
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LLM-BASED TYPED HYPERRESOLUTION FOR COM-
MONSENSE REASONING WITH KNOWLEDGE BASES

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLM) are being increasingly applied to tasks requiring
commonsense reasoning. Despite their outstanding potential, the reasoning pro-
cess of LLMs is prone to errors and hallucinations that hinder their applicabil-
ity, especially in high-stakes scenarios. Several works have attempted to enhance
commonsense reasoning performance of LLMs by (i) using prompting styles that
elicit more accurate reasoning, (ii) utilizing the LLM as a semantic parser for a
symbolic reasoner, or (iii) enforcing the LLM to simulate a logical inference rule.
However, all these solutions have critical limitations: they are unable to leverage
the internal commonsense knowledge of the LLM in tandem with an axiomatic
knowledge base, they lack a mechanism to reliably repair erroneous inference
steps, and their application is restricted to small knowledge bases that fit the con-
text limit of the LLM. In this work, we present LLM-based Typed Hyperresolution
(LLM-TH), a logical commonsense reasoning framework that leverages “theory
resolution”, a concept from classical logical inference which enables integrat-
ing LLMs into the “resolution” inference rule, thus mitigating reasoning errors
and hallucinations and enabling verification of the reasoning procedure. LLM-
TH is also equipped with a mechanism for repairing erroneous inference steps
supported by theoretical guarantees. Using “Hyperresolution” and “Typed infer-
ence” schemes, we show that LLM-TH can efficiently reason over large knowl-
edge bases consisting of tens of thousands of rules with arbitrary predicate arities.
Our experiments on three diverse language-based reasoning tasks—preference
reasoning, multi-domain deductive reasoning, and geographical question answer-
ing—showcase that LLM-TH, using merely a BART 406M parameter NLI entail-
ment model, significantly reduces reasoning errors compared to baselines using
Llama3-70B, Gemini1.5-Flash, GPT-3.5-Turbo, and Mixtral-46.7B.

1 INTRODUCTION

The breakthrough in Large Language Models (LLMs) has significantly impacted AI research, paving
the way for deploying AI-powered systems in various tasks and applications. This huge impact is
primarily due to the outstanding performance of LLMs in tasks that require substantial reasoning
skills (Chang et al., 2024; Plaat et al., 2024). LLMs have also acquired commonsense understanding,
a critical element for interacting with the real world (Zhao et al., 2024; Valmeekam et al., 2024).
However, reasoning performance of LLMs is not infallible. They commonly show reasoning errors
and make hallucinations–generating incorrect outputs that seem valid–which hinders their reliable
deployment, particularly in high-risk tasks (Tonmoy et al., 2024; Zhang et al., 2023b).

To overcome these challenges in LLM-based reasoning, several approaches have been proposed
in the literature that can be broadly categorized into three groups: (i) Using prompting styles that
can elicit more accurate reasoning from the LLM (Wei et al., 2022; Kojima et al., 2022; Zhou
et al., 2022) or augmenting the prompt by retrieved information (Lewis et al., 2020b), (ii) using
the LLM to translate natural language problem and knowledge bases (KB) for a symbolic logical
solver (Olausson et al., 2023; Pan et al., 2023), and (iii) using the LLM to emulate a logical inference
rule to solve the reasoning problem (Kazemi et al., 2023; Lee & Hwang, 2024).

These works have notably advanced the logical reasoning performance of LLMs; yet, they are all
hindered by a number of important limitations: (a) Their application is limited to small KBs that can

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

" " " " " " " " " " " "

" " " " " " " "

: " " " " " "

" "

Clause at Head of
Priority Queue

O
rig

in
al

 R
ea

so
ni

ng
R

ea
so

ni
ng

 w
ith

 R
ep

ai
r A

xi
om

s

Query in Causal Form

Clause at Head of
Priority Queue

" " " " " "
|

" " " " ..." " " " " "

" " " " " " " " "

...

Untyped Resolution (Incorrect)

" " ... |

...

...

...

Typed Resolution (Correct)

Typed Resolution

 and as well as and
have the same types which are

 and ,
respectively.

" " " " ... " "
 |

" " " " " " " "

Query

I'm looking for a Mediterranean fish recipe that packs some heat.

...

...

...

...

...

...

Recipe 1: Fiery Trout Souvlaki with Lime

Repair Axiom

" " " " " " " "

" " " "
" " " "

" "
" " " "

" " " "

" " " "
" " " "

Recipe 1 at Step 2:

" " " "" " " "

" "

Recipe 2: Mustard-Flavored Sicilian Cuttlefish
" " " " " "

" " " "

" " " " " "

Recipe 2 at Step 2:

Repair Axiom

" " " "
" " " "

" "
" " " "

" " " "

Recipe 2 has no binary predicate to resolve with " "

...

...

Figure 1: Workflow of LLM-TH shown with a preference reasoning example. Top: Using
LLM-based typed hyperresolution to compute proof scores for each recipe option to entail user
query. Negated query is the first active clause, and each resolvent is assigned a priority tu-
ple: (type entailment score, predicate entailment score, proof length score) and pushed to the prior-
ity queue (only the foremost clause is shown for priority queue of recipe 1 which becomes the next
active clause). LLM makes two mistakes: assigning a low score to “Souvlaki” entailing “Mediter-
ranean” and a high score to “cuttlefish” entailing “fish”. Bottom: Both kinds of mistakes can be
fixed after the insertion of repair axioms, resulting in the correct recommendation of Recipe 1.

fit into the context limit of the LLM, and are not scalable to perform reasoning on practical KBs such
as the widely-used Knowledge Graphs (KG) containing thousands of facts and axioms. (b) They are
restricted to perform reasoning on a complete KB containing all rules required to solve the problem.
However, assuming access to such KB is typically unrealistic in practical use cases, thus calling for
the necessity of a methodology to leverage the internal commonsense knowledge of the LLM in the
reasoning process. (c) All steps involved in the reasoning process are not transparent and thus, the
correctness of the final answer cannot be determined by inspecting the reasoning process. (d) Upon
observation of a reasoning error, they do not provide any reliable framework to fix the error and
ensure it will not occur in the future.

In this work, we aim to address these limitations by making the following contributions:

• We introduce LLM-based Typed Hyperersolution (LLM-TH), a framework for efficient
complex logical commonsense reasoning (Singh et al., 2021; Ismayilzada et al., 2023; He
et al., 2021), with KBs containing predicates of arbitrary artities, that facilitates the in-
corporation of the internal commonsense knowledge of LLMs in the reasoning process.
LLM-TH is founded on “theory resolution” (Stickel, 1985; Baumgartner, 1992), a concept
from classical logical reasoning that allows for the incorporation of specialized theorem
provers into the resolution inference rule. (Section 3.1)

• We equip LLM-TH with a mechanism for incorporating the type information of the vari-
ables and constants in the problem domain to prune the proof search space and terminate
the exploration of reasoning paths that are unlikely to succeed at very early stages. Also,
using hyperresolution, an extension of resolution that enables combining clauses to per-
form several resolution steps simultaneously, we make LLM-TH an efficient and scalable

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

" " " " " " " " " " " "

" " " " " "
|

" " " " ..." " " " " "

" " " " " " " " "

...

Untyped Resolution (Incorrect)

" " ... |

...

...

...

Typed Resolution (Correct)

Typed Resolution

 and as well as and
have the same types which are

 and ,
respectively.

