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Abstract

Recent advancements in text-to-image generation mod-001
els have sparked a growing interest in using synthesized002
training data to improve few-shot learning performance.003
However, prevailing approaches treat all generated data004
as uniformly important, neglecting the fact that the quality005
of generated images varies across different domains and006
datasets. This can hurt learning performance. In this work,007
we present Uncertain-inclusive Contrastive Learning (Uni-008
Con), a novel contrastive loss function that incorporates009
uncertainty weights for synthetic images during learning.010
Extending the framework of supervised contrastive learning,011
we add a learned hyperparameter that weights the synthetic012
input images per class, adjusting the influence of synthetic013
images during the training process. We evaluate the effec-014
tiveness of the UniCon-learned representations against tradi-015
tional supervised contrastive learning, both with and without016
synthetic images. Across three different fine-grained clas-017
sification datasets, we find that the learned representation018
space generated by the UniCon loss function incorporating019
synthetic data leads to significantly improved downstream020
classification performance in comparison to supervised con-021
trastive learning baselines.022

1. Introduction023

Powerful text-to-image generation models enable the synthe-024
sis of high-quality images from textual descriptions [4, 36].025
These models have fueled research using synthetic data026
to provide additional support for various learning tasks027
[18, 24, 33, 41]. Training with synthetic images can help028
improve performance for challenging discriminative tasks029
relative to training on real images alone [1, 28]. Synthetic030
images are particularly beneficial when there is limited train-031
ing data (i.e. few shot learning) since they can expand the032
training data set distribution and improve model performance033
on downstream tasks [9, 26].034

While recent advancements have significantly improved035
synthetic image generation, the quality of generated syn-036
thetic images varies across diverse domains and datasets037

Figure 1. Examples of ground truth images from the Flowers10
dataset compared to the DALL-E generated images. The quality
of DALL-E synthetic images varies by class. While synthetic
wallflowers seem to correctly reflect the real data distribution, the
synthetic petunias and synthetic cyclamens vary in color diversity
and morphology from the real data, respectively.

[11, 31, 32, 38]. Generative AI models often fail to cap- 038
ture pertinent attributes when generating images of fine- 039
grained classes (e.g., flower species) [15]. Figure 1 show- 040
cases this phenomenon with examples of real images and 041
DALL-E-generated images from corresponding classes in 042
the Flowers102 dataset [17]. The variance in DALL-E’s per- 043
formance—high accuracy for wallflowers, misrepresented 044
color diversity for petunias, and distorted morphology for 045
cyclamen, highlights the challenges in generative AI when 046
dealing with intricate patterns and complex colorations. This 047
variability in capturing training data distribution can hinder 048
accuracy in nuanced domains[12, 30]. Thus, understand- 049
ing how and when to use synthetic support set samples in 050
the learning process is crucial, especially for difficult vi- 051
sion tasks. Existing methods often treat synthetic images 052
as if they were as informative as real images in the training 053
process [1, 22]. Instead, we propose an approach that auto- 054
matically adjusts the use of synthetic images based on their 055
ability to improve performance. 056

We introduce Uncertainty-Inclusive Contrastive Learning 057
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(UniCon), a novel contrastive learning framework designed058
to automatically learn uncertainty weights for synthetic im-059
ages. Extending on supervised contrastive learning methods,060
we consider both positive and uncertain (synthetic) examples061
per anchor rather than only positive examples. The method062
down-weights uncertain examples if synthetic examples do063
not improve classification accuracy. Our key contributions064
in this paper include:065

• We introduce UniCon, a contrastive learning method that066
automatically learning uncertainty weights for synthetic067
images.068

• We show that UniCon improves few-shot classification069
performance in comparison to standard supervised con-070
trastive learning (both using and not using synthetic im-071
ages) on two different fine-grained datasets (Flowers10072
and CUBS10) and two different methods of generating073
images (DALL-E and stable diffusion).074

• Using synthetic data, we demonstrate that our learned075
weights are correlated with the relevance and quality of076
synthetic images in comparison to the real images.077

2. Related Work078

2.1. Text-to-Image Generation Models079

Recent technological developments have led to the devel-080
opment of models capable of synthesizing highly realistic081
and contextually accurate images from textual descriptions082
[23, 40]. These developments include the introduction of083
autoregressive methods (e.g. DALL-E [18], PARTI [39])084
that make use of large-scale image-text data during training.085
More recently, diffusion models have become the new state-086
of-the-art model for text-image synthesis [16, 23]. These087
diffusion models learn an estimation on Markov diffusion088
process using variational inference and are able to produce089
images with unprecedented detail, diversity, and fidelity to090
complex text prompts [19, 24, 25].091

