
Informed Asymmetric Actor-Critic:
Theoretical Insights and Open Questions

Daniel Ebi
Karlsruhe Institute of Technology

Karlsruhe, Germany
daniel.ebi@kit.edu

Gaspard Lambrechts
University of Liège

Liège, Belgium
gaspard.lambrechts@uliege.be

Damien Ernst
University of Liège

Liège, Belgium
dernst@uliege.be

Klemens Böhm
Karlsruhe Institute of Technology

Karlsruhe, Germany
klemens.boehm@kit.edu

Abstract

Reinforcement learning in partially observable environments requires agents to
make decisions under uncertainty, based on incomplete and noisy observations.
Asymmetric actor-critic methods improve learning in these settings by exploit-
ing privileged information available during training. Most existing approaches,
however, assume full access to the true state. In this work, we present a novel
asymmetric actor-critic formulation grounded in informed partially observable
Markov decision processes, allowing the critic to leverage arbitrary privileged
information without requiring full-state access. We show that the method preserves
the policy gradient theorem and yields unbiased gradient estimates even when
the critic conditions on privileged partial information. Furthermore, we provide
a theoretical analysis of the informed asymmetric recurrent natural policy gra-
dient algorithm derived from our informed asymmetric learning paradigm. Our
findings challenge the assumption that full-state access is necessary for unbiased
policy learning, motivating the need to develop well-defined criteria to quantify
the informativeness of additional training signals and opening new directions for
asymmetric reinforcement learning.

1 Introduction

Reinforcement learning (RL) has emerged as an effective framework for optimizing control policies
in a variety of domains, including heating, ventilation, and air conditioning (HVAC) control [1],
energy system management [2, 3], autonomous driving [4], and robotics [5].

However, in real-world deployments, RL agents frequently operate under partial observability, where
decisions must be made from incomplete and noisy observations. This scenario is formalized by
the partially observable Markov decision process (POMDP) formulation [6], in which optimal
decision-making depends on the sequence of prior observations and actions. To address this, methods
originally designed for fully observable settings are extended to learn history-dependent policies,
typically by employing recurrent neural networks (RNNs) to encode observation–action histories
[7, 8, 9, 10, 11]. While these methods are theoretically capable of learning optimal history-dependent
policies, they often assume that the agent’s observability is identical during training and deployment.
As a result, policy learning is constrained to the limited information available at execution, which can
be unnecessarily restrictive and possibly suboptimal. In practice, training environments frequently
provide privileged signals that are unavailable at deployment, such as measurements from diagnostic
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sensors or internal variables from simulators, without requiring full access to the true state. The
paradigm of asymmetric learning seeks to leverage such additional training-time information to guide
policy optimization, while ensuring that the resulting history-dependent policies remain executable
under deployment-time observability.

A common strategy to address asymmetric observability is first to learn privileged policies conditioned
on the true state and subsequently imitate them [12]. While effective in practice, these approaches
often lack theoretical guarantees, which can result in suboptimal policies for POMDPs [13]. To
mitigate this limitation, Warrington et al. [13] introduce constraints that enable safe imitation of
expert policies, ensuring optimality under partial observability. Privileged information has also been
leveraged in model-based RL by constructing world models that either summarize past histories or
incorporate additional state signals. Approaches of this type include the Informed Dreamer [14], the
Wasserstein Believer [15], and the Scaffolder [16].

Another category of methods is asymmetric actor-critic approaches, in which the critic is conditioned
on the full state while the actor relies on the history, aiming for more accurate policy updates. The
early asymmetric actor-critic approach by Pinto et al. [17] achieves strong empirical performance
but suffers from biased gradient estimates [18]. This issue is addressed by Baisero and Amato [18],
who propose the history-state value function to explicitly model the relationship between histories
and latent states, ensuring unbiased gradients. Applications of asymmetric actor-critic methods
demonstrate good performance across domains [19, 20, 21]. Most actor-critic methods either assume
full access to the true state during training or rely solely on information available at deployment.
However, many environments often fall between these extremes: some internal variables may be
observable during training, while others remain hidden or only partially accessible. In this work, we
focus on methods that can effectively leverage privileged partial information, a largely unexplored
setting.

Recent theoretical work has established convergence guarantees for both policy gradient and actor-
critic methods in fully observable Markov decision process (MDP) settings. Natural policy gradient
(NPG) methods are analyzed using linear and feedforward neural network approximators [22, 23],
while actor-critic methods demonstrate provable convergence under both i.i.d. and Markovian sam-
pling assumptions [24, 25, 26]. Extending these analyses to partially observable settings, recent work
has begun to address recurrent policy optimization in POMDPs [27]. Notably, Cayci and Eryilmaz
[27] provide convergence guarantees for symmetric natural actor-critic methods employing RNNs.
Theoretical analysis of asymmetric actor-critic algorithms using linear function approximation has
also emerged [28, 29], along with belief-weighted asymmetric variants [30]. Building on the results
of [27] for the symmetric recurrent natural policy gradient method, our work extends the analysis to
asymmetric settings where the critic has access to a privileged partial signal during training.

To this end, we present an asymmetric actor-critic method grounded in the framework of informed
POMDPs. Our approach relaxes the standard assumption of full-state observability during training
by allowing the critic to condition on privileged partial information, falling between fully privileged
and unprivileged settings. The policy remains history-dependent and executable solely from past
observations and actions. We show that the informed asymmetric critic is well-defined and unbiased,
preserving the policy gradient theorem under partial privileged conditioning. By demonstrating that
any state-conditional random variable can be leveraged in an unbiased manner, our work raises new
questions regarding which privileged information is sufficient or necessary for effective learning.
Additionally, we analyze the finite-time and finite-width convergence properties of the informed
asymmetric variant of the recurrent natural actor-critic (Rec-NAC) algorithm and empirically evaluate
its performance in a simulated partially observable environment. Our results highlight the need
for a sound approach to evaluate the informativeness of privileged signals, enabling a systematic
assessment of the practical benefits of asymmetric actor-critic methods while accounting for the
trade-offs with model complexity.

2 Background

In this section, we describe the decision processes and actor-critic methods considered in this work,
with a focus on the informed asymmetric actor-critic framework. We also introduce the infinite-width
limit and neural tangent kernel, which provide a nonparametric perspective on learning dynamics and
form the basis of our theoretical analysis. An overview of the notation can be found in Appendix A.

2



2.1 Partially observable Markov decision processes

A partially observable Markov decision process (POMDP) [6] is a discrete-time partially observable
control problem defined by an 8-tuple (S,A,O, T,O,R, P, γ), where S denotes the state space, and
A is the action space. P ∈ ∆(S) is the initial state distribution that gives the probability of s0 ∈ S
being the process’ initial state. The transition function T : S ×A → ∆(S) defines the dynamics of
the system by providing the probability of transitioning to state st+1 ∈ S after taking action at ∈ A
in state st ∈ S. The reward function R : S × A → R specifies the expected immediate reward
received for taking a particular action in a given state, and γ ∈ [0, 1) is a discount factor that specifies
the relative importance of future rewards. Together, the tuple (S,A, T,R, P, γ) describes a fully
observable Markov decision process (MDP). What sets a POMDP apart from a fully observable MDP
is the fact that the agent cannot directly observe the true state st ∈ S of the environment. Instead, it
receives an observation ot ∈ O, where O denotes the observation space. The observation function
O : S → ∆(O) gives the probability of obtaining observation ot ∈ O in state st ∈ S.

In the partially observable setting, the agent must select actions based on the observable history,
defined as the sequence of past observations and actions. We represent each history as h by flattening
this sequence and define the set of observable histories as H =

⋃∞
t=0 Ht, where Ht ⊆ O× (A×O)t

is the set of histories of size t. To achieve optimal behavior under partial observability, the agent
typically needs to consider the entire history, meaning its policy maps histories to action distributions,
i.e., π : H → ∆(A). The agent’s objective is to maximize the expected return, specifically the
expected discounted sum of rewards, given by J(πθ) = Eπ [

∑∞
t=0 γ

tR(st,at)]. The history reward
function is given by R(h,a) = Es|h [R(s,a)]. Moreover, the policy’s history value function
V π : H → R is defined as the expected return following an observable history h:

V π (h) = Eπ
s0:∞,a0:∞|h

 ∞∑
j=0

γj R (sj ,aj)

 , (1)

supporting an indirect recursive Bellman form:

V π(h) =
∑
a∈A

π(a|h)Qπ(h,a), (2)

where the history Q-function is Qπ(h,a) = R(h,a) + γEo′|h,a [V π(h′)] with h′ = hao′.

2.2 Informed POMDP

The informed POMDP [14] extends the standard POMDP formulation by introducing a so-called
information space I and a corresponding information function I : S → ∆(I), which specifies the
probability of receiving information it ∈ I given the true state st ∈ S. Accordingly, the informed
POMDP is defined by the 10-tuple (S,A, I,O, T, I, Õ, R, P, γ). Unlike in a standard POMDP,
the observation function is defined as Õ : I → ∆(O), which gives the probability to get ot ∈ O
given information it ∈ I. The key assumption in an informed POMDP is that the observation ot is
conditionally independent of the true state st given the information it, i.e., ot ⊥⊥ st | it. For each
informed POMDP, there is an underlying execution POMDP defined as (S,A,O, T,O,R, P, γ),
where O(ot|st) =

∑
i∈I Õ(ot|i)I(i|st).

Assumption 2.1 (Independent trajectories). Given the initial state distribution P , we assume that
independent trajectories {ik,t,ok,t,ak,t, rk,t : t ∈ Z≥0} and histories {hk,t : t ∈ Z≥0} can be
obtained, where each trajectory starts from an independent initial state sk,0 ∼ P , and rk,t denotes
the reward observed at time step t along trajectory k ∈ N.