" " " " ... " "
 |

Figure 2: An example of typing mechanism of LLM-TH. The binary predicate “contains” is com-
mon among clauses from different domains. Left: Application of resolution rule without considering
types leads to resolving a literal about “recipes” with complementary literals from domains such as
“animals”. Each incorrect resolution results in a new branch that will be explored but leads to fail-
ure, making the process inefficient. Right: in typed resolution, only literals with consistent variable
and constant types will be unified, therefore pruning the search space and enhancing efficiency.

reasoning framework for logical commonsense reasoning with LLMs. We show that LLM-
TH is easily scalable to KBs consisting of tens of thousands of rules. (Section 5.2.1)

• We show that by providing access to the exact axioms and facts used at every reasoning
step, LLM-TH results in a verifiable and faithful reasoning performance. Furthermore,
we propose a reliable repair methodology for missed inferences and incorrect reasoning
steps due to LLM hallucinations and missed inferences, and provide theoretical proof that
it reliably fixes reasoning errors. (Section 4)

• We show that by using the theory hyperresolution framework, LLM-TH is able to leverage
the internal commonsense knowledge of the LLM to compensate for KB incompleteness
and perform accurate and reliable reasoning. (Section 5.2.2)

• We experiment with LLM-TH on three different tasks involving commonsense reasoning:
preference reasoning, multi-domain deductive reasoning, and geographical QA, showcas-
ing the superiority of LLM-TH in terms of answer and reasoning accuracy over Chain
of Thought (Kojima et al., 2022; Wei et al., 2022) and retrieval augmented generation
(RAG) (Lewis et al., 2020b) baselines using orders of magnitude larger LLMs. (Section 5)

2 RELATED WORKS

Eliciting Stronger Reasoning from LLMs As LLMs scale, they exhibit emergent behaviors such
as the capability of solving problems that involve reasoning (Chang et al., 2024; Huang & Chang,
2022). However, their reasoning performance often suffers from errors and incorporating hallu-
cinated facts in their judgments (Tonmoy et al., 2024; Zhang et al., 2023b). Several works have
shown that with certain prompting techniques such as Chain of Thought (CoT) (Wei et al., 2022;
Kojima et al., 2022), Tree of thought (Yao et al., 2024), Selection-Inference (Creswell et al., 2022),
Self-consistency (Wang et al., 2022), Least to most prompting (Zhou et al., 2022), etc., more accu-
rate reasoning can be elicited from LLMs. Retrieval Augmented Generation (RAG) (Lewis et al.,
2020b) has also been noted as an effective approach in reducing reasoning errors and hallucinations
by including relevant content retrieved from a KB in the prompt to condition LLM’s reasoning on
dependable information. These methods have made significant progress in advancing the reasoning
behavior of LLMs, but even applying them does not guarantee an accurate reasoning behavior from
the LLM. Furthermore, since the LLM is entirely in charge of doing the reasoning, there is no con-
trol over the reasoning process and its correctness cannot be verified (Shanahan, 2024; Pan et al.,
2023). Moreover, the performance of these methods has been shown to degrade when being applied
to long-horizon (Dziri et al., 2024) and out-of-domain (Saparov et al., 2024) reasoning tasks as well
as problems involving negation (Anil et al., 2022) and contraposition (Zhang et al., 2024).

Formal Reasoning with LLMs To offer more control over the reasoning process, two groups of
work have been proposed for performing formal reasoning with LLMs: (i) Semantic parsing meth-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

ods remove the LLM from reasoning and only use it to translate the problem into a symbolic format
and delegate the reasoning task to a symbolic solver (Pan et al., 2023; Olausson et al., 2023). (ii)
Works enforcing the LLM to emulate an established logical inference rule such as backchaining
(Kazemi et al., 2023; Lee & Hwang, 2024). While these groups of works make significant progress
in mitigating hallucinations, they both rely on the existing rules in the KB and have no particular
mechanism to leverage the rich commonsense knowledge of the LLM in their reasoning. Although
recent works (Toroghi et al., 2024) have used resolution inference rule for logical LLM-based rea-
soning, they are restricted to unary predicates and can only do reasoning over small KBs.

3 METHODOLOGY

We first review the (hyper)resolution rule for inference in first-order logic using a function and
equality-free first-order logical (FOL) syntax in clausal normal form (Chang & Lee, 2014).1 We
then proceed to introduce the concept of Theory resolution that leverages external sources of knowl-
edge (such as LLMs) to augment the resolution process. Next, we introduce the concept of typed
resolution that will be critical for improving the efficiency of inference in our work by prioritizing
inference with compatible types and reducing proof length. With all of these ingredients in place, we
conclude with our LLM Theory Hyperresolution algorithm (LLM-TH) along with a crucial Lemma
that ensures the correctness of repair axioms that can be used to override incorrect LLM inferences.

Resolution Rule and Hyperresolution Resolution is a sound and complete inference rule which
is widely used in logical reasoning. From two premise clauses containing complementary literals,
resolution rule derives a resolvent clause by canceling (resolving) the complementary literals, e.g.,

A(x) ∨B(x, y) ¬B(w, z) ∨ C(z)

A(x) ∨ C(y)
,

(1)

under the unification θ = {x/w, y/z}. Repeated application of the resolution rule will either result
in a contradiction, e.g., deriving both A(x) and ¬A(x) indicating an inconsistent clause set, or
reaching a point where no further resolutions are possible.

The efficiency of the repeated application of the resolution rule can be substantially improved by
hyeperresolution (Robinson, 1965), an extension of resolution that enables combining multiple res-
olution steps in one inference step. Concretely, it resolves positive literals with all possible matching
negative clauses simultaneously, e.g.,

A(x) ∨B1(x, y)... ∨Bn(x, y) C(z) ∨ ¬B1(w, z) ∨ ... ∨ ¬Bn(w, z)

A(x) ∨ C(y)
, θ = {x/w, y/z}.

(2)

LLM-based Theory Resolution Application of the resolution rule is originally restricted to
clauses with complementary literals that share identical predicates. Theory resolution (Stickel, 1985;
Baumgartner, 1992) relaxes this condition and broadens the applicability of the resolution rule by
integrating special-purpose theories into resolution. Based on theory resolution, given two clauses
c1 = A(x) ∨ B(x, y) and c2 = ¬C(w, z) ∨ D(z), if a theorem prover T identifies B(x, y) and
¬C(w, z) under unification θ = {x/w, y/z} to be unsatisfiable (i.e., ∀x∀yB(x, y) ∧ ¬C(x, y) ⊢T
⊥), the clauses can be resolved despite lacking complimentary literals with identical predicates:

A(x) ∨B(x, y) ¬C(w, z) ∨D(z)

A(x) ∨D(y)
, θ = {x/w, y/z}.

(3)

In this work, we use an LLM as the theory that identifies the unsatisfiable natural language predi-
cates to perform reasoning via theory resolution. Translating natural language to symbolic form, as
semantic parsing methods do, is substantially restricted. For example, they map “packs some heat”
and being “spicy” to completely different symbolic predicates. Therefore, a symbolic reasoner is
unable to discern their entailment relationship unless given explicit axioms.

Using LLM-based theory resolution, we can integrate the LLM’s commonsense knowledge into the
reasoning process to find entailments between predicates and constants without requiring explicit

1We refer the reader to Chapters 7-9 of Russell & Norvig(2016) for an in-depth overview of these topics.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

axioms. We do this in an extended version of FOL in which predicates, functions, and constants
are no longer symbols, but natural language text. In this logical system, which we call natural
language logic, the unsatisfiability condition in theory resolution reduces to natural language entail-
ment. In other words, if an LLM identifies a natural language predicate B to entail predicate D,
i.e., B(x) ⊢LLM D(x), and therefore, B(x) ∧ ¬D(x) ⊢LLM ⊥, then literals B(x) and D(x) can be
resolved. For instance, given clauses c1 =“packs some heat”(x) and c2 = ¬“spicy” (x)∨Q(x), in
which Q(x) is another literal with a natural language predicate, since the LLM identifies the natural
language entailment “packs some heat” ⊢LLM “spicy”, a theory resolution step can be performed as

“packs some heat”(x) ¬“spicy”(x) ∨Q(x)

Q(x)
.

(4)

LLM-based Typed Theory Resolution Although resolution is one of the most widely used infer-
ence rules in logical reasoning with the key properties of being sound and complete, its application
on real-world large-scale knowledge bases is computationally expensive. One of the key challenges
is that the space of possible resolutions—the combinations of literals and clauses that can potentially
be unified and resolved—can become enormous, and grows exponentially during the resolution pro-
cess, leading to inefficiencies in finding contradictions or valid derivations. This challenge is often
addressed by choosing particular orderings that first explore resolution steps that are more likely to
lead to valid proof (Baumgartner, 1992; Sanner & McIlraith, 2006).

In addition to proposing an ordering strategy which is explained in 3.1, we introduce the notion of
typing into theory resolution which considerably prunes the space of possible resolutions. Many
of the created resolvents during the resolution process, each opening a new search branch, are cre-
ated by unifying variables and constants with inconsistent ontological types. For instance, a literal
“small”(x) in a clause about vehicles can be resolved with a literal “small”(y) which is about ani-
mals. However, the search branch created by this resolvent is very unlikely to result in a valid proof
as it is created by a semantically invalid unification, and in future steps, the proof will be stopped as
no further resolutions could be made. By associating variables and constants with their ontological
types and considering type consistency in unification, we can significantly prune the space of allow-
able resolutions, by preventing the exploration of type inconsistent branches from the beginning.

