Explaining high-dimensional text classifiers

Odelia Melamed Rich Caruana
Microsoft R&D, Israel Microsoft Research, Redmond
t-omelamed@microsoft.com rcaruana@microsoft.com
Abstract

Explainability has become a valuable tool in the last few years, helping humans
better understand Al-guided decisions. However, the classic explainability tools
are sometimes quite limited when considering high-dimensional inputs and neural
network classifiers. We present a new explainability method using theoretically
proven high-dimensional properties in neural network classifiers. We present two
usages of it: 1) On the classical sentiment analysis task for the IMDB reviews
dataset, and 2) our Malware-Detection task for our PowerShell scripts dataset.

1 Introduction

In the last few years, Neural Networks have been commonly used for a variety of text-classification
tasks (Zhang et al. [2016]; Yang et al. [2016]), from simple sentiment analysis to even fake news
filtering (Karmakharm et al. [2019]). Unfortunately, those classifiers have trouble gaining human
trust for two reasons: 1) The neural networks are considered black-box models, where one can
see the inputs and output yet not understand the function in between; and 2) Textual inputs
create non-continuous input space, which is hard to explore. A great effort has been devoted to
developing methods to explain these models to increase trust and, therefore, their usability. Several
methods were set to overcome the black-box barrier, creating good explanations for predictions on
continuous data domains (Lundberg and Lee [2017], Poerner et al. [2018]). However, this is only
sometimes successful with continuous high-dimensional datasets (e.g., images). Experimentally,
it has been shown that the well-known explainability tools on high-dimensional data and neural
network classifiers behave differently.

If we look at it from the point of view of adversarial examples research, these inadequate
explanations are yet another effect of the adversarial mystery (Szegedy et al. [2013] and Biggio
et al. [2013]). Experimentally, we witness this phenomenon in the case of neural network
classifiers and high-dimensional data space. There, gradient calculations and other related
methods experimentally lead us to adversarial examples: tiny, noise-looking changes in the input
will mysteriously change the classifier decision ([Carlini and Wagner, 2017, Papernot et al., 2017,
Athalye et al., 2018]). These small changes were experimentally shown as an out-of-distribution
perturbation (Shamir et al. [2021] and many others). Indeed, even in our security domain and
coding inputs, adversarial examples have been studied as potential security hacks (Schuster et al.
[2021]): one can change a minor part of the code input (that does not influence its execution)
and change the classifier's prediction.

In the explainability research, some have noticed the connection between these out-of-distribution
adversarial examples and the inadequate explanations for high-dimensional data (Feng et al. [2018]).
They note that the reason for the existence of these explanations is the high dimensionality of the
input while implicitly relying on a lower-dimensional manifold (Anders et al. [2020]). Therefore,
they suggest methods to ensure generating explanations within the data distribution (i.e., on the
data manifold), using existing tools that are known to help avoid adversarial examples, such as
Auto-Encoders (Alvarez-Melis and Jaakkola [2017]), Generative models (Chang et al. [2018]),
using surrogate models (Anders et al. [2020]), and others. Such data manifold exploration

XAl in Action: Past, Present, and Future Applications @ NeurlPS 2023.

tools are not designed to be used when dealing with non-continuous input space such as text.
Translating vector direction to a change in words is complex, so one cannot use simple vector
manipulations. However, we can compromise for less - unlike adversarial robustness, detecting
post-hoc the off-manifold examples is an easier task since no attacker is challenging the system.

In this paper, we are using a new perspective on adversarial examples to create informative
explanations in the non-continuous input space. We use the theory from Melamed et al. [2023]
regarding neural networks trained on data relying on a low dimensional linear subspace to analyze
the gradients off the data subspace. First, we note that the off-manifold gradients tend to have
a big norm and, therefore, can be filtered using a simple threshold. In addition, we prove that
different classifiers trained on the same data distribution will result in highly uncorrelated off-
manifold gradients with high probability (using cosine similarity). We then use these conclusions
in continuous input space regarding correlations and norms to create an "on-manifold" explanation
in the non-continuous input space of text.

