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ABSTRACT

Speech denoising is the task of obtaining clean speech from the speech signal
corrupted by background noise. Except in high end recording studios, we do not
get clean speech signal as some background noise, or noise due to the record-
ing device is always present. We propose an approach to denoise noisy speech
signal by modeling the noise explicitly. Existing approaches model speech, po-
tentially of multiple speakers, for denoising. Such approaches have an inherent
drawback as a separate model is required for each speaker. We show that instead
of modeling speaker(s), modelling the noise helps obtain a unified speaker inde-
pendent denoiser, cf. speaker dependent ones in existing popular approaches. In
addition to a novel speech denoising network, we also propose a large scale noise
dataset, AudioNoiseSet, derived from Audioset dataset, to train our model.
We show that our model outperforms prior approaches by significant margin in
a large scale, in the wild speech datasets, i.e. AVspeech, with standard quantita-
tive metrics. In addition we show with multiple human ratings that the method is
preferred over state-of-the-art approaches. The user study also points towards lim-
itations of the metrics used, which we discuss. We also provide many qualitative
results to demonstrate our better results.

1 INTRODUCTION

Speech signals often contain noise which is introduced either due to environmental conditions such
as honking, crowd etc. or get corrupted during recording and transmission of the signal. The quality
of the speech signal not only impacts the intelligibility for human listeners but also many down-
stream machine learning tasks such as automatic speech recognition, speech enhancement, speaker
identification, speech emotion recognition, language detection etc. While humans have a remark-
able ability to interpret speech even with heavy background noise (Kell & McDermott, 2019; King
& Walker, 2020), the performance of downstream machine learning tasks is highly dependant on
the quality of input speech signal. Therefore, to aid interpretation by humans as well as downstream
machine learning tasks, speech denoising i.e. extracting intelligible speech signal from observed
noisy speech signal is an important problem. To this end, we propose an end to end deep learning
network to extract clean speech from noisy speech audio.

We aim at denoising speech signal with high noise interference. Prior works (Park & Lee, 2016;
Rethage et al., 2018; Luo & Mesgarani, 2019; Pascual et al., 2017) utilize encoder-decoder style
networks that take a noisy audio as input and output a clean audio in frequency or time domain. In
general, such methods are designed to learn the properties of speech signal, and isolating it from the
overall noisy signal. Unlike earlier works, we hypothesize that directly learning to model a noise
signal, and disentangling it from the overall noisy signal to predict a clean speech signal, is a more
practical approach to speech denoising.

Recent approaches to speech denoising (Yang et al., 2022; Fang et al., 2021; Xiang et al., 2022)
either explicitly model clean speech for individual speakers or tend to model general representation
of a speech signal. However, speaker dependent modelling impacts the generalization ability of
such methods. Further, high variation in standards for intelligibility of speech varies with speaker,
language, culture, emotion and perception (Jacewicz et al., 2010; Gupta, 2021; Puglisi et al., 2021;
Winn & Teece, 2021), which makes generalized modelling of a speech signal challenging. To over-
come this, instead of attempting to model speech, we propose to model the noise and estimate noise
signal from the noisy audio, which we then utilize to obtain the denoised speech signal.
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The output from methods directly modelling speech signals usually have residual noise in the pre-
dicted speech output, indicating a correlation between the speech and the residual signal. Earlier
attempts at exploiting this correlation involve explicitly disentangling additive noise from noisy
speech inputs (Odelowo & Anderson, 2018; Xu et al., 2020). However, these methods suffer from
low-SNR speech outputs and contain some amount of residual noise in the prediction. Jointly mod-
elling speech and noise signals (Zheng et al., 2021) often results in losing latent information leading
to poor performance on downstream tasks (Hu et al., 2022). This motivates us towards the need of a
more robust modelling of noise signal.

We work with melspectrogram representation of audio, as it has been found beneficial in many
audio tasks and its inherent representation of fine grained representation of lower frequencies makes
it perceptually closer to human hearing. We use a deep neural network to estimate a model for
noise. We propose to use feature disentanglement to obtain features of clean audio from the features
of noisy/mixed audio. Our method first extracts the noise features from the mixed signal. It also
embeds the mixed signal in the same feature space. The clean signal features are then obtained by
subtracting the projection of the noise features on the mixed feature vector, from the mixed feature
vector. The resulting vector is the clean speech feature, which we use to estimate the clean speech
signal, by first using a network to predict the melspectrogram, followed by a pre-trained vocoder to
predict the audio waveform.

To train our network, we need a dataset of noise audio samples which do not contain speech.
Hence, in addition to the novel network, we also propose a large scale in-the-wild noise dataset,
i.e. AudioNoiseSet, curated from the Audioset (Gemmeke et al., 2017) dataset. Prior works (Xu
et al., 2020; Gao & Grauman, 2021; Ephrat et al., 2018), have used a subset of Audioset dataset
(after removing the examples labelled as speech in the dataset) as background noise. But on man-
ual observation we found that there are a significant number of samples that contain speech signal
even if they are not labelled as speech. Using such samples as noise harms the training of denoising
network greatly. We filter out samples which are not labeled as speech, but do contain speech, and
obtain a relatively cleaner large scale in-the-wild noise dataset. We will make the dataset publicly
available upon acceptance and hope it will be an useful resource for the community.

In summary, we make the following contributions.

• We propose a novel method for speech denoising, which works by explicit noise modeling
and removing the noise from the mixed signal.

• We propose a large scale in-the-wild noise dataset, curated from Audioset dataset, for train-
ing and evaluation of speech denoising tasks.

• We show with quantitative results that the proposed method obtains better results than
current state of the art methods.

• We provide a user study which also shows that our proposed method is perceived to give
better quality results when postprocessed with a state of the art enhancement method, while
the existing methods fail on many high noise inputs.