Variable types can be introduced into an FOL sentence as unary predicates, e.g., “animal”(x).
Considering a universally quantified sentence in FOL as

∀x∀y H(x) ∧ T (y) ∧A(x, y) =⇒ R(x, y), (5)
where H(.) and T (.) are unary predicates indicating types of their corresponding variables, we
equivalently write the above sentence in the typed FOL as

∀x∀y A(x, y) =⇒ R(x, y)|x : H, y : T, (6)
where, x : H and y : T indicate that x and y are of type H and T respectively. This clause can be
equivalently written in the clausal form as

∀x∀y ¬A(x, y) ∨R(x, y)|x : H, y : T, (7)
Next, consider another clause in typed FOL as

∀w∀z ¬R(w, z) ∨ S(w, z)|w : M, z : N. (8)
By introducing the unifier θ = {w/x, z/y}, we can perform typed resolution between the two
clauses 7 and 8 as

¬A(x, y) ∨R(x, y)|x : H, y : T ¬R(w, z) ∨ S(w, z)|w : M, z : N

¬A(x, y) ∨ S(x, y)|x : C, y : D
,

(9)
where C and D, the types of resolvent variables are C ≡ H⊓M and D ≡ T ⊓N using the following
lemma which is proved in Appendix A. Here, ⊓ indicates unary type intersection (conjunction).
Lemma 1. Resolving two disjunctive clauses c1 and c2 that include complimentary literals
l(x1, ..., xn)|x1 : T1, ..., xn : Tn and ¬l(y1, ..., yn)|y1 : H1, ..., yn : Hn under the unifier
θ = {x1/y1, ..., x2/y2} creates a resolvent cres with type variables x1 : T1 ⊓H1, ..., xn : Tn ⊓ Tn.

Typed resolution can be directly extended to typed theory resolution in our natural language-based
logical system by resolving literals B(x1, ..., xn)|x1 : T1, ..., xn : Tn and D(y1, ..., yn)|y1 :
H1, ...,Hn if the LLM identifies the natural language predicate B to entail D, i.e.,
B(x1, ..., xn) ⊢LLM D(y1, ..., yn) if their unified variables have consistent types. In the next section,
we elaborate on how type consistency is checked in our LLM-TH framework.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 LLM-TH Algorithm
1: Input: K, q, max proofs, max iters, I, F
2: proofs← ∅
3: PQ← ∅ // PQ is an initially empty priority queue.
4: PQ.push(¬q, (1, 1, 0)) // Negation of q has priority (1, 1, 0), PQ is ordered by Equation 15
5: i← 0
6: while (PQ ̸= ∅) ∧ (|proofs| ≤ max proofs) ∧ (i ≤ max iters) do
7: c← PQ.pop()
8: if c = ⊥ then
9: proofs ← proofs ∪ {(Ac, (ρ

t(c), ρe(c), ρl(c))} //Ac is the set of ancestors of c, found by
backtracking up to ¬q

10: else
11: βc ← candidate clauses in K with similar arity and different polarity to c
12: for ctarget ∈ βc do
13: Perform hyperresolution to compute resolvent cres of c and ctarget using Equation 2
14: PQ.push(cres, (ρ

t(cres), ρ
e(cres), ρ

l(cres)) // cf. Equations 11, 13 and 14
i← i+ 1

15: Output: proofs

3.1 LLM-TH ALGORITHM

This section presents LLM-TH, our proposed algorithm for efficient logical commonsense reason-
ing, which is based on theory resolution (Stickel, 1985; Baumgartner, 1992) extended to LLM theory
resolution with predicates of arbitrary arity, hyperresolution, and simultaneous type inference. Its
workflow is shown in a worked example in Figures 1 and 2, and formalized in Algorithm 1.

Problem Definition Let Q denote a set of queries and K represent a knowledge base (KB) com-
prising a set of axioms and facts, a set of intended repair axioms I, and a set of forbidden repair
axioms F , all expressed in natural language logic and clausal form with arbitrary predicate arities.
For each query q ∈ Q, LLM-TH identifies a set of proofs, denoted as proofs. Each proof f ∈ proofs
consists of a subset of clauses in K, and is assigned a priority score ρ.

Algorithm To proveK entails the query q via resolution, we need to show that repeatedly using the
resolution rule on K∧¬q leads to a contradiction, and is thus unsatisfiable. Following the backward
chaining paradigm that offers efficiency benefits (Poole & Mackworth, 2010), we pick ¬q as the first
active clause to be resolved with a clause from K. At each step, given an active clause c =

∨|c|
i=1 li

where each li is a literal of arbitrary arity, any clause ctarget ∈ K as ctarget =
∨|ctarget|

i=1 ltargeti is
considered a candidate clause to be theory resolved with c, yielding the resolvent cres, if at least one
(li, ltargeti) pair can be formed where li and ltargeti have equal arities and different polarities. One
can lift this polarity restriction for theory resolutions to allow implicit negation in the language of
the predicate (e.g.,“not spicy”) in contrast to explicit logical negation (e.g., ¬“spicy”). As K is often
large and expands further with new resolvents being derived as resolution advances, efficiency is a
key desideratum, which LLM-TH achieves by prioritizing candidate clauses based on two criteria:
(i) type consistency and (ii) predicate entailment between the active and candidate clauses.

Restricting the Space of Resolutions with Typing: The first mechanism used by LLM-TH to improve
efficiency is the use of typed theory resolution to restrict the space of allowable resolutions. In typed
theory resolution, the types of variables in the resolvent clause are determined by the conjunction of
the types of variables in their parent clause, hence LLM-TH prioritizes clauses with variable types
that align with the active clause to encourage valid types. For example, if two candidate clauses are
considered to be resolved with an active clause of variable type “Animal”, LLM-TH prioritizes a
candidate clause with a unifying variable type “Mammal” over one with type “Vehicle”.

LLM-TH leverages the commonsense knowledge of the LLM to obtain the probability of entailment
between the variable types. Formally, for the pair of literals with equal arities (l, ltarget), denoting
the set of argument types of l and ltarget as T = {ti} and T ′ = {t′i} respectively, the plausibility of
unifying each of their variables can be obtained by calculating the entailment probabilities between

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

each ti and t′i. Since entailment is an asymmetric relation and its direction is unknown, we need to
calculate both ti ⊢LLM t′i and t′i ⊢LLM ti to obtain the type consistency score. The average of type
entailment scores for arguments determines ρtype(cres), the overall type priority score for cres.

ρtype(cres) =
1

|Ti|
Σi (max{p(ti ⊢LLM t′i), p(t

′
i ⊢LLM ti)}) . (10)

Since the main objective is to find the most plausible proofs, i.e., the sequences of most plausible
theory resolution steps, we define the first entry of our priority score for each cres as the overall type
consistency score of all resolution steps beginning from ¬q that led to its derivation. Let Pcres be the
set of parent clauses of cres; the proof type consistency score of cres is inductively defined as

ρt(cres) =

(∏
c′∈Pcres

ρt(c′)

)
· ρtype

cres
. (11)

Resolution Ordering based on Predicate Entailment: Assigning the type consistency scores prunes
the resolution search space ensuring that only clauses with compatible argument types will be con-
sidered for resolution. To further enhance efficiency, LLM-TH prioritizes the remaining clauses
based on their potential for being part of a plausible proof considering their predicate entailment.
As explained, in our LLM-based theory resolution framework, LLM entailment is used to identify
unsatisfiability of clauses. Therefore, the greater probability the LLM assigns to ltarget entailing l,
the more plausible it becomes to resolve l and ltarget. Therefore we define the plausibility of a theory
resolution step between c and ctarget by resolving literals l and ltarget generating cres, denoted by ρentail

cres

ρentail
cres

=

1 if (ltarget ⊢ l) ∈ I,
0 if ¬(ltarget ⊢ l) ∈ F ,
p(ltarget ⊢LLM l) otherwise .

