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ABSTRACT

Adversarially robust neural networks, while designed for classification, exhibit sur-
prising generative capabilities when appropriately probed. We provide a theoretical
framework explaining this phenomenon by connecting adversarial robustness to im-
plicit denoising structure. Building on established results that robust training drives
Jacobians toward low-rank solutions, we demonstrate that the Gram operator J⊤J
functions as an implicit denoiser, selectively preserving signal along discriminative
subspaces while suppressing noise in orthogonal directions. This insight leads
to Prior-Guided Drift Diffusion (PGDD), a simple algorithm that leverages this
structure for generation through inference objectives rather than explicit Jacobian
computation. PGDD requires no generative training or architectural modifications,
yet produces class-consistent samples across different datasets and architectures.
We extend our approach to standard networks via sPGDD, demonstrating that im-
plicit generative structure exists beyond adversarially trained models. Our results
establish a connection between discriminative robustness and generative model-
ing, showing that robust classifiers encode statistical priors that enable structured
pattern generation without explicit generative objectives.

1 INTRODUCTION

Adversarial training has emerged as a critical defense mechanism for ensuring the safety and reliabil-
ity of neural networks deployed in high-stakes applications, where robustness to input perturbations
is essential for preventing adversarial attacks and maintaining system integrity (Madry et al., 2018;
Wong et al., 2020). Originally developed to address security vulnerabilities in machine learning
systems (Goodfellow et al., 2015; Carlini & Wagner, 2017), adversarial training has revealed unex-
pected emergent properties: robust models can function as implicit generative models and produce
structured images when appropriately probed (Santurkar et al., 2019; Engstrom et al., 2019). This
dual discriminative–generative behavior suggests that the mechanisms underlying adversarial robust-
ness may be more fundamental than previously recognized, yet the theoretical foundations of these
emergent capabilities remain largely unexplored.

Recent theoretical advances have begun to illuminate the mathematical structure underlying adver-
sarial robustness. Studies have demonstrated that the spectral properties of neural networks such as
input-output Jacobians are directly linked to generalization and robustness (Oymak et al., 2019; Wu &
Li, 2024). This spectral properties force networks to suppress sensitivity along most input directions
while preserving discriminative power along a small subspace (Hoffman et al., 2019; Jakubovitz &
Giryes, 2018). Jacobian regularization techniques have formalized this connection, showing that
controlling gradient norms directly improves robustness by constraining the Jacobian spectrum (Ross
& Doshi-Velez, 2017). However, despite these insights into the discriminative implications of spectral
structure, the potential generative consequences of low-rank Jacobians remain largely unexplored.

In this work, we bridge this gap by drawing inspiration from the success of denoising diffusion
probabilistic models (DDPMs), which achieve remarkable generative performance through learned
denoising operations (Ho et al., 2020; Song & Ermon, 2019). The core insight from diffusion models
is that networks trained to remove noise implicitly learn the score function of the data distribution,
enabling iterative generation through gradient-based sampling (Song et al., 2021). This connection
between denoising and generation motivates our central hypothesis: the low-rank structure induced
by adversarial training makes the Gram operator J⊤J function as an implicit denoiser, selectively
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Figure 1: Adversarial robustness creates implicit denoisers through J⊤J structure. (A) Explicit
denoisers use separate encoder-decoder architectures for noise removal and generation (Vincent et al.,
2008; Vincent, 2011) . (B) Our hypothesis: robust classifiers develop mathematically equivalent
structure where the Jacobian J and its transpose J⊤ naturally form an implicit denoising operator
J⊤J. (C) Empirical validation on MNIST: when J⊤J is applied to input noise ϵ, standard classifiers
fail to reject the random structure, while robust classifiers extract digit-like patterns, demonstrating
genuine denoising capability. Images are individually normalized to reveal structure.

preserving discriminative directions while suppressing noise along orthogonal subspaces. Just as
DDPMs leverage explicit denoising networks for generation, we demonstrate that robust classifiers
contain implicit denoising structure that can be exploited for the same purpose. We introduce Prior-
Guided Drift Diffusion (PGDD), an algorithm that harnesses this hidden structure through inference
objectives rather than explicit Jacobian computation, enabling practical generation from robust
classifiers. We further develop sPGDD, a variant that extends our approach to standard networks
through gradient smoothing techniques.