Powershell is a common scripting language used by network administrators worldwide to perform
anything from routine maintenance to complex admin tasks on a large number of machines.
Unfortunately, attackers use these capabilities to develop malicious PowerShell scripts. As
Powershell scripts are a widespread admin tool, we set out to classify malicious vs. benign scripts
to detect malicious activity. As in many other domains, a Machine Learning based classification
is accurate and frequently used. The explanation tools we provide are crucial for successful risk
analysis and response. We utilize the many benefits of explanations, such as improved human
trust, model and data evolution, and business intelligence. In addition, we can use predictions’
explanations to identify the malicious areas in the code, mark them, and eventually prevent a
comprehensive cyber-attack.

In our paper, we present a simple new method for creating on-manifold explanations. It will
transfer easily between domains and even deployment environments. It only requires repeating the
training for the same data distribution a few extra times, with no additional changes. This method
is very approachable if the training set is very large or the training procedures are well-optimized
and almost unchangeable, which is the case for many data-driven products today. We test it
with two datasets: 1) the IMDB reviews dataset with the classical sentiment analysis task and 2)
an industry Security PowerShell code dataset used to train models for malware detection. We
present outstanding results in both settings compared to standard methods such as gradient
max-norm, LIME, or SHAP.

2 Related Work

With the vast use of machine learning in text classification arises the demand for explanations
of these classification decisions (Ribeiro et al. [2016], Wu et al. [2022]). For a few years now,
scientists have been looking beyond correct classification to correct feature importance or silency
maps (Simonyan et al. [2013], Ross et al. [2017], Ancona et al. [2017], Sundararajan et al. [2017]).
As many traditional explainability methods (Lundberg and Lee [2017], Poerner et al. [2018] and
many others) frequently empirically failed to explain text classification tasks and particularly
neural network classifiers, this subject has gained research interest.

In the last few years, researchers noticed some methods yield out-of-distribution explanations,
sometimes referred to as explanations off the data manifold, and have tried to instead pursue
on-manifold importance or explanations. (Wallace et al. [2018]) tried to explore the data manifold
using the nearest neighbor. Some had manifold explorations solutions that apply to images or
continuous data only (Chang et al. [2018],Agarwal and Nguyen [2020],Frye et al. [2020],Zhang
et al. [2016]) starting from encoding and decoding, explanations generators, and even more
complicated models for explainability that require interaction (Arous et al. [2021]). Few trained
robust models with some extra loss, sometimes require extra explanation information (Ross et al.
[2017], Anders et al. [2020],Liu et al. [2018]).

In our paper, we start with a theoretical analysis of the problem and solutions and present a
straightforward post-training explanation generation. Using no extra losses or special networks,
which we believe is more accessible to the industry needs.

3 Theoretical background

In Melamed et al. [2023], the authors define the data distribution in a simplified way, as sampled
from a low dimensional linear subspace of the input space. Using this simplification, they showed
that the off-manifold gradients of the trained neural network have a large norm, hinting at the
existence of nearby adversarial examples off the data distribution. The analysis of these gradients
also yields a vital realization - they deviate very little from their initialization.

In this section, we analyze the gradients according to these simplified settings. we denote the full
input dimension as d, and the data subspace dimension as d — £. We denote an input sample by
zo € R%, where g ~ M C R? for some linear subspace M of dimension d — ¢. Note that we
cannot calculate ¢ exactly in real-life datasets. In general, when using simple methods for linear
subspaces such as PC A, several off-manifold dimensions can be approximated. Yet, especially
in cases when the data manifold is not exactly linear, other off-manifold dimensions might be
accidentally considered as on-manifold dimensions.

3.1 Gradient Norms

In Melamed et al. [2023], the only restriction on the dataset is to lie on M, with no constraints
on the distance between the data points. Surprisingly, under reasonable assumptions, the authors
prove a lower bound of the off manifold gradient norm of (1), which hints at a close-by
adversarial example (i.e., an example from the opposite class).