(12)

These plausibility scores can help us prioritize the resolvent clauses based on their predicate entail-
ment. For example, in the scenario depicted in Figure 1, resolving “Sicilian” with “Mediterranean”
results in a higher entailment score compared to resolving “Mustard-flavored” with “Mediter-
ranean”. Hence, it is prudent to prioritize the former resolvent, as it is more likely to contribute
to the final proof. As the definition of the overall proof type consistency score, we can compute the
overall predicate entailment score inductively to obtain the second entry of our priority score as

ρe(cres) =

(∏
c′∈Pcres

ρe(c′)

)
· ρentail

cres
. (13)

Ultimately, among equally plausible proofs, we prioritize shorter ones that circumvent unnecessary
steps. We define the proof length score, a third priority score that accounts for this preference. The
proof length score of cres is derived inductively from the maximum length of its parent clauses as

ρl(cres) = 1 + max
c′∈Pcres

ρl(c′). (14)

Each resolvent cres is assigned the priority tuple (ρt(cres), ρ
e(cres), ρ

l(cres)) and then pushed to the
priority queue PQ, in which the order of clauses is specified as

c1 ⪯ c2 ⇐⇒ [ρt(c1) > ρt(c2)] ∨ [(ρt(c1) = ρt(c2)) ∧ (ρe(c1) > ρe(c2))] (15)

∨ [(ρt(c1) = ρt(c2)) ∧ (ρe(c1) = ρe(c2)) ∧ (ρl(c1) < ρl(c2)].

By applying this prioritization scheme, the type consistency priority score first applies a hard filter to
avoid exploration of resolvents with invalid types, and the predicate entailment and length priorities
together enable an efficient inference via LLM-based theory resolution. These efficiency enhance-
ments enable LLM-TH to be applied to large-scale KBs. Furthermore, it is able to reason over
incomplete KBs by benefiting from the commonsense knowledge of the LLM to fill in the missing
axioms by identifying entailing predicates in the theory resolution process.

At the start of each iteration of LLM-TH, the clause with the highest rank in PQ becomes the
active clause. When a resolution step yields a contradiction, the proof and its respective priority
score are added to the set of found proofs by backtracking the ancestor clauses. The algorithm

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

terminates when either a certain number of proofs are found or the maximum number of iterations
is exceeded. Notably, LLM-TH is not limited to proving a single query; instead, it finds a set of
proofs and assigns a strength score to each. This feature enables it to evaluate the likelihood of each
query being entailed, which is critical for tasks requiring ranking, such as answering multiple-choice
questions. Furthermore, LLM-TH can reason on incomplete KBs by using the LLM’s commonsense
knowledge to fill in the missing axioms by identifying entailed predicates via theory resolution.

4 FIXING ERRONEOUS RESOLUTIONS IN LLM-TH

LLM-TH enables the verification of the reasoning process by providing access to atomic resolution
steps. Therefore, if an incorrect theory resolution step is performed due to an erroneous entailment
probability assigned by the LLM, the source of failure can be easily identified. Here, we show that
by adding a repair rule, LLM-TH can recover from its mistake and fix the reasoning. In the example
provided in Figure 1, the LLM’s mistake in assigning a low entailment score for “Souvlaki” to entail
“Meditteranean” leads to a missed inference. Also, incorrectly considering “cuttlefish” to entail
being a “fish” leads to incorrectly resolving these literals. However, introducing the correct axiom
∀y“Souvlaki”(y) =⇒ “Meditteranean”(y) to I and introducing ¬(“cuttlefish” ⊢LLM “fish”) to
F fix these mistakes. We formalize this property here and prove it in Appendix B.

Proposition 1. Consider proof Pϕ
c using axiom ϕ that derives clause c. For any incorrect LLM

reasoning axiom ϕ, a Repair Axiom ϕ′ can be inserted such that Pϕ′

c will be produced before Pϕ
c .

5 EXPERIMENTS

We empirically evaluate LLM-TH2 on three different tasks representing commonsense reasoning
with KBs on different datasets and compare it against variations of four different baselines to com-
pare them from different aspects by answering the following questions:

• RQ1-Scalability: How does the reasoning performance of LLM-TH compare to baselines
when reasoning with large, but complete knowledge bases?

• RQ2-Reasoning with incomplete KBs: How effectively do LLM-TH and the baselines
use the LLM’s commonsense knowledge to compensate for the incompleteness of the KB?

• RQ3-Efficiency: How is the efficiency of LLM-TH influenced by typed hyperresolution?

5.1 TASKS AND DATASETS DESCRIPTION

• Preference reasoning: An exemplar commonsense reasoning task is providing recommen-
dations using natural language statements of user preferences and restrictions. For this task,
we use Recipe-MPR (Zhang et al., 2023a), a dataset consisting of 500 queries, e.g., “I want
French food, but I’m on a budget” and five-way recipe options. This dataset covers a broad
range of commonsense reasoning skills such as temporal and analogical reasoning.

• Multi-domain Deductive reasoning: Since established datasets for logical commonsense
reasoning with LLMs, e.g., ProntoQA (Saparov & He, 2022) and COPA-SSE (Brassard
et al., 2022), have small KBs with less than 20 facts and axioms per query, we find them
insufficient for evaluating the reasoning capability on large KBs. Thus, following the
approach in Saparov & He (2022), we create a deductive reasoning dataset using man-
ually written commonsense axioms and ground facts sampled from Wikidata knowledge
graph (Vrandečić & Krötzsch, 2014). This dataset contains more than 32k rules about five
different domains: Biological entities, foods, vehicles, drugs and diseases, and sports, and
1000 queries that answering them requires 2 to 7 reasoning steps. We release this dataset
to encourage research on LLM-based commonsense reasoning on large-scale KBs.

• Geographical QA: Using the same approach for generating the multi-domain deductive
reasoning dataset, we create a KB about geographical entities, e.g., cities, deserts, muse-
ums, etc. containing more than 12k rules and 500 queries which we also release.

2https://anonymous.4open.science/r/typed-logic-release-476D/

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Reasoning performance of methods across the three datasets on complete KBs. The prefer-
ence reasoning dataset lacks an explicit rule base, making RAG-based baselines irrelevant.

Method Preference Reasoning Deductive Reasoning Geographical QA
Accuracy RS Macro RS Micro Accuracy RS Macro RS Micro Accuracy RS Macro RS Micro

GPT-3.5 Turbo
Zero-Shot CoT 0.86±0.04 0.60 0.80 0.69±0.02 0.45 0.48 0.71±0.03 0.60 0.77
Few-Shot CoT 0.87±0.02 0.65 0.81 0.65±0.03 0.45 0.48 0.82±0.02 0.50 0.53
RAG + Zero-Shot CoT NA NA NA 0.68±0.02 0.85 0.92 0.74±0.01 0.80 0.88
RAG + Few-Shot CoT NA NA NA 0.69±0.02 0.65 0.84 0.83±0.02 0.75 0.84

Gemini-1.5-Flash
Zero-Shot CoT 0.84±0.04 0.60 0.75 0.60±0.01 0.40 0.81 0.78±0.03 0.20 0.51
Few-Shot CoT 0.86±0.02 0.55 0.79 0.66±0.05 0.20 0.71 0.79±0.02 0.25 0.54
RAG + Zero-Shot CoT NA NA NA 0.78±0.02 0.85 0.93 0.79±0.03 0.50 0.72
RAG + Few-Shot CoT NA NA NA 0.86±0.04 0.45 0.72 0.78±0.03 0.25 0.47

Llama3 70B
Zero-Shot CoT 0.87±0.01 0.55 0.80 0.80±0.03 0.15 0.77 0.78±0.01 0.25 0.57
Few-Shot CoT 0.91±0.01 0.70 0.84 0.78± 0.02 0.55 0.58 0.87±0.02 0.45 0.45
RAG + Zero-Shot CoT NA NA NA 0.78±0.01 0.50 0.81 0.87±0.030 0.40 0.65
RAG + Few-Shot CoT NA NA NA 0.80±0.02 0.75 0.80 0.91±0.02 0.65 0.71

Mixtral 46.7B
Zero-Shot CoT 0.79±0.03 0.60 0.84 0.59±0.02 0.30 0.66 0.71±0.02 0.50 0.70
Few-Shot CoT 0.74±0.02 0.65 0.83 0.67±0.01 0.45 0.53 0.80±0.01 0.45 0.49
RAG + Zero-Shot CoT NA NA NA 0.65±0.02 0.65 0.81 0.66±0.07 0.25 0.51
RAG + Few-Shot CoT NA NA NA 0.46±0.03 0.30 0.43 0.70±0.06 0.50 0.65

