5	43.8	46.1	24.1	40.0	46.5	17.6	35.7
ReMDM-loop $_{\eta=0.008}$	2.8	45.1	48.2	4.4	38.1	46.3	25.9	31.9	<u>44.8</u>
ReMDM-loop $_{\eta=0.1}$	18.1	34.9	44.7	44.7	26.7	42.1	67.7	20.7	39.3
ReMDM-rescale $_{\eta=0.015}$	2.0	64.7	45.1	10.3	54.3	43.6	22.7	45.3	41.7
ReMDM-rescale $_{\eta=0.08}$	16.1	36.4	44.8	34.7	28.4	41.7	46.9	22.0	38.5
Star-loop	18.1	34.9	44.7	44.7	26.7	42.1	67.7	20.7	39.3
Star+ $t_{on}=0.2$	11.7	32.4	41.5	34.3	24.5	38.3	45.5	14.7	31.3
G-Star-loop $_{1B,F}$	<u>44.8</u>	19.7	35.3	65.0	14.7	31.4	56.3	11.6	27.5
G-Star-loop $_{12B,H}$	57.3	<u>18.4</u>	36.2	<u>63.8</u>	<u>14.1</u>	32.4	50.1	<u>10.7</u>	27.9
G-Star-loop $_{12B,F}$	57.3	17.2	35.4	60.9	12.7	30.9	<u>58.6</u>	9.9	26.4
G-Star+ $t_{on}=0.2,12B$	40.1	19.5	36.5	51.6	14.4	31.7	48.9	10.7	26.9

992
 993 The results, presented in Figure 8, reveal a clear and non-monotonic relationship between the pre-
 994 predictor temperature and the overall generation quality as measured by MAUVE. This behavior is a
 995 direct consequence of an underlying trade-off between sample quality (Perplexity) and Diversity,
 996 which the temperature directly controls.

997 At low temperatures (e.g., $T = 1$), the predictor’s output becomes more deterministic, focusing
 998 the remasking on a small set of tokens with the highest predicted error probability. This leads to
 999 highly precise corrections of the most obvious errors, resulting in the best perplexity scores (middle
 1000 panel). However, this precision comes at the cost of significantly reduced diversity (right panel), as
 1001 the sampler explores a much narrower set of possible revisions.

1002 Conversely, as the temperature increases, the error probabilities become more uniform. In this
 1003 regime, the guided sampler’s behavior converges towards that of the unguided, Star-loop sampler.
 1004 This predictably increases sample diversity but degrades perplexity, as the error correction is no
 1005 longer targeted and becomes less effective.

1006 The MAUVE score, which balances both quality and diversity, peaks at a temperature of $T \approx 4 - 32$.
 1007 At this point, the sampler achieves an optimal balance between precise error correction and sufficient
 1008 generative variety. This analysis highlights that the predictor temperature serves as an important
 1009 lever for controlling the generation process, allowing practitioners to tailor the sampler’s behavior:
 1010 lower temperatures can be used for high-fidelity tasks where correctness is paramount, while higher
 1011 temperatures may be preferable for creative tasks where diversity is the primary goal.

1014 C.4 UNCONDITIONAL GENERATION RESULTS ON OPENWEBTEXT

1015
 1016 Complementary to Figure 5 in the main text, Table 3 summarizes extended unconditional genera-
 1017 tion results on OpenWebText for 512-token sequences. We adopt the full suite of ReMDM (Wang
 1018 et al.) sampling protocols and report each both with the authors’ original remasking hyperparam-
 1019 eters and with tuned alternatives, to provide a faithful comparison: ReMDM-cap with $\eta = 0.008$
 1020 (original) and $\eta = 0.08$ (tuned), ReMDM-loop with $\eta = 0.008$ (original) and $\eta = 0.1$ (tuned), and
 1021 ReMDM-rescale with $\eta = 0.015$ (original) and $\eta = 0.08$ (tuned), alongside ReMDM-conf as intro-
 1022 duced in prior work; a broader discussion on hyperparameter sensitivity in ReMDM can be found in
 1023 Appendix C.1.