3.2 Cosine Similarity between Same-Input-Gradients

It was shown in Melamed et al. [2023] that the off-manifold gradients are affected mainly by
the initialization. Therefore, when we train two different neural networks N1, N3 with the same
training method on the same training data distribution, one can expect that the two off-manifold
gradients would be very non-correlated (with cosine-similarity of some sub-exponential with ~ %
variance). Formally, we use the simplified setting of a two-layer, fully connected neural network to
show exponential concentration bound for the inner product between the gradients. We define:

Ni(z,wi.,,) E U0), No(z,wi,)= E vio(

Theorem 3.1. Let an input sample x9 € M C R%. For neural network Ny, let S; = {i € [m] :
(w},zo) > 0}, and let ky := |S1|. Similarly for Na, So = {i € [m] : (w?,z¢) > 0}, and let
= |Ss|. We denote by g; the gradient of the network N; with respect to the input at g, i.e.

gi = BNéi(;m, and its projection on M by g; i.e. g; = I ;1 (%&Cwu)) Then:
20
Pr |<glag2>| > \/d;‘| < e_e/lﬁ +2e—m/2)

The full proof can be found in appendix A. In short, we note that:

ZuzlyQQ sz

i€S1 1€Ss
and therefore,

o R . 1 . R , .
(@1,)] = 10 wadf, > viadf)| = ﬁKZ sign (u;) by, Y | sign (v;) 7)| .

i€S1 i€So 1€S, 1€8S2
We also note that > sign (u;) b} ~ N (0,%1,), and 3= sign (v;) ©? ~ N (0,521,). We
1€S1 1€Sa

then use concentration bounds provided in the paper to conclude the proof.

Corollary 3.1. In the settings of Theorem 3.1, assume that { = O(d) and k = ©(m). Then,
with probability > 1 — (2e=©(4) 4 2¢=™):

1Sc(31,32) < © (jz) |

See Appendix A for details. As expected, under the original assumptions, we showed that
the gradient vectors w.r.t. the same input for two differently initialized networks are highly
non-correlated, by giving an upper bound for their cosine similarity.

4 Our Method - Theory to Practice

In text, a pre-processed and embedded input sample is a 2D matrix zp € R™ x RP, where n is the
number of words in the input (padded or clipped if needed), and p is the embedding dimension
chosen for each word. One main limitation exists when using gradient-based tools on a textual
dataset rather than continuous data - we cannot explore the input space by changing an input
word in the direction of the gradient. Therefore, we usually look at each word's gradient norm
to determine its significance rather than its direction. In this section, we use the theoretical
observations to find the "on-manifold" gradients in settings where the data manifold is not easily
found or even defined (e.g., in the case of a non-continuous data manifold).

Separating the input gradient into n words’ gradients of dimension p, we wish to understand if a
word's gradient is mostly on or off the data manifold. Let C' be the classifier we are explaining.
We denote by g¢ the gradient of C' with respect to the input at z (i.e., go = %) Note

that go € R™ x RP. We denote by g/, the gradient of C with respect to the j-th word of the
input at . We say that the word's gradient is mostly off-manifold if most of its coordinates are
off-manifold coordinates. We wish to detect the gradients that are mostly off-manifold and keep
the ones that are mostly on the manifold.

4.1 Expected Gradient Norms

We assume that our data approximately lie within a low dimensional linear subspace. In addition,
assuming the inputs lie within a O(v/d) distance from each other is standard in real-life data.
In this case, one can expect an average gradient of O(ﬁ) along the shortest path between

two different input samples (this path also lies in the linear subspace). It is easy to see that
an Q(1) norm of the off manifold gradient is very surprising. Consequently, one can expect
the off-manifold gradient to have a relatively large norm, also when divided into p-dimensional

vectors. Specifically, for any j € [n], we look at HgJCH

4.2 Expected Cosine Similarity

Let {NV;}!_, be our surrogate classifiers ensemble, where each classifier has been trained on

the same training distribution as C' with different initialization weights. We denote by g; the
gradient of the surrogate network N; with respect to the input at zg, i.e. g; = %&r“) Note,

gi € R™"xRP. Similarly to gé, we denote gg as the gradient of INV; with respect to the j-th word of

o ¢ o
the input at zo. Note, g7, g/ € RP. Now, for any j € [n], we look at Qg = 15 1Sc (g8, 9)].
=0

4.3 The Method

Our method aims to find the words’ gradients that are mostly on-manifold. If the gradient was

mostly off-manifold, we expect it to have a relatively large norm and slight cosine similarity with

the corresponding gradients of the other networks, i.e., small o (as explained in 3). Therefore,
(e}

looking for the on-manifold gradient, we take the maximal i between those with relatively
C
small gradient norms. The relevant norm threshold for each dataset should be of size O(ﬁ).