VERA (T5 5B) 0.86 NA NA 0.76 NA NA 0.68 NA NA

LLM-TH (BART 406M) 0.84 0.90 0.94 1.00 1.00 1.00 1.00 1.00 1.00

5.2 BASELINES AND EVALUATION

Existing formal reasoning methods with LLMs, i.e., semantic parsing methods and methods emulat-
ing inference rules, suffer from two limitations that make them inapplicable to our studied datasets:
(i) they cannot leverage the internal commonsense knowledge of the LLM and only rely on an ex-
plicit and complete rule base, which Recipe-MPR lacks. (ii) They are limited to small KBs that
fit in the LLM context size, but our studied KBs are much larger. We use established methodolo-
gies for eliciting more faithful reasoning from the LLMs as our comparison baselines: (a) zero-shot
CoT (Kojima et al., 2022), (b) few-shot CoT (Wei et al., 2022), and (c) RAG (Lewis et al., 2020b)
using a dense retriever (Song et al., 2020) to find relevant rules from the KB and prompting the
LLM with zero-shot CoT and (d) few-shot CoT. We also compare against (e) VERA (Liu et al.,
2023), a method for estimating plausibility of commonsense statements. VERA estimates a score
in the range of (0, 1), and we consider a score greater (smaller) than 0.5 as a True (False) predic-
tion. Except VERA which uses T5 (Raffel et al., 2020), we use a number of common LLMs for other
baselines: (1) Gemini 1.5-flash, (2) Llama3 (70B), (3) Mixtral (56.7B), and (4) GPT3.5 Turbo, while
using BART large (Lewis et al., 2020a)3 (406 M) and RoBERTa large (Liu et al., 2019)4 (365 M)
tuned on MNLI (Williams et al., 2018) dataset to obtain entailment probabilities for LLM-TH. We
also use pyDatalog5 for performing hyperresolution for grounding on the KB facts and use Gemini
1.5-flash to convert natural language axioms to clausal natural language logic form.

We evaluate the reasoning performance based on both, (1) the correctness of the final answer, mea-
sured by accuracy, and (2) the correctness of the reasoning process by evaluating proofs using the
reasoning score (RS) (Kazemi et al., 2023) metric which is manually calculated for 20 randomly
chosen responses in which the final answer was correct. RS is typically assessed as a binary deci-
sion based on whether the predicted proof is entirely aligned with the ground truth proof (Kazemi
et al., 2023; Lee & Hwang, 2024), which leads to both a single erroneous step and wholly flawed
reasoning being penalized equally. To achieve a more granular evaluation of the proofs, we calculate
both the conventional macro RS and following the idea of Min et al. (2023), we propose a metric
which we call micro RS. Let P be a provided proof and P ∗ a valid ground truth proof. Using the
indicator function I, we define the micro RS for each query as RSMicro = 1

|P |
∑

p∈P I(p ∈ P ∗).

3https://huggingface.co/facebook/bart-large-mnli
4https://huggingface.co/FacebookAI/roberta-large-mnli
5https://pypi.org/project/pyDatalog/

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: Reasoning performance on incomplete KBs. Numbers in
parenthesis indicate the difference with the method’s performance on
a complete KB (Table 1) with ↓ (↑) showing a decrease (increase).

Method
Deductive Reasoning Geographical QA

Zero-Shot CoT Few-Shot CoT Zero-Shot CoT Few-Shot CoT

GPT-3.5-Turbo 0.65±0.01 (0.03↓) 0.54±0.04 (0.15↓) 0.60±0.02 (0.14↓) 0.64±0.03 (0.19↓)

Gemini-1.5-Flash 0.73±0.02 (0.05↓) 0.73±0.01 (0.13↓) 0.68±0.02 (0.11↓) 0.66±0.02 (0.11↓)

Llama3 70B 0.77±0.02 (0.01↓) 0.77±0.01 (0.03↓) 0.66±0.02 (0.21↓) 0.66±0.02 (0.25↓)

Mixtral 46.7B 0.50±0.04 (0.14↓) 0.48±0.02 (0.03↑) 0.53±0.03 (0.12↓) 0.58±0.03 (0.13↓)

LLM-TH (using BART 406M) 0.97 - 0.95 -

LLM-TH (using RoBERTa 356M) 0.96 - 0.92 -

Deductive Reasoning Geographical QA
Dataset

0

2

4

6

8

10

12

Re
as

on
in

g
St

ep
s

(A
ve

ra
ge

) Untyped
Typed

Figure 3: Influence of typing
on the efficiency of the infer-
ence algorithm.

5.2.1 RQ1: Reasoning Performance on Complete KB Results of the reasoning performance
of different methods on complete KBs are provided in Table 1. On the preference reasoning task,
which has a small KB, although zero-shot and few-shot CoT with a large LLM such as Llama 3
(70B) yield superior accuracy, LLM-TH outperforms zero-shot and few-shot CoT with Mixtral and
is competitive with zero-shot CoT using GPT3.5 and Gemini despite using a much smaller LLM.
For the reasoning scores, LLM-TH exhibits a more correct and faithful reasoning process than all
other methods. On this task, since the dataset does not contain an explicit KB, RAG-based baselines
reduce to zero-shot and few-shot CoT. On larger KBs of deductive reasoning and geographical QA
tasks, the limitations of existing LLM-based methods are revealed as none of them compare to the
accuracy of LLM-TH. Furthermore, they all obtain imperfect reasoning scores, reflecting their hal-
lucinations and reasoning errors. On these datasets, LLM-TH performs standard resolution which is
a sound and complete inference rule, as reflected in the results. While complete KBs are impractical
in real-world use cases, results of this experiment highlight that existing baselines, as opposed to
LLM-TH, exhibit reasoning failures on large scale KBs even when they are complete.

5.2.2 RQ2: Reasoning Performance on Incomplete KBs To enable reasoning over practical
KBs, leveraging the commonsense reasoning ability of the LLM to compensate for KB incomplete-
ness is essential. To assess this capability, in our experiments on deductive reasoning and geographi-
cal QA datasets that have explicit KBs, we simulate KB incompleteness by omitting one of the rules
used in the proof of each query, to test whether the LLM can use its commonsense knowledge to
deduce, e.g., “paying taxes” implies “earning revenue”. Since few-shot and zero-shot CoT meth-
ods rely solely on the internal LLM knowledge, they are irrelevant to this RQ that examines the role
of KB incompleteness. Hence, we compare LLM-TH against variations of RAG with zero-shot and
few-shot CoT prompting. Results in Table 2 show that using the theory hyperresolution framework,
LLM-TH is able to achieve significantly higher accuracies compared to the RAG-based baselines
that clearly struggle with incompleteness compared to RAG results for complete KBs in Table 1.

5.2.3 RQ3: Influence of Typing on Efficiency To verify the efficiency enhancement offered by
introducing type information to the hyperresolution framework of LLM-TH, we perform an ablation
experiment on the complete KB, by comparing the average number of reasoning steps that LLM-
TH takes to find the answers with its untyped variant that does not consider types in prioritization.
In summary, the results of this experiment shown in Figure 3 indicate that typed hyperresolution
reduces the proof length by half, which translates to a significantly reduced search space.

6 CONCLUSION

We proposed LLM-TH for logical commonsense reasoning with large and incomplete KBs. Using
theory resolution, LLM-TH integrates LLM commonsense knowledge into the resolution inference
rule to enable reasoning over incomplete KBs with arbitrary predicates. LLM-TH shows strong
performance: it matches or outperforms baselines that use orders of magnitude larger LLMs; its use
of an LLM-based typed hyperresolution approach yields high efficiency gains; and its transparency
and repairability establish it as a solution for factual and correct reasoning on large-scale KBs. In
summary, LLM-TH holds promise to significantly reduce hallucinations in LLM-based reasoning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ethics Statement: By introducing LLM-TH, we tried to enhance the transparency and increasing
control over the reasoning process of LLM-based logical commonsense reasoning. However, draw-
ing logically valid conclusions does not necessarily mean that all axioms, rules, and the internal
commonsense knowledge of the LLM which are leveraged in the reasoning process follow ethical
requirements. A responsible and credible usage of LLM-TH, like any other reasoning framework,
requires careful considerations and assessments of the knowledge base, the underlying LLM, and
the user-defined axioms to ensure desired unbiased and ethical performance.

Reproducibility Statement: We release all our code and data in the supplementary materials,
also accessible on the LLM-TH anonymous repository6. We also explain the experimental setup and
dataset descriptions in Section 5, and include all prompts utilized for the LLM usage in Appendix
E, as well as in the supplementary materials.

REFERENCES

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Am-
brose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. Advances in Neural Information Processing Systems, 35:38546–38556,
2022.

Marco Baroni, Armand Joulin, Allan Jabri, German Kruszewski, Angeliki Lazaridou, Klemen Si-
monic, and Tomas Mikolov. Commai: Evaluating the first steps towards a useful general ai. arXiv
preprint arXiv:1701.08954, 2017.