2.2. Generating Synthetic Data092

Generative text-to-image models have increasingly been093
used to produce synthetic data for various machine learn-094
ing tasks. Synthetic data can improve training performance095
on tasks from image classification and object detection by096
generating more diverse training datasets [9, 26]. This data097
augmentation is particularly crucial where real data is scarce098
or difficult to obtain. For example, GLIDE [16] generated099
images have been shown to improve performance, particu-100
larly in zero-shot and few-shot settings [9]. Other studies101
show that synthetic data augmentation strategies for medical102
images using GAN [7, 20] and diffusion models [2] can help103
improve medical image classification.104

2.3. Weighting Synthetic Data 105

The idea of weighting training examples based on their infor- 106
mativeness or quality has been explored in various contexts, 107
especially aimed at improving model performance and ro- 108
bustness. Meta-learning approaches have been developed 109
to reweigh training examples based on their contribution to 110
the model’s performance, learning to assign higher weights 111
to informative examples and lower weights to noisy or less 112
relevant ones [13, 14, 21]. However, these methods do not 113
address training with explicitly synthesized data. More re- 114
cently, methods have been introduced to find optimal mixing 115
ratios using more or less synthetic data for improving down- 116
stream performance [5, 37]. These methods still treat the 117
resulting mixed training data equivalently. In the domain of 118
leveraging synthetic data, Tsutsui et al. explored training 119
an image fusion network mixing real and synthetic images 120
using learned weights from a separate CNN network to cre- 121
ate hybrid images [29]. This method, however, relies on 122
training a separate network to fuse real and synthetic im- 123
ages, which can be computationally intensive and does not 124
leverage synthetic images as-is. Although a weighting mech- 125
anism is used, the resulting hybrid images could potentially 126
blur distinct features and reduce the learning benefits of us- 127
ing synthetic data in their unaltered state. Furthermore, the 128
inherent characteristics of synthetic images could be more 129
valuable for learning, either by offering distinctive features 130
to contrast with real data distributions or serving as augmen- 131
tative elements for existing real data. 132

While these methods breach the idea of taking note of the 133
varying quality and diversity of synthetic data, an explicit and 134
dynamic weighting approach may allow for more flexibility 135
in adjusting the importance of synthetic images in how they 136
inform the representations of their respective real classes. 137

3. Uncertainty-Inclusive Contrastive Learning 138

Problem Setup Consider an image dataset X = 139
{x1, x2, ..., xn} with corresponding fine-grained k-class 140
classification labels {y1, ..., yk} where each yi ∈ 141
{C1, ..., Ck}. For each class Cj , a set of synthetic images 142
U j = {uj

1, u
j
2, ..., u

j
m} is generated, and the union of these 143

sets forms the synthetic image dataset U =
⋃k

j=1 U
j . We 144

aim to learn a classification fθ that solves y = fθ(x) for 145
x ∈ X . 146

If we assume that U and X are generated from identical 147
distributions, we can simply learn y = f ′

θ(z) for z ∈ U ∪X 148
using standard supervised learning. Alternatively, if we 149
assume the U is not useful for training, we can learn fθ 150
using only X,Y . However, in many real-world scenarios, the 151
quality and relevance of the synthetic data U may vary, and 152
it may not be optimal to either fully include or completely 153
exclude U from the training process. 154
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3.1. Supervised Contrastive Learning (SupCon)155
Loss156

In the supervised contrastive learning setup, training pro-157
ceeds by selecting a batch of N randomly sampled data158
{xi, yi}i=1...N . We randomly sample two distinct label pre-159
serving augmentations, x̃2i and x̃2i−1, for each xi to con-160
struct 2N augmented samples, {x̃j}j=1...2N . Let A(i) =161
{1, ...2N}\i be the set of all samples and augmentations not162
including i. We define g to be a projection head that maps163
the embedding to the similarity space represented as the sur-164
face of the unit sphere Se = {v ∈ Re : ||v||2 = 1}. Finally,165
we define vi = g(hi) as the mapping of hi to the projection166
space. Supervised contrastive learning encourages samples167
with the same label to have similar embeddings and sam-168
ples with a different label to have different embeddings. We169
follow the literature in referring to samples with the same170
label as the anchor image xi as the positive samples, and171
samples with a different label than that of xi’s as the negative172
samples.173

After generating synthetic images, a natural question174
arises: how can we incorporate synthetic images in this175
supervised loss? Two trivial extensions include: 1) treating176
all synthetic images as real images (SupCon-Mixed) and 2)177
ignoring all of the synthetic images entirely (SupCon-Real).178
Note that these two extensions make sense if 1) synthetic179
images are not differentiable from the real images and 2)180
synthetic images are not useful for training, respectively.181
The loss function for SupCon-Real is:182