• We also show quantitatively that our noise modelling network is powerful enough and can
classify environmental sounds at par with the best performing methods, after finetuning for
a small number iterations.

2 RELATED WORKS

Speech denoising (Benesty et al., 2006; Loizou, 2007) has been a long standing problem in the area
of audio processing. A wide range of approaches has been proposed using both deep learning and
non-deep learning based techniques. Prior to the deep learning era, spectral subtraction (Boll, 1979;
Kamath et al., 2002; Vaseghi, 1996) was one of the initial methods for the speech denoising. Here,
the noise profile is first estimated and then subtracted from the mixed signal to get the final denoised
output. This approach has also been extended to multi-channel audio (Furuya & Kataoka, 2007;
Meyer & Simmer, 1997; Miyazaki et al., 2014) and other related tasks such as dereverberation
(Wang et al., 2012; Lebart et al., 2001; Zhang et al., 2014). In another line of approach wiener
filtering (Wiener et al., 1949) is used for speech denoising (Lim & Oppenheim, 1978; Sreenivas &
Kirnapure, 1996; Almajai & Milner, 2010; Lin et al., 2002), where the mean squared error between
the clean speech and reconstructed speech is minimized.
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The recent groundbreaking success of deep learning for various visual tasks (Krizhevsky et al., 2012)
have prompted researchers to apply the same for various audio domain tasks as well. Specifically
for the task of audio denoising (Park & Lee, 2016; Pascual et al., 2017; Xu et al., 2017; Qian et al.,
2017; Rethage et al., 2018; Luo & Mesgarani, 2019; Pandey & Wang, 2019), the network follows the
standard setting of supervised learning where the system has access to both the degraded audio and
the corresponding clean audio. In most of the approaches (Park & Lee, 2016; Rethage et al., 2018;
Luo & Mesgarani, 2019) the network follows as encoder-decoder framework where the network
takes the degarded/mixed audio as input and is tasked to predict the clean audio as output. Inspired
by the recent generative models for audio (Oord et al., 2016; Vasquez & Lewis, 2019; Kumar et al.,
2019), different variants of generative architectures (Qian et al., 2017) are proposed for the task of
denoising. Further to improve the quality of the denoised audio, several approaches (Pascual et al.,
2017; Liu et al., 2022; Su et al., 2020) have used adversarial losses along with reconstruction loss
for training denoising task.

Along with the reconstruction loss, inspired by recent research showing similarities between feature
representation in deep neural network and human brain (Yamins & DiCarlo, 2016; Kell & McDer-
mott, 2019), researchers have used perceptual loss where the intermediate features between the clean
audio and predicted audio obtained from different layers of the network is minimized (Saddler et al.,
2020; Germain et al., 2018; Su et al., 2020; Hsieh et al., 2020; Kataria et al., 2021). Similarly, tak-
ing another inspiration from the area of image denoising, where the task of denoising is performed
without having a clean image (Lehtinen et al., 2018), authors have applied similar idea in the area
of speech denoising (Alamdari et al., 2021; Kashyap et al., 2021) as well. Here the task of speech
denoising is handled in a completely unsupervised manner without having the access clean ground
truth audio.

The other generative model VAE (Kingma & Welling, 2013) has also been used for the task of speech
denoising. In VAE based approach for audio denoising (Fang et al., 2021; Xiang et al., 2022), a two
step approach is followed where in the first step an encoder decoder model is used for learning the
parameters of the audio from clean audio. In the second step, a mapping function is learnt to get the
parameters of the clean audio from the noisy one and once the parameters are obtained, the decoder
trained in the first step is used for getting the corresponding clean audio. Although the methods
were trained for speaker independent cases, but it was shown recently (Yang et al., 2022) that these
class of methods give improved performance if individual models are trained for each speaker. Our
proposed approach is the inverse of these approach where instead of modelling the audio we model
the noise and then estimate the noise from the mixed signal. Once the noise is estimated we use both
the estimated noise and the mixed signal to onatin the denoised output.

3 APPROACH

Problem Formulation We aim to obtain a clean speech signal from a noisy/mixed speech signal.
The mixed signal can be considered as a mixture of clean speech signal and a noise signal. Let
ai ∈ Rt, n ∈ Rt, a ∈ Rt be the input clean audio, noise and the mixed signals respectively and t be
the length of each signal. Let Pai

and Pn represent the power of input clean audio and noise signal
respectively and S be the SNR of the mixed signal. The mixed signal a is then given by,

a = ai +
n

r
where, r =

√
Pai

/√
Pn

10
S
10

(1)

Our objective is to predict the clean signal ai from the mixed signal a, given just the mixed signal.

3.1 OVERVIEW

The detailed architecture of our approach is shown in Fig. 1. It consists of three components: (i)
noise modelling, (ii) audio denoising, and (iii) vocoder. We learn the network in steps. In the first
step, we model the noise signal only. We use a Vector Quantized VAE (VQVAE) (?) model to learn
quantized representation of the noise giving only the pure noise signal as the input. In the second
step, we use the trained noise network to get the noise signal from the mixed signal. We then use the
estimated noise and the mixed signal to obtain the denoised feature, using the disentanglement net-
work. The denoised feature is further decoded into melspectrogram representation using a recurrent
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Figure 1: Proposed network and approach. The proposed network consists of a noise modeling
network (VQ-VAE), a clean audio model (recurrent encoder decoder) and a feature disentanglement
network (cross-attention inspired network). The noise and clean speech modeling networks are first
pretrained on noise and clean speech samples respectively, and then fixed. While training to denoise,
the mixed signal is first passed through the noise modeling network to obtain noise melspectrogram,
which is encoded in a feature space by an encoder for noise. The mixed signal melspectrogram is
also encoded into the same feature space by another encoder. The disentanglement network then
separates the noise from the mixed feature to obtain the clean feature. The clean feature is further
passed through a recurrent decoder followed by a vocoder to obtain clean speech waveform.

decoder, which is eventually converted to the clean audio via a pre-trained vocoder. We describe in
detail, each of the network components in the following sections.