Since the O notation can hide any constant, one should test the dataset's gradient's norms
distribution to easily understand the relevant norm threshold, see Section 5 and Appendix B and
C for examples.

Algorithm 1 Choose k top words for explanation

Input: Classifier C, surrogate classifiers {N;}!_,, norm treshold T
1. go + 250 ¢ R x RP,
L Vi [t], gi + 20 e R7 x RP
ge|| < T}

2

3

4: avarage — cosine — similarities <— {agj : J € small — norms}
C

5

: small — norms + {j : ’

. return Max-k (avarage — cosine — similarities)

5 Experiment - IMDB dataset

5.1 Data Manifold analysis Results

We use a Sentiment Analysis classifier for IMDB reviews. On this dataset, the input dimension is
d = 32,000, n = 500 words are taken for each review, and the embedding size is p = 64. Figure
1 shows the implicit low-dimensional linear subspace for this dataset using PCA decomposition.
One can see that we can separate many "zero"-data dimensions (zero up to a rotation) from
the data subspace. The accumulated variance reaches 1 after considering only the first 6000
features. Note that for the explanation we disregard the padding, so there are fewer off-manifold
dimensions expected for the text only. This figure hints that the separation between off and
on-manifold gradients will be beneficial.

08

06

04

— Cumulative Variance
— B%

02

0 2000 4000 6000 8000 10000 12000
Features

Figure 1: PCA for IMDB Sentiment Analysis Dataset. Showing cumulative variance for input
dimension d = 32,000 we can see that the first 4000 already gets 95% of the variance, and the
first 6000 are enough. So, here d — I < 6000.

5.2 Choosing norm threshold

In Figure 2 we plot in a histogram the different norms, normalized using L., norm for convenience,
of the words in the input sentence. In the figure, one can see a clear gap between words above
and below the threshold of 0.1. The histogram shows 1) many words with norms smaller than
0.1, 2) most norms in the middle section (which makes sense after observing many off-manifold
dimensions in the previous section), and 3) a few with larger norms. For visualization, the
negligible norms (less than ¢=3) are filtered. Altogether, This histogram hint on 0.1 as a good
candidate for norm threshold for this dataset. This simple test can be done for each input
separately or for the entire dataset together, according to user preferences and application.

o
00 01 02 03 04 05 06 07 08 09

Figure 2: Word Gradient Norm for IMDB Sentiment Analysis Dataset. One can see a clear gap
around 0.1.

5.3 Explanation Results

After choosing a norm threshold for this dataset, we take the top ten words j with the maximal
i among those with HgéH smaller than the norm threshold. Appendix B provides more
(e}

details about this experiment. Table 1 compares our new explanation method to the classical
gradient-based method of taking top-norm words. One can see that the top norm words do not
relate to negative sentiment and are neutral even in context. Similar explanations of this text
using LIME and SHAP methods can be found in Appendix B. The words picked by our method
are clearly related to negative sentiment, e.g., "poor story", "impossible plot", etc..

Table 1: IMDB Sentiment Explanation

By Seems Sensei Seagal is getting more and more moralising and less "action packed". To date this has to be his
Norm worse movie... no action, a poor story line, an impossible plot and to make things worse, one of the CHEEZI-
EST endings | have ever seen. Seagal films are like a Dirty-Harry, you do not it for the
causes or impeccable acting... you a flick. On a scale of 1 to 10, this al..

Ours Seems Sensei Seagal is getting more and more moralising and less "action packed". To date this has to be his
movie... no action, a line, an and to worse, of the CHEEZI-

EST endings | have seen. Seagal are like seeing a Dirty-Harry, you do not go see it for the great

social causes or impeccable acting... you want a good action flick. On a scale of 1 to 10, this one gets a 1...

Table 2: IMDB movie review labeled negative and Neural Network sentiment model explained
by vector norm and by our method. Orange words are the top 10 for each method.