LSupCon =
∑
i∈I

−1
|P (i)|

∑
p∈P (i)

log
exp(

vT
i vp
τ )∑

a∈A(i) exp(
vT
i va
τ )

(1)183

where |S| denotes the cardinality of the set S, P (i) de-184
notes the positive set with all other samples with the same185
label as xi, i.e., P (i) = {j ∈ A(i) : yj = yi}, I denotes186
the set of all samples in a particular batch, and τ ∈ {0,∞}187
represents a temperature hyperparameter.188

We can extend Equation 1 to express the loss function for189
SupCon-Mixed as190

LSupConm =
∑
i∈I

−1
|PU,C(i)|∑

p∈PU,C(i)

log
exp(

vT
i vp
τ )∑

a∈AU,C(i) exp(
vT
i va
τ )

(2)191

where PU,C(i) := {xj : ∀xj if yj = yi} ∪ Ui and192
AU,C(i) = {U ∪ C − PU,C(i)}\xi.193

3.2. Uncertainty Inclusive Contrastive Learning 194
(UniCon) 195

UniCon incorporates the intuition that it can be useful to 196
weigh synthetic images less than real images, but not dis- 197
count them entirely. The Uncertain Contrastive Learning 198
(UniCon) loss modifies the SupCon-Mixed loss by adding a 199
weighted term for all support set images U that correspond 200
to an anchor input i. To achieve this, the UniCon loss in- 201
cludes class-specific weighting hyperparameters {wi}Ci=1, 202
where C is the total number of classes in the dataset. Each 203
class is allocated an individual uncertainty weight wi, allow- 204
ing for a tailored balance between real and synthetic data 205
contributions for each class. The UniCon loss function is: 206

LUniCon =
∑

i∈S(i)

(
−1
|P (i)|

∑
p∈P (i)

log
exp(

vT
i vp
τ )∑

a∈A(i) exp(
vT
i va
τ )

+
−wyi

|U(i)|
∑

u∈U(i)

log
exp(

vT
i vu
τ )∑

a∈A(i) exp(
vT
i va
τ )

)

(3)

207

Here, we consider the set S as all the real images in 208
the batch such that S ⊆ X . Then for each anchor image 209
i ∈ S(i), P (i) refers to the set of all indices of positive pairs 210
from the same class that are real images so P (i) ⊆ X . The 211
left term of the outer summation is identical to the SupCon- 212
Real loss function. 213

The right term of the loss function introduces wyi
, the 214

weighting hyperparameter, where yi corresponds to the class 215
of the anchor image i. U(i) refers to the set of all indices of 216
inputs that are in the same class as anchor i but are synthetic 217
support set images. Effectively, each normal input anchor i 218
contributes to the UniCon loss through the sum of the Sup- 219
Con loss and a weighted sum of all the similarities between 220
the anchor and its corresponding support set images. 221

3.3. Bayesian Optimization for Optimal Hyperpa- 222
rameter Selection 223

We employed Bayesian optimization to learn the class- 224
specific weighting hyperparameters wi

C
i=1 in the UniCon 225

loss function, using the gp_minimize function from the 226
Scikit-Optimize package [10]. The hyperparameters in this 227
context refer to the class-specific weights wi that control 228
the influence of synthetic examples from each class in the 229
UniCon loss function. Bayesian optimization is a method 230
particularly suited for the optimization of complex, non- 231
convex functions and consists of two primary components: 232
a method for statistical inference, which is usually Gaussian 233
process regression, and an acquisition function for deciding 234
where to sample [27]. In our Bayesian Optimization pro- 235
cess, we utilized a Gaussian Process (GP) as the surrogate 236
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model for its ability to handle the complexity and uncertainty237
of the objective function, efficiently capturing the nuanced238
relationship between hyperparameters and validation accu-239
racy [6]. Bayesian Optimization progresses for niter calls240
to the objective function, and the GP model is updated with241
new data points obtained from objective function evalua-242
tions. For the acquisition function, we used ’gp_hedge’,243
which probabilistically chooses among different strategies244
like Expected Improvement, Probability of Improvement,245
and Lower Confidence Bound in each iteration. The acqui-246
sition optimizer was set to ’lbfgs’, a method known for its247
effectiveness in high-dimensional optimization problems [6].248
All other parameters of the gp_minimize function were set249
to their default values.250

The pseudocode for the objective function and Bayesian251
optimization process is as follows:252

Algorithm 1 Bayesian Optimization for UniCon Hyperpa-
rameter Tuning

1: Initialize hyperparameter vector w = [w1, ..., wC ]
2: Set number of contrastive runs ncontr
3: Set number of classifier runs nclassif
4: function OBJECTIVE FUNCTION F(w):
5: AvgAcc← 0
6: for i = 1 to ncontr do
7: Train EncoderUniCon(w) to obtain Ei