3.2 NOISE MODELLING

The noise modelling component of the network is inspired from the recent VQ-VAE network (Van
Den Oord et al., 2017), which has been successfully applied for quantized representation of images.
It follows a two-step approach which involves learning a discrete representation of the data and sub-
sequently the same data is reconstructed by sampling from a distribution with discrete representation
as its parameters.

We follow a similar approach: in the first stage we learn quantized representation of noise signal
and then in the next stage, we learn a mapping from the noisy signal to its corresponding quantized
noise representation. We describe each stage below in detail.

In the first stage of noise only modelling, we use an encoder-decoder architecture which takes noise
as input and reconstructs the same noise as output. Let n ∈ Rt be the noise signal, where t is
the length of the signal, and N ∈ RT×F be its melspectrogram representation, where T is the
number of time window and F is the number of mel-frequency bins in the signal. We feed the
mel-spectrogram representation of the signal N to the encoder part of this network and obtain a
representation Ne ∈ RM×K , where M is a compact time window representation as compressed
by the encoder and K is the feature dimension for each time window. We then obtain discrete
representation Nf ∈ RM×N from the encoded representation Ne using the codebook, C ∈ RK×N .
The codebook can be considered as the compact representation of all noise signals. We obtain
the discrete representation individually for each time window by sampling from Gumbel-softmax
distribution (Jang et al., 2016) and then selecting corresponding index from codebook, i.e. Nf [i, :
] = C[j, :] where j = Gumbel-Softmax(Ne[i, :]).

We then use the discrete representation Nf to get back the original noise signal. Denoting N̂ as the
reconstructed signal from the decoder, we minimize the mean squared error between N and N̂,

Lnoise = ∥N− N̂∥1, (2)

to obtain encoder, decoder and codebook jointly.

4



Under review as a conference paper at ICLR 2023

Once the noise only model is learnt, we fix the decoder and codebook and learn the encoder only
for the noisy audio. We learn the mapping from the noisy audio to the noise signal using the learnt
decoder and codebook obtained in the previous step. This can be considered as a regression between
the noisy audio to the discrete representation of the noise it contains.

3.3 SPEECH DENOISING

The speech denoising network comprises of two parts; (i) obtaining the noise profile from the noisy
audio, and (ii) denoising the noisy audio using both the noise profile and noisy audio using an
encoder-decoder architecture.

In the first part of the network, our goal is to extract noise from the noisy audio as it has been shown
earlier that explicit noise estimation helps in the overall denoising process (Xu et al., 2020). We use
the decoder and codebook learnt in the previous step to obtain the noise profile from the noisy mixed
signal a ∈ Rt. In the first part of audio denoising network we use an autoregressive encoder which
takes noisy melspectrogram representation of a i.e. A ∈ RT×F , where T and F is the time-window
and frequency-bins for spectrogram calculation and estimates the noise present in the signal, i.e.
N̂ ∈ RT×F .

Once the noise has been estimated, the second step involves using it along with the mixed audio
signal for the denoising process. We encode both the noise and mixed signal melspectrograms
individually with series of 1D convolutional layers and obtain features for mixed audio, i.e. Am ∈
RT×K1 and estimated noise features i.e. N̂f ∈ RT×K1 . We then disentangle the noise features from
the mixed features using a cross-attention inspired mechanism. In order to disentangle the features
we use three linear layers, Q,K,V ∈ RK1×K2 . We then use Q to project noise features N̂f and
obtain N̂Q ∈ RT×K2 . Similarly, we also project the mixed audio features Am individually using
K and V, and obtain AK ∈ RT×K2 and AV ∈ RT×K2 respectively. We then estimate the extent
of noise component in the mixed signal, and then remove it from the mixed signal to obtain feature
of the clean signal i.e. Âc ∈ RT×K2 . We obtain ÂC as,

ÂC = AV − (
N̂T

QAK√
K2

) ∗AV. (3)

The above formulation is equivalent to projecting the noise feature vector along the mixed feature
vector and then removing the noise component along the direction of mixed feature vector. In order
to enforce that the estimated clean features become closer to the ground truth clean audio features,
we use knowledge distillation, where we use a teacher network to help train a student network. We
accomplish this by training a separate speech only network which takes a clean speech samples as
input and reconstructs the same. We obtain the clean audio features after the encoder layer of this
network and denote it as AC. This clean audio prediction network is the teacher network for the
denoising network. We use the following loss function for training:

Lfeat = ∥AC − ÂC∥1 (4)

Eq. 4 can also be considered similar to the case where it enforces the dot product of the speech
features to be similar to the speech content in the mixed signal and the dot product with the noise
features to be as dissimilar as possible.

In the next step of denoiser, we use a bidirectional LSTM followed by linear layers, that takes
estimated clean audio features ÂC and predicts the denoised mel spectrogram Âi ∈ RT×F . We use
a final reconstruction loss between the ground truth and estimated melspectrogram:

Lrec = ∥Ai − Âi∥1. (5)

We train the network by combining all the losses,
Ltot = Lrec + αLfeat + βLnoise, (6)

where, α and β are the hyperparameters to control the weight of each loss.