1024 Complementary to Figure 4, we additionally include Star+ and G-Star+ variants with $t_{on} = 0.2$ to
 1025 contrast our optimal loop-like scheduler with simpler cap-like refinement strategy under the same
 computational budgets.

1026 **Table 4: Results for an error predictor trained on OWT and evaluated on out-of-domain datasets.**
 1027 For each evaluation dataset, we report the validation perplexity (PPL val) of the OWT-pretrained
 1028 diffusion model and the binary classification metrics of the error predictor.

Evaluation dataset	Domain	PPL val	Accuracy	AUC-ROC
OWT	General	≤ 22.89	0.88	0.94
TinyStories	Stories	≤ 12.72	0.88	0.98
OpenWebMath	Math	≤ 33.72	0.85	0.92
CNN/DailyMail	News	≤ 25.69	0.88	0.94
The Stack	Python code	≤ 31.96	0.84	0.90

C.5 ROBUSTNESS OF THE ERROR PREDICTOR

In the experiments above, the error predictor was both trained and evaluated on the same dataset. An important question, however, is how sensitive the predictor is to the choice of training data and to what extent it generalizes to unseen domains. To investigate this, we trained the error predictor on the OWT dataset and evaluated it on several datasets spanning diverse domains:

- TinyStories Eldan & Li (2023): a synthetic dataset of short stories written in simple English at the comprehension level of a typical 3–4-year-old child.
- OpenWebMath Paster et al. (2023): a dataset of high-quality mathematical text filtered from Common Crawl.
- CNN/DailyMail Hermann et al. (2015): a dataset of news articles authored by professional journalists at CNN and the Daily Mail.
- The Stack Kocetkov et al. (2022): a large-scale code dataset containing over 6 TB of source code in 358 programming languages, from which we use only the Python subset.

To assess both the diffusion model’s performance and the error predictor’s generalization, we randomly sampled 10,000 examples from each evaluation dataset. We analyze the diffusion model’s behavior on these new domains by reporting its validation perplexity (PPL val). We then evaluate the OWT-trained error predictor’s ability to identify these errors using two standard binary classification metrics: Accuracy (at a 0.5 probability threshold) and AUC-ROC. The AUC-ROC score is particularly relevant as it measures the predictor’s quality across all thresholds, which is crucial given that our G-Star sampler does not rely on a fixed threshold.

The results, presented in Table 4, show several key trends. The TinyStories dataset appears to be the simplest case for both the diffusion model and the error predictor, which is evident from its minimal validation perplexity (12.72) and the predictor’s near-perfect AUC-ROC score (0.98). Conversely, the CNN/DailyMail dataset seems closest to the OWT training data, as its validation perplexity (25.69) is near the OWT baseline (22.89), and it achieves an identical AUC-ROC score (0.94). Unsurprisingly, the most challenging domains for both models are the specialized OpenWebMath and The Stack (Python code) datasets, which show higher perplexity and slightly lower predictor performance. Overall, however, the drop in predictor quality across these diverse domains is not severe. This suggests that the error predictor successfully learns general patterns of diffusion errors, allowing it to generalize effectively even when trained on only a single dataset.

D COMPUTATIONAL OVERHEAD

Time overhead. We quantify the deployment cost of the different samplers by measuring end-to-end wall-clock latency on OpenWebText with sequence length $L = 512$ and $T \in \{128, 256, 512\}$ diffusion steps. All runs use batch size 1 on a single H200 GPU. Table 5 reports, for each method, the total generation time per 512-token sample and the corresponding number of effective Transformer forward passes (NFEs), where one NFE denotes a single pass of the full backbone over a length- L sequence.

Table 5: Wall-clock generation time and number of Transformer forward passes (NFEs) per 512-token sample on OpenWebText (batch size 1). Times are reported as mean \pm standard deviation in seconds.