In the following, we present several reward and value functions that are central to the derivation
and analysis of the informed asymmetric actor-critic. We first introduce the time-invariant informed
history-based reward functionR(h, i,a), which incorporates additional state-conditioned information
i ∼ I(i|s) in the informed POMDP setting.
Definition 2.1 (Informed history-based reward function). The informed history-based reward function
R(h, i,a) is the expected state-based reward R(s,a) given the belief p(s|h, i) about the true state
s ∈ S, i.e.,

R(h, i,a) = Es|h,i [R(s,a)] . (3)
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Note that R(h, i,a) is an unbiased estimate of the expected immediate reward conditioned on history
h and action a ∈ A, i.e., Ei|h [R(h, i,a)] = R(h,a) (see Lemma D.1 in Appendix D).

We assume that the reward function is uniformly bounded:
Assumption 2.2 (Bounded rewards). For any (s,a) ∈ S×A, |R(s,a)| ≤ rmax, where rmax ∈ R>0.

Assumption 2.2 implies that both the standard history-based rewards and, by Lemma D.1, the
informed history-based rewards are also bounded by rmax.

Next, we define the informed history Q-function, which conditions on h, i, and a.
Definition 2.2 (Informed history Q-function). The informed history Q-function Qπ(h, i,a) denotes
the expected discounted return when starting from history h ∈ H, privileged information i ∈ I, and
action a ∈ A, and then following policy π:

Qπ(h, i,a) = Eπ
s0:∞,a0:∞|h,i,a

 ∞∑
j=0

γjR(sj ,aj)

 . (4)

Lemma D.2 in Appendix D establishes that the informed history Q-function is an unbiased estimate
of the history Q-function. Lastly, we define the time-invariant informed asymmetric value function
that evaluates a history h of past observations and actions together with state-conditioned information
i.
Definition 2.3 (Informed history value function). The informed history value function V π(h, i)
denotes the expected return starting from history h ∈ H and additional information i ∈ I:

V π(h, i) = Eπ
s0:∞,a0:∞|h,i

 ∞∑
j=0

γjR(sj ,aj)

 . (5)

It satisfies the recursive form:

V π(h, i) =
∑
a∈A

π(a|h)Qπ(h, i,a), (6)

where the informed Q-function satisfies the Bellman equation:

Qπ(h, i,a) = R(h, i,a) + γ Eo′,i′|i,a [V π(h′, i′)] , (7)

with h′ = hao′.

Unlike the standard history value V π(h), the informed history value V π(h, i) incorporates additional
state-dependent information, providing richer context on the environment’s dynamics and rewards.
Compared to the state value V π(s), (h, i) ∈ H × I offers a more informative basis for predicting
the agent’s behavior.

Importantly, the informed history value function V π(h, i) provides, in expectation, the same
signal as the standard history value function, as it is an unbiased estimator of V π(h); that is
Ei|h [V π(h, i)] = V π(h) (see Lemma D.3). In the special case where the privileged information i
equals the full environment state s ∈ S, i.e., i = s, the informed history value function reduces to
the history-state value function V π(h, s) introduced by Baisero and Amato [18] (see Corollary D.1).

2.3 Actor-critic methods under partial observability

Actor-critic methods are a class of policy gradient algorithms that consist of a policy model (the
actor), parameterized by θ, and a value function estimator (the critic), parametrized by ϑ. The actor
selects actions according to its policy πθ(at|ht), while the critic evaluates these actions to guide
policy improvement. Under partial observability, both models typically condition on the history of
past observations and actions, ht ∈ H, and are trained using sample-based gradients.

Symmetric actor-critic. In the symmetric actor-critic setting, the policy gradient with respect to
the policy parameters θ is given by:

∇θJ(πθ) = E

[∑
t

γtQπ(ht,at)∇θ log πθ(at|ht)

]
. (8)
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The critic serves two purposes: it bootstraps value estimates V̂ (ht;ϑ) and acts as a baseline to reduce
variance in the policy gradient estimation. In practice, the history Q-function in Equation 8 is often
replaced by the temporal-difference (TD) error δt = rt + γV̂ (ht+1;ϑ)− V̂ (ht;ϑ), where rt denotes
the observed reward at time step t, and V̂ (·;ϑ) represents the value estimates from the critic.

Asymmetric actor-critic. Asymmetric actor-critic methods allow the critic to access privileged
information, typically the true environment state st, during training. This information is unavailable to
the actor, and during execution. However, prior approaches often rely on state value functions V π(s)
[17], which are proven to be generally ill-defined for agents operating on histories of past observations
and actions [18]. To address this issue, we define the informed asymmetric policy gradient for an
informed POMDP based on the unbiased informed history Q-function (cf. Equation 4):

∇IAAC
θ J(πθ) = E

[ ∞∑
t=0

γtQπ(ht, it,at)∇θ log πθ(at|ht)

]
, (9)

where the policy depends on the observable history, and the critic additionally conditions on privileged
information.

We find that the informed asymmetric policy gradient is equivalent to the standard policy gradient
∇θJ(πθ) encountered in symmetric settings.
Theorem 2.1 (Informed asymmetric policy gradient). Given an informed POMDP, the informed
asymmetric policy gradient is equivalent to the standard policy gradient:

∇IAAC
θ J(πθ) = ∇θJ(πθ). (10)

This implies that an informed asymmetric critic can exploit privileged information during training
while preserving the unbiased nature of the policy updates. We provide the proof of Theorem 2.1 in
Appendix C.1. Analogous to the informed history value function, the informed asymmetric policy
gradient reduces to the asymmetric policy gradient formulation of Baisero and Amato [18] for it = st,
with st ∈ S (see Corollary D.2 in Appendix D).

Building on Theorem 2.1, we define the informed history critic V̂ : H× I → R, which provides an
estimate of the informed history value V π(ht, it), given ht and it. When combined with a history-
dependent policy πθ(at|ht), this forms an asymmetric actor-critic method, which we refer to as
informed asymmetric actor-critic (IAAC). The informed asymmetric policy gradient is approximated
as ∇̂IAAC

θ J(πθ) = E [
∑

t γ
t δt ∇θ log π(at|ht)] , where the TD errors δt = rt + γ V̂ (ht+1, it+1)−

V̂ (ht, it) are computed using the critic’s informed value estimates.

2.4 Infinite-width limit and neural tangent kernel

Let f(x; θ) denote a parametric function computed by a neural network with input x and parameters
θ. In the infinite-width limit, i.e., as the width of each hidden layer m → ∞, the network is
well-approximated by its first-order Taylor expansion around the random initialization θ0:

f(x; θ) ≈ f(x; θ0) + ⟨∇θf(x; θ0), θ − θ0⟩. (11)

This linearization defines the time-independent neural tangent kernel (NTK) [31], given by
κ(x,x′) := ⟨∇θf(x; θ0),∇θf(x

′; θ0)⟩, which governs the training dynamics under gradient
descent. In the infinite-width regime, the NTK remains fixed during training and converges to a
deterministic kernel, independent of the parameter trajectory. Consequently, learning reduces to
kernel regression in the reproducing kernel Hilbert space (RKHS) Gκ associated with κ.

The NTK also admits a random feature interpretation, often referred to as the neural tangent random
feature (NTRF) model. Defining the feature map ψ(x; θ0) := ∇θf(x; θ0), the kernel becomes
κ(x,x′) = ⟨ψ(x; θ0), ψ(x′; θ0)⟩, showing that learning occurs in a feature space induced by the
network’s initialization θ0. Functions in this space take the form: f(x) = Eθ0 [⟨v(θ0), ψ(x; θ0⟩], for
some square-integrable function v(·) over initializations. This representation defines a nonparametric
function class:

F := {x 7→ Eθ0 [⟨v(θ0), ψ(x; θ0⟩] | v ∈ M} , (12)

with RKHS norm ∥f∥F =
√

Eθ0 [∥v(θ0)∥22]. We refer to v ∈ M as a transportation mapping. The
set of admissible mappings M controls the complexity of the function class and ensures that the
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norm is finite. This perspective abstracts away finite-width parameterizations, reframing training as
optimization in an infinite-dimensional feature space derived from the initialization geometry.

3 Informed Asymmetric Rec-NAC Algorithm

In partially observable environments, agents must often rely on the entire sequence of past obser-
vations and actions to act optimally [32]. However, explicitly storing and processing unbounded
histories is computationally infeasible. Recurrent neural networks (RNNs) offer a practical solution
by encoding the history into a fixed-size latent representation, enabling the agent to retain relevant
temporal information while maintaining scalability. Due to their ability to model sequential depen-
dencies, RNNs are particularly well-suited for learning non-Markovian policies and value functions
within actor-critic frameworks.

In what follows, we introduce the informed asymmetric recurrent natural actor-critic (Rec-NAC)
algorithm, which generalizes the recurrent NAC method [27] to settings with privileged information
available. This variant employs a recurrent policy and an asymmetric critic that has access to
additional input it ∼ I(it|st) during training.

3.1 Network architectures

Figure 1 illustrates the architectures of the actor and the informed asymmetric critic neural network.
Both networks are implemented as Elman-type recurrent neural networks (RNNs) (see Appendix B.1)
that process sequences of observations and actions, with weights shared across time steps to ensure
that the hidden state provides a compact encoding of the history ht. Each network is equipped with a
task-specific readout head, described in detail below.