6 Security Dataset Experiment

In the Security context, explainability tools can be a real game-changer for the malware detection
task. As millions of lines of scripts are executed hourly on each computer in an organization, it's
very hard to detect malware spreading and threatening the organization's computers and data.
In addition, this classification task is constantly challenged by hackers. Potential attackers keep
trying to manipulate their code to avoid getting caught by the detector while maintaining its
harmful functionality. Therefore, trusting the detector to identify the harmful parts correctly is
particularly crucial. For a simple example, we look at the code:

"foreach ($Sharmful_item in $harmful_set) {<harmful functionality>}"".

If the detector recognizes malware-related activity thanks to the variable names "$harmful_item"
and "$harmful_set", the attacker will simply change their names and bypass our detector (Schuster
et al. [2021]). We want to ensure that the detector can identify harmful functionality given
different variable names. Note that creating the correct explanation does not mean our detector
is not still sensitive to adversarial examples, but a correct explanation will help us to adjust its
functionality when it is mistaken.

6.1 Explanation Results

For this experiment, we chose the same norm threshold for this dataset as in the IMDB experiment.

Similarly, we take the top ten words j with the maximal a,; among those with HgJCH smaller than
C

the norm threshold. More about the experiment details and threshold choice are in Appendix C.

Table 4 shows PowerShell code detected as malware, explained by the classical gradient-based by
word norm, and using our method. The norm-based method mistakenly prefers the first few tokens
that are just general security networking setups. In Appendix C, we show similar explanations using
the LIME and SHAP algorithms. At the bottom, we show our method chooses several important
expressions commonly related to malware: the "URI" is mandatory for functionality and commonly
used to download malicious content from a remote server. "Convert", "FromBase64String",
and "UTF8" terms are needed to make downloaded content into an executable script, and the
"Invoke-Expression" is mandatory to execute that script, so this is an excellent explanation.

Table 3: PowerShell Detection Explanation

By [Net. : = . : $xor =
Norm | . .Encoding]::UTF8.GetBytes('**-**_**').§base64String = (Invoke-WebRequest -
URI https://**. . KK KK JEX XX txt -UseBasicParsing).Content; Try{ $contentBytes

= [System.Convert]::FromBase64String($base64String) } Catch { $contentBytes = [Sys-
tem.Convert]::FromBase64String($base64String.Substring(3)) };$i = 0; $ decryptedBytes = @();$content-
Bytes.foreach{ $decryptedBytes += $ _ -bxor $xor[$i]; $i++; if ($i -eq $xor.Length) { $i = 0} };Invoke-
Expression ([System.Text.Encoding]::UTF8.GetString($decryptedBytes))
Ours [Net.ServicePointManager]::SecurityProtocol = [Net.SecurityProtocol Type]:: Tls12;$xor =
[System.Text.Encoding]::UTF8.GetBytes('**-**-**').§base64String = (Invoke-WebRequest
https://**.blob.core ** ** /** /** txt _UseBasicParsing).Content; Try{ $contentBytes

= [System.]::FromBase64String($base64String) } Catch { $contentBytes = [Sys-

tem.Convert]:: ($base64String.Substring(3)) };$i = 0; $ decryptedBytes = ©();$content-

Bytes.foreach{ $decryptedBytes += $ _ -bxor $xor[5i]; $i++; if ($i $xor.){$ =0} }
([System.Text.Encoding]:: .GetString($decryptedBytes))

Table 4: PowerShell script labeled malware-related and Neural Network classifier explained by
vector norm and by our method. Orange-colored words are the top 10 for each method.

7 Conclusions and Future Work

In this paper we presented a novel method for creating on-manifold explanations, using a recent
theoretical model from adversarial examples research. We presented a natural language use of
this method on the IMDB sentiment analysis task, as well as on industrial scripts dataset for the
malware detection task. One interesting research area using our theoretical work is understanding
the gradient behaviour for implicit low-dimensional datasets for network architectures that are
used in text-classification tasks. Another research area we find inspiring is the interdisciplinary
point of view, i.e., the on manifold exploration in general. Currently, there is an extensive research
effort to approximate and explore the data manifold, and the explainability could benefit from
this research. One can use these efforts to help generate on-manifold post-hoc explanations in
many different settings. In the other direction, An interesting future direction is how to enhance
adversarial robustness using tips from explanations.