Training. We follow a two step training where, in the first step, we train the network to model the
noise only using Eq. 2. Once the noise modelling network is trained, in the second step we fix (i)
the codebook and (ii) decoder learnt in previous step, and learn all other modules in an end to end
manner using Eq. 6.
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3.4 VOCODER

As we perform our denoising in the melspectrogram domain, our next goal is to convert the esti-
mated melspectrogram to a time domain signal. To this end, we learn an inverse mapping function,
i.e. F : A → a. As observed in prior studies (Liu et al., 2022), learning the vocoder separately
with clean audio helps in reconstruction even from the estimated denoised melspectrogram. This
is beneficial for the denoising task also, as it learns to generate speech signals from the melspec-
trogram and potentially model the speech signal which can further help in restoring the estimated
memlspectrogram. We utilize TFGAN (Tian et al., 2020) which has reconstruction loss along with
both frequency and time discriminator for high fidelity speech synthesis.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Dataset Details We use two different datasets for noise modelling, i.e. UrbanSound8k Salamon
et al. (2014) and AudioNoiseset, curated from a large scale mulit-label audio classification dataset
AudiosetGemmeke et al. (2017). We also use Audioset Gemmeke et al. (2017), a relatively large
scale dataset and contains videos downloaded from YouTube for modelling noise. As Audioset was
designed for general purpose audio classification, it contains a wide variety of 632 different audio
classes covering both speech and non-speech signals. We perform various steps to obtain noisy only
samples from Audioset without any speech content. Finally, we obtain a dataset containing 106331,
5096 and 5025 samples for train, val and test set respectively.

For the clean speech, we download a subset of AVSPEECHEphrat et al. (2018), a relatively clean
speech only dataset containing around 10000 samples for training and 2000 samples each for valida-
tion and testing. We purposefully selected the dataset as it contains in-the-wild videos downloaded
from YouTube and contains a variety of languages covering different accents and speaking style. In
order to have a fair comparison, we created a fixed val and test set where we fix the audio and noise
sample. We created such fixed-eval and fixed-test set for both UrbanSound8K and AudioNoiseset
and report all our results in the fixed-test set. We request the readers to refer to the supplementary
material for more details on dataset preparation.

Input Representation and Metrics We resample both speech and noise signal to 22.05 kHz and
perform min-max normalization and then mix the signal with specific SNR value. We convert the
time domain mixed waveform to mel-spectrogram with FFT window length of 1024, hop length
of 256 and 80 number of mel bands. Following the prior works Fu et al. (2019), we evaluate the
results using two speech quality estimation metrics i.e. Perceptual Evaluation of Speech Quality
(PESQ) and Short-Time Objective Intelligibility (STOI). PESQ gives a perceptual measure of the
estimated speech signal and STOI measures the intelligibility of the denoised signal with respect to
the clean input signal. We only report the perceptual metrics here as our work is of generative nature
which does not produce a sample level alignment of predicted waveform with the ground truth one
and more strict measures like SNR and SDR penalizes heavily in this case as also reported in prior
generative approaches Liu et al. (2022); Kumar et al. (2020).

4.2 ROLE OF NOISE MODELLING IN DENOISING TASK

Here, we show the importance of noise modelling in the task of denoising. We report the perfor-
mance in Tab.7. In the first case Denoiser Only, we only train the denoiser part of the network
that takes directly the mixed melspectrogram and produces the denoised speech signal. The architec-
ture here is exactly equivalent to the denoiser part of the network propose in Fig.1 excluding feature
disentanglement part. This is a basic configuration for denoising and for our case serves as the lower
bound for the task. In the second case, w. GT Noise, we use the same denoiser only but instead
of giving the mixed audio only as input, we provide the ground truth noise signal along with it. We
experiment with w. GT Noise, to experiment whether adding GT noise to the network improves
the task of denoising and this serves as the upperbound for our approach and reinforces our claim
of using noise signal helps in predicting the denoised audio better. We observe that on an average
the PESQ and STOI value increases by 14% and 11% respectively after using ground truth noise
vs. directly denoising from the mixed audio. Finally, we give two different variant of the proposed
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SNR=-10 SNR=-7 SNR=-3 SNR=0 SNR=3 SNR=7 SNR=10 Avg.
Method PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI

Denoiser Only 1.654 0.560 1.938 0.647 2.201 0.697 2.267 0.728 2.361 0.746 2.447 0.791 2.546 0.796 2.202 0.709
w. GT Noise 2.116 0.701 2.318 0.752 2.516 0.779 2.547 0.799 2.635 0.809 2.690 0.836 2.787 0.836 2.515 0.787
Ours (Concat) 1.717 0.562 1.974 0.650 2.248 0.703 2.300 0.735 2.413 0.752 2.513 0.797 2.637 0.800 2.258 0.714
Ours (FDD) 1.787 0.572 2.029 0.660 2.356 0.714 2.408 0.746 2.551 0.761 2.671 0.815 2.800 0.819 2.372 0.727

Table 1: Effect of noise estimation on final denoising performance. PESQ and STOI for different
noise combination strategy in the network for UrbanSound8K dataset.

SNR=-10 SNR=-7 SNR=-3 SNR=0 SNR=3 SNR=7 SNR=10 Avg.
Method PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI
Noisy 1.118 0.392 1.356 0.460 1.573 0.535 1.683 0.582 1.834 0.618 2.015 0.700 2.179 0.730 1.680 0.574

SEGAN Pascual et al. (2017) 0.668 0.285 0.759 0.365 1.133 0.471 1.168 0.526 1.385 0.588 1.639 0.689 1.868 0.734 1.232 0.523
VoiceFixerLiu et al. (2022) 1.264 0.421 1.561 0.548 1.885 0.644 1.931 0.683 2.168 0.717 2.215 0.758 2.390 0.764 1.916 0.648

Denoiser Defossez et al. (2020) 1.101 0.450 1.645 0.614 1.980 0.683 2.135 0.746 2.335 0.772 2.463 0.827 2.729 0.840 2.056 0.705
MetricGAN+ Fu et al. (2021) 1.598 0.354 1.745 0.432 1.972 0.528 2.144 0.591 2.301 0.632 2.415 0.717 2.656 0.745 2.119 0.571