8: for j = 1 to nclassif do
9: Acci,j ← Classifier_j(Ei)

10: end for
11: end for
12: AvgAcc← Average({Acci,j})
13: return AvgAcc
14: end function
15: w∗ ← gp_minimize(F , space)

Set iterations niter and initial points ninit
Acquisition function: ’gp_hedge’
Acquisition optimizer: ’lbfgs’
Default values for remaining parameters

16: return w∗ ▷ Return optimal weights

The objective function F(w) evaluates the average vali-253
dation accuracy across ncontr contrastive and nclassif classifier254
runs. For each contrastive run, the UniCon encoder is trained255
with the corresponding class-specific weights to obtain em-256
beddings. Then, for each classifier run, a classifier is trained257
using the embeddings, and the validation accuracy is com-258
puted. The average accuracy across all runs is returned as259
the objective function value. The gp_minimize function iter-260
atively evaluates the objective function at different hyperpa-261
rameter configurations, updates the GP model, and searches262
for the optimal hyperparameter vector w∗ that maximizes263
the average validation accuracy.264

4. Experiments 265

In this section, we describe our experimental setup for eval- 266
uating the proposed UniCon method against supervised 267
contrastive learning baselines on fine-grained image clas- 268
sification tasks. We compare the few-shot performance 269
of UniCon to two baseline approaches, SupCon-Real and 270
SupCon-Mixed. The experiments are conducted on subsets 271
of two fine-grained datasets: Flowers102 and CUBS-200- 272
2011 [17, 34]. Additionally, we performed additional studies 273
on MNIST images where we used synthetic image classes of 274
controlled quality to validate the effectiveness of the UniCon 275
method and the expected learned weights [3]. 276

4.1. Datasets 277

We evaluate our method on a subset of two classification 278
datasets: Flower102 and CUBS-200-2011. 279

From the Flowers102 dataset, we used the ten largest 280
classes to create a subset dataset called Flowers10: petu- 281
nia, passion flower, wallflower, water lily, watercress, rose, 282
frangipani, foxglove, cyclamen, and lotus. Each class had 283
between 137 and 258 real images. 284

From the CUBS-200-2011 dataset, we used the ten largest 285
classes to create a subset dataset called CUBS10: Laysan 286
Albatross, Cardinal, Mangrove Cuckoo, Purple Finch, Cal- 287
ifornia Gull, Anna Hummingbird, Florida Jay, Baltimore 288
Oriole, Brown Pelican, Common Raven. Each class had 289
between 79 and 91 real images. 290

For the Flowers10 and CUBS10 dataset classes, we gener- 291
ated two sets of 32 synthetic images per class, using DALL-E 292
and Stable Diffusion [15, 23]. Images were generated using 293
a text prompt of "a photo of { }", where the blank was filled 294
with the corresponding class names in plain text. 295

For a controlled study, we selected a subset of 400 images 296
of the digit 0 and 400 images of the digit 9 from the MNIST 297
dataset. For the support set images, we generated 300 im- 298
ages that were morphs of the digits 0 and 9. To generate 299
morphed images that blend the characteristics of two distinct 300
classes, we introduce a morphing equation controlled by the 301
parameter ρ. Through this process, each morphed image is 302
created by merging an image from class C0 (images of 0s) 303
and class C9 (images of 9s), according to the equation: 304

M(ρ) = ρ · IC0
+ (1− ρ) · IC9

(4) 305

In this equation, M is the morphed image, IC0
and IC9

are 306
images from class C0 and class C9 respectively, and ρ is 307
the morphing parameter. We generated morphed images for 308
three distinct values of ρ: 0.3 and 0.7, creating 100 images 309
for each value of ρ. Examples of morphed images with 310
varying ρ are shown in Fig. 2 311

We constructed three MNIST-based datasets with differ- 312
ent synthetic images, distinguished by the morphing param- 313
eter ρ. The naming convention for these datasets directly 314
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Figure 2. Examples of 0 and 9s from MNIST dataset and morphed
digits generated, varying ρ.

represents the ρ values used for synthetic images correspond-315
ing to the digits 0 and 9, respectively.316

1. MNIST_0_1: This dataset includes synthetic images that317
are selected from real images of their respective classes.318
It contains 300 synthetic images each for digits 0 and 9,319
corresponding to ρ = 0.0 for class 0 and ρ = 1.0 for320
class 9, representing ideal support images.321

2. MNIST_1_0: In this dataset, 300 synthetic images for322
each class are counter-replicated: the images meant for323
class 0 are exact images of 9 (ρ = 1.0) and those for324
class 9 are exact images of 0 (ρ = 0.0), thus creating325
poor support images. In this case, the "synthetic" images326
are sampled from the real images of 0s and 9s, with no327
overlap with the real image classes.328