Actor. The actor is modeled as an Elman-type RNN Gt(·; θ) of width mG ∈ N, parameterized
by θ = (WG UG)

⊤, where WG ∈ RmG×mG is diagonal and UG ∈ RmG×dx is a general input
weight matrix, with dx denoting the input dimension of the network. The input at each time step
is xt = (ot at)

⊤, and the resulting hidden state is denoted by yt. A linear projection with fixed
weights c ∈ RmG produces a scalar output Gt(ht,at; θ, c) =

1√
mG

⟨c,yt⟩. The policy distribution
over actions is defined using a softmax over the output logits:

πθ
t (a|ht) :=

exp (Gt(ht,a; θ, c))∑
a′∈A exp (Gt(ht,a′; θ, c))

, a ∈ A, ht ∈ H. (13)

Critic. The critic estimates the informed history Q-function Q(ht, it,at), where it denotes priv-
ileged information available only during training. It comprises an Elman-type RNN Ft(·;ϑF ) of

(a)

xt = (ot,at)
⊤ UG + WG yt−1

ϱ(·)

ythidden
state

c

Gt
output

input

(b)

xt = (ot,at)
⊤ UF + WF ft−1

ϱ(·)

fthidden
state

⊕it
privileged

input

zt privileged
embedding

b

Φt
output

xt = (ot,at)
⊤

input

Figure 1: Network architecture of (a) the actor and (b) the informed asymmetric critic.
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width mF , parameterized by ϑF = (WF UF )
⊤, and a single linear layer with learnable param-

eters b ∈ Rdz , where dz = mF + di, with di denoting the dimensionality of the additional signal
it. The recurrent weights are defined analogously to the actor: WG ∈ RmG×mG is diagonal and
UG ∈ RmG×dx is a general input weight matrix. The RNN receives xt as input, analogous to
the actor network, and computes the hidden state ft = Ft(ht,at;ϑ

F ). This hidden state is then
concatenated with the privileged information it to form zt = ft ⊕ it. The final output is given
by a linear projection, i.e., ϕt(zt; b) = 1√

mF+di
⟨b, zt⟩. The full critic network, parameterized by

ϑ := (WF UF b)
⊤, is defined as

Φt(ht,at, it;ϑ) := ϕt
(
Ft(ht,at;ϑ

F )⊕ it; b
)
= ϕt(ft ⊕ it; b) = ϕt(zt; b). (14)

3.2 Infinite-width limit of the informed asymmetric critic

In the following, we give the characterization of the infinite-width limit for the informed asymmetric
critic. Let w0 ∼ Unif(−α, α),u0 ∼ N (0, Id) and b0 ∼ N (0, Idz

), be independent random
variables, and ϑ0 := (w0 u0 b0)

⊤. The corresponding neural tangent random feature (NTRF)
for the informed asymmetric critic at time t is defined as:

ψt(ht,at, it;ϑ0) :=

(
ψF

t (ht,at;ϑ
F
0 )

1√
dz
zt

)
=

(
ψF

t (ht,at;ϑ
F
0 )

1√
dz

(ft ⊕ it)
)
,

where ψF
t is given by

ψF
t (ht,at;ϑ

F
0 ) :=

t∑
k=0

wk
0

(
Ft−k−1(ht−k−1,at−k−1;ϑ

F
0 )

xt−k

) k∏
j=0

Υt−j(ht−j ,at−j ;ϑ
F0),

with F−1 := 0 and Υt(ht,at;ϑ
F
0 ) = ϱ′

(
w0ft−1(ht−1,at−1;ϑ

F
0 ) + ⟨u0,xt⟩

)
.

For a sequence ((hk,ak, ik))0≤k≤T−1, let the stacked NTRF matrix be

ΨT (·;ϑ0) :=


ψ⊤

0 (h0,a0, i0;ϑ0)
ψ⊤

1 (h1,a1, i1;ϑ0)
...

ψ⊤
T−1(hT−1,aT−1, iT−1;ϑ0)

 , and Ψ(·;ϑ0) := Ψ∞(·;ϑ0).

Following Definition B.2 in Appendix B.5, let the set of transportation mappings MF be defined as

v : R1+dx+dz → R1+dx+dz , ϑ0 = (w0,u0,b0) 7→
(
vw(w0)
vu(u0)
vb(b0)

)
,

subject to E
[
|vw(w0)|2

]
<∞, E

[
∥vu(u0)∥22

]
<∞, and E

[
∥vb(b0)∥22

]
<∞.

Then, the function class of the recurrent informed asymmetric critic Φt(ht,at, it;ϑ) is defined by:

F := {H ×A× I ∋ (h,a, i) 7→ Eϑ0
[Ψk (h,a, i;ϑ0) v(ϑ0)] : v ∈ MF } .

Accordingly, any target mapping Φ⋆
t ∈ F is given by:

Φ⋆
t (ht,at, it; v) = E [⟨v(ϑ0),ψt(ht,at, it;ϑ0)⟩] .

3.3 Recurrent temporal-difference learning

The critic is trained using Recurrent Temporal-Difference learning (Rec-TD) by minimizing

Rπ
T (ϑ) := Eπ

s0∼P

[
T−1∑
t=0

γt (Φt(ht,at, it;ϑ)−Qπ
t (ht, it,at))

2

]
, (15)

such that ϑ ∈ Ωρ,(mF ,dz) (see Appendix B.4).

7



To perform optimization, Rec-TD employs semi-gradient TD updates based on the empirical TD
error:

δt(ht+1,at+1, it+1;ϑ) := rt + γΦt+1(ht+1,at+1, it+1;ϑ)− Φt(ht,at, it;ϑ) (16)

leading to the following update direction:

∇̌RT (ht,at, it;ϑ) =

T∑
t=0

γtδt(ht+1,at+1, it+1;ϑ)∇ϑΦt(ht,at, it;ϑ). (17)

Under Assumption 2.1, Rec-TD proceeds with projected gradient descent:

ϑ̌k+1 = ϑk+1 + η · ∇̌RT (hk,T ,ak,T , ik,T ;ϑk), (18)

for k ∈ Z≥0. For Rec-TD with max-norm regularization, the updated parameters are:

ϑk+1 = ProjΩρ,(mF ,dz)
[ϑ̌k+1], (19)

where η > 0 is the learning rate, and the projection ensures that the parameter update remains within
the admissible norm-constrained set. For a complete overview of the Rec-TD learning loop, please
refer to the pseudocode in Algorithm 1 in Appendix F.

3.4 Recurrent natural policy gradient

To approximate the natural gradient of the informed asymmetric policy objective, we adopt a
truncated path-based compatible function approximation following [27]. Given a truncation horizon
T ∈ N and a history-dependent policy πθn

t , the corresponding output of the critic is defined as
Q̂

πθn
t := Φt(ht,at, it; ϑ̂n), where ϑ̂n denotes the critic parameters obtained by Rec-TD at iteration

n ∈ Z≥0. The actor then solves the following optimization problem to compute the compatible
direction g:

min
g

E
[
ℓT (g; θ, Q̂)

]
=

[
T−1∑
t=0

γt
(
∇ log πθ

t (at|ht)g − Ât(ht,at, it)
)2]

, (20)

subject to g ∈ B(mG)
2,∞ (0,ρG) (see Appendix B.3), where the advantage estimate is given by

Ât(ht,at, it) = Q̂t(ht, it,at)−
∑

a∈A π
θ
t (a|ht)Q̂t(ht, it,a).

This problem is solved via projected stochastic gradient descent (SGD). Let ĝn,k denote the estimate
after k ∈ Z≥0 SGD steps during the n-th policy update cycle:

g̃n,k+1 = ĝn,k − ηsgd∇gℓT (gn,k; θ, Q̂), (21)
ĝn,k+1 = ProjB(mG)

2,∞
[g̃n,k+1] , (22)

with initialization ĝn,0 = 0. The policy is then updated using the average compatible direction:

θ(n+1) = θ(n) + ηnpg ·
1

Ksgd

∑
k<Ksgd

ĝn,k. (23)

The complete Rec-NPG procedure is outlined in Algorithm 2 in Appendix F. As an empirical
validation, Appendix G presents experimental results evaluating the informed asymmetric Rec-NAC
algorithm in an informed POMDP setting.

4 Theoretical Analysis of Informed Asymmetric Rec-NAC

This section provides a theoretical analysis of the informed asymmetric Rec-NAC algorithm. We
derive a finite-time and finite-width bound for the informed asymmetric Rec-TD and discuss how
incorporating additional state-dependent information into the critic affects the convergence behavior
of Rec-NPG. Our results build on the analysis for the symmetric case presented in [27]. We conclude
by highlighting the importance of developing quantitative criteria to assess the informativeness of
privileged inputs with respect to the underlying true state.
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4.1 Finite-time analysis of informed asymmetric Rec-TD

First, we show that informed asymmetric Rec-TD with max-norm regularization achieves global
optimality in expectation, under appropriate smoothness and boundedness assumptions. Our analysis
extends Theorem E.1 for symmetric Rec-TD [27], to the partially observed setting, where the critic
conditions on an augmented input (ht,at, it). This setup captures richer input context and accounts
for information asymmetry during training.

The following result provides a non-asymptotic upper bound on the expected average Bellman
residual over K gradient steps.
Theorem 4.1 (Finite-time bound of informed asymmetric Rec-TD). Let {Qπ

t : t ∈ Z≥0} ∈ F with a
transportation mapping v ∈ MF such that

sup
w∈R

∥vw(w)∥2 ≤ νw, sup
u∈Rd

∥vu(u)∥2 ≤ νu, and sup
b∈RmF +di

∥vb(b)∥2 ≤ νb.

Then, for any projection radius ρ ⪰ ν = (νw νu νb)
⊤ and step size ηtd > 0, Rec-TD with

max-norm regularization achieves the following error bound:

E

[
1

K

K−1∑
k=0

Rπ
T (ϑk)

]
≤ ∥ν∥22
ηtd (1− γ)

√
K

+
ηtd C

(1)
T

(1− γ)3
√
K

+
C

(2)
T

(1− γ)2
√
mF

+
γT

(1− γ)K

K−1∑
k=0

ω2
T,k, (24)

for any K ∈ N, where ωt,k :=
√
E [Φ(ht,at, it;ϑk)−Qπ

t (ht, it,at))2] denotes the critic approxi-
mation error for t, k ∈ Z≥0, and

C
(1)
T , C

(2)
T = poly

(
T−1∑
k=0

∣∣∣∣(ϱ1(α+
ρw√
mF

)

)∣∣∣∣k , ∥ρ∥2, ∥ν∥2
)

are instance-dependent constants.