LSSXu et al. (2020) 1.656 0.516 1.929 0.615 2.256 0.683 2.383 0.738 2.566 0.767 2.732 0.827 2.949 0.844 2.353 0.713
Ours (concat)+HiFi Kong et al. (2020) 1.420 0.516 1.662 0.606 1.907 0.653 1.951 0.679 2.034 0.698 2.081 0.737 2.165 0.743 1.889 0.662

Ours (concat)+GL 1.646 0.500 1.941 0.582 2.208 0.630 2.265 0.648 2.388 0.669 2.478 0.704 2.579 0.705 2.215 0.634
Ours (Concat) 1.717 0.562 1.974 0.650 2.248 0.703 2.300 0.735 2.413 0.752 2.513 0.797 2.637 0.800 2.258 0.714
Ours (FDD) 1.787 0.572 2.029 0.660 2.356 0.714 2.408 0.746 2.551 0.761 2.671 0.815 2.800 0.819 2.372 0.727
GT Audio 3.359 0.923 3.378 0.926 3.406 0.925 3.363 0.925 3.377 0.925 3.382 0.926 3.400 0.924 3.381 0.925

Table 2: Audio Denoising. Performance of different methods for the task of audio denoising for
UrbanSound8K dataset.

network, where Ours (concat) is the simple denoiser that takes the concatenated mixed audio
and predicted noise to obtain the denoised audio and Ours(FDD) is our full network with feature
disentanglement in the denoiser. We observe that the simple Ours(concat) approach gives a
performance boost of around 2.6% and Ours(FDD) gives a boost of 7.8% for PESQ over the
baseline approach of Denoiser Only. Similarly for STOI, we observe around 1% and 2.6% for
Ours(concat) and Ours(FDD) respectively over the baseline of Denoiser Only.

4.3 COMPARISON WITH PRIOR APPROACHES

In this section, we report the results to show how does our method compare with prior approaches.
We compare our results with four existing state-of-the-art methods. We report all the results for
the prior methods by using the pre-trained models made publicly available by the authors of the
respective methods.

As our approach works in the melspectrogram domain, we first use a well known vocoder HiFi-GAN
Kong et al. (2020) to convert our predicted melspectrogram to time domain waveform and mark it
as ours(concat)+HiFi in Tab.2. Similarly we also use a well-known signal processing algorithm for
converting melspectrogram to waveform, i.e. Griffin-Lim and report it as Ours(concat)+GL in Tab.2.
We observe that Ours(concat)+GL gives quantitatively better performance on average in terms of
PESQ, but slightly lower in terms of STOI over the HiFi GAN method, i.e. 2.215, 0.634 vs. 1.889,
0.662. However qualitatively inspecting the audio, we observe that HiFi GAN changes the accent
of the speaker as it was mostly trained native english speaker data. Similarly for GL algorithm
we observe a buzzing sound in almost all the examples. We then give the resulsts for both of our
approach Ours(concat) and Ours(FDD) where in the first case input noise is concatenated with the
mixed audio where as in the later case we perform our full approach of feature disentanglement. In
this two methods we use our vocoder trained previously with clean speech data alone. We observe
the best performance of 2.372 and 0.727 for PESQ and STOI and is also comparable to the best
performing method LSS haivng PESQ and STOI of 2.353 and 0.713 respectively. We also observe
that our method performs especially better in reconstructing speech for high noise cases which the
prior methods fail to do. Further, qualitatively we observe that the noise leaks into the output in case
of LSS which our method handles gracefully. We request the reader to have a look at the qualitative
results for a better understanding. Finally we also report the vocoder capability of reconstructing
the GT melspectrogram and mention it as GT Audio in Tab.2. The metrics for this case serves as an
upperbound for the results.

Similarly, we also report the performance for our propose AudioNoiseset in Tab.3. We observe
that our method is competitive in terms of PESQ with the previous best performing method LSS,
i.e. 2.365 vs. 2.373 and our method performs slightly better in terms of STOI, i.e. 0.730 vs. 0.722.
For both the dataset of Urbansound8K and AudioNoiseset, our performance is at par with the best
performing methods in terms of PESQ and STOI but we observe that our method produces robotic
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SNR=-10 SNR=-7 SNR=-3 SNR=0 SNR=3 SNR=7 SNR=10 Avg.
Method PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI
Noisy 1.304 0.450 1.464 0.530 1.612 0.582 1.877 0.668 2.045 0.714 2.401 0.785 2.622 0.844 1.904 0.654

SEGAN Pascual et al. (2017) 0.733 0.319 0.948 0.413 0.992 0.469 1.293 0.571 1.505 0.640 1.801 0.728 2.014 0.771 1.326 0.559
VoiceFixerLiu et al. (2022) 1.305 0.460 1.460 0.534 1.763 0.621 2.016 0.703 2.123 0.718 2.218 0.756 2.464 0.796 1.907 0.655

Denoiser Defossez et al. (2020) 1.277 0.499 1.624 0.617 1.944 0.690 2.182 0.777 2.343 0.789 2.491 0.830 2.787 0.872 2.093 0.725
MetricGAN+ Fu et al. (2021) 1.631 0.369 1.864 0.453 1.880 0.495 2.087 0.591 2.361 0.653 2.617 0.730 2.702 0.770 2.163 0.580

LSSXu et al. (2020) 1.749 0.536 2.023 0.623 2.155 0.670 2.374 0.749 2.557 0.780 2.779 0.827 2.977 0.867 2.373 0.722
Ours (Concat) 1.754 0.573 1.950 0.647 2.116 0.687 2.308 0.753 2.396 0.764 2.533 0.792 2.641 0.848 2.243 0.723
Ours (FDD) 1.839 0.581 2.072 0.658 2.237 0.698 2.412 0.763 2.540 0.774 2.672 0.806 2.782 0.832 2.365 0.730

Table 3: Audio Denoising. Performance of different methods for the task of audio denoising for
AudioNoiseset dataset.