Method	Steps T	Time [s]	NFEs
AR (KV cache)	512	2.28 ± 0.03	512
AR (no KV cache)	512	2.51 ± 0.01	512
MDLM / ReMDM / Star	128	2.26 ± 0.09	128
G-Star-loop _{1B,F}	128	2.60 ± 0.10	133
G-Star-loop _{12B,H}	128	3.43 ± 0.10	192
G-Star-loop _{12B,F}	128	3.43 ± 0.10	192
G-Star+ _{$t_{\text{on}}=0.2, 12B$}	128	2.71 ± 0.10	154
MDLM / ReMDM / Star	256	4.56 ± 0.03	256
G-Star-loop _{1B,F}	256	5.24 ± 0.02	267
G-Star-loop _{12B,H}	256	6.96 ± 0.07	384
G-Star-loop _{12B,F}	256	6.96 ± 0.07	384
G-Star+ _{$t_{\text{on}}=0.2, 12B$}	256	5.49 ± 0.06	308
MDLM / ReMDM / Star	512	9.16 ± 0.07	512
G-Star-loop _{1B,F}	512	10.44 ± 0.08	533
G-Star-loop _{12B,H}	512	13.93 ± 0.08	768
G-Star-loop _{12B,F}	512	13.93 ± 0.08	768
G-Star+ _{$t_{\text{on}}=0.2, 12B$}	512	10.84 ± 0.11	615

As autoregressive (AR) baselines we use a GPT-2 small (Radford et al., 2019) whose parameter counts are matched to MDLM backbone. We consider a latency-optimized AR model with key-value (KV) caching, and a variant that recomputes the full prefix at every step (“AR-w/o KV”). The latter is closer to our diffusion setting, where each update operates on the full sequence, and helps disentangle the effect of cache reuse from the intrinsic cost of masked diffusion. In principle, similar KV-based accelerations (e.g., (Wu et al., 2025) could also be adapted for masked diffusion; see Appendix H for a broader discussion of diffusion speed-up techniques.

For the diffusion baselines, MDLM, ReMDM, and Star all use the same backbone with no auxiliary networks. Their compute therefore coincides, with $\text{NFE}_{\text{MDLM}} = \text{NFE}_{\text{ReMDM}} = \text{NFE}_{\text{Star}} = T$; Star only changes the masking policy and introduces no extra passes. G-Star augments this baseline with guidance that is active only on a subset of the trajectory. Let $\Delta = t_{\text{off}} - t_{\text{on}}$ be the fraction of guided steps, and let D denote the number of Transformer blocks in the backbone while B is the number of blocks used by the predictor. Measured in units of a full-depth pass, each guided step then contributes (B/D) additional NFEs, so the total cost is

$$\text{NFE}_{\text{G-Star}} = T + T\Delta \frac{B}{D} = (1 + \Delta \frac{B}{D}) T.$$

In our configurations, the backbone has $D = 12$ blocks. G-Star-loop_{12B} uses a full-depth predictor ($B = 12$) with $t_{\text{on}} = 0.55$, $t_{\text{off}} = 0.05$, giving $\text{NFE} = 1.5T$; G-Star-loop_{1B} uses a single-block predictor ($B = 1$) with the same $t_{\text{on}} = 0.55$, $t_{\text{off}} = 0.05$, yielding $\text{NFE} = (1 + 0.5 \cdot \frac{1}{12})T \approx 1.04T$; and G-Star⁺ uses a full-depth predictor ($B = 12$) with $t_{\text{on}} = 0.2$, $t_{\text{off}} = 0$, giving $\text{NFE} = 1.2T$. The measured wall-clock times in Table 5 closely follow these ratios: the G-Star variants incur a controlled $(1 + \Delta B/D)$ -factor overhead.

Memory overhead. Star uses exactly the same backbone and parameterization as the underlying MDLM and therefore has no memory overhead. For G-Star, peak activation memory is essentially unchanged: the predictor operates on the current logits and is run sequentially after the base diffusion step, so we do not need to keep additional large activations in memory, only per-token error scores and the index set of remasked positions.