3. MNIST_0.7_0.3: The third dataset includes synthetic im-329
ages where for class 0, the images are morphs M(ρ) with330
ρ = 0.7, and for class 9, ρ = 0.3. These morphed images331
blend characteristics of the two classes, presenting an332
intermediate case between perfect and counter-replicated333
images.334

We generated k-shot datasets by randomly sampling335
k training images from each class. We used released336
train/validation/test splits for Flowers10 and CUBS10 and337
used a 0.8/0.1/0.1 split respectively randomly sampled for338
the MNIST datasets. In addition, for each experiment test-339
ing with synthetic images, we sample k

2 synthetic images340
for each class. We conducted experiments for values of341
k = 8, 16, 32 for Flowers10 and CUBS10 and used values342
of k = 16, 32, 64 for the MNIST dataset experiments.343

4.2. Implementation344

We use Bayesian optimization to optimize our class weight-345
ing hyperparameters. This process involves calling an ob-346
jective function that is a nested training process with a con-347
trastive layer and subsequently, a classifier layer. We set348
n_iter = 100 and n_init = 20 i.e., 20 evaluations of the349
objective function were conducted with randomly chosen350
hyperparameters before starting the Bayesian optimization.351

Contrastive Layer Training In our contrastive layer train-352
ing, we employ ResNet-18 as our baseline encoder network353
[8]. For each training iteration, we resample the training354

data, comprising both real and synthetic images. The net- 355
work is trained for 200 epochs with an Adam optimizer, a 356
learning rate of 0.001, batch size of 32, momentum of 0.9, 357
temperature of 0.07, and weight decay of 1e− 4 [35]. 358

Classifier Training After we train the contrastive layer, 359
we freeze the embeddings learned and finetune the classifier. 360
Here, the training data is resampled from a held-out dataset 361
for each run of the classifier. Specifically, we select 16 362
images per class for all datasets. The classifier, a 3-layer 363
MLP network, is trained with cross-entropy loss, a learning 364
rate of 0.001, a batch size of 32, and 200 epochs. 365

Validation Set Consistency Throughout the experiment, 366
we maintain a fixed validation set to evaluate model perfor- 367
mance. For the Flowers10 dataset, we use the published 368
train/val/test split, which comprises 10 validation images 369
per class. For the CUB10 dataset, we use 30 images per 370
class. For each of the MNIST dataset experiments, we use 371
64 images per class for validation. 372

For each hyperparameter set, we train the model over 373
ncontr = 3 contrastive runs, each involving nclassif = 3 classi- 374
fier runs with different training data samples. We compute 375
the average validation accuracy for each contrastive run from 376
its nclassif classifiers. The overall performance for a set of hy- 377
perparameters is then the mean of these averages across the 378
ncontr runs, involving ncontr × nclassif = 9 classifier training. 379
The final reported validation accuracy is this average, along 380
with the standard deviation, across the 9 runs. This process 381
is delineated in lines 4-14 of Algorithm 1. 382

4.3. Baseline Experiments 383

SupCon-Real: We train a supervised contrastive network for 384
each dataset using the SupCon loss on only original images 385
and their corresponding labels. 386
SupCon-Mixed: We train a supervised contrastive network 387
for each dataset including the support set images for each 388
class using the SupCon loss. In this case, the support set 389
images were labeled as the same label as its corresponding 390
class. 391

4.4. Manual Weight Testing 392

Furthermore, baseline testing was conducted where a uni- 393
form value of w was applied across all class-specific weights. 394
Note that when wyi = 0 for all yi ∈ C, LUniCon behaves 395
very similarly to LSupCon−Real. On the other hand, when 396
wyi

= 1 for all yi ∈ C, the UniCon loss fully considers all 397
similarities between the embeddings of real and synthetic 398
images in the overall loss for every anchor image that is a 399
real image. In this case, LSupCon−Mixed behaves similarly 400
but differs in considering both real and synthetic images as 401
anchor images for each batch. These results are reported in 402
the supplementary material. 403
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4.5. UniCon Results404

We report our results on Flowers10 and CUBS10 with405
DALL-E-generated synthetic images and Stable Diffusion-406
generated synthetic images. We compare UniCon to SupCon-407
Real and SupCon-Mixed. We differentiate between exper-408
iments using DALL-E synthetic images versus Stable Dif-409
fusion synthetic images with the notation SupCon-Mixed-D410
and UniCon-D, and SupCon-Mixed-S and UniCon-S. We411
report the learned weights returned by our UniCon method412
and the respective validation accuracy for each of the experi-413
ments and compare them to the baseline methods. Results414
are reported in Table 1415