This work makes several key contributions to understanding the connection between adversarial
robustness and generative modeling:

• This work establishs that the Gram operator J⊤J in adversarially robust classifiers functions
as an implicit denoiser, connecting prior findings on low-rank Jacobian structure to generative
capabilities. This provides the first principled explanation for why robust classifiers exhibit
emergent generative properties.

• It also demonstrate through spectral analysis, energy ratio measurements, and visual residuals
that robust classifiers suppress noise while amplifying class-consistent structure.

• We introduce Prior-Guided Drift Diffusion (PGDD), a practical algorithm that leverages
implicit J⊤J structure for generation through inference objectives rather than explicit
Jacobian computation. PGDD requires no architectural modifications or generative training.

• Finally, we develop sPGDD (smooth PGDD), which enables generative inference in standard
classifiers through gradient smoothing techniques, demonstrating that implicit generative
structure exists beyond robust networks.

2 IMPLICIT DENOISER IN ROBUST CLASSIFIERS

2.1 GENERATIVE POWER OF ADVERSARIALLY ROBUST CLASSIFIERS

The observation that adversarially robust classifiers exhibit unexpected generative capabilities has
garnered increasing attention across multiple domains. Recent empirical work has demonstrated
that robust models can synthesize structured images (Santurkar et al., 2019), produce perceptually
aligned gradients Kaur et al. (2019), and exhibit improved correspondence between their internal
representations and human-perceivable features (Engstrom et al., 2019). Intriguingly, these generative
properties emerge without explicit generative training objectives, suggesting an intrinsic connection
between discriminative robustness and generative modeling capacity.

Previous work has explored connections between classifiers and generative models, but these ap-
proaches typically require training classifiers with explicit generative objectives. Joint Energy-based
Models (JEMs) train networks to simultaneously perform classification and generation by optimizing
both discriminative and generative losses (Grathwohl et al., 2020). Similarly, gradient alignment
methods improve model interpretability by training the implicit density model to align with ground
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PGDD in resnet50 trained on ImageNet (L2, eps=3)

PGDD in resnet50 trained on ImageNet (L2, eps=5)

Figure 2: Prior-Guided Drift Diffusion (PGDD) generates coherent images from noise using
robust classifiers. PGDD applied to a robust ResNet-50 (ImageNet, ℓ2 adversarially trained with
ϵ = 3, 5) demonstrates progressive refinement from random noise (same for both shown trajectories)
to semantically coherent images. Starting from noise (Itr 0), the algorithm iteratively moves away
from a noisy representation of the original input (see algorithm in 1). No explicit generative training
was used, only PGDD on pretrained adversarially robust classifiers (Supplementary C.3).

truth distributions (Singla et al., 2021). However, these methods fundamentally alter the training
process to achieve generative capabilities, whereas robust classifiers exhibit these properties as
emergent byproducts of adversarial training alone.

Despite these compelling empirical demonstrations, the theoretical foundations underlying the
generative capacity of robust classifiers remain largely unexplored. While extensive work has
characterized the links between spectral properties and robustness (Hoffman et al., 2019; Jakubovitz
& Giryes, 2018; Oymak et al., 2019; Wu & Li, 2024), no principled framework has emerged to explain
how these spectral characteristics translate to generative functionality. Several lines of research have
provided crucial building blocks for our theoretical development. Studies on Jacobian regularization
have established that controlling gradient norms enhances robustness to adversarial perturbations
(Hoffman et al., 2019; Jakubovitz & Giryes, 2018). Complementary work has demonstrated that
adversarial training fundamentally alters the spectral properties of neural networks (Du et al., 2019;
Sinha et al., 2018). However, these findings have been studied in isolation, without connecting
spectral structure to generative inference capabilities.