SNR=-10 SNR=-7 SNR=-3 SNR=0 SNR=3 SNR=7 SNR=10 Avg.
Method PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI

SpecDiff 1.523 0.514 1.792 0.600 2.008 0.646 2.044 0.671 2.125 0.689 2.166 0.723 2.238 0.727 1.985 0.653
DirectInner 1.762 0.568 1.988 0.648 2.212 0.698 2.318 0.709 2.540 0.760 2.589 0.798 2.765 0.801 2.310 0.710
Ours(FDD) 1.787 0.572 2.029 0.660 2.356 0.714 2.408 0.746 2.551 0.761 2.671 0.815 2.800 0.819 2.372 0.727

Table 4: Noise Removal Strategy. We evaluate here different strategies for unmixing the noise
from the mixed signal. SpecDiff refers to the case where we perform unmixing at input level and
DirectInner, Ours(FDD) performs unmixing at feature level for UrbanSound8K dataset.

sound at the output which we correct by adding another existing enhancement module on top of it.
Please refer to user study section on detailed analysis of this.

4.4 OPTIMAL NOISE REMOVAL STRATEGY FROM MIXED AUDIO

In this section we evaluate different noise removal strategy from the mixed audio. We evaluate
here three different strategies, i.e. (1) SpecDiff, where we directly subtract the melspectrogram
of Mixed audio from estimated noise and use the resultant signal as input to the denoiser network.
In (2) DirectInner, instead of learning the Q,K and V matrices we directly remove the noise
component after finding out the component of noise feature along the mixed feature and then remov-
ing it from the mixed feature. This operation is equivalent to ÂC = Am − (N̂T

f Am) ∗Am, where
N̂f , Am and ÂC are the estimated noise signal feature, mixed signal features and obtained poten-
tially clean features respectively. In (3), Ours(FDD), we use our full method where we perform
denoising after projecting the features using Q,K and V matrices as described in eq.3. We observe
that when we directly take the difference of predicted noise from the mixed signal gives the least
performance in terms of average PESQ and STOI with value 1.985 and 0.653 respectively. This
is mostly because after visualizing the input difference signal we observe that the input is highly
sparse with most of the value being very less or zero which further makes the denoising network
extremely difficult to recover the missing portion. On the contrary if we perform similar difference
operation at the feature level, the performance improves significantly for both the type of difference
operation, i.e. DirectInner and Ours(FDD) (in terms of PESQ and STOI) to 2.310, 0.710 and
2.372, 0.727 respectively. Further, we observe that our proposed approach of feature disentangle-
ment performs the best with around 16% improvement in PESQ and 11% improvement in STOI
over the baseline of direct difference at the input level.

5 USER STUDY

We also perform a subjective evaluation to measure the perceptual quality of our enhanced speech.
While giving high quantitative results, the raw output of our method, while being much better un-
derstandable, suffers from slight robotic speech artifacts. To alleviate such artefacts we post process
our output with a state of the art enhancement network, VoiceFixer (Liu et al., 2022).

To ensure fairness, we compare all three versions, our raw output, our ouput post processed by
VoiceFixer, as well the output of VoiceFixer itself, quantitatively (Tab. 5, Tab.6). We observe that
our raw output performs much better than VoiceFixer, 2.365 PESQ average for ours vs. 1.907
for VoiceFixer on AudioNoiseSet samples. However, the post processed version of our method
drops in quantitative metrics (1.846 PESQ). This is in contrast to what we observe in the user study
where the post processed version of our output is strongly favored by users over the VoiceFixer
outputs (discussed in the following). We also include numerous qualitative results for the reader to
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SNR=-10 SNR=-7 SNR=-3 SNR=0 SNR=3 SNR=7 SNR=10 Avg.
Method PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI

VoiceFixerLiu et al. (2022) 1.264 0.421 1.561 0.548 1.885 0.644 1.931 0.683 2.168 0.717 2.215 0.758 2.390 0.764 1.916 0.648
Ours (FDD) 1.787 0.572 2.029 0.660 2.356 0.714 2.408 0.746 2.551 0.761 2.671 0.815 2.800 0.819 2.372 0.727

Ours (FDD) + VoiceFixer 1.277 0.518 1.539 0.605 1.892 0.664 1.925 0.696 2.041 0.711 2.047 0.745 2.197 0.749 1.846 0.670

Table 5: Degradation of metric even when perceptual quality is maintained (UrbanSound8K).
Degradation of PESQ and STOI value of the reconstructed results even when the overall perceptual
quality is maintained for UrbanSound8K dataset.

SNR=-10 SNR=-7 SNR=-3 SNR=0 SNR=3 SNR=7 SNR=10 Avg.
Method PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI

VoiceFixerLiu et al. (2022) 1.305 0.460 1.460 0.534 1.763 0.621 2.016 0.703 2.123 0.718 2.218 0.756 2.464 0.796 1.907 0.655
Ours (FDD) 1.839 0.581 2.072 0.658 2.237 0.698 2.412 0.763 2.540 0.774 2.672 0.806 2.782 0.832 2.365 0.730

Ours (FDD) + VoiceFixer 1.350 0.529 1.559 0.604 1.758 0.653 1.891 0.710 2.024 0.722 2.059 0.747 2.241 0.776 1.840 0.677

Table 6: Degradation of metric even when perceptual quality is maintained (AudioNoiseset).
Degradation of PESQ and STOI value of the reconstructed results even when the overall perceptual
quality is maintained for AudioNoiseset dataset.
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appreciate this. Such observations points to the potential inadequacy in quantitative metrics used for
denoising task. Designing metrics mimicking user perception is a challenging task, and we leave
investigating this to the future, and move on to describing the subjective evaluation settings and
results.