Theorem 4.1 establishes that, under appropriate smoothness and regularization assumptions, the
informed asymmetric Rec-TD algorithm achieves a global error bound composed of (1) an opti-
mization term and (2) a smoothness-related term, both decaying as O(1/

√
K); (3) a statistical term

that decreases with the RNN width mF ; and (4) an accumulation term that captures the impact
of bootstrapped targets and scales with the discounted average critic approximation error. The
result underscores a trade-off between optimization efficiency, function class complexity, and error
propagation induced by temporal difference updates. The proof of Theorem 4.1 can be found in
Appendix C.2.

4.2 Theoretical results for Rec-NPG

Next, we briefly investigate the theoretical performance of the Rec-NPG algorithm by analyzing
its error properties in the presence of an informed asymmetric critic. Cayci and Eryilmaz [27]
establish a non-asymptotic error bound for the best-iterate of Rec-NPG in the symmetric setting (see
Theorem E.2 in Appendix E). Their results show that the algorithm’s effectiveness is governed by the
compatible function approximation error, defined as

εTcfa := Eπθn

s0∼P

∑
t<T

γt
∣∣∇⊤ log πθ

t (at|ht) g −Aπθ
t (ht,at)

∣∣2 .
According to Proposition E.2, for any n ∈ Z+, this error can be decomposed into (1) εapp,n, capturing
the approximation error of the RNN; (2) εtd,n, denoting the statistical error in the critic’s temporal-
difference (TD) estimate (cf. Equation 15); and (3) εsgd,n, reflecting the optimization error in the
policy update based on the compatible function approximation.

Our primary focus is to understand the effect of using an informed asymmetric critic, instead of a
symmetric one, on the actor’s error bound, i.e., examining how εtd,n is influenced. By Theorem 4.1,
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the critic’s statistical error satisfies

εtd,n ≤ poly

(
T−1∑
k=0

|ϱ1αm|k
)
O

(
1√
Ktd

+
1√
mF

+ γT
)
,

when the TD learning rate is set as ηtd = O
(
1/
√
Ktd

)
. This error bound exactly matches the

asymptotic rate achieved in the symmetric Rec-TD setting (see Theorem E.1). Generally, this bound
suggests εtd,n can be made arbitrarily small by increasing the number of TD updates Ktd and the
width of the critic network.

4.3 Discussion

Despite asymptotic equivalence in the Rec-TD error bound, the presence of the additional input
in the asymmetric setting influence the constant factors hidden in the bound, that is C(1)

T and C(2)
T

in Equation 24. To understand the impact of auxiliary information during critic training, let us
compare Theorem 4.1 with the corresponding result for the symmetric setting studied in [27] (cf.
Theorem E.1).

One hidden key difference lies in the critic approximation error ω2
t,k, which is minimized over

different function classes depending on whether the auxiliary input it is available. Let F̃ denote the
function class of a symmetric critic RNN, parameterized with ϑ̃ =

(
W̃ Ũ

)⊤
, followed by a a linear

readout with fixed weights. Functions in F̃ take the form f̃⋆(ht,at; ṽ) = E[⟨ṽ(ϑ̃0), ψ̃F
t (ht,at; ϑ̃0)⟩],

where ṽ(·) is the corresponding transportation mapping. Since these functions are independent of
it, we have F̃ ⊂ F. Any f̃⋆ ∈ F̃ can be recovered in the richer class F by setting it = 0. To
contextualize the influence of the informativeness of it, consider several canonical forms of it. If
it = 0, we do not expect any gain in approximation accuracy compared to the symmetric setting.
Conversely, if it provides helpful information about the underlying state, we expect the inclusion of
it to be beneficial with respect to approximation error. For example, let it = e(st) + ϵt be a noisy
embedding of the true state with an injective map e and small noise ϵt > 0. In the limit ϵt → 0, it
converges to a deterministic encoding of st, eliminating uncertainty about the true environment state.

However, incorporating informative signals it increases the complexity of the function class, requiring
more expressive approximators. This typically leads to larger Lipschitz and smoothness constants. In
particular, the instance-dependent terms hidden in Equation 24, such as L′

T and ∥ν∥2, are generally
larger than their counterparts in the symmetric setting, i.e., L′

T = LF
T + ρb and ∥ν∥2 ≥ ∥ν̃∥2.

This introduces a fundamental trade-off: while informative additional inputs may improve approxima-
tion quality, they can also increase model complexity and variance, as well as slow down convergence
in practice. Whether the net effect is provably beneficial likely depends on the informativeness of
it relative to the increased model capacity required. Intuitively, auxiliary inputs improve training
efficiency only if the average gain in approximation outweighs the added complexity cost captured
by instance-dependent constants.

To quantify this trade-off, a criterion is needed that ideally balance informativeness with complexity
and could guide the selection or construction of it in a task-adaptive or data-driven manner. Identifying
such conditions remains a key challenge, and addressing it could lead to more effective training
algorithms in partially observable environments.

5 Conclusion

This work introduces the informed asymmetric actor-critic paradigm, where the critic leverages
privileged inputs during training without requiring full state access. We demonstrate that conditioning
on such signals preserves unbiased policy gradients and convergence guarantees, even when with
privileged partial information. Our finite-time analysis reveals a trade-off between potentially reduced
approximation error and increased model complexity: while privileged inputs may enhance learning,
their benefit primarily depends on their informativeness relative to their impact on training stability. A
key open challenge is to develop quantitative criteria for assessing and selecting privileged inputs in a
task-dependent manner. Future work may also extend the theoretical analysis to neural architectures
that non-linearly integrate RNN outputs with privileged information.
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A Notation

We use calligraphic letters (e.g., X ) to denote sets, and ∆(X ) for the set of probability distributions
over X . Scalars are written in lowercase (e.g., x), vectors in bold lowercase (e.g., x), and matrices
in bold uppercase (e.g., X). Sequences of vectors are denoted with a subscript range, e.g., s0:n =
(s0, s1, . . . , sn)

The i-th element of a vector x is denoted by xi, the (i, j)-th entry of a matrix X by Xi,j , and the
i-th row ofX byXi,:. We write In for the n× n identity matrix, and diag(x) for a square diagonal
matrix with diagonal entries given by x.

We use the standard sets: R for the real numbers, N for the natural numbers, and Z for the integers.
The notation {0, 1, . . . , n} denotes the set of integers from 0 to n. Functions are written as x(·) or
X(·), and parametric functions as x(·; θ) or X(·; θ), where θ denotes the parameters.

Random variables are denoted in sans-serif: x for a scalar-valued random variable, x for a vector-
valued one, and X for a matrix-valued one. For a random vector y, we write Ey|x[f(y)] to denote
the conditional expectation of f(y) given x = x, i.e., Ey|x[f(y)] = E[f(y) | x = x].

B Algorithmic Tools for the Informed Asymmetric Rec-NAC

In this section, we present key concepts underlying the analysis of the informed asymmetric Rec-NAC
method.

B.1 Elman-type Recurrent Neural Network (RNN)

An Elman-type RNN of width m ∈ N is parameterized by a recurrent weight matrixW ∈ Rm×m

with all the off-diagonals set to zero and a general input weight matrix U ∈ Rm×dx , where dx ∈ N
denotes the input dimension. This structural choice of parameters simplifies the analysis of such
a network while retaining essential modeling capabilities of recurrent architectures [27]. Given an
input xt ∈ Rdx for t ∈ Z≥0, the hidden state yt ∈ Rm evolves recursively via

yt =
−→ϱ (Wyt−1 +Uxt) , y0 = −→ϱ (Ux0) ,

where −→ϱ (·) denotes the element-wise application of a smooth activation function ϱ ∈ C2(R,R) with
bounded derivatives ∥ϱ∥∞ ≤ ϱ0, ∥ϱ′∥∞ ≤ ϱ1, ∥ϱ′′∥∞ ≤ ϱ2. Notably, the weights are shared
across time steps, allowing the hidden state yt to compactly encode the entire sequence of input with
fixed-sized memory.

B.2 Symmetric Random Initialization for Recurrent Neural Networks

In this work, we consider a symmetric variant of random initialization for Elman-type RNNs with
linear readout, which ensures certain desirable properties at initialization, such as zero-centered
outputs.
Definition B.1 (Symmetric random initialization; Definition A.1 in [27]). Let the RNN’s width m be
even. For i ∈ {1, . . . , m2 }, draw independently output weights ci ∼ Unif(−1, 1), recurrent weights
w̃i ∼ Unif(−α, α), and input weights U0i,: ∼ N (0, Idx

), and set for i ∈ {m
2 + 1, . . . ,m}:

ci = −c
i−m

2
,

w̃i = w̃
i−m

2
,

U0i,: = U0i−m/2,:
.

The resulting initialization (W0 U0 c)
⊤, with W0 = diagm(w̃), is referred to as symmetric

random initialization.

B.3 Max-Norm Regularization for RNNs

Given an Elman-type RNN of widthm with a linear output layer with symmetric random initialization
(W0,U0, c), where c denotes the fixed output-layer weights, we consider max-norm regularization
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around the random initialization for sharp convergence guarantees. Let ρ̃ = (ρ̃w ρ̃u)
⊤ ∈ R2

>0

denote the projection radii. Then, the compactly-supported set of weights Ωρ̃,m ⊂ Rm(dx+1) is
defined as

Ωρ̃,m = B(m)
2,∞

(
(W0 U0)

⊤
, ρ̃
)
,

where B(dx)
p (x, r) denotes the closed ℓp ball in Rd

x centered at x with radius τ :

B(d)
p (x, τ) = {z ∈ Rd : ∥z − x∥p ≤ τ}

Specifically, following [27], we define B(m)
2,∞

(
(W U)

⊤
, ρ̃
)

as

B(m)
2:∞((W U)

⊤
, ρ̃) := ⊗m

i=1

(
B(1)
1

(
Wi,:,

ρ̃w√
m

)
,B(d)

2

(
Ui,:,

ρ̃u√
m

))
,

where ⊗ is the Cartesian product.

Hence, for any symmetric random initialization (W0,U0, c), we have

max
1≤i≤m

|Wii −W0ii | ≤
ρ̃w√
m
,

max
1≤i≤m

∥Ui,: −U0i,:∥ ≤ ρ̃u√
m
.