The success of denoising diffusion probabilistic models (DDPMs) provides additional theoretical
context. DDPMs achieve remarkable generative performance by learning to reverse a noise process,
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with the core insight that score functions can guide iterative denoising Ho et al. (2020); Song &
Ermon (2019). This raises a natural question: could robust classifiers similarly encode implicit score
functions that enable generative inference?

2.2 THEORETICAL FRAMEWORK: SIGNAL-NOISE DECOMPOSITION IN J⊤J

Building on established results that adversarial training drives neural networks toward low-rank
Jacobian solutions, we formalize how this spectral structure enables implicit denoising. Since
rank(J⊤J) ≤ rank(J), the Gram operator inherits the low-rank structure induced by robust training.

Let J⊤J = VΛV⊤ with eigenvalues Λ = diag(λ1, . . . , λP ) and orthonormal eigenvectors V =
[v1, . . . ,vP ]. For any perturbation ϵ =

∑
i civi,

J⊤Jϵ =

P∑
i=1

λicivi, (1)

∥J⊤Jϵ∥22 =

P∑
i=1

λ2
i c

2
i . (2)

For random ϵ ∼ N (0, σ2IP ), the expected energy becomes:

E
[
∥J⊤Jϵ∥22

]
= σ2tr

(
(J⊤J)2

)
= σ2

P∑
i=1

λ2
i , (3)

which is small when only few λi are appreciable.

The denoising mechanism emerges naturally: If we denote the small set of “signal” directions by
S = {i : λi large} with |S| = k ≪ P and decompose ϵ = ϵ∥ + ϵ⊥ along S and Sc, then

J⊤Jϵ∥ ≈ ϵ∥, (4)

J⊤Jϵ⊥ ≈ 0. (5)

This formalizes our central hypothesis: J⊤J suppresses random noise components while preserving
structured components aligned with the discriminative subspace S . Crucially, this denoising capability
requires no additional training beyond the original robustness objective. Just as explicit denoising
autoencoders use encoder-decoder architectures for generation (Figure 1A), robust classifiers naturally
develop mathematically equivalent structure where J and J⊤ form an implicit denoising operator
J⊤J (Figure 1B). This framework makes several testable predictions that we validate empirically: (1)
the energy ratio ∥J⊤Jϵ∥/∥ϵ∥ should be much smaller for robust than standard models, (2) applying
J⊤J to random noise should reveal class-consistent structure in robust classifiers, and (3) robust
models should exhibit stronger spectral concentration with higher λ1/λ2 ratios and steeper eigenvalue
decay.

3 PRIOR–GUIDED DRIFT DIFFUSION (PGDD)

Having established that robust classifiers contain implicit denoising structure through J⊤J, we now
address how to leverage this capability for generation. Previous methods for generating images
using adversarially robust classifiers have employed procedures essentially equivalent to targeted
adversarial attacks (Santurkar et al., 2019). These approaches optimize inputs to maximize specific
class predictions, effectively using the classifier’s gradients to guide generation. We wish to apply the
denoising operator J⊤J without forming it explicitly.

Our approach is inspired by adversarial purification methods: we first corrupt the input with noise,
then attempt to move away from that noisy representation using gradients. Intuitively, this process
should reveal the underlying structure that the network has learned to distinguish from corruption.
We show that J⊤J emerges naturally from this simple inference objective.

For ϵ ∼ N (0, σ2I) and layer r(·),

LPGDD(x; ϵ) =
∥∥ r(x) − sg[r(x+ ϵ)]

∥∥2
2
, (6)
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PGDD in vgg16-bn trained on ImageNet (L2, eps=3, Block 4)

PGDD in resnext50-32x4d trained on ImageNet (L2, eps=3, Layer 4) 

Figure 3: PGDD across architectures and applied at different internal layers PGDD applied to
robust vgg16-bn and resnext50-32x4d (ImageNet, ℓ2 adversarially trained with ϵ = 3, 5) demonstrates
progressive refinement from random noise (same for both shown trajectories) to semantically coherent
images. Starting from noise (Itr 0), the algorithm iteratively moves away from a noisy representation
of the original input (see algorithm in 1). No explicit generative training was used, only PGDD on
pretrained adversarially robust classifiers (Supplementary C.3).

where sg[·] stops gradients through its argument.