The remaining overhead comes from parameters. In the G-Star-loop_{12B,F} variant we store an additional full 12-block Transformer as the predictor. In the G-Star-loop_{1B,F} variant we only add a single Transformer block. In the parameter-efficient G-Star-loop_{12B,H} variant we do not store a second backbone at all and only add a small token-wise classification head on top of the existing model.

1134 Table 6: Benchmark-specific sequence lengths and the noise level α_{on} for the refinement loop.
1135

Benchmark	Sequence Length (L)	α_{on}
MMLU	128	0.88
MMLU-PRO	128	0.88
GSM8K	256	0.95
GPQA	128	0.88
HumanEval	768	0.98
MBPP	1024	0.98
IFEval	1280	0.98

1145 E IMPLEMENTATION DETAILS
11461147 E.1 UNCONDITIONAL TEXT GENERATION ON OPENWEBTEXT
11481149 For this experiment, we closely follow the original MDLM setup for the backbone, and only add a
1150 linear head for error predictor training.
11511152 **Error predictor head training.** The error predictor head, g_ϕ , was trained for 50,000 steps on a
1153 single H200 GPU approximately 48 hours using a global batch size of 512. For optimization, we
1154 used AdamW with a learning rate of 1e-4. The learning rate was managed by a constant schedule
1155 with warmup with 2,500 warmup steps.
11561157 E.2 CODE GENERATION ON CONALA
11581159 **Dataset and preprocessing.** We use the Conala benchmark (Yin et al., 2018), which contains
1160 Python code snippets paired with natural language intents. We construct our dataset splits as follows:
1161 the train set consists of 2,000 curated samples plus 594,000 samples from the mined subset; the hold-
1162 out set for training the error predictor contains 380 curated samples; and the test set contains 500
1163 samples. All prompts and code snippets were tokenized using the gpt-2 tokenizer, with sequences
1164 truncated or padded to a maximum length of 128 tokens.
11651166 **MDLM baseline training.** Our baseline is a conditional Masked Diffusion Language Model
1167 (MDLM), following the 12-layer Transformer architecture of Sahoo et al. (2024a). We employed a
1168 two-stage training procedure. First, the model was pre-trained for 50,000 steps on the full train set
1169 (mined and curated combined) with a batch size of 1024. Subsequently, the model was fine-tuned
1170 for an additional 10,000 steps exclusively on the curated portion of the training data, using a smaller
1171 batch size of 512. For both stages, we used the AdamW optimizer with a learning rate of 3e-4.
11721173 **Error predictor training.** The error predictor, g_ϕ , for our G-Star sampler was trained on the
1174 hold-out split. We employed a parameter-efficient setup: the predictor’s backbone consists of the
1175 full 12-layer transformer from our trained conditional MDLM with its weights frozen. We then
1176 added a single linear classification head on top of the final layer’s token representations, and trained
1177 only this head to predict token-level errors, conditioned on the same prompts. We used the AdamW
1178 optimizer with a learning rate of 3e-4 and a batch size of 380. The model was trained for 500
1179 steps. **The training takes 1 hour on a single H200 GPU.**
1180

E.3 LARGE-SCALE EXPERIMENTS

1181 This section details the experimental setup used for the large-scale evaluation on the Dream-Instruct
1182 7B model, with results presented in Table 1.
11831184 **Models and benchmarks.** We use the publicly available Dream-Instruct 7B model as our base
1185 model. The evaluation is conducted on a diverse suite of seven benchmarks: MMLU (Hendrycks
1186 et al., 2020), MMLU-PRO, GSM8K (Cobbe et al., 2021), GPQA (Rein et al., 2023), Hu-
1187 manEval (Chen et al., 2021), MBPP (Austin et al., 2021b), and IFEval. The sequence length for
1188 each benchmark is specified in Table 6.
1189

1188
 1189 **Baseline sampling configuration.** Our reproduced baseline follows the official configuration from
 1190 the Dream repository. The sampling process consists of a number of steps equal to the sequence
 1191 length ($T = \text{seq_len}$), where one mask is denoised at each step. The diffusion temperature is set to
 1192 0.1. The confidence score for selecting which token to unmask is calculated as the entropy of the
 1193 predicted logits, as specified by their ‘alg=entropy’ setting.
 1194