We perform the subjective evaluation of our result enhanced with VoiceFixer (Liu et al., 2022) vs.
using VoiceFixer directly. We randomly selected 5 samples each for two low SNR value, i.e. −7 and
−10 and two high SNR value 7 and 10 and asked the participants to listen to three audio samples for
each data point, i.e. mixed audio, the reconstruction from the base network (first), and our enhanced
prediction (second). We recruited 15 volunteers with varying age group, educational qualification to
judge the output. We asked them to listen to the audio and mark any one of the three conditions, i.e.
whether fist performs better than second, whether second performs better than second, or both the
model perform equally.

We observe that for low SNR values i.e. −7 and −10, our method is a clear winner with almost 90%
participants responding our method to better where as for large SNR values i.e. 7, 10 most of the
participants gave equal preference to both the methods. This suggest that our approach can denoise
in heavy noise conditions and performs at par with state-of-the art methods for less noise cases.

6 CONCLUSION

We propose a novel audio denoising network by explicitly modelling the noise in the signal. We
show that explicitly modelling the noise and then removing the noise component at feature level from
the mixed signal helps in better reconstruction of the original speech signal. We show quantitatively
and qualitatively that our method is able to extract out the noise signal reliably even in very high
noise conditions for which the prior methods fail to do. Finally, we show that we can recover high
quality speech signal after adding an enhancement network on top of ours and we plan to investigate
joint training of such frameworks in future.
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A DATASET DETAILS

We use two different datasets for noise modelling, i.e. UrbanSound8k Salamon et al. (2014) and
AudioNoiseset, curated from a large scale mulit-lable audio classification dataset AudiosetGemmeke
et al. (2017). UrbanSound8k contains environmental sounds downloaded from Freesound. It
contains a total of 8732 noise samples with each sample being ≤ 4 sec. and is annotated into 10
different classes. As we are modelling the noise in the first step, we require noise that do not contain
speech samples. So, we ignore two classes i.e., street music and children playing as we
manually verfiy that the noise sample from these classes contain significant amount of speech mixed
with it. So, for the dataset of UrbanSound8k we train and evaluate our model with the noise samples
from the remaining 8 classes.

We also use Audioset Gemmeke et al. (2017), a relatively large scale dataset and contains videos
downloaded from YouTube for modelling noise. As Audioset was designed for general purpose
audio classification, it contains a wide variety of 632 different audio classes covering both speech
and non-speech signals. We first select a subset of audio that were not marked as speech in the
audioset dataset and were able to download a total of 242269 videos after ignoring the missing
links. It is well known that the audioset dataset contains noisy annotations and we also observe
that some of the audios do contain background speech signal even if it is not explicitly marked with
speech label. We then perform a filtering process to get high quality non-speech only audio for
the background noise. We use an open-source voice activity detector (VAD), i.e. Silero VAD Team
(2021) to find out if there is any speech signal. We perform this by dividing the audio signal into
chunks of 10ms and output a binary value indicating if each chunk contains speech or not. We then
estimate the relative duration of the speech in the audio. We show the histogram of audio samples by
their relative speech duration in the Fig.3. We observe from the figure that although the histogram
is highly skewed towards zero, there are a few audios that contain quite a lot of speech. We use
a strict threshold of 5% to select non-speech audio, i.e. we discard an audio to be considered as
background noise if more than 5% of the total chunks are marked as speech by VAD. We use a
very heavy threshold i.e., we discard one second audio if 0.5 second is marked as speech to ensure
high quality noisy samples and have also verified manually that having such a large threshold gives
almost perfect noisy samples. We finally had a dataset with 142281, 7096 and 7567 samples for
train, val and test set respectively. We further observe that the after removing the samples containing
speech samples, the samples were mostly biased towards music instrument class. We then
remove some of the samples from this class and finally obtain a dataset containing 106331, 5096
and 5025 samples for train, val and test set respectively.

For the clean speech, we download a subset of AVSPEECHEphrat et al. (2018), a relatively clean
speech only dataset containing around 10000 samples for training and 2000 samples each for valida-
tion and testing. We purposefully selected the dataset as it contains in-the-wild videos downloaded
from YouTube and contains a variety of languages covering different accents and speaking style.

For training the network, for every speech sample, we randomly sample a noise signal and mix
it with the speech sample for a specific SNR using eq.1. As for every instance we are randomly
sampling a noise signal, we get different mixed signal each time. This will create a problem during
validation and testing as we will having different samples for every run. In order to have a fair
comparison, we created a fixed val and test set where we fix the audio and noise sample. We created
such fixed-eval and fixed-test set for both UrbanSound8K and AudioNoiseset having 80 and 100
examples each for each SNR Value. In total we have 560 and 700 examples both in fixed-val and
fixed-test set for Urbansound8K and AudioNoiseset.