We denote the max-norm projection (or regularization) by the projection operator P̃rojΩρ̃,m
[·], with

P̃rojΩρ̃,m

[
(W ,U)

⊤
]
=

 argmin

w∈B2

(
W0ii

,
ρ̃w√
m

) |Wii − wi|, argmin

ui∈B2

(
U0i,:

,
ρ̃u√
m

) ∥Ui − ui∥2


i∈{0,...,m}

.

B.4 Max-Norm Regularization for the Informed Asymmetric Critic

Given an informed asymmetric critic composed of an Elman-type RNN of width mF , parameterized
by ϑF = (WF UF )

⊤, followed by a single linear layer, parameterized by b, we define the
compactly-supported set of weights Ωρ,(mF ,dz) ⊂ RmF (dx+1)+dz , where dz denotes the dimension of
the linear-layer input. This set is defined relative to the projection radii vector ρ = (ρw ρu ρb)

⊤ ∈
R3

>0, and given by

Ωρ,(mF ,dz) :=
(
B(m)
2,∞

(
(WF UF )

⊤
,ρϑF

)
,B(dz)

2

(
b, ρb√

dz

))
.

Let ProjΩρ,(mF ,dz)
[·] denote the max-norm projection (or regularization), defined as

ProjΩρ,(mF ,dz)

[(
ϑF b

)⊤]
=

P̃rojΩ
ρF
ϑ

,mF

[
ϑF
]
, argmin
b∈B2

(
b,

ρb

dz

) ∥b− b∥2

 ,
where P̃rojΩ

ρF
ϑ

,mF

[·] is the projection operator for the RNN weights, detailed in Section B.3.

B.5 Transportation Mapping for the Informed Asymmetric Critic

Consider an informed asymmetric critic composed of an Elman-type RNN of width mF , parameter-
ized by ϑF = (WF UF )

⊤ and a single linear layer, parameterized by b. Let w ∼ Unif(−α, α),
u0 ∼ N (0, Idx

), and b0 ∼ N (0, Idz
) be independent random variables. We define the set of

transportation mappings MF as:
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Definition B.2 (Transportation mapping for the informed asymmetric critic; cf. Definition 4.1 in
[27]). Let MF be the set of mappings

v : R1+dx+dz → R1+dx+dz , ϑ0 = (w0,u0,b0) 7→
(
vw(w0)
vu(u0)
vb(b0)

)
,

subject to

E
[
|vw(w0)|2

]
=

1

2

(
|vw(α)|2 + |vw(−α)|2

)
<∞,

E
[
∥vu(u0)∥22

]
=

1

(2π)dx/2

∫
Rd

∥vu(u)∥22 e−
∥u∥22

2 du <∞,

E
[
∥vb(b0)∥22

]
=

1

(2π)dz/2

∫
Rdz

∥vb(b)∥22 e−
∥b∥22

2 db <∞.

We refer to each v ∈ MF as a transportation mapping [27].
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C Proofs

This section collects our proofs. Section C.1 contains the proof of Theorem 2.1, and Section C.2 that
of Theorem 4.1.

C.1 Proof of Theorem 2.1

Proof. Given Equation 8 and following the Lemmas D.2-D.3, we have

∇θJ(πθ) = E

[∑
t

γt Qπ(ht,at) ∇θ log π(at|ht)

]
(a)
=
∑
t

γt Eht,at
[Qπ(ht,at)∇θ log π(at|ht)]

(b)
=
∑
t

γt Eht,at
[Eit|ht

[Qπ(ht, it,at)]∇θ log π(at|ht)]

(c)
=
∑
t

γt Eht,it,at
[Qπ(ht, it,at)∇θlog π(at|ht)]

(d)
= E

[∑
t

γt Qπ(ht, it,at)∇θ log π(at|ht)

]
= ∇IAAC

θ J(πθ).

In (a) and (d), we use the linearity of the expectation to decompose or combine the summation over t
and the expectation over (ht, it,at), respectively. In (b), using Lemma D.2, we substitute Qπ(h,a)
with Ei|h [Qπ(h, i,a)], as the informed history-action value function is an unbiased estimate of
Qπ(h,a). By applying the law of total expectation in (c), i.e., Eht,at,it [·] = Eht,at

[
Eit|ht

[·]
]
, we

can rewrite the expression. This concludes the proof.

C.2 Proof of Theorem 4.1

Before we prove Theorem 4.1, we derive Lipschitzness and smoothness for the parameters of the
informed asymmetric critic. As this critic is composed of an Elman-type RNN and a single-layer
perceptron with linear activation, we extend the results given by Lemma E.1 to the composed neural
architecture of the informed asymmetric critic.

Let Γti(ht,at;ϑ
F ) := Wiifti(ht,at;ϑ

F ) for any hidden state unit fti with i ∈ {0, . . . ,mF − 1}
and ϑF ∈ RmF (dx+1); and let pt(·) =

∑t−1
k=0 | · |k and qt(·) =

∑t−1
k=0(k + 1)| · |k.

Lemma C.1 (Local continuity of hidden states in the informed asymmetric critic). Given ρ ∈ R3
>0

and α ≥ 0, let αmF
= α+

ρwF√
mF

. Then, for any (h,a, i) ∈ H ×A× I with supt∈Z≥0
∥xt∥2 ≤ 1,

supt∈Z≥0
∥it∥2 ≤ 1, t ∈ Z≥0, j ∈ {0, . . . ,mF − 1}, and l ∈ {0, . . . ,mF + di − 1},

• ϑFj,: 7→ Ftj

(
ht,at;ϑ

F
)

is LF
t -Lipschitz continuous with LF

t =
(
ϱ20 + 1

)
ϱ20 · p2t (αmF

ϱ1),

• ϑFj,: 7→ Ftj

(
ht,at;ϑ

F
)

is βF
t -smooth with βF

t = O (dx · pt (αmF
ϱ1) · qt (αmF

ϱ1)),

• ϑFj,: 7→ Γtj

(
ht,at;ϑ

F
)

is ΛF
t -Lipschitz continuous with ΛF

t =
√
2
(
ϱ0 + 1 + αmF

LF
t

)
,

• ϑFj,: 7→ Γtj

(
ht,at;ϑ

F
)

is χF
t -smooth with χF

t =
√
2
(
LF
t + αmF

βF
t

)
,

• bl 7→ Φt(ht,at, it; b) is LΦ
t -Lipschitz continuous with LΦ

t = ∥b∥2,

• bl 7→ Φt(ht,at, it; b) is βΦ
t -smooth with βΦ

t = 0

in Ωρ,(mF ,mF+di).
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Consequently, for H∞ := H∞ ×A× I, T ∈ N, t ∈ Z≥0, and any ϑ ∈ Ωρ,(mF ,mF+di),

sup
(h,a,i)∈H∞

max
0≤t≤T

|Φt (ht,at, it;ϑ)| ≤ ρb ·
√
LF
T · ∥ρϑF ∥2 + 1,

sup
(h,a,i)∈H∞

∣∣ΦLin
t (ht,at, it;ϑ)− Φt (ht,at, it;ϑ)

∣∣ ≤ 2√
mF

(
ϱ2(Λ

F
t )

2 + ϱ1χ
F
t

)
∥ϑF − ϑF0 ∥22,

sup
(h,a,i)∈H∞

〈
∇Φt (ht,at, it;ϑ)−∇Φt (ht,at, it;ϑ0) , ϑ− ϑ̄

〉
≤ 2(βF

t )2∥ρϑF ∥22√
mF

,

with probability 1 over the symmetric random parameter initialization (WF
0 ,U

F
0 ,b0)

⊤.

Furthermore, we extend the external result outlined in Lemma E.2 to the composed neural architecture
of the informed asymmetric critic.

Lemma C.2 (Approximation error between NTRF and NTK in the informed asymmetric critic). Let
ϕ⋆ ∈ F with the transportation mapping v ∈ MF , and let

ϑ̄j,: = ϑ0j,: +
1√
mF

ζjv
(
ϑ0j,:

)
, j ∈ {1, . . . , d+mF + di − 1}, (25)

where ζj are i.i.d. symmetric random variables independent of ϑ0. Let

ΦLin
t (·;ϑ) := ∇ϑΦt(F

Lin
t (·;ϑF0 ), ·; b0) · (ϑ− ϑ0). (26)

If Pπ,P
T induces a compactly-supported marginal distribution for xt and it, t ∈ Z≥0 such that

∥xt∥2 ≤ 1 and ∥it∥2 ≤ 1 almost surely, and {(ht,at, it) : t ∈ Z≥0} is independent from the
random initialization ϑ0, then we have

Eϑ0

[
Eπ
P

[(
ϕ⋆t (ht,at, it)− ΦLin

t

(
ht,at, it; ϑ̄

))2]] ≤ 2∥ν∥22(1 + ϱ20)p
2
t (αϱ1)

mF
. (27)

We extend the non-stationary Bellman equation (cf. Proposition E.1) to the informed asymmetric
setting:

Proposition C.1 (Non-stationary Bellman equation in the informed asymmetric setting). For π ∈ Π,
we have

Qπ
t (ht, it,at) = Eπ

st,ht+1,it+1,at+1|ht,it,at

[
R(st,at) + γQπ

t+1(ht+1, it+1,at+1)
]

= Eπ
st,ht+1,it+1|ht,at,it

[
R(st,at) + γV π

t+1(ht+1, it+1)
]
,

for any (ht, it,at) ∈ H × I ×A and t ∈ Z≥0.

Proof of Theorem 4.1. The following proof closely follows the structure of the proof of Theorem 6.3
in [27] (cf. Theorem E.1), with adaptations tailored to informed asymmetric critic design presented
in this work.