References

Chirag Agarwal and Anh Nguyen. Explaining image classifiers by removing input features using
generative models. In Proceedings of the Asian Conference on Computer Vision, 2020.

David Alvarez-Melis and Tommi S Jaakkola. A causal framework for explaining the predictions of
black-box sequence-to-sequence models. arXiv preprint arXiv:1707.01943, 2017.

Marco Ancona, Enea Ceolini, Cengiz Oztireli, and Markus Gross. Towards better understanding of
gradient-based attribution methods for deep neural networks. arXiv preprint arXiv:1711.06104,
2017.

Christopher Anders, Plamen Pasliev, Ann-Kathrin Dombrowski, Klaus-Robert Miiller, and Pan
Kessel. Fairwashing explanations with off-manifold detergent. In International Conference on
Machine Learning, pages 314-323. PMLR, 2020.

Ines Arous, Ljiljana Dolamic, Jie Yang, Akansha Bhardwaj, Giuseppe Cuccu, and Philippe
Cudré-Mauroux. Marta: Leveraging human rationales for explainable text classification. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 5868-5876,
2021.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples. In International conference on
machine learning, pages 274-283. PMLR, 2018.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndi¢, Pavel Laskov,
Giorgio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In
Joint European conference on machine learning and knowledge discovery in databases, pages
387-402. Springer, 2013.

Nicholas Carlini and David Wagner. Adversarial examples are not easily detected: Bypassing ten
detection methods. In Proceedings of the 10th ACM workshop on artificial intelligence and
security, pages 3—14, 2017.

Chun-Hao Chang, Elliot Creager, Anna Goldenberg, and David Duvenaud. Explaining image
classifiers by counterfactual generation. arXiv preprint arXiv:1807.08024, 2018.

Shi Feng, Eric Wallace, Alvin Grissom I, Mohit lyyer, Pedro Rodriguez, and Jordan Boyd-Graber.
Pathologies of neural models make interpretations difficult. arXiv preprint arXiv:1804.07781,
2018.

Christopher Frye, Damien de Mijolla, Tom Begley, Laurence Cowton, Megan Stanley, and llya
Feige. Shapley explainability on the data manifold. arXiv preprint arXiv:2006.01272, 2020.

Twin Karmakharm, Nikolaos Aletras, and Kalina Bontcheva. Journalist-in-the-loop: Continuous
learning as a service for rumour analysis. In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP): System Demonstrations, pages 115-120, 20109.

Hui Liu, Qingyu Yin, and William Yang Wang. Towards explainable nlp: A generative explanation
framework for text classification. arXiv preprint arXiv:1811.00196, 2018.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances
in neural information processing systems, 30, 2017.

Odelia Melamed, Gilad Yehudai, and Gal Vardi. Adversarial examples exist in two-layer relu
networks for low dimensional data manifolds. arXiv preprint arXiv:2303.00783, 2023.

Nicolas Papernot, Patrick McDaniel, lan Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM
on Asia conference on computer and communications security, pages 506-519, 2017.

Nina Poerner, Benjamin Roth, and Hinrich Schiitze. Evaluating neural network explanation
methods using hybrid documents and morphological agreement. arXiv preprint arXiv:1801.06422,
2018.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. " why should i trust you?" explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining, pages 1135-1144, 2016.

Andrew Slavin Ross, Michael C Hughes, and Finale Doshi-Velez. Right for the right reasons: Train-
ing differentiable models by constraining their explanations. arXiv preprint arXiv:1703.03717,
2017.

Roei Schuster, Congzheng Song, Eran Tromer, and Vitaly Shmatikov. You autocomplete me:
Poisoning vulnerabilities in neural code completion. In 30th USENIX Security Symposium
(USENIX Security 21), pages 1559-1575, 2021.

Adi Shamir, Odelia Melamed, and Oriel BenShmuel. The dimpled manifold model of adversarial
examples in machine learning. arXiv preprint arXiv:2106.10151, 2021.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034,
2013.