Peter Baumgartner. An ordered theory resolution calculus. In Logic Programming and Automated
Reasoning: International Conference LPAR’92 St. Petersburg, Russia, July 15–20, 1992 Proceed-
ings 3, pp. 119–130. Springer, 1992.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Ana Brassard, Benjamin Heinzerling, Pride Kavumba, and Kentaro Inui. Copa-sse: Semi-structured
explanations for commonsense reasoning. In Proceedings of the Thirteenth Language Resources
and Evaluation Conference, pp. 3994–4000, 2022.

Chin-Liang Chang and Richard Char-Tung Lee. Symbolic logic and mechanical theorem proving.
Academic press, 2014.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3):1–45, 2024.

Antonia Creswell, Murray Shanahan, and Irina Higgins. Selection-inference: Exploiting large lan-
guage models for interpretable logical reasoning. arXiv preprint arXiv:2205.09712, 2022.

Ernest Davis and Gary Marcus. Commonsense reasoning and commonsense knowledge in artificial
intelligence. Communications of the ACM, 58(9):92–103, 2015.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36, 2024.

Tianqing Fang, Zeming Chen, Yangqiu Song, and Antoine Bosselut. Complex reasoning over logical
queries on commonsense knowledge graphs. arXiv preprint arXiv:2403.07398, 2024.

Weinan He, Canming Huang, Yongmei Liu, and Xiaodan Zhu. Winologic: A zero-shot logic-based
diagnostic dataset for winograd schema challenge. In Proceedings of the 2021 conference on
empirical methods in natural language processing, pp. 3779–3789, 2021.

6https://anonymous.4open.science/r/typed-logic-release-476D/

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey.
arXiv preprint arXiv:2212.10403, 2022.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. arXiv preprint arXiv:2311.05232,
2023.

Mete Ismayilzada, Debjit Paul, Syrielle Montariol, Mor Geva, and Antoine Bosselut. Crow: Bench-
marking commonsense reasoning in real-world tasks. arXiv preprint arXiv:2310.15239, 2023.

Mehran Kazemi, Najoung Kim, Deepti Bhatia, Xin Xu, and Deepak Ramachandran. Lambada:
Backward chaining for automated reasoning in natural language. In Proceedings of the 61st
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
6547–6568, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Stefanie Krause and Frieder Stolzenburg. Commonsense reasoning and explainable artificial in-
telligence using large language models. In European Conference on Artificial Intelligence, pp.
302–319. Springer, 2023.

Jinu Lee and Wonseok Hwang. Symba: Symbolic backward chaining for multi-step natural language
reasoning. arXiv preprint arXiv:2402.12806, 2024.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880, 2020a.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020b.

Hugo Liu and Push Singh. Conceptnet—a practical commonsense reasoning tool-kit. BT technology
journal, 22(4):211–226, 2004.

Jiacheng Liu, Wenya Wang, Dianzhuo Wang, Noah A Smith, Yejin Choi, and Hannaneh Ha-
jishirzi. Vera: A general-purpose plausibility estimation model for commonsense statements.
arXiv preprint arXiv:2305.03695, 2023.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke
Zettlemoyer, and Hannaneh Hajishirzi. Factscore: Fine-grained atomic evaluation of factual pre-
cision in long form text generation. In Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pp. 12076–12100, 2023.

Robert C Moore. The role of logic in knowledge representation and commonsense reasoning. SRI
International. Artificial Intelligence Center, 1982.

Theo Olausson, Alex Gu, Ben Lipkin, Cedegao Zhang, Armando Solar-Lezama, Joshua Tenenbaum,
and Roger Levy. Linc: A neurosymbolic approach for logical reasoning by combining language
models with first-order logic provers. In Proceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 5153–5176, 2023.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Wang. Logic-lm: Empowering large lan-
guage models with symbolic solvers for faithful logical reasoning. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pp. 3806–3824, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Mete Ismayilzada Debjit Paul, Syrielle Montariol, Mor GevaO, and Antoine Bosselut. Crow: Bench-
marking commonsense reasoning in real-world tasks.

Aske Plaat, Annie Wong, Suzan Verberne, Joost Broekens, Niki van Stein, and Thomas Back. Rea-
soning with large language models, a survey. arXiv preprint arXiv:2407.11511, 2024.

David L Poole and Alan K Mackworth. Artificial Intelligence: foundations of computational agents.
Cambridge University Press, 2010.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

John Alan Robinson. A machine-oriented logic based on the resolution principle. Journal of the
ACM (JACM), 12(1):23–41, 1965.

Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Pearson, 2016.

Scott Sanner and Sheila A McIlraith. An ordered theory resolution calculus for hybrid reasoning in
first-order extensions of description logic. In KR, pp. 100–111, 2006.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Common-
sense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought. In The Eleventh International Conference on Learning Representations,
2022.

Abulhair Saparov, Richard Yuanzhe Pang, Vishakh Padmakumar, Nitish Joshi, Mehran Kazemi,
Najoung Kim, and He He. Testing the general deductive reasoning capacity of large language
models using ood examples. Advances in Neural Information Processing Systems, 36, 2024.

Murray Shanahan. Talking about large language models. Communications of the ACM, 67(2):68–79,
2024.

Ke Shen and Mayank Kejriwal. An experimental study measuring the generalization of fine-tuned
language representation models across commonsense reasoning benchmarks. Expert Systems, 40
(5):e13243, 2023.

Shikhar Singh, Nuan Wen, Yu Hou, Pegah Alipoormolabashi, Te-Lin Wu, Xuezhe Ma, and Nanyun
Peng. Com2sense: A commonsense reasoning benchmark with complementary sentences. arXiv
preprint arXiv:2106.00969, 2021.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted pre-
training for language understanding. Advances in neural information processing systems, 33:
16857–16867, 2020.

Mark E Stickel. Automated deduction by theory resolution. Journal of Automated Reasoning, 1(4):
333–355, 1985.

SM Tonmoy, SM Zaman, Vinija Jain, Anku Rani, Vipula Rawte, Aman Chadha, and Amitava Das.
A comprehensive survey of hallucination mitigation techniques in large language models. arXiv
preprint arXiv:2401.01313, 2024.

Armin Toroghi, Willis Guo, Ali Pesaranghader, and Scott Sanner. Verifiable, debuggable, and re-
pairable commonsense logical reasoning via LLM-based theory resolution. In The 2024 Confer-
ence on Empirical Methods in Natural Language Processing, 2024.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
hampati. Planbench: An extensible benchmark for evaluating large language models on planning
and reasoning about change. Advances in Neural Information Processing Systems, 36, 2024.

Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10):78–85, 2014.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Adina Williams, Nikita Nangia, and Samuel Bowman. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pp. 1112–1122, 2018.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Haochen Zhang, Anton Korikov, Parsa Farinneya, Mohammad Mahdi Abdollah Pour, Manasa
Bharadwaj, Ali Pesaranghader, Xi Yu Huang, Yi Xin Lok, Zhaoqi Wang, Nathan Jones, et al.
Recipe-mpr: A test collection for evaluating multi-aspect preference-based natural language re-
trieval. In Proceedings of the 46th International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, pp. 2744–2753, 2023a.

Yanfang Zhang, Yiliu Sun, Yibing Zhan, Dapeng Tao, Dacheng Tao, and Chen Gong. Large lan-
guage models as an indirect reasoner: Contrapositive and contradiction for automated reasoning.
arXiv preprint arXiv:2402.03667, 2024.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,
Yu Zhang, Yulong Chen, et al. Siren’s song in the ai ocean: a survey on hallucination in large
language models. arXiv preprint arXiv:2309.01219, 2023b.

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for
large-scale task planning. Advances in Neural Information Processing Systems, 36, 2024.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting enables complex
reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.

A PROOF OF LEMMA 1

Lemma 1. Resolving two disjunctive clauses c1 and c2 that include complimentary literals
l(x1, ..., xn)|x1 : T1, ..., xn : Tn and ¬l(y1, ..., yn)|y1 : H1, ..., yn : Hn under the unifier
θ = {x1/y1, ..., x2/y2} creates a resolvent cres with type variables x1 : T1 ⊓H1, ..., xn : Tn ⊓ Tn.