1195 **G-Star sampler configuration.** For our method, we augment the baseline setup by integrating a
 1196 loop-based refinement strategy within the same computational budget. The total number of sampling
 1197 steps is kept identical to the baseline ($T = \text{seq_len}$), but we repurpose 10% of these steps for
 1198 refinement. Specifically, 90% of the steps are used for standard progressive denoising, while the
 1199 remaining 10% are dedicated to refinement loops where, at each step, we remask $N = 15$ tokens
 1200 identified as errors by our predictor. All other parameters, such as the diffusion temperature (0.1)
 1201 and the base confidence metric (entropy), are kept identical to the baseline for a fair comparison.
 1202 The error predictor temperature was set to 0.
 1203

1204 **Error predictor training.** The error predictor g_ϕ for our G-Star sampler was trained on the Tulu 3
 1205 dataset (Lambert et al., 2024). We employed a parameter-efficient strategy: the predictor’s backbone
 1206 consists of the full, frozen Dream-Instruct 7B model. We added a lightweight classification head,
 1207 consisting of an RMSNorm layer and a linear layer, and trained only this head. The predictor was
 1208 trained for 70k steps on 8 H200 GPUs over 24 hours. We used a global batch size of 128 and
 1209 the AdamW optimizer with a learning rate of 3×10^{-4} , $\beta_1 = 0.9$, $\beta_2 = 0.999$, and a constant
 1210 learning-rate schedule with a warmup of 5000 steps.
 1211

1212 F VISUALIZING THE REFINEMENT PROCESS

1213 To provide a qualitative and intuitive understanding of the difference between our guided sampler
 1214 and its unguided counterpart, we visualize their remasking behavior over the course of a full genera-
 1215 tion. The following figures illustrate the set of masked tokens (orange dots) at each step of the
 1216 generation process for a 512-token sequence generated in 256 steps. Both processes are divided
 1217 into two distinct phases: an initial MDLM drafting phase (steps 0-113), where tokens are pro-
 1218 gressively unmasked, a subsequent refinement phase (steps 114-240), where remasking occurs, and final
 1219 MDLM generation phase (steps 241-256).
 1220

1221 **Analysis of remasking strategies.** A direct comparison of Figure 10 and Figure 9 reveals the
 1222 fundamental difference between the two refinement strategies. The unguided sampler operates via
 1223 a stochastic, unstructured process, treating all tokens as equally likely candidates for revision. In
 1224 stark contrast, our guided sampler demonstrates an intelligent and structured approach. The error
 1225 predictor identifies and clusters likely errors, enabling the sampler to perform more meaningful
 1226 revisions. The emergence of “continuous segments” in the guided plot is particularly significant; it
 1227 provides strong qualitative evidence that our method moves beyond simple token-level fixes and is
 1228 capable of performing coherent, phrase-level refinement, a feat that is extremely improbable under
 1229 the indiscriminate selection of the unguided approach.
 1230

1231 **Text generation example of G-Star sampler.** In addition, in this section, we provide examples
 1232 of text generation using G-Star and the unguided Star. Figure 11 provides a visual snapshot of
 1233 the refinement process, showing steps 90 through 95. Both G-Star+ (top) and the unguided Star+
 1234 (bottom) begin this phase with an identical text draft. The tokens highlighted in red are those selected
 1235 for remasking at each step.
 1236

1237 A clear difference in strategy is immediately visible. The unguided Star+ sampler (bottom) exhibits
 1238 an unfocused, token-level remasking, selecting apparently random tokens for revision (e.g., steps 91
 1239 and 94). This indiscriminate approach is inefficient, as it may remask already correct tokens while
 1240 failing to target problematic phrases. In stark contrast, G-Star+ (top) demonstrates a more struc-
 1241 tured and intelligent approach. Guided by the error predictor, it identifies and remasks semantically
 1242 problematic regions. For example, in the transition from step 90 to 91, it targets the weak phrase “a
 1243 period and mostly silent” for a coherent, phrase-level revision, resulting in “that we are”. This tar-
 1244