UniCon is effective in leveraging synthetic images from416
different sources, especially in the few-shot learning sce-417
nario with k = 8, as shown in Table 1. UniCon consis-418
tently outperforms the SupCon-Real baseline, which ignores419
synthetic images entirely, and the SupCon-Mixed baseline,420
which incorporates synthetic images without considering421
their quality.422

For the Flowers10 dataset with k = 8, UniCon-D423
achieves an accuracy of 85.65%, surpassing SupCon-Real424
by 5.33% and SupCon-Mixed-D by 4.86%. In the CUBS10425
dataset with k = 8, UniCon-D reaches an accuracy of426
58.83%, surpassing SupCon-Real by 6.48%. We see similar427
trends with the UniCon experiments using Stable diffusion-428
generated synthetic images, showing robustness and adapt-429
ability to different synthetic image sources. These gains in430
the few-shot setting highlight UniCon’s ability to effectively431
utilize synthetic data when real examples are scarce. No-432
tably, in cases where SupCon-Mixed performs worse than433
SupCon-Real, such as for CUBS10 with DALL-E synthetics434
at k = 8 and k = 16, UniCon can mitigate the negative435
impact of lower-quality synthetics and achieve gains over436
both baselines.437

Figure 3 provides a visual comparison between real and438
synthetic images generated by DALL-E and Stable Diffu-439
sion for three out of the ten classes from the Flowers10 and440
CUBS10 datasets, respectively. Each class row showcases441
two real images alongside two synthetic images from each442
generative model, with the average learned weights from443
UniCon displayed beneath the synthetic sets. We inspect the444
quality of these three classes per dataset across image types445
based on the generative model used and the corresponding446
weights learned.447

For the Flowers10 dataset, the wallflower class shows448
synthetic images that are visually similar to the real ones,449
reflected in the relatively high learned weights - DALL-450
E (w=0.56) and Stable Diffusion (w=0.63)- indicating a451
stronger trust in the synthetically generated data for aug-452
menting the learning process. The petunia class qualitatively453
demonstrates the generative models’ struggle with color ac-454
curacy and pattern replication, which is particularly chal-455
lenging for classes with a high degree of intra-class color456

variation. Thus, the learned weights are more moderate, sug- 457
gesting that these images are less useful for learning accurate 458
representations. The discrepancy is more pronounced for the 459
watercress class, where Stable Diffusion images (w=0.08) 460
are notably less realistic than DALL-E images (w=0.29), 461
leading to a lower average learned weight for Stable Diffu- 462
sion. The images show a significant deviation from the real 463
data images, prompting minimal reliance on these synthetics 464
for training. Interestingly, the Watercress class showcases an 465
instance where UniCon with learned weights close to zero 466
outperforms SupCon-Real. We believe that this result can be 467
attributed to the fact that even low-quality synthetic images 468
can serve as informative negative examples in contrastive 469
learning. By down-weighting their contribution to the loss, 470
UniCon effectively leverages these examples to shape the 471
representation space without allowing them to dominate the 472
learning process. In contrast, SupCon-Real completely dis- 473
cards this information. 474

Subfigure (b) of Figure 3 focuses on classes from the 475
CUBS10 dataset, specifically Baltimore oriole, Florida jay, 476
and brown pelican. For the Baltimore oriole class, DALL- 477
E (w=0.78) and Stable Diffusion (w=0.65) both generate 478
relatively realistic images, capturing the essential character- 479
istics of the species. Similarly, the Florida Jay class shows 480
comparable image quality between DALL-E (w=0.41) and 481
Stable Diffusion (w=0.50). However, the brown pelican class 482
reveals a notable difference, with Stable Diffusion images 483
(w=0.73) appearing more realistic and better capturing the 484
distinctive features of the species compared to DALL-E im- 485
ages (w=0.29), corresponding to a higher average learned 486
weight for Stable Diffusion. 487

The learned weights not only seem to reflect the quality 488
and relevance of the synthetic images but also play a cru- 489
cial role in building better representations of the real images 490
for downstream classification tasks. By assigning higher 491
weights to informative and reliable synthetic examples and 492
lower weights to noisy or misleading ones, UniCon effec- 493
tively guides the contrastive learning process to focus on the 494
most relevant features and relationships present in the real 495
data. This selective emphasis on high-quality synthetic data 496
helps to construct more robust and discriminative represen- 497
tations of the real images, ultimately leading to improved 498
classification performance. The supplementary material in- 499
cludes detailed reports on the learned weights learned by 500
the UniCon experiments across all classes, datasets, and 501
synthetic image sources. 502

4.6. MNIST Studies 503

We conducted a series of experiments to validate the effec- 504
tiveness of UniCon with synthetic images of varying un- 505
certainty levels. In these studies, we controlled the degree 506
of synthetic data relevance by setting ρ during the morph 507
image generation. In this setup, we then applied the UniCon 508
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Figure 3. Comparative visualization of real and synthetic images from UniCon experiments generated by DALL-E and Stable Diffusion
for selected classes from the Flowers10 and CUBS10 datasets. The weights displayed below the synthetic images represent the average
learned weights learned by UniCon for each class across all k-shot experiments. The UniCon weights correlate with the assessed utility of
these images in enhancing the model’s training efficacy for fine-grained image classification.