Proof. Assume c1 to be A(x1, ..., xn)∨l(x1, ..., xn)|x1 : T1, ..., xn : Tn and c2 to be¬l(y1, ..., yn)∨
B(y1, ..., yn)|y1 : H1, ..., yn : Hn. Following 5 and 6, we can rewrite these clauses in implication
form FOL by adding type predicates as

∀x1, ...,∀xn

n∧
i=1

Ti(xi) ∧ ¬A(x1, ..., xn) =⇒ l(x1, ..., xn), (16)

∀y1, ...,∀yn
n∧

i=1

Hi(yi) ∧ l(y1, ..., yn) =⇒ B(y1, ..., yn), (17)

Converting these clauses to the disjunctive form yields

∀x1, ...,∀xn

n∨
i=1

¬Ti(xi) ∨A(x1, ..., xn) ∨ l(x1, ..., xn), (18)

∀y1, ...,∀yn
n∨

i=1

¬Hi(yi) ∨ ¬l(y1, ..., yn) ∨B(y1, ..., yn). (19)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Now, we can resolve l(x1, ..., xn) with ¬l(y1, ..., yn) under the unifier θ = {x1/y1, ..., x2/y2} as∨n
i=1 ¬Ti(xi) ∨A(x1, ..., xn) ∨ l(x1, ..., xn)

∨n
i=1 ¬Hi(xi) ∨ ¬l(y1, ..., yn) ∨B(y1, ..., yn)∨n

i=1 ¬Ti(xi)
∨n

i=1 ¬Hi(xi) ∨A(x1, ..., xn) ∨B(x1, ..., xn)
,
,

(20)
which can be rewritten as

∀x1, ...,∀xn

n∧
i=1

Ti(xi) ∧Hi(xi) =⇒ A(x1, ..., xn) ∨B(x1, ..., xn). (21)

Therefore, the unary type predicates for each xi becomes the conjunction of the types from their
parent clauses, which in our typed FOL notation, can be equivalently written as

∀x1, ...,∀xnA(x1, ..., xn) ∨B(x1, ..., xn)|x1 : T1 ⊓H1, ..., xn : Tn ⊓Hn. (22)

B PROOF OF REPAIRABILITY OF LLM-TH

Proposition 1. Consider proof Pϕ
c using axiom ϕ that derives clause c. For any incorrect LLM

reasoning axiom ϕ, a Repair Axiom ϕ′ can be inserted such that Pϕ′

c will be produced before Pϕ
c .

Proof. A proof Pϕ
c = Pc ∪ {ϕ} can be viewed as the combined set of clauses Pc and ϕ that derive

clause c. An incorrect reasoning reasoning step ϕ can be either a missed inference due to the LLM
mistakenly assigning a low priority to a resolution, or an incorrect resolution assigned a high priority
due to an LLM misbelief.

We begin the proof for missed inference case, for which the repair axiom ϕ
′ ∈ I is available.

We can obtain the proof score ρe(Pϕ
c) of clause c by inductively unrolling Equation 13 for ρe(c)

over all ancestor clauses Pϕ
c that derive it. This yields a simple product form: ρe(Pϕ

c) = ρentail
ϕ ·∏

c′∈Pc
ρentail
c′ . Now, comparing two different derivations Pϕ

c and Pϕ′

c of c, we can easily show that

ρe(Pϕ′

c) > ρe(Pϕ
c) since ρe(Pϕ′

c)

ρe(Pϕ
c))

=
ρentail
ϕ′ ·

∏
c′∈Pc

ρentail
c′

ρentail
ϕ ·

∏
c′∈Pc

ρentail
c′

=
ρentail
ϕ′

ρentail
ϕ

> 1 given that the explicit Repair

Axiom has ρentail
ϕ′ = 1 (following Equation 13) while the LLM entailment score ρentail

ϕ < 1. Hence,
the proof Pϕ′

c containing the Repair Axiom ϕ′ will always be given precedence over Pϕ
c according

to the total ordering of Equation 15 used to prioritize proofs in the LLM-TH Algorithm 1.

Correctness of the proposition for case ϕ is an incorrect resolution that ϕ′ ∈ F forbids it is obvious
as in presence of ϕ′, the priority score assigned to the resolvent clause c, i.e., ρentail

ϕ will be set to
0 (following Equation 13). As a result, the resolvent clause is excluded from any proof by being
assigned the lowest priority.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C EXPLANATION OF THE LLM-TH ALGORITHM

In this section, we provide a detailed explanation of the LLM-TH algorithm, presented in Algorithm
1.

The algorithm takes as inputs the knowledge base (K), the query (q), a computational budget defined
by the maximum number of iterations (max iters), the maximum number of found proofs shown by
max proofs, and two optional sets of repair axioms: (i) the set of intended resolutions denoted by I,
and (ii) the set of forbidden resolutions shown by F .

As explained in Section 3.1, LLM-TH is not limited to finding a single proof to the query, but
rather it can find a number of proofs with different plausibilities, a capability that is necessary for
answering multiple-choice questions. For example, in the preference reasoning example provided in
Figure 1, it finds a proof for each of the candidate recipes with a plausibility score assigned to each
proof, which is used to rank the recipe options.

The algorithm initializes an empty set, proofs, to store discovered proofs, an iteration counter i, and
an initially empty priority queue PQ. PQ stores resolvent clauses and orders them according to
their priority scores, using Equation 15. In the backward chaining approach used in LLM-TH, the
first clause stored in PQ is ¬q with the priority of (1, 1, 0). The algorithm’s main loop executes
as long as the priority queue (PQ) is not empty, the maximum proof limit is not reached, and the
iteration cap is not exceeded. During each iteration, the clause c with the highest priority in PQ is
dequeued and designated as the active clause. In the initial iteration, since PQ contains only ¬q,
this clause becomes the first active clause.

If the active clause is ⊥, the previous resolution step has resulted in a contradiction. The proof can
then be reconstructed by tracing the ancestors of c, starting from its parent set Pc and continuing up
to the initial clause ¬q. Once a proof is found, it is added to the set proofs. However, if c ̸= ⊥, the
algorithm proceeds by selecting clauses to resolve with c. It first identifies βc, the set of candidate
clauses in K that are resolvable with c. A clause must meet two conditions to be resolvable with c
in a theory resolution step following Equation 3: (i) it must share the same arity as c, and (ii) it must
have a different polarity from c. After forming βc, LLM-TH iterates through all clauses ctarget ∈ βc

and resolves each with c via hyperresolution, as described in Equation 2, to obtain cres. It then forms
the priority tuple using Equations 11 , 13 , and 14 , and adds cres to PQ based on this priority.

The algorithm continues until either the maximum number of proofs is found, PQ becomes empty,
or the maximum allowed number of iterations is reached.

D COMMONSENSE REASONING

The general conception that humans have about the world and how it works, often referred to as
commonsense knowledge, and the ability to reason about it, known as commonsense reasoning, are
essential capabilities that average human beings possess. In order to be able to interact with the real
world and humans, AI agents are also required to obtain this knowledge (Baroni et al., 2017; Shen &
Kejriwal, 2023). Therefore, commonsense reasoning has been a central problem in AI over the past
decades (Moore, 1982; Liu & Singh, 2004; Davis & Marcus, 2015). With the advent of language
models, and particularly, transformer-based architectures, models were developed that exhibited a
decent performance on some commonsense reasoning tasks such as physical and social reason-
ing (Bisk et al., 2020; Sap et al., 2019). Further improvements were obtained by scaled language
models, i.e., LLMs, as they exhibited an outstanding capability of commonsense understanding and
reasoning across various evaluation benchmarks (Zhao et al., 2024; Krause & Stolzenburg, 2023).

These improvements paved the way for inspecting new aspects of commonsense reasoning, such
as reasoning on problems involving logical inference, a vein of work referred to as complex com-
monsense reasoning (Fang et al., 2024; He et al., 2021). The introduction of this line of work shed
light on important limitations of LLMs in challenging commonsense reasoning tasks. Although
LLMs have shown outstanding reasoning performance on simple commonsense reasoning bench-
marks, they struggle with more challenging tasks, such as commonsense reasoning in real-world use
cases (Paul et al.).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

These remaining challenges and the risk of reasoning errors restrict the deployability of LLMs in
real-world applications, especially in high-stakes scenarios. Despite the extensive amount of exist-
ing work on commonsense reasoning with LLMs, to the best of our knowledge, no work has targeted
the problem of combining commonsense reasoning with reasoning over factual KBs. This problem
is particularly important since LLMs show factual hallucinations when they lack domain-specific
knowledge(Huang et al., 2023; Tonmoy et al., 2024). In this work, we aim to take complex log-
ical commonsense reasoning task a step further, by proposing a methodology that leverages both
commonsense reasoning knowledge of the LLM, as well as the factual knowledge of the KB.