Let Jr(x) = ∇xr(x). Then

∇xLPGDD(x; ϵ) = 2Jr(x)
⊤(r(x)− sg[r(x+ ϵ)]

)
(7)

≈ 2Jr(x)
⊤
(
r(x)−

(
r(x) + Jr(x)ϵ

))
= −2Jr(x)

⊤Jr(x) ϵ. (8)

Since the goal is to move away from the noisy representation, we ascend on equation 6:

x← x+ η∇xLPGDD(x; ϵ) ≈ x− 2η Jr(x)
⊤Jr(x) ϵ, (9)

which applies the denoising step −J⊤
r Jr ϵ. Thus, J⊤J emerges naturally from the simple objective

of moving away from noisy representations.

3.1 SMOOTHED PGDD (SPGDD) FOR STANDARD NEURAL NETWORKS

Standard networks do not exhibit the strongly structured J⊤J operator induced by adversarial training.
To adapt our approach, we introduce sPGDD (smooth PGDD), which reduces gradient variance

5
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through smoothing. Our method draws inspiration from SmoothGrad (Smilkov et al., 2017), which
averages gradients over multiple noise perturbations to produce more perceptually aligned saliency
maps. However, while SmoothGrad has proven effective for interpretation tasks, it has never been
applied to generation. We demonstrate that this smoothing principle can be leveraged to access
implicit generative structure in standard networks.

Rather than relying on a single noisy gradient, we fix a reference representation r(x+ ϵ) at initializa-
tion and, at each iteration t, average gradients over multiple independent perturbations {ϵi}ni=1:

gt =
1

n

n∑
i=1

∇xtLPGDD(xt; ϵi).

This procedure suppresses unstable noise-sensitive components and emphasizes more stable prior in-
formation within the network. Empirically, sPGDD produces smoother, more interpretable trajectories
in non-robust networks, though with lower fidelity than in robust models.

4 RESULTS

We evaluate our proposed theoretical framework through two complementary experimental ap-
proaches. First, we validate the spectral properties predicted by our theory using MNIST classifiers,
where computational tractability allows detailed Jacobian analysis. Second, we demonstrate the
practical generative capabilities of PGDD across datasets and architectures, showing that implicit
denoising structure enables coherent image generation from robust classifiers.

4.1 SPECTRAL ANALYSIS: VALIDATING THE IMPLICIT DENOISER HYPOTHESIS

Eigenvalue decay and energy ratios. Eigenvalue analysis confirms that robust models exhibit
rapidly decaying Jacobian spectra, with tail eigenvalue suppression showing a 49× reduction (tail@k:
8.251 → 0.167). While the leading eigenvalue ratios show modest improvement (λ1/λ2: 1.47 →
1.96), the critical denoising mechanism operates through suppression of orthogonal noise directions,
as evidenced by the dramatic tail eigenvalue reduction. Our quantitative analysis (Table 1) shows
robust classifiers achieve dramatically stronger denoising: energy ratio statistics (∥J⊤Jϵ∥/∥ϵ∥)
decrease from 6.19 in standard models to 0.16 in robust models, a 40× improvement. The robust
classifier also exhibits a near-perfect fit to the theoretical robustness relationship (R2 = 0.992 vs
0.717), confirming our framework’s predictive accuracy.

Table 1: Quantitative verification of implicit denoiser hypothesis

Model λ1 λ2 λ1/λ2 tail@k ∥J⊤Jϵ∥/∥ϵ∥ R2

Standard 116.8 79.57 1.47 8.251 6.19 0.717
Robust L2 3.166 1.612 1.96 0.167 0.16 0.992

Ratio 0.027× 0.020× 1.33× 0.020× 0.026× 1.38×

Visual residuals reveal class priors. Applying J⊤J to random noise produces dramatically different
outcomes in robust versus standard classifiers (Figure 1C). Standard models preserve the random
structure of input noise, while robust models extract digit-like patterns aligned with learned class
priors. When images are individually normalized to reveal structure, robust models consistently
produce recognizable features that correspond to the network’s predictions, demonstrating that J⊤J
functions as both a denoiser and an amplifier of implicit statistical knowledge.