Proof. Given that {Qπ
t : t ∈ Z≥0} ∈ F, let ϑ̄ denote the point of attraction. Then, the potential

function is given as:
Ψ(ϑ) = ∥ϑ− ϑ̄∥22. (28)

By leveraging the non-expansivity of the projection operator onto the convex set Ωρ,(mF ,mF+di), we
derive:

Ψ(ϑk+1) ≤ Ψ(ϑk) + 2η

T−1∑
t=0

γtδt
(
hk
t+1,a

k
t+1, i

k
t+1;ϑk

) 〈
∇Φt

(
Ft(h

k
t ,a

k
t ;ϑ

F
k), i

k
t ; bk

)
, ϑk − ϑ̄

〉
+ 2η2

∥∥RT

(
hk
t ,a

k
t , i

k
t ;ϑk

)∥∥2
2
.

(29)
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To streamline notation, we define Ěk
t [·] := E[·|ϑk, . . . , ϑ0,hk

t ,a
k
t , i

k
t ]. We obtain

E[Ψ(ϑk+1)−Ψ(ϑk)] ≤ 2ηE

T−1∑
t=0

γt Ěk
t

[
δt
(
hk
t+1,a

k
t+1, i

k
t+1;ϑk

)]
·
〈
∇Φt(h

k
t ,a

k
t , i

k
t ;ϑk), ϑk − ϑ̄

〉︸ ︷︷ ︸
(∆)t


+ η2 E

[∥∥∇̌RT

(
hk
t ,a

k
t , i

k
t ;ϑk

)∥∥2
2

]
︸ ︷︷ ︸

(♡)

(30)

To bound E(∆)t, we first apply the non-stationary Bellman equation (cf. Proposition C.1) and adapt
it to the informed asymmetric setting:

Ěk
t

[
δt
(
hk
t+1,a

k
t+1, i

k
t+1;ϑk

)]
= Ěk

t

[
rkt + γ · Φt+1(h

k
t+1,a

k
t+1, i

k
t+1;ϑk)

]
− Φt(h

k
t ,a

k
t , i

k
t ;ϑk)

= γ · Ěk
t

[
Φt+1(h

k
t+1,a

k
t+1, i

k
t+1;ϑk)−Qπθ

t+1

(
hkt+1, i

k
t+1, a

k
t+1

)]
+Qπθ

t

(
hkt , i

k
t ,a

k
t

)
− Φt(h

k
t ,a

k
t , i

k
t ;ϑk).

(31)

We can reformulate the inner product using reparameterized features:〈
∇Φt(h

k
t ,a

k
t , i

k
t ;ϑk), ϑk − ϑ̄

〉
=
〈
∇Φt(h

k
t ,a

k
t , i

k
t ;ϑ0), ϑk − ϑ̄

〉
+ err(1)t,k , (32)

where the residual term is

err(1)t,k :=
〈
∇Φt(h

k
t ,a

k
t , i

k
t ;ϑk)−∇Φt(h

k
t ,a

k
t , i

k
t ;ϑ0), ϑk − ϑ̄

〉
.

Using Lemma C.1, this error satisfies:∣∣∣err(1)t,k

∣∣∣ ≤ 2(βF
t )2∥ρϑF ∥22√
mF

≤ 2(βF
T )2∥ρϑF ∥22√
mF

.

We can further decompose the inner product as follows:〈
∇Φt(h

k
t ,a

k
t , i

k
t ;ϑ0), ϑk − ϑ̄

〉
= ΦLin

t (hk
t ,a

k
t , i

k
t ;ϑk)− ΦLin

t (hk
t ,a

k
t , i

k
t ; ϑ̄) (33)

= Φt(h
k
t ,a

k
t , i

k
t ;ϑk)−Qπθ

t (hk
t , i

k
t ,a

k
t ) + err(2)t,k + err(3)t,k . (34)

The error terms are:

err(2)t,k := ΦLin
t (hk

t ,a
k
t , i

k
t ;ϑk)− Φt(h

k
t ,a

k
t , i

k
t ;ϑk), (35)

err(3)t,k := −ΦLin
t (hk

t ,a
k
t , i

k
t ; ϑ̄) +Qπθ

t (hk
t , i

k
t ,a

k
t ). (36)

Substituting into (∆)t yields:

(∆)t = −
(
Qπθ

t (hk
t , i

k
t ,a

k
t )− Φt(h

k
t ,a

k
t , i

k
t ;ϑk)

)2
+ γ · Ěk

t

[
Φt+1(h

k
t+1,a

k
t+1, i

k
t+1;ϑk)−Qπθ

t+1(h
k
t+1, i

k
t+1,a

k
t+1)

]
·
(
Qπθ

t (hk
t , i

k
t ,a

k
t )− Φt(h

k
t ,a

k
t , i

k
t ;ϑk)

)
+ Ěk

t

[
δt(h

k
t+1,a

k
t+1, i

k
t+1;ϑk)

]
·
(

err(1)t,k + err(2)t,k + err(3)t,k

)
(37)

By Lemma C.1, we bound the temporal differences by:

sup
h,a,i∈H∞

|δt (ht+1,at+1, it+1;ϑk)| ≤ rmax + 2ρb ·
√
LF
T · ∥ρϑF ∥2 + 1 =: δmax. (38)

Let ωt,k :=
(
Ehk

t ,a
k
t ,i

k
t ,ϑk

[(
Qπθ

t (hk
t , i

k
t ,a

k
t )− Φt(h

k
t ,a

k
t , i

k
t ;ϑk)

)2])1/2
, so:

E [(∆)t] ≤ −ω2
t,k + γωt+1,k ωt,k + δmax

3∑
j=1

E
∣∣∣err(j)t,k

∣∣∣ . (39)
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Applying bounds from Lemmas C.1 and C.2, we obtain:

E
∣∣∣err(2)t,k

∣∣∣ ≤ 2√
mF

(
ϱ2(Λ

F
t )

2 + ϱ1χ
F
t

)
∥ρϑF ∥22 (40)

and

E
∣∣∣err(3)t,k

∣∣∣ ≤√E
∣∣∣err(3)t,k

∣∣∣2 ≤ 2∥ν∥2
√
1 + ϱ20 · pT (αϱ1)√

mF
. (41)

We can bound the product ωt+1,k ωt,k using the arithmetic mean inequality:

ωt+1,k ωt,k ≤ 1

2

(
ω2
t,k + ω2

t+1,k

)
.

Using this inequality, we can derive the following bound for any time step t ∈ {0, 1, . . . , T − 1}:

E [(∆)t] ≤ −ω2
t,k +

γ

2

(
ω2
t+1,k + ω2

t,k

)
+ δmax ·

CT√
mF

(42)

where CT is defined as

CT := 2(βF
T )2∥ρϑF ∥22 +

(
ϱ2(Λ

F
t )

2 + ϱ1χ
F
t

)
∥ρϑF ∥22 + 2∥ν∥2

√
1 + ϱ20 · pT (αϱ1). (43)

Hence, we obtain the following upper bound:
T−1∑
t=0

γtE [(∆)t] ≤ −(1− γ

2
)
∑
t<T

γtω2
t,k +

δmax · CT
(1− γ)

√
mF

+
1

2

∑
t<T

γt+1ω2
t+1,k︸ ︷︷ ︸

≤ 1
2 (

∑
t<T γtω2

t,k+γTω2
T,k)

≤ −1− γ

2

∑
t<T

γtω2
t,k +

1

2
γTω2

T,k +
CT · δmax

(1− γ)
√
mF

. (44)

We now derive an upper bound on the term E[(♡)]. First, using the triangle inequality, we have:∥∥∥∥∥∑
t<T

γtδt
(
hk
t+1,a

k
t+1, i

k
t+1;ϑk

)
∇Φt(h

k
t ,a

k
t , i

k
t ;ϑk)

∥∥∥∥∥
2

≤
∑
t<T

γt
∣∣δt (hk

t+1,a
k
t+1, i

k
t+1;ϑk

)∣∣ · ∥∥∇Φt(h
k
t ,a

k
t , i

k
t ;ϑk)

∥∥
2

(45)

Since ϑk remains within the bounded set Ωρ,(mF ,mF+di) for every k ∈ Z≥0 due to the max-norm
regularization, we can ensure∣∣δt (hk

t+1,a
k
t+1, i

k
t+1;ϑk

)∣∣ ≤ δmax = rmax + 2ρb ·
√
LF
T · ∥ρϑF ∥2 + 1,∥∥∇Φt

(
Ft(h

k
t ,a

k
t ;ϑ

F
k), i

k
t ; bk

)∥∥2
2
≤ (L′

T )
2
,

where L′
T = LF

T + ρb for every t < T with probability 1, according to Lemma C.1.

Therefore, we obtain the upper bound:∥∥∇̌RT

(
hk
t ,a

k
t , i

k
t ;ϑk

)∥∥
2
≤ δmaxL

′
T

1− γ
. (46)

Taking the expectation over the stochastic components
(
hk
t ,a

k
t , i

k
t , ϑk

)
in the update rule (cf. Equa-

tion 30), and substituting in the bounds obtained above (cf. Equation 44 and Equation 46), yields:

E[Ψ(ϑk+1)−Ψ(ϑk)] ≤ −η(1− γ)

T−1∑
t=0

γtω2
t,k + ηγTω2

T,k (47)

+ η
CT δmax

(1− γ)
√
mF

+ η2
δ2max (L

′
T )

2

(1− γ)2
, (48)
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for every k ∈ Z≥0. Since Ψ(ϑ0) ≤ ∥ν∥22, applying a telescoping sum over k = 0, 1, . . . ,K − 1, as
in the proof of the symmetric Rec-TD bound in [27], results in:

E

[
1

K

K−1∑
k=0

RT (ϑk)

]
≤ ∥ν∥22
η(1− γ)K

+
ηδ2max (L′

T )
2

(1− γ)3
+

CT δmax

(1− γ)2
√
mF

+
γT

(1− γ)K

K−1∑
k=0

ω2
T,k.

(49)

This concludes the proof.
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D Auxillary Results

This section collects our auxiliary results.

Lemma D.1 (Unbiasedness of the informed history-based reward). In an informed POMDP, the
informed history-based reward function R(h, i,a) satisfies

Ei|h [R(h, i,a)] = R(h,a),

for all h ∈ H and a ∈ A, where the expectation is taken under the belief p(i|h).