Mukund Sundararajan, Ankur Taly, and Qiqgi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pages 3319-3328. PMLR, 2017.

Christian Szegedy, Wojciech Zaremba, llya Sutskever, Joan Bruna, Dumitru Erhan, lan Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. Preprint, arXiv:1312.6199, 2013.

Eric Wallace, Shi Feng, and Jordan Boyd-Graber. Interpreting neural networks with nearest
neighbors. arXiv preprint arXiv:1809.02847, 2018.

Xingjiao Wu, Luwei Xiao, Yixuan Sun, Junhang Zhang, Tianlong Ma, and Liang He. A survey of
human-in-the-loop for machine learning. Future Generation Computer Systems, 135:364-381,
2022.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. Hierarchical
attention networks for document classification. In Proceedings of the 2016 conference of the
North American chapter of the association for computational linguistics: human language
technologies, pages 1480-14389, 2016.

Ye Zhang, lain Marshall, and Byron C Wallace. Rationale-augmented convolutional neural
networks for text classification. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing. Conference on Empirical Methods in Natural Language
Processing, volume 2016, page 795. NIH Public Access, 2016.

A Proof from Section 3

Proof. we noted that:

8N1(:E0) o A1 8N2($0) o A2
H]wL <ax = E u;w; HML 78;5 = iegs viw; .
Therefore,

. . . 1 . .) .
[0, G2)| = 13w, 37 wit)| = — (3 sign (us) o}, 3 sign (v) 0?)]

1€S1 1€ So 1€S1 1€So

Next, one can see that >_ sign (u;) &} ~ N (0,%1,), and 3 sign (v;) ®? ~ N (0,%21,).
1€851 1€S3

Therefore by Lemma C.3 in Melamed et al. [2023] we get that:

20
Pr|[(D sign (w) b}, Y sign (v;) d7)] > \/Tl»m\/ k1] < o716 | gemm/2ha

i€S1 1€Ss

And therefore,

Pr | (g1, G2)| > R
1 ,) , o V2
=Pr WKZ sign (u;) Wy, Z sign (v;) W?)| > d]
L 1€S1 1€ So
' V2l
<Pr sign (u;) Wy, sign (v;) W7)| > ——m+/k
<Pr (32 sign), 3 sign) 881 > T

Se—é/l(i + 2€—m2/2k2

<e~U/16 4 9g=m/2

ASOS]{Il,kQ §m

For the corollary to hold, we note that Lemma C.3 uses Lemma C.1 and the assumption that the
norm of the normally distributed vector is not too big. For w ~ N(0,021,):

Pr [HwH2 > 202n} <e 16,

Therefore, to conclude that

. 1
1Sc(g1,92)| < © (\/Z) ;
One should only note that under the corollary assumption, both §; and g having ©(1) norm
with probability > 1 — e=©(@). O

10

B Additional Information for IMDB Experiment

The classifier architecture found in https://www.kaggle.com/code/arunmohan003/
sentiment-analysis-using-lstm-pytorch/notebook, and the dataset taken from https:
//www.kaggle.com/code/arunmohan003/sentiment-analysis-using-1lstm-pytorch/
input. We used the same hyper-parameters as in the cited notebook, trained for 50 epochs.

B.1 Other Explanation Algorithms

We add two more explanations using the popular LIME and SHAP methods in Figure 3 and
Figure 4, respectively. One can see in both examples, that the explanations point out a few of
the big-norm words picked also by the classical gradient algorithm chooses words by the norm.
One can show an analysis for which, for simple cases, the LIME and SHAP methods are indeed
also biased toward the adversarial directions from the input.

Text with highlighted words

Seems Sensel Seagal is getting more and more
moralising and €8 "action packed". To date
this has to be his worse movie... no action, a
poor story line, an impossible plot and to make
things worse, one of the CHEEZIEST endings
I have ever seen.|br /||br /|Seagal films are like
seeing a Dirty-Harry, you do not go see it for
the great social causes or impeccable acting...
you want a good action flick.|br /|[br /|On a
scale of 1 to 10, this one getsa 1...