4.2 GENERATION WITH PGDD: INSIGHTS INTO CLASSIFIERS’ PRIORS

PGDD on ImageNet-trained robust models. Starting from identical noise patterns and using
identical inference parameters, PGDD applied to ResNet-50 models (He et al., 2016) trained on
ImageNet (Deng et al., 2009) with different ℓ2 perturbation budgets (ϵ = 3 vs ϵ = 5) using PGD
adversarial training (Madry et al., 2018) converges to semantically distinct but equally coherent
patterns—parachute/landscape scenes versus container ship/seascape scenes (Figure 2). These
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Figure 4: PGDD exhibits convergent class prediction trajectories across different initializations.
Classification trajectories for PGDD applied to a robust MNIST classifier, starting from different
random noise seeds and inference parameters (L2 robust models with top to bottom: ϵ = 0.25, 0.5, 1).
Each line represents the predicted class and confidence evolution (depicted in color) during generation.
(examples shown: final outputs for class 6 with confidence 1.0 and 0.57).

serve as representative instances of PGDD trajectory convergence on ImageNet-trained priors,
demonstrating that different robustness constraints create distinct semantic attractors. We further
validated our approach by testing sPGDD on standard ResNet-50 and self-supervised ResNet-50
(MoCo), with trajectory examples provided in the supplementary (C.2.1).

PGDD across architectures and internal layers. PGDD can be applied on the internal layers
as well, here we tested vgg16-bn (Simonyan & Zisserman, 2014) a smaller network compared to
ResNet50 and ResNeXt-50-32x4d (Xie et al., 2017) is a wider network (Figure 3). Starting from
noise, the algorithm progressively refines inputs to reveal class-consistent images across diverse
categories in the case of imagenet, 1000 learned categories (Figure 3). The generative process exhibits
a similar structure: early iterations establish global color gradients and spatial organization, while
later iterations refine object-specific details. Importantly, predicted classes stabilize over iterations
and confidence scores increase throughout generation, indicating that PGDD parameters can be tuned
for convergence (see limitations).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 5: PGDD-generated images occupy distinct regions in representation space from real
MNIST data. t-SNE visualization of penultimate layer representations comparing real MNIST
training images (red) with PGDD-generated samples (blue) from robust classifiers across different
initialization seeds for input noise and inference seeds (same PGDD parameters).

PGDD trajectory analysis on MNIST. To understand PGDD’s behavior systematically, we conduct
comprehensive experiments across multiple robust classifiers trained with different adversarial
perturbation budgets (ϵ), training epochs, and initialization seeds. For each model, we run PGDD
starting from 100 different noise seeds with 10 different inference seeds, generating 1000 trajectories
per model. The results reveal consistent convergence properties (Figure 4): despite diverse starting
conditions, trajectories converge to stable class predictions with high confidence. Multiple runs
frequently arrive at the same predicted class, suggesting that PGDD reliably accesses the most
prominent modes of the implicit generative model. The generated patterns are distinct from real
training digits, appearing more like internal prototypical templates that serve as attractors for PGDD
trajectories. Rather than reproducing memorized training examples, the implicit denoiser J⊤J reveals
canonical digit representations that guide the convergence dynamics, although further work is needed
to characterize the formation of these stable patterns .