Proof. Using the definition of the standard history-based reward function, i.e.,

R(h,a) = Es|h
[
R(s,a)

]
=
∑
s∈S

R(s,a) p(s|h), (50)

and applying the law of total probability, we obtain:

R(h,a) =
∑
s∈S

p(s|h)R(s,a)

=
∑
s∈S

(∑
i∈I

p(s|h, i) p(i|h)
)
R(s,a)

=
∑
i∈I

(∑
s∈S

R(s,a) p(s|h, i)
)
p(i|h)

= Ei|h

[
Es|h,i

[
R(s,a)

]]
= Ei|h

[
R(h, i,a)

]
.

This concludes the proof.

Lemma D.2 (Unbiasedness of the informed Q-function). In an informed POMDP, the informed
history Q-function satisfies

Ei|h [Qπ(h, i,a)] = Qπ(h,a),

for all h ∈ H and a ∈ A.

Proof. Starting with the definition of the history Q-function and using the law of total expectation,
we have:

Qπ(h,a) = Eπ
s0:∞,a0:∞|h,a

[ ∞∑
j=0

γj R
(
sj ,aj

)]
= Ei|h

[
Eπ
s0:∞,a0:∞|h,i,a

[ ∞∑
j=0

γj R
(
sj ,aj

)]]
= Ei|h

[
Qπ(h, i,a)

]
.

This concludes the proof.

Lemma D.3 (Unbiasedness of the informed value function). In an informed POMDP, the informed
value function satisfies for all h ∈ H:

Ei|h [V π(h, i)] = V π(h).

Proof. Given the definition of the history value function, i.e.,

V π(h) = Eπ
s0:∞, a0:∞|h

 ∞∑
j=0

γjR(sj ,aj)

 ,
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and using the law of total expectation, we have:

V π(h) = Eπ
s0:∞,a0:∞|h

[ ∞∑
j

γj R
(
sj ,aj

)]
= Ei|h

[
Eπ
s0:∞,a0:∞|h,i

[ ∞∑
j

γj R
(
sj ,aj

)]]
= Ei|h

[
V π(h, i)

]
.

This concludes the proof.

Corollary D.1 (Relation of V π(h, i) to the history-state value function of Baisero and Amato [18]).
The informed history value function V π(h, i) reduces to the history-state value function for i = s,
where s ∈ S denotes the true environment state. In particular,

V π(h, s) =
∑
a∈A

π(a|h)Qπ(h, s,a),

where the history-state action-value function is defined as

Qπ(h, s,a) = R(s,a) + γ Es′,o′|s,a [V π(h′, s′)] ,

with s′ ∼ T (s′|s,a), o′ ∼ Õ(o′|s′), i′ = s′, and h′ denoting the updated history resulting from
appending action a and observation o′ to h.

By Lemma D.3, this formulation provides an alternative unbiased estimator of the history value
function:

V π(h) = Es|h [V π(h, s)] ,

as previously established by Baisero and Amato [18].

Corollary D.2 (Relation of ∇IAAC
θ J(πθ) to the asymmetric policy gradient of Baisero and Amato

[18]). The informed asymmetric policy gradient ∇IAAC
θ J(πθ) reduces to the asymmetric policy

gradient introduced by Baisero and Amato [18] for i = s, where s ∈ S denotes the true environment
state. In particular,

∇AAC
θ J(πθ) = E

[ ∞∑
t=0

γtQπ(ht, st,at)∇θ log πθ(at|ht)

]
.

Following Lemma D.1-D.3, this formulation recovers an alternative asymmetric policy gradient
estimator that is equivalent to the standard policy gradient:

∇AAC
θ J(πθ) = ∇θJ(πθ),

as established by Baisero and Amato [18].
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E External Results

This section provides a summary of external results necessary to prove our lemmas and theorems.
Section E.1 presents the Lipschitz-continuity and smoothness results for the hidden states in Elman-
type RNNs. Section E.2 details the approximation error between NTRF and NTK in Elman-type
RNNs, and Section E.1 introduces the non-stationary Bellman equation. Section E.4 contains the main
results of the theoretical analysis of symmetric Rec-NAC. Section E.5 describes the decomposition of
the compatible function approximation error in symmetric Rec-NAC.

E.1 Lipschitzness and smoothness of hidden states in Elman-type RNNs

Let Γ̃ti(ht,at; θ) := Wiiyti(ht,at; θ) for any hidden state unit yti with i ∈ {0, . . . ,m − 1}
and θ ∈ Rm(dx+1). Then, we have the following Lipschitz-continuity and smoothness results for
θi 7→ yti(ht,at; θ) and θi 7→ Γ̃ti(ht,at; θ).

Lemma E.1 (Local continuity of hidden states; Lemma B.1 in [27]). Given ρ̃ ∈ R2
>0 and α ≥ 0,

let αm = α + ρ̃w√
m

. Then, for any (h,a) ∈ H × A with supt∈Z≥0
∥xt∥2 ≤ 1, t ∈ Z≥0 and

i ∈ {0, . . . ,m− 1},

• θi 7→ yti (ht,at; θ) is Lt-Lipschitz continuous with Lt =
(
ϱ20 + 1

)
ϱ20 · p2t (αmϱ1),

• θi 7→ yti (ht,at; θ) is βt-smooth with βt = O (dx · pt (αmϱ1) · qt (αmϱ1)),

• θi 7→ Γ̃ti (ht,at; θ) is Λt-Lipschitz continuous with Λt =
√
2 (ϱ0 + 1 + αmLt),

• θi 7→ Γ̃ti (ht,at; θ) is χt-smooth with χt =
√
2 (Lt + αmβt),

in Ωρ̃,m. Consequently, for H̃∞ := H∞ ×A and any θ ∈ Ωρ̃,m,

sup
(h,a)∈H̃∞

max
0≤t≤T

|Gt (ht,at; θ)| ≤ LT · ∥ρ̃∥ , T ∈ N, (51)

sup
(h,a)∈H̃∞

∣∣GLin
t (ht,at; θ)−Gt (ht,at; θ)

∣∣ ≤ 2√
m

(
ϱ2Λ

2
t + ϱ1χt

)
∥θ − θ0∥22, t ∈ Z≥0, (52)

sup
(h,a)∈H̃∞

〈
∇Gt (ht,at; θ)−∇Gt (ht,at; θ0) , θ − θ̄

〉
≤ 2β2

t ∥ρ̃∥22√
m

, (53)

with probability 1 over the symmetric random parameter initialization (W0,U0, c)
⊤.

E.2 Approximation error between NTRF and NTK in Elman-type RNNs

The following lemma provides an upper bound on the approximation error between the neural tangent
random feature (NTRF) and the neural tangent kernel (NTK) in Elman-type RNNs.

Lemma E.2 (Approximation error between RNN-NTRF and RNN-NTK; Lemma B.2 in [27]). Let
g⋆ ∈ G with the transportation mapping ṽ ∈ MG, and let

θ̄i = θ0i +
1√
m
ciṽ (θ0i) , i ∈ {1, . . . ,m− 1}, (54)

for any symmetric random parameter initialization θ0 = (W0,U0, c)
⊤ (cf. Defintion B.1). Let

GLin
t (·; θ) = ∇θGt(·; θ0) · (θ − θ0). (55)

If Pπ,P
T induces a compactly-supported marginal distribution for xt, t ∈ Z≥0 such that ∥xt∥2 ≤ 1

almost surely and {(ht,at) : t ∈ Z≥0} is independent from the random initialization θ0, then we
have

Eθ0

[
Eπ
P

[(
g⋆t (ht,at)−GLin

t

(
ht,at; θ̄

))2]] ≤ 2∥ν̃∥22(1 + ϱ20)p
2
t (αϱ1)

m
. (56)
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E.3 Non-stationary Bellman equation

Proposition E.1 (Non-stationary Bellman equation; Proposition B.3 in [27]). For π ∈ Π, we have
Qπ

t (ht,at) = Eπ
st,ht+1,at+1|ht,at

[
R(st,at) + γQπ

t+1(ht+1,at+1)
]

= Eπ
st,ht+1|ht,at

[
R(st,at) + γV π

t+1(ht+1)
]
,

for any (ht,at) ∈ H ×A and t ∈ Z≥0.

E.4 Finite-time and finite-width bounds for symmetric Rec-NAC

Theorem E.1 (Finite-time bound for Rec-TD; Theorem 6.3 in [27]). Assume for the symmetric
history Q-function that {Qπ

t : t ∈ Z≥0} ∈ F̃ with a transportation mapping ṽ ∈ M̃ such that
sup
w∈R

∥ṽw(w)∥2 ≤ ν̃w, and sup
u∈Rd

x

∥ṽu(u)∥2 ≤ ν̃u.

Then, for any projection radius ρ̃ ⪰ ν̃ = (ν̃w, ν̃u)
⊤ and step size ηtd > 0, Rec-TD with max-norm

regularization achieves the following error bound:

E

[
1

K

K−1∑
k=0

Rπ
T (θk)

]
≤ 1√

K

(
∥ν̃∥22
(1− γ)

+
C̃

(1)
T

(1− γ)3

)
+

C̃
(2)
T

(1− γ)2
√
m

+
γT

(1− γ)K

K−1∑
k=0

ω̃2
T,k,

(57)
for any K ∈ N, where

C̃
(1)
T , C̃

(2)
T = poly

(
T−1∑
k=0

∣∣∣∣(ϱ1(α+
ρ̃w√
m
)

)∣∣∣∣k , ∥ρ̃∥2, ∥ν̃∥2
)

are instance-dependent constants that do not depend on K, and

ω̃t,k :=

√
E
[
F̃t(ht,at; θk)−Qπ

t (ht,at))2
]
,

for t, k ∈ Z≥0.