(a) Flowers10 dataset: Real vs. synthetic images of Wallflower, Petunia,
and Watercress with average learned UniCon weights indicated for
DALL-E and Stable Diffusion.

(b) CUBS10 dataset: Real vs. synthetic images of Baltimore Oriole, Florida
Jay, and Brown Pelican with average learned UniCon weights indicated for
DALL-E and Stable Diffusion.

Table 1. Fine-Grained Classification Performance for Flowers10 and CUBS10 UniCon with the best weighting outperforms both
SupCon-Real and SupCon-Mixed, in classification accuracy across all k for both types of synthetic images. The average validation accuracy
and corresponding standard deviation for all experiments are reported.

Flowers10 CUBS10

k 8 16 32 8 16 32

SupCon-Real 80.32 (3.05) 86.34 (2.79) 92.36 (2.78) 52.35 (2.35) 61.23 (1.57) 68.87 (2.38)

SupCon-Mixed-D 80.79 (3.87) 87.27 (2.44) 90.86 (1.76) 58.76 (2.76) 64.58 (2.65) 70.49 (2.07)
UniCon-D 85.65 (2.12) 90.16 (0.11) 93.40 (1.04) 58.83 (0.33) 65.47 (0.66) 71.60 (0.72)

SupCon-Mixed-S 81.94 (1.30) 86.69 (2.63) 91.32 (1.70) 55.94 (2.71) 63.43 (1.73) 70.06 (1.03)
UniCon-S 84.03 (0.56) 90.51 (0.16) 92.71 (1.24) 56.79 (2.34) 66.32 (0.59) 71.14 (1.01)

method to learn the weights corresponding to each synthetic509
image class. Given our prior understanding and control over510
the morphing in the synthetic set, we had an a priori notion511
of the learned weighting w for optimizing the accuracy of512
UniCon in handling synthetic images. Subsequently, we513
conducted experiments to verify our predictions that UniCon514
would 1) learn weights that correspond to the relevance of515
the synthetic data and 2) achieve higher accuracy using the516
learned weights.517

We conducted three experiments to this end using the518
aforementioned MNIST-derived datasets: MNIST_0_1,519
MNIST_1_0, and MNIST_0.7_0.3. Results for the for-520
mer two datasets are reported in Table 2 and for the latter521
dataset in Table 3.522

For the MNIST_0_1 dataset, where the synthetic images523
were selected from the real images(ρ = 0 for class 0, ρ = 1524
for class 9), the expected learned weights should be close to 1525
for both classes. The UniCon method, through Bayesian op-526

timization, correctly identified and returned these expected 527
learned weights - [0.75, 0.97] for k = 16, [1.0, 1.0] for 528
k = 32, and [0.7, 0.87] for k = 64. These high-weight 529
values indicate that UniCon recognized the high quality and 530
reliability of the synthetic images, appropriately weighting 531
them almost equally to the real images in the contrastive loss 532
calculation. 533

On the other hand, for the MNIST_1_0 dataset, the syn- 534
thetic images were selected from real images from the op- 535
posite class, for class 0 were replicas of class 9, and vice 536
versa. These highly untrustworthy and misleading synthetic 537
images required learned weights close to 0 to essentially dis- 538
regard them during training. Again, UniCon with Bayesian 539
optimization successfully identified the expected learned 540
weights as [0.0, 0.0] across all k values. These zero weights 541
mean UniCon correctly recognized that the synthetic images 542
were completely unreliable and should not contribute at all 543
to the contrastive loss. 544
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Table 2. MNIST_0_1 and MNIST_1_0 Classification Performance of UniCon Against SupCon-Real and SupCon-Mixed Methods.
We report UniCon’s performance and the learned weights [w0, w9] for synthetic images corresponding to real image classes C0 and C9

respectively for all k-shot experiments for k = 16, 32, 64.