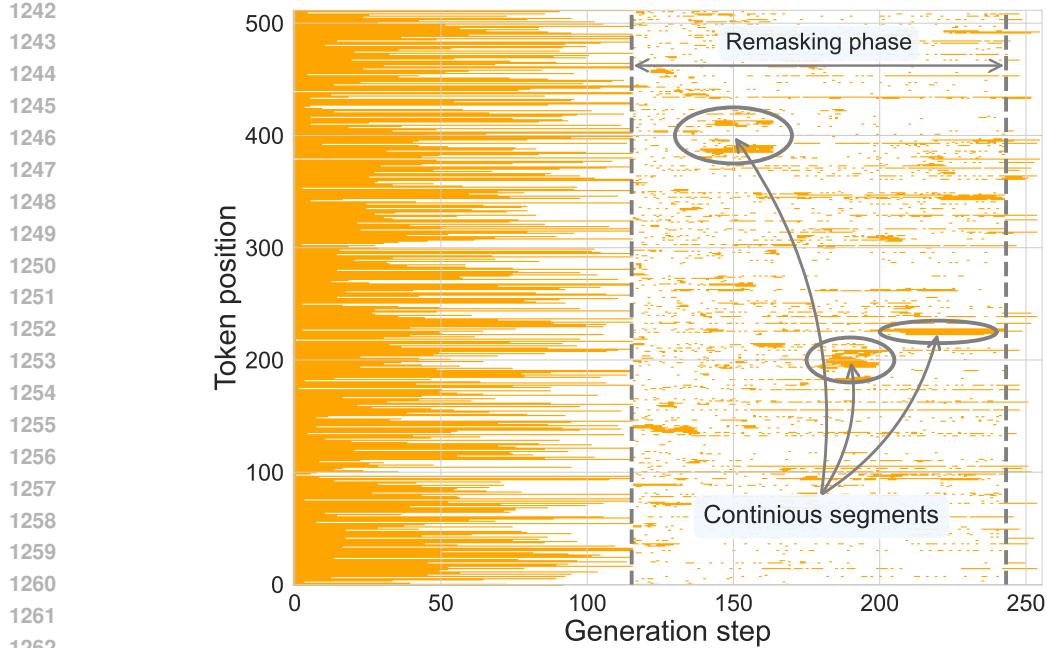


Figure 9: Remasking pattern of the guided G-Star-loop sampler. The plot visualizes the masked token positions (orange dots) at each generation step. In contrast to the unguided sampler, our guided approach exhibits a highly structured remasking pattern. The error predictor directs the sampler to focus on specific, clustered regions of the text. This often results in the selection of **contiguous segments** for revision, as highlighted in the figure. This ability to perform coordinated, phrase-level corrections is a key advantage of our targeted approach.

geted correction is highly unlikely to occur with the random sampling of Star+ and allows G-Star+ to perform more efficient, surgical edits to improve text quality.

G PRACTICAL GUIDANCE FOR HYPERPARAMETER TUNING

This section provides practical guidance for readers who wish to apply our method and select appropriate hyperparameters. The two most important parameters are the remasking schedule (i.e., when to apply G-Star) and the sampling temperatures.

Remasking schedule. As we demonstrate in Section 4.2, text generation via masked diffusion can be broadly divided into two phases: an initial **context accumulation phase** and a subsequent **text refinement phase**. This two-stage structure aligns with practical observations from previous work on remasking, such as ReMDM (Wang et al.). Based on this insight, we recommend enabling the remasking process (i.e., refinement) only toward the end of the generation, once the model has already formed a coherent draft. In our experiments, we typically activated the remasking schedule within the noise level range of $t \in [0.1, 0.3]$, for both the G-Star-loop and G-Star+ strategies. For optimal results on a specific task, we recommend tuning this starting timestep t as a key hyperparameter.