E PROMPTS USED FOR LANGUAGE MODELS

We provide the prompts that we used for the LLMs in the experiments of this paper. They are also
included in our repository along with the implementation code and data.

Prompt for Preference Reasoning Task (Zero-shot and Few-shot CoT)� �
Task: You will be given a query that asks for a recipe and five
options that you have to choose from. Think step by step. First
state your reason for your choice and then say: "Therefore, the
selected recipe is <recipe id>.

Query: {{QUERY}}
[Examples if few-shot:]� �

Prompt for Multi-domain Deductive Reasoning Task (Zero-shot and Few-shot CoT)� �
Task: You will be given a query about some knowledge graph
entities in the form of a first order logic predicate that is
either True or False (for example, "CanHoldIn(Apple, Basket)"
which means one can hold an apple in a basket). Your task is to
identify whether the answer to this query is "True" or "False"
and also provide a proof of the answer. First, state your proof
mentioning the rules you used and then say: "Therefore, the
answer is True" or "Therefore, the answer is False". Think step
by step.
Query: {{QUERY}}
[Examples if few-shot:]� �

Prompt for Multi-domain Deductive Reasoning (RAG with Zero-shot and Few-shot CoT)� �
Task: You will be given a query about some knowledge graph
entities in the form of a first order logic predicate that is
either True or False (for example, "CanHoldIn(Apple, Basket)"
which means one can hold an apple in a basket) and a Knowledge
Base containing a set of rules that will help you identify the
answer. Your task is to identify whether the answer to the query
is "True" or "False" and also provide a proof of the query using
the knowledge base. First state your proof mentioning the rules
you used and then say: "Therefore, the answer is True" or
"Therefore, the answer is False". Think step by step.
Query: {{QUERY}}
KB: {{KB}}
[Examples if few-shot:]� �

Prompt for Geographical QA Task (Zero-shot and Few-shot CoT)� �
Task: You will be given a query about geographical entities in
the form of a first order logic predicate that is either True or
False. Your task is to identify whether the answer to the query
is "True" or "False" and also provide a proof of the query. First
state your proof mentioning the rules you used and then say:
"Therefore, the answer is True" or "Therefore, the answer is
False". Think step by step.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Query: {{QUERY}}
[Examples if few-shot:]� �

Prompt for Geographical QA Task (RAG with Zero-shot and Few-shot CoT)� �
Task: You will be given a query about geographical entities in
the form of a first order logic predicate that is either True or
False, and a Knowledge Base containing a set of rules that will
help you identify the answer. Your task is to identify whether
the answer to the query is "True" or "False" and also provide a
proof of the query using the knowledge base. First state your
proof mentioning the rules you used and then say: "Therefore, the
answer is True" or "Therefore, the answer is False". Think step
by step.
Query: {{QUERY}}
KB: {{KB}}
[Examples if few-shot:]� �

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

F ANECDOTAL EXAMPLES

To offer more insight into the responses and proofs provided by LLM-TH and the comparison base-
lines, this section presents anecdotal examples illustrating each model’s performance on the eval-
uated tasks. Since Llama3-70B shows the best overall performance for our comparison baselines
in the experimental results provided in Section 5, we show the exemplar outputs from this LLM.
Specifically, we showcase the outputs from the following models:

• LLM-TRes
• Zero-shot Chain of Thought prompting
• Few-shot Chain of Thought prompting
• RAG + Zero-shot Chain of Thought prompting
• RAG + Few-shot Chain of Thought prompting

We apply these models to the Deductive reasoning and Geographical QA tasks studied in RQ1
and RQ2 and provide anecdotal examples to elucidate their capabilities and limitations. In each
anecdotal example, we present the query, the set of relevant facts and axioms from the KB, and the
ground truth proof, followed by the response that each model provides. We also indicate correct
proof steps with green color and highlight incorrect ones in red. It is noteworthy that since RQ2
requires access to the KB and studies the model’s ability to compensate for KB incompleteness, the
only relevant baselines are RAG-based models.

Examples of the experiments on the complete KB are provided in section F.1, and examples of
performance on the incomplete KB are detailed in section F.2.

F.1 EXPERIMENTS ON THE COMPLETE KB

F.1.1 Deductive Reasoning

Query: Does Sulfadiazine disinfect Rhodospirillaceae?

Relevant Rules from the KB:

Facts:

(1) “Subclass of”(“Rhodospirillaceae”“Rhodospirillaceae bacteria”),

(2) “Gram Negative”(“Rhodospirillaceae bacteria”)

(3) “Treats Gram Negative”(“Sulfadiazine”)

Axioms:

(4)

∀A,B,C, “Subclass of”(A,B) ∧ “Gram Negative”(B) ∧ “Treats Gram Negative”(C)

=⇒ “Unresistant To”(A,C)|A: “Bacteria”,B: “Taxon”,C: “Antibiotic”

(5)

∀A,B,“Unresistant To”(A,B) =⇒ “Can be Used to Treat”(A,B)|A: “Bacteria”,
“B: Antibiotic”

(6)

∀A,B,“Can be Used to Treat”(A,B) =⇒ “Can be Used to Kill”(A,B)|A: “Bacteria”,
“B: Antibiotic”

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(7) ∀A,B,“Can be Used to Kill”(A,B) =⇒ “Disinfects”(A,B)|A: “Bacteria”,“B: Antibiotic”

Ground Truth Proof:

1- Applying (1), (2), (3) to (4) with the following substitution:

θ = {A/“Rhodospirillaceae”, B/“Rhodospirillaceae bacteria”, C/“Sulfadiazine”} yields:

“Unresistant To”(“Rhodospirillaceae”,“Sulfadiazine”).

2- Applying “Unresistant To”(“Rhodospirillaceae”,“Sulfadiazine”) to (5)

with θ = {A/“Rhodospirillaceae”, B/“Sulfadiazine”} yields:

“Can be Used to Treat”(“Rhodospirillaceae”,“Sulfadiazine”)

3-Applying “Can be Used to Treat”(“Rhodospirillaceae”,“Sulfadiazine”) to (6)

with θ = {A/“Rhodospirillaceae”, B/“Sulfadiazine”} yields:

“Can be Used to Kill”(“Rhodospirillaceae”,“Sulfadiazine”)

4- Applying “Can be Used to Kill”(“Rhodospirillaceae”,“Sulfadiazine”) to (7)

with θ = {A/“Rhodospirillaceae”, B/“Sulfadiazine”} yields:

5- “Disinfects”(“Rhodospirillaceae”,“Sulfadiazine”).

Therefore, the answer to the query is True.

LLM-TH:

query: “Disinfects”(“Rhodospirillaceae”,“Sulfadiazine”):

Negated query: ¬“Disinfects”(“Rhodospirillaceae”,“Sulfadiazine”)

Note: In the following sequent calculus formulae, we use “R” to refer to “Rhodospirillaceae”,
“S” to represent “Sulfadiazine”, “GN” to show “Gram Negative”, “TGN”, to denote
“Treats Gram Negative”, and “SO” to show “Subclass Of” due to space limitations.

Step 1-

¬“Disinfects”(“R”,“S”) ¬“Can be Used to Kill”(A,B) ∨ “Disinfects”(A,B)
¬“Can be Used to Kill”(“R”,“S”)

.

Under unification θ = {A/“Rhodospirillaceae”, B/“Sulfadiazine”}.
Step 2-

¬“Can be Used to Kill”(“R”,“S”) “Can be Used to Kill”(A,B) ∨ ¬“Can be Used to Treat”(A,B)
¬“Can be Used to Treat”(“R”,“S”)”

.

Under unification θ = {A/“Rhodospirillaceae”, B/“Sulfadiazine”}.

Step 3-

¬“Can be Used to Treat”(“R”,“S”) “Can be Used to Treat”(A,B) ∨ ¬“Unresistant To”(A,B)
¬“Unresistant To”(“R”,“S”)

.

Step 4-

¬“Unresistant To”(“R”,“S”) “Unresistant To”(A,B) ∨ ¬“SO”(A,B) ∨ ¬“GN”(B) ∨ ¬“TGN”(C)
¬“SO”(“R”,B) ∨ ¬“GN”(B) ∨ ¬“TGN”(“S”)

Under unification θ = {A/“Rhodospirillaceae”, C/“Sulfadiazine”}.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Step 5-

¬“SO”(“R”,B) ∨ ¬“GN”