Generated patterns reveal distinct learned features. To characterize the generated patterns against
an equivalent number of samples from training data, we employ t-SNE visualization (van der Maaten
& Hinton, 2008) (Figure 5) to investigate their similarity to real data and examine their distinct
characteristics. As expected, the generated patterns occupy regions very distinct from real training
data, confirming that PGDD does not simply reproduce memorized examples. However, when
samples are colored by class (predicted class for generated samples), we observe distinct clusters
of similarly recognized patterns that remain stable across different t-SNE random initialization
seeds. This consistent clustering suggests that these generated patterns may represent the stable
discriminative features the robust model has learned during training - canonical representations that
serve as attractors in the implicit generative space rather than copies of specific training instances. The
separation between generated and real data, combined with the coherent and reproducible class-based
clustering of generated samples, provides evidence that robust classifiers encode prototypical feature
representations that extend beyond the original training distribution.

5 LIMITATIONS

While our results provide strong evidence for the implicit denoiser hypothesis, several limitations
suggest directions for future work. Our detailed spectral analysis of J⊤J eigenstructure is currently
limited to relatively simple architectures and small dataset (MNIST) due to computational tractability.
Also, the space of possible generative outputs accessible through PGDD is vast, determined by the
complex interaction between input noise patterns, algorithm hyperparameters, and the network’s
learned priors. Our experiments represent only a small fraction of this combinatorial space. The rich
diversity of patterns achievable through different parameter configurations suggests that systematic
exploration of this landscape could reveal much deeper insights into the structure of implicit generative

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

models. This limitation also presents an opportunity: PGDD exhibits natural convergence properties,
with trajectories consistently arriving at stable attractors in the learned prior distribution. With
appropriate hyperparameter tuning strategies, the algorithm could automatically navigate to the
nearest meaningful attractor without manual parameter selection. Developing principled methods for
adaptive hyperparameter adjustment based on convergence dynamics would significantly improve
the method’s practical applicability across different architectures and datasets. Such automation
would also enable more systematic exploration of the vast space of implicit priors encoded by robust
classifiers.

Finally, while we demonstrate correlations between spectral concentration and denoising capability,
establishing direct causal relationships would strengthen our theoretical framework. Controlled
experiments that systematically perturb the spectral properties of J⊤J through targeted interventions
during training or post-hoc modifications, and measure the resulting impact on generative quality,
would provide more definitive evidence for the mechanistic role of eigenvalue structure. Such
experiments would help distinguish between correlation and causation in the relationship between
robustness training and generative capabilities, potentially revealing new ways to enhance implicit
denoising through architectural or training modifications.

6 CONCLUSION

This work provides evidence for a connection between adversarial robustness and generative modeling
by demonstrating that robust classifiers appear to contain implicit denoising structure encoded in
their Jacobian operators. Our theoretical framework suggests that the Gram operator J⊤J can
function as an implicit denoiser through the low-rank spectral structure induced by adversarial
training. This mathematical insight offers a potential bridge between discriminative robustness
and generative inference within a unified framework. Our empirical validation across datasets
and architectures confirms the theoretical predictions. Robust classifiers exhibit stronger denoising
capabilities compared to standard networks, with spectral properties that enable selective amplification
of discriminative directions while suppressing noise. Visual analysis reveals that applying J⊤J to
random perturbations produces class-consistent structure in robust models but preserves random
patterns in standard classifiers.

The Prior-Guided Drift Diffusion (PGDD) algorithm translates these theoretical insights into practical
generation capabilities. PGDD leverages implicit denoising structure through simple inference
objectives rather than explicit Jacobian computation, enabling coherent image synthesis from noise
without requiring generative training or architectural modifications. Large-scale trajectory analysis
demonstrates consistent convergence properties across diverse initialization conditions, indicating
that PGDD reliably accesses meaningful statistical priors rather than exploiting spurious patterns. The
extension to standard networks through sPGDD reveals that implicit generative structure exists beyond
robustly trained classifiers, though with reduced fidelity. Notably, both approaches—adversarial
training (which smooths the loss landscape during training) and sPGDD (which smooths gradients
during inference)—demonstrate that regularization techniques can provide access to these implicit
generative structures, suggesting that smoothing mechanisms may be a general principle for exposing
the dual discriminative-generative nature of neural networks.