Sampling temperatures. The second set of critical hyperparameters involves the diffusion and predictor temperatures. As discussed in Section 4.4, increasing the **diffusion model's temperature** produces more diverse and varied token predictions. This can be strategically advantageous: one can use a higher diffusion temperature to encourage *exploration* (proposing a wider set of token options), while relying on the error predictor to *filter* these proposals and retain only the correct ones. Separately, the **error predictor's temperature** (analyzed in Section C.3) controls its confidence. Lowering the predictor's temperature makes it more conservative, i.e., it will only remask tokens

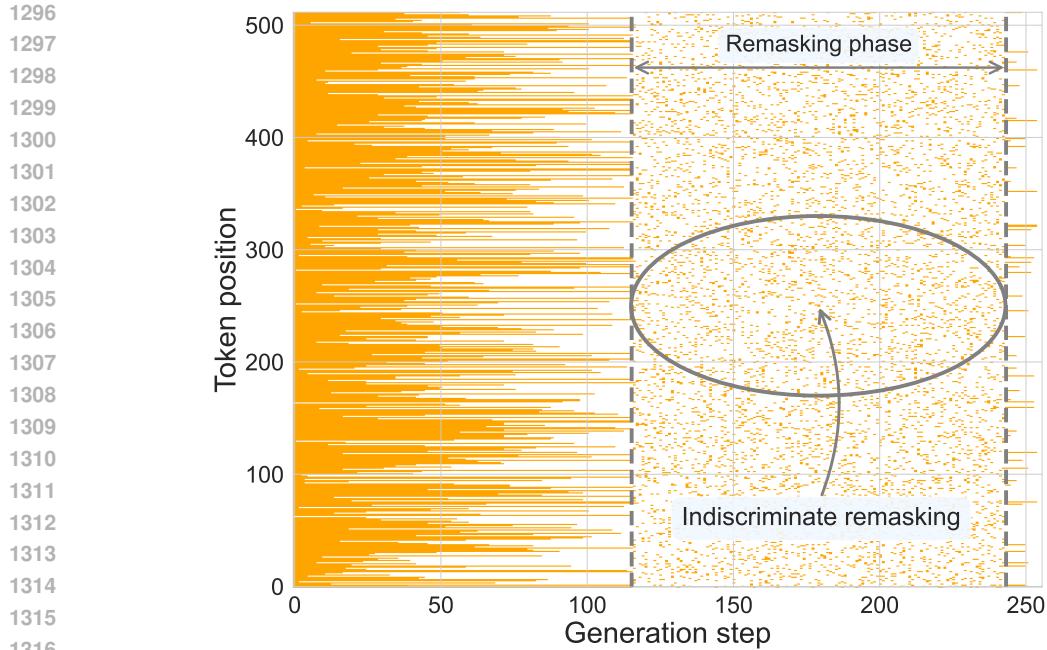


Figure 10: Remasking pattern of the Unguided Star-loop sampler. The plot visualizes the masked token positions (orange dots) at each generation step. During the remasking phase (steps 114-240), the pattern of selected tokens is scattered and visually resembles random noise. This illustrates the indiscriminate nature of the unguided approach, where every token position has a roughly equal probability of being revised at each step, without regard to the semantic or syntactic structure of the text.

that it is highly confident are incorrect. However, since the predictor is not perfect and can also make mistakes, setting this temperature to an extremely low value (e.g., zero) may not be ideal. We recommend using a non-zero temperature to balance the predictor’s precision and recall.

H LIMITATIONS

Despite its effectiveness, our method has three primary limitations. First, our framework is restricted to “in-place” token substitution and cannot perform insertion or deletion operations. This means that while the model can correct a token by changing its value (e.g., ‘house’ → ‘home’), it cannot correct an error of omission by inserting a new token between two existing ones, as this would require shifting the entire subsequent sequence. Extending the framework to predict and apply “shift” or “insert/delete” operations is a promising direction for future work.