For the average-iterate Rec-TD with θ̄K := 1
K

∑K−1
k=0 θk, we have

E
[
Rπ

T (θ̄K)
]
≤ 10

(1− γ)
√
K

(
∥ν̃∥22 +

C̃
(1)
T

(1− γ)2

)
+

10C̃
(2)
T

(1− γ)2
√
m

+
10γT

(1− γ)K

K−1∑
k=0

ω̃2
T,k. (58)

Theorem E.2 (Finite-time bound for Rec-NPG; Theorem 7.3 in [27]). Assume that Pπ⋆,P
T ≪

Pπθn ,P
T , n < N , and let

Ξ := max
0≤n<N

∥∥∥∥∥ Pπ⋆,P
T

Pπθn ,P
T

∥∥∥∥∥
∞

We have the following result under Rec-NPG after N ∈ Z≥0 steps with step-size ηnpg = 1√
N

with
projection radius ρG ∈ R2

>0:

min
0≤n<N

E0

[
V π⋆

(P )− V πθn (P )
]
≤ log |A|

(1− γ)
√
N

+
√
pT (γ)E0

[
1

N

N−1∑
n=0

(
ΞεTcfa (θn, gn)

) 1
2

]
+

2γT rmax

(1− γ)2

+ ∥ρG∥22
∑
t<T

γt
2βt + 12

(
Λ2
tϱ2 + χtϱ1

)√
N

√
mG

+ ∥ρG∥22
∑
t<T

γt
12Lt

√
Λ2
T ϱ2 + χtϱ1

m
1/4
G

+
∥ρG∥22
2
√
N

∑
t<T

γtL2
t

(59)

where εTcfa(θ, g) := Eπθn

P

[∑
t<T γ

t
∣∣∇⊤ log πθ

t (at|ht) g −Aπθ
t (ht,at)

∣∣2], and the sequence

(Lt, βt,Λt, χt)t is defined in Lemma E.1.
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E.5 Decomposition of the compatible function approximation error

Let εapp denote the actor’s approximation error,

εapp,n = inf

{
Eπθn ,P
PT

T−1∑
t=0

γt
[
∇⊤Gt (ht,at; θ0) g −Q

πθn
t (ht,at)

]2
: g ∈ B(mG)

2,∞ (0,ρG)

}
,

εtd be the error of the critic,
εtd,n = Eθn,k,k≤n

[
Rπθn

T

(
θ̄n
)]
,

and εsgd be the error in the policy update based on the compatible function approximation,

εsgd,n = Eθ̄n,θn,k,k≤n

[
ℓT

(
gn; θn, Q̂

(n)
)]

− inf
g

Eθ̄n,θn,k,k≤n

[
ℓT

(
g; θn, Q̂

(n)
)]
.

We can decompose the compatible function approximation error εTcfa into the approximation error for
the RNN and the statistical errors as follows:
Proposition E.2 (Error decomposition for εTcfa; cf. Proposition 7.6 in [27]). We have

E
[
Eπθn

P

[
ℓT

(
gn; θn, Q

(n)
)]

| θk, k ≤ n
]

≤ 8∥ρ̃∥22
mG

T−1∑
t=0

γtβ2
t + 8εapp,n + 6εtd,n + 2εsgd,n

for any n ∈ Z≥0.
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F Pseudocode of Rec-TD and Rec-NPG

This section contains the pseudocode of Rec-TD (cf. Algorithm 1) and Rec-NPG (cf. Algorithm 2).

Algorithm 1: Projected l-step TD learning algorithm
Input: policy π, bootstrap timestep l, step size α, number of updates K, projection radius ρ.

1 for k = 0 to K − 1 do
2 Initialize sk,0 ∼ P .
3 Get ik,0 ∼ I(·|sk,0).
4 Get ok,0 ∼ O(·|ik,0).
5 for l = 0 to L− 1 do
6 Sample action ak,l ∼ π(·|hk,l).
7 Get reward rk,l ∼ R(·|sk,l,ak,l).
8 Get environment state sk,l+1 ∼ T (·|sk,l,ak,l).
9 Get information ik,l+1 ∼ I(·|sk,l+1).

10 Get observation ok,l+1 ∼ O(·|ik,l+1).
11 end
12 Sample last action ak,L ∼ π(·|hk,L).
13 Compute semi-gradient ∇̌RL(hk,L;ϑk) according to Equation 17.
14 Update ϑ̌k+1 according to Equation 18.
15 Get ϑk+1 using Equation 19.
16 end

Output: Average estimate Q
π
(·) = Q̂π

ϑ̄
(·) with ϑ̂ = 1

K

∑K−1
k=0 ϑk.

Algorithm 2: Recurrent Natural Policy Gradient (Rec-NPG) Algorithm
Input: Number of updates N , step sizes ηnpg, projection radius ρ̃.

1 Initialize actor RNN Gt(·; θ0, c).
2 for n = 0 to N − 1 do
3 Obtain Q

π

n using Algorithm 1
4 Initialize sn,0 ∼ P .
5 for k = 0 to Ksgd − 1 do
6 Get in,k ∼ I(·|sn,k).
7 Get on,k ∼ O(·|in,k).
8 Sample action an,k ∼ π(·|hn,k; θn).
9 Get environment state sn,k+1 ∼ T (·|sn,k,an,k).

10 Compute the gradient ∇gℓT

(
gkn; θn, Q

πθn

k

)
.

11 Update g̃n,k+1 using Equation 21.
12 Get ĝn,k+1 using Equation 22.
13 end
14 Update policy parameters θ(n+1) using Equation 23.
15 end

Output: Policy πθN
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G Numerical Experiments for Informed Asymmetric Rec-NAC

We evaluate the numerical performance of the informed asymmetric Rec-NAC method synthetic
informed POMDP instances with a finite state space S (i.e., |S| = 10), a discrete action space A (i.e.,
|A| = 4), and continuous observation and information spaces.

Following the methodology of François-Lavet et al. [33], transition probabilities are initialized as
follows: for each (s,a, s′), the corresponding entry in T is set to zero with probability 0.75 and
otherwise sampled uniformly from [0, 1]. If all transitions from a given (s,a) pair are zero, we
assign a non-zero probability to a randomly chosen next state to ensure reachability. The resulting
probabilites are then normalized so that

∑
s′∈S T (s

′|s,a) = 1.

Rewards r : S ×A → [−1, 1] are sampled independently at initialization:

r(s,a) ∼ Unif(−1, 1).

Privileged information it ∈ I is generated by sampling from a Gaussian distribution centered on a
state-specific embedding:

it ∼ N (µst , σ
2Idi

),

where σ ∈ R≥0 controls the noise level. Observations ot ∈ O are obtained by applying a noisy linear
transformation to it, with ς controlling the observation uncertainty. This construction ensures that ot
is conditionally independent of st given it, i.e., ot ⊥ st|it.
The agent implements a recurrent policy π(at|ht), using an Elman-type RNN of width m followed
by a linear softmax readout to produce:π(at|ht) = Softmax(c⊤π yt).

The critic uses a separate Elman RNN of width m. Its hidden state ft is augmented with additional
input it, yielding the value estimate Q̂θ(ht, it,at;ϑ) = b

⊤ (ft it). We train the critic using Rec-TD.

We compare the following variants of Rec-NAC, i.e, three canonical forms of it, for various m ∈
{8, 64, 256}: (1) Rec-Nac with symmetric critic, i.e., it = ∅; (2) Rec-NAC with informed asymmetric
critic (IAAC) with privileged partial information, i.e., it ∼ N (µst , σ

2Idi) with σ = 0.1; (3) Rec-
NAC with informed asymmetric critic assuming full state access, i.e., it = st.

We train each configuration for 25,000 episodes of length T = 32 using 10 random seeds and network
widths m ∈ {8, 64, 256}. The actor and critic parameters are updated after each episode.

Figure 2 presents the TD error and episodic return during training, smoothed using a moving average
over 100 episodes, for the different Rec-NAC variants evaluated at different network widths.
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Figure 2: Critic loss (top row) and episodic return (bottom row) for different Rec-NAC variants across
various network widths (m ∈ {8, 64, 256}). Each curve represents the mean over 10 independent
runs and is smoothed using a moving average over 100 episodes; shaded regions denote the standard
deviation.
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Critic losses. Across all methods, except for the informed asymmetric actor-critic with privileged
partial information at m = 8, critic losses decrease rapidly on average during the early training
episodes, followed by fluctuations around a stable regime for the IAAC variants. For small network
widths, all three models eventually converge to low-variance losses near zero, with the IAAC variant
that has full-state access exhibiting the smoothest trajectory. For m = 64 and m = 256, the IAAC
with privileged partial information achieves the most stable critic loss. In contrast, the alternative
IAAC variant exhibits higher variance at m = 64, and the symmetric critic exhibits the most unstable
loss curves. At the largest network width, both IAAC variants maintain comparable critic loss
trajectories throughout training.

Episodic returns. The informed asymmetric actor–critic variants consistently achieve higher
average returns than the symmetric variant after 25,000 training episodes across all network widths.
The performance gap is less pronounced at m = 64 than at m = 8 or m = 256. Notably, the
symmetric Rec-NAC variant achieves the highest return for m = 256, indicating that it benefits from
the larger network capacity, as smaller hidden dimensions may be insufficient to capture the sequence
of past observations and actions accurately. Interestingly, the IAAC with only privileged partial
information outperforms the full-state access variant across all network configurations. For m = 256,
the performance of the full-state IAAC drops significantly after 5,000 episodes, failing to reach high
return levels and being surpassed by the symmetric variant. For m = 8, it initially converges to higher
episodic returns than its partially-informed counterpart but subsequently experiences a performance
drop. However, at m = 64, the IAAC with full-state access achieves only slightly lower returns.
Across all configurations, return variance is generally high, consistent with the observed instability
in critic loss, reflecting the stochasticity of environments sampled from the distribution of synthetic
informed POMDPs.

Overall, the results indicate that the informed asymmetric actor–critic improves asymptotic learning
performance compared to the symmetric critic, with the privileged-partial-information configuration
yielding the highest episodic returns. Nonetheless, our findings suggest a trade-off between model
capacity and learning performance.
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