The finding that PGDD-generated samples occupy distinct manifolds from training data while main-
taining class consistency demonstrates that robust classifiers encode implicit structural knowledge,
though their current generative capacity remains limited. These findings suggest potential applica-
tions in interpretability and explainability by enabling access to the learned priors embedded within
discriminative networks. The observed generative properties indicate that robust training may encode
richer representations of data distributions than previously recognized, though further investigation is
needed to characterize these representations fully. This work provides a foundation for exploring
connections between robustness and generation. While prior work has attempted to develop training
objectives that jointly optimize discriminative and generative performance, such approaches have
proven difficult to optimize effectively. The implicit structure revealed here may offer new insights
into why these joint objectives remain challenging and potentially suggest alternative approaches for
leveraging the dual nature of these learned representations.
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A APPENDIX

B SPECTRAL EXPERIMENTS SETUP

All MNIST and spectral experiments in this paper were conducted using the reference CNN and
training code from the NeurIPS 2018 tutorial Adversarial Robustness: Theory and Practice by Zico
Kolter and Aleksander Madry Kolter & Madry (2018). We made minimal adaptations (e.g. adding an
ℓ2-PGD attack and logging spectral metrics).

Architecture. The CNN used in all MNIST experiments has the following structure:

• Conv2d(1→32, kernel=3, padding=1), ReLU
• Conv2d(32→32, kernel=3, padding=1, stride=2), ReLU
• Conv2d(32→64, kernel=3, padding=1), ReLU
• Conv2d(64→64, kernel=3, padding=1, stride=2), ReLU
• Flatten
• Linear(7·7·64→ 100), ReLU
• Linear(100→ 10)

ℓ2-PGD attack (training and evaluation). All adversarial training and evaluation use ℓ2-PGD
with: ϵ = 1.5, step size α = 0.2, 20 iterations, projection onto the ℓ2-ball per example, and clamping
to [0, 1]. Random start was disabled unless otherwise noted.

Spectral metrics. For each checkpoint we compute Jacobian-based spectral quantities on held-out
data, including the energy ratio derived from Q = J⊤J (expectations over multiple random ξ), and
power-law exponents fit to the spectrum. These metrics are used to map (ε, epoch) phase diagrams.

Accuracies. Final clean and robust accuracies will be reported in Table 2.

Table 2: MNIST CNNs for Figure 1 and Table 1. Robust accuracy measured under ℓ2-PGD (ϵ = 1.5,
20 steps).

Model Clean Acc. Robust Acc.
Clean CNN 0.98 0.02
Robust CNN 0.98 0.47

C SUPPLEMENTARY: IMPLICIT DENOISER PROBES

To produce the quantitative results reported in Table 1 of the main text, we ran three complementary
probes designed to test the hypothesis that J⊤J acts as an implicit denoiser in robust classifiers. All
code is adapted from our MNIST experimental framework (see Section S1). Below we summarize
the key implementation details.

Energy ratios. For a held-out test input x, we repeatedly sample isotropic Gaussian noise ϵ ∼
N (0, σ2I) and compute

r =
∥J⊤Jϵ∥
∥ϵ∥

.

We report the mean of r across n = 128 draws, with σ = 0.25. Lower values indicate stronger
denoising by suppression of noise directions.

Eigenvalue decay. We estimate the leading eigenvalues of J⊤J at test points using subspace
iteration with Gram–Schmidt re-orthogonalization. Starting from k random vectors (we use k = 8),
we repeatedly apply J⊤J and orthogonalize, then compute Rayleigh quotients λi = ⟨vi, J⊤Jvi⟩.
We report the sorted eigenvalues and the λ1/λ2 ratio to capture spectral dominance.
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Visual residuals. For qualitative inspection, we sample a random ϵ at fixed scale σ = 0.35 and
display both the raw input noise and its transformation J⊤Jϵ. This illustrates that robust models
suppress noise and emphasize structured residuals, consistent with implicit denoising.