Figure 3: LIME textual explanation for IMDB Sentiment Analysis Dataset. One can see for
example that "gets" and "getting" are both colored as opposite sentiment related, while both are
neutral. In addition, "plot" and "acting" are mistakenly colored as negative sentiment related, as
opposed to "action", all quite neutral.

fix)
int = want
good
acting.
action
plot
= see
go

impossible

one

108 other features +0.1

-0.05 000 005 010 015 020 025 030 035
E[AX)]

Figure 4: SHAP explanation for IMDB Sentiment Analysis Dataset. One can see here too, mostly
neutral words picked by the algorithm.

11

https://www.kaggle.com/code/arunmohan003/sentiment-analysis-using-lstm-pytorch/notebook
https://www.kaggle.com/code/arunmohan003/sentiment-analysis-using-lstm-pytorch/notebook
https://www.kaggle.com/code/arunmohan003/sentiment-analysis-using-lstm-pytorch/input
https://www.kaggle.com/code/arunmohan003/sentiment-analysis-using-lstm-pytorch/input
https://www.kaggle.com/code/arunmohan003/sentiment-analysis-using-lstm-pytorch/input

C Additional Information for Security Detection Experiment

C.1 Choosing threshold

For this experiment, we used the same threshold 0.1 for the norms (normalized using L., norm
for convenience). In Figure 5 we show that this threshold still seems to separate well the big
norms from the smaller ones, as the bars are dramatically shorter right to the 0.1 threshold.
For visualization, the negligible norms (less than e~?) are filtered. This short test can be done
for each input separately or for the entire dataset together, according to user preferences and
application.

200

H =

00 01 02 03 04 05 06 o7) 09

Figure 5: Word Gradient Norm for PowerShell Malware Detection Dataset. One can see a clear
cut around norm 0.1.

C.2 Other Explanation Algorithms

Here we add two more explanations by the widely used LIME and SHAP algorithms for text
inputs in Figure 6 and Figure 7, respectively. Here too, we can see that the two algorithms picked
a word that had a big gradient norm, as seen in Section 6 in Table 4 in the max-norm row. We
censor the user-sensitive information. In the pre-processing before training, we replace private
user information with canonical saved words, here one can see two of them have been mistakenly
chosen by the explanation methods.

Text with highlighted words

IType]: :-;Exor =

[Net.ServicePointManager]::SecurityProtocol =
[System. Text. Encoding]:: UTF8.GetBytes(' + '):$base64String = (Invoke-
WebRequest -URT htps:// ob.core. Y /-
UseBasicParsing).Content:Try { ScontentBytes = [System.Convert]::FromBase64String(Sbase64String) }
Catch { ScontentBytes = [System.Convert]::FromBase64String(Sbase64String.Substring(3)) }:5i=0;
SdecryptedBytes = @():ScontentBytes.foreach { SdecryptedBytes +=$_ -bxor Sxor[$i]: $Si++: if (Si -eq
Sxor.Length) {$i= 0] };Invoke-Expression
([System.Text.Encoding]::UTF8.GetString($decryptedBytes))

Figure 6: LIME textual explanation for PowerShell Malware Detection Dataset. One can see
similar word choosing to the big-norm method: choosing of neutral coding phrases and canonical
file names shared for all input data.

12

b = txt +0.1

sevsasaransinny 40.1
o weens +0.1
.
cParsing) = UseBasicParsing) +0.1
|
“
:
=ngth) = Length) —0.04 .
156 other features @

-0.2 0.0 0.2 0.4 06 08
E[fiX)] =0

Figure 7: SHAP explanation for PowerShell Malware Detection Dataset. One can see again
canonical phrases chosen as well as a hyphen, a dot, and neutral words.

13

	Introduction
	Related Work
	Theoretical background
	Gradient Norms
	Cosine Similarity between Same-Input-Gradients

	Our Method - Theory to Practice
	Expected Gradient Norms
	Expected Cosine Similarity
	The Method

	Experiment - IMDB dataset
	Data Manifold analysis Results
	Choosing norm threshold
	Explanation Results

	Security Dataset Experiment
	Explanation Results

	Conclusions and Future Work
	Proof from Section 3
	Additional Information for IMDB Experiment
	Other Explanation Algorithms

	Additional Information for Security Detection Experiment
	Choosing threshold
	Other Explanation Algorithms