MNIST_0_1 MNIST_1_0
k 16 32 64 16 32 64

SupCon-Real 85.50 (2.92) 91.41 (3.33) 93.92 (2.08) 88.45 (4.03) 91.49 (3.65) 95.40 (2.43)
SupCon-Mixed 90.45 (3.49) 92.36 (2.80) 95.31 (1.47) 65.71 (4.25) 71.01 (2.67) 69.44 (5.17)

UniCon 92.01 (2.44) 95.14 (1.88) 95.40 (2.21) 90.36 (4.11) 92.62 (1.01) 94.79 (0.95)
Weights [w0, w9] [0.75, 0.97] [1.00, 1.00] [0.70, 0.87] [0.00, 0.00] [0.00, 0.00] [0.00, 0.00]

These results highlight UniCon’s ability to automati-545
cally assign appropriate weights - high weights near 1.0546
like [0.75, 0.97] and [1.0, 1.0] for trustworthy synthetics in547
MNIST_0_1 to boost performance over SupCon-Real by548
up to 6.5% for k = 16. In stark contrast, for untrustworthy549
synthetics in MNIST_1_0, the negligible weights [0.0, 0.0]550
enabled UniCon to disregard the misleading data and per-551
form comparably (within 1-2%) to SupCon-Real, crucially552
avoiding the significant 20%+ drop suffered by SupCon-553
Mixed.554

Table 3. MNIST_0.7_0.3 Classification Performance of UniCon
Against SupCon-Real and SupCon-Mixed Methods. We report Uni-
Con’s performance and the learned weights [w0, w9] for synthetic
images corresponding to real image classes C0 and C9 respectively
for all k-shot experiments for k = 16, 32, 64.

MNIST_0.7_0.3
k 16 32 64

SupCon-Real 87.59 (3.00) 92.19 (3.61) 94.01 (1.61)
SupCon-Mixed 89.15 (2.82) 91.06 (4.65) 93.84 (2.56)

UniCon 92.53 (0.85) 93.57 (1.73) 95.83 (1.61)
Weights [w0, w9] [0.62, 0.38] [0.76, 0.83] [1.00, 0.91]

For the MNIST_0.7_0.3 dataset with intermediate syn-555
thetic image uncertainty (morphed digits blending 0 and 9,556
with ρ = 0.7 for class 0 and ρ = 0.3 for class 9), the ex-557
pected learned weights should lie between 1.0 (highly trust-558
worthy) and 0.0 (untrustworthy). Specifically, the weight for559
class 0 synthetics (ρ = 0.7) should be lower than class 9560
(ρ = 0.3) due to higher uncertainty.561

The varying weights across different k values could po-562
tentially arise due to noise or variance in the data. With563
smaller values of k (e.g., k=16), the real examples might564
not sufficiently capture the true data distribution, leading565
to higher uncertainty. In such cases, UniCon should lower566
the weights of the synthetics to mitigate their influence. As567
k increases (e.g., k=64), the real examples likely provide a568
better representation of the data, reducing uncertainty. Con-569
sequently, UniCon can afford to assign higher weights to570
partially trustworthy synthetics, leveraging them to boost571
performance. Class complexity and intra-class variations572

could also influence the weight variations. 573

The learned weights exhibit the expected pattern based 574
on the uncertainty levels of the two classes of synthetic im- 575
ages. This, coupled with the quantitative accuracy gains 576
over baselines, validates UniCon’s ability to automatically 577
identify and appropriately weight synthetic images of vary- 578
ing uncertainty levels. This enables UniCon to effectively 579
leverage partially trustworthy synthetic data while mitigating 580
the negative impacts of highly uncertain samples. 581

5. Conclusion 582

In this work, we introduced Uncertainty-Inclusive Con- 583
trastive Learning (UniCon), a novel contrastive learning 584
framework that incorporates uncertainty weights for syn- 585
thetic images, allowing us to effectively learn from synthetic 586
images with varying quality. UniCon showed consistent 587
improvements in model performance on vision classifica- 588
tion tasks across two fine-grained datasets, outperforming 589
standard contrastive learning baselines both with and with- 590
out synthetic images. The class-specific weights learned 591
by UniCon match expectations of data relevance based on 592
qualitative analysis. UniCon provides a principled and adapt- 593
able approach to leveraging synthetic data in representation 594
learning, particularly in data-scarce domains. 595

In future work, we plan to explore more advanced opti- 596
mization techniques to further improve the efficiency and 597
scalability of the weight learning process. Additionally, we 598
aim to extend our experimentation across a broader spectrum 599
of domains and datasets in diverse real-world scenarios, in- 600
vestigating the potential of UniCon in handling various types 601
of uncertainties and noise in synthetic data. This will help 602
us better understand and address the challenges of using syn- 603
thetic data in nuanced domains, where generative AI models 604
may struggle to capture pertinent attributes. Overall, our 605
findings underscore UniCon’s potential as a valuable tool 606
for effectively leveraging synthetic images in vision classifi- 607
cation tasks, paving the way for more accurate and reliable 608
models that incorporate synthetic data. 609
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