B ABLATIONS

Impact of noise loss on final reconstruction Here, we evaluate quantitatively the impact of noise
estimation on the final audio reconstruction. We report here the results by varying the weights for
noise reconstruction loss for both the case of concat and FDD approach for the dataset of Ur-
banSound8K. We observe that for both the cases increasing the noise weight to 1 gives the best
performance , i.e. 2.258, 0.714 for concat and 2.372, 0.727 for FDD in terms of PESQ ans STOI
respectively. Further, for other weight value we observe that the performance decreases which sug-
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Figure 3: Audio distribution by the relative speech content

Noise SNR=-10 SNR=-7 SNR=-3 SNR=0 SNR=3 SNR=7 SNR=10 Avg.
Method weight PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI

concat
0 1.654 0.560 1.938 0.647 2.201 0.697 2.267 0.728 2.361 0.746 2.447 0.791 2.546 0.796 2.202 0.709

0.01 1.641 0.557 1.903 0.644 2.172 0.694 2.245 0.729 2.349 0.745 2.441 0.791 2.543 0.797 2.185 0.708
1.0 1.717 0.562 1.974 0.650 2.248 0.703 2.300 0.735 2.413 0.752 2.513 0.797 2.637 0.800 2.258 0.714

FDD
0 1.719 0.566 2.022 0.657 2.286 0.709 2.379 0.743 2.504 0.761 2.613 0.811 2.735 0.813 2.323 0.723

0.01 1.739 0.568 1.999 0.657 2.304 0.712 2.382 0.745 2.499 0.764 2.619 0.811 2.749 0.815 2.327 0.725
1.0 1.787 0.572 2.029 0.660 2.356 0.714 2.408 0.746 2.551 0.761 2.671 0.815 2.800 0.819 2.372 0.727
10 1.736 0.569 2.029 0.657 2.324 0.714 2.376 0.745 2.517 0.763 2.637 0.813 2.770 0.816 2.341 0.726

Table 7: Ablation for noise weights. PESQ and STOI for different weightage of noise in Urban-
Sound8K dataset.

gests that having an optimum noise weight gives a boost in performance for the task of speech
denoising.

Is Vocoder all we need for denoising? Here, we evaluate the capability of vocoder itself as de-
noiser. As vocoder converts the melspectrograms to time-domain waveform, we experiment here
whether only vocoder can give a clean time domain waveform when we feed it with a noisy mel-
spectrogram. We train the vocoder here in two settings to evaluate the same and report the results
in Tab.8 for UrbanSound8K dataset. In the first setting of Noisy2Clean, we train the vocoder
by providing the noisy melspectrogram as the input and enforcing it to reconstruct the clean time-
domain audio waveform. In the second setting Clean2Clean, we feed the vocoder with the clean
mel spectrogram and reconstruct the corresponding clean audio waveform. We observe that on aver-
age the prediction of Clean2Clean is better than Noisy2Clean with PESQ, STOI being 1.992,
0.680 and 1.784, 0.623 respectively. We observe the approach of Clean2Clean performing better
than that of Noisy2Clean as the former is able to better model the speech characteristics directly
from the clean signal where as the late setting is notable to extract such characteristics with a limited
network. Although the Clean2Clean setting performs better in comparison to Noisy2Clean,
it lags behind our proposed approach of FDD by 19% and 7% in terms of PESQ ans STOI respec-
tively. This experiment suggests that although the vocoder has some inherent property of denosing
but it is not alone powerful enough to give better denoised result.

C TRANSFER LEARNING TO OTHER TASKS

In this section, we show the capability of our noise modelling network. The environmental sound
classification task can be considered similar as the audio used as background noise for speech de-

SNR=-10 SNR=-7 SNR=-3 SNR=0 SNR=3 SNR=7 SNR=10 Avg.
Method PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI

Noisy2Clean 1.503 0.496 1.628 0.574 1.823 0.623 1.822 0.639 1.868 0.653 1.887 0.689 1.956 0.689 1.784 0.623
Clean2Clean 1.515 0.534 1.757 0.621 1.992 0.673 2.045 0.698 2.127 0.716 2.204 0.756 2.300 0.763 1.992 0.680

Table 8: Denoising capability of Vocoder. We evaluate here the capability of vocoder alone for the
task of denoising. We feed the vocoder directly with noisy melspectrogram and check whether it
can reconstruct the clean audio directly as output.
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noising tasks are often the environmental sounds. We use the encoder part of noise modelling net-
work and finetune it for the task of environmental sound classification. We use a LSTM and two FC
layers on top of the encoder for the final task of classification. We use the dataset ESC50 Piczak for
the same. We show the performance of our network with and without pre-training of the encoder in
Tab.9. We perform the standard 5-fold cross validation approach as done in the prior approaches and
report the average performance of the five folds. We observe that with the unsupervised pre-training
the performance on the classification tasks improves by around 12% in comparison to training the
network from scratch. Although there are several methods that report higher performance in the
dataset but in those cases the architecture and training startegy are carefully designed to achieve
high performance exclusively for the task of sound classification. For comparison, we have pro-
vided a few approaches Aytar et al. (2016); Arandjelovic & Zisserman (2017) where the network
is pre-trained in an unsupervised manner using multimodal data and then finetuned in ESC-50. For
example, in Aytar et al. (2016), the network architecture is exclusively designed for the task of clas-
sification and also trained with around 20× more data than ours. Similarly in case of Arandjelovic
& Zisserman (2017), it is also trained with same dataset with 20× more data than ours along with
a multimodal self-supervised pre-training task. We also report the human level accuracy of 81.30%
as an upperbound for the task. We conclude from the above experiment that our noise modelling
network is competitive enough in classifying the environmental sounds which is also potentially
helping us in the original task of speech denoising.

D QUALITATIVE RESULTS

Approach Accuracy
Scratch 61.40 %

Pre-Trained 68.60 %
Soundnet Aytar et al. (2016) 74.20 %

LLL Arandjelovic & Zisserman (2017) 79.30 %
Human Acc. Piczak 81.30 %

Table 9: Environmental sound classification performance on ESC-
50 dataset We evaluate the performance of our unsupervised pre-
training on the classification performance on ESC-50 dataset.

We also provide some
qualitative results in the
supplementary material
for both the dataset.
We have also provided
accompanying html file
for easy listening of
audio along with other
baselines. We have
provided results for high
and low noise cases
only to be within the
supplementary file size
limit. The filename is self explanatory for the dataset and the SNR value of the samples.
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