Second, the error predictor requires a separate, sequential training stage, which adds complexity to the overall training pipeline. This could potentially be addressed by exploring methods for jointly training the main diffusion model and the error predictor in an end-to-end fashion, which might also foster a tighter synergy between the generation and refinement processes.

Finally, our study does not attempt to aggressively optimize inference throughput. All samplers are evaluated using a straightforward implementation that does not exploit recent acceleration techniques for diffusion LLMs, such as KV-caching (Wu et al., 2025), self-speculative decoding (Gao et al., 2025), or enhanced forms of parallel decoding like adaptive parallel decoding (Israel et al., 2025). Integrating G-Star with these complementary methods represents an exciting direction for future work and could further narrow the remaining gap to highly optimized autoregressive systems.

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

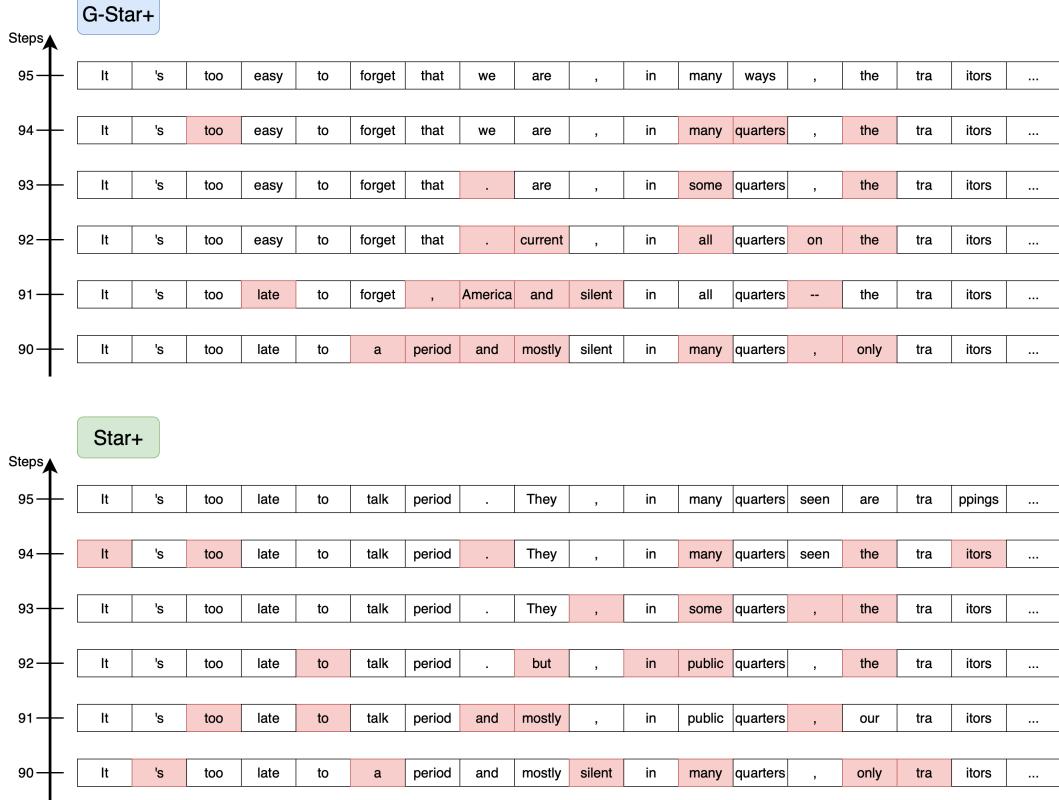


Figure 11: The figure provides a snapshot of the refinement process, showing steps 90 through 95 from a 128-step generation of a 512-token sequence. Both the unguided Star+ (bottom) and our guided G-Star+ (top) begin this phase with an identical text draft generated by a standard MDLM. The panels display the beginning of the text sequence, with tokens remasked at each step highlighted in red. Starting from the same draft, the two methods immediately diverge. The Star+ sampler exhibits an indiscriminate, token-level remasking strategy that appears unfocused. In contrast, our G-Star+ sampler demonstrates a more structured approach.

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403