Models and evaluation. We compare a standard CNN and an ℓ2-robustly trained CNN (see
Section S1 for architecture and training details). All probes are run in PyTorch on MNIST test
examples, with evaluation restricted to a single held-out image for visualizations and to batches of 32
for statistics. The reported quantities in Table 1 are averaged over the test batch.

C.1 PRIOR-GUIDED DRIFT DIFFUSION: ALGORITHM, INTUITION, AND THEORY

We present the detailed algorithm for Prior-Guided Drift Diffusion (PGDD), together with the
underlying intuition and theoretical justification for how PGDD grants access to the learned priors
of a network. The method is designed to be both conceptually transparent and practically simple,
offering a principled way to leverage the implicit generative structure in networks which were not
explicitly trained for pattern generation (notably classifiers).

Algorithm 1 Prior-Guided Drift Diffusion Objective

1: Input: Image xinput, model f , target layer ℓ, constraint ϵ, step size α, noise ratio σ, iterations T
2: Output: Refined representations {xt}Tt=0
3: // Step 1: Feedforward pass
4: x0 ← normalize(xinput)
5: fℓ ← extract_layers(f, ℓ) {Extract model up to layer ℓ}
6: xnoisy ← x0 + σ · N (0, I)
7: ranti-target ← fℓ(xnoisy) {Generate noisy reference representation}
8: for t = 1 to T do
9: // Step 2: Inference objective selection

10: anti-target← ranti-target {Use noisy reference as target}
11: // Step 3: Feedback error propagation
12: ht ← fℓ(xt−1) {Forward pass through target layers}
13: Lt ← ∥ht − ranti-target∥2 {MSE loss in representation space}
14: gt ← ∇xt−1Lt {Gradient via feedback pathways}
15: // Step 4: Constrained activation update
16: g̃t ← α · gt/(∥gt∥+ 1e-10) {Normalize gradient}
17: ηt ← diffusion_noise_ratio · N (0, I) {Add stochastic noise}
18: x′

t ← xt−1 + g̃t + ηt {Move away from representation of noisy input}
19: xt ← project(x′

t, x0, ϵ) {Enforce ∥xt − x0∥∞ ≤ ϵ}
20: end for
21: Return {xt}Tt=0 =0

C.2 PGDD PARAMETERS FOR MAIN TEXT FIGURES

Table 3: PGDD parameter settings for main test figures (ImageNet ResNet-50, L2 adversarially
trained).

Figure Model Loss Inference Loss Function Drift Noise Ratio Diffusion Noise Ratio nitr ϵinfer Step Size

2 ResNet-50, L2, ϵ = 3 PGDD MSE 0.2 0.01 1001 40 1
2 ResNet-50, L2, ϵ = 5 PGDD MSE 0.5 0.03 1001 40 1
3 vgg16-bn, L2, ϵ = 3 PGDD MSE 0.2 0.01 1001 40 1
3 resnext50-4dx32, L2, ϵ = 3 PGDD MSE 0.2 0.01 1001 40 1

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C.2.1 SPGDD IN STANDARD NETWORKS

sPGDD in resnet50 trained on ImageNet (standard)

Figure S1: Smooth PGDD (sPGDD) enables generation with standard networks. sPGDD applied
to a standard ResNet-50 (ImageNet, no adversarial training) demonstrates generative capability
through gradient smoothing. The method uses multiple independently sampled noise perturbations
at each iteration and averages the resulting gradients to reduce variance and emphasize stable prior
information embedded in the network. Here, inference starts from a sample of Perline noise.
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sPGDD in resnet50 trained on ImageNet (self-supervised, moco)

Figure S2: sPGDD in resnet50 trained with self-supervised objective (moco)

C.3 SPGDD PARAMETERS FOR FIGURES S1 AND S2

Table 4: sPGDD parameter settings

Figure Model Loss Inference Loss Function Drift Noise Ratio Diffusion Noise Ratio ϵinfer σsmoothing nsmoothing

S1 ResNet-50 sPGDD MSE 0.2 0.01 40 0.1 100
S2 ResNet-50 moco sPGDD MSE 0.5 0.01 40 0.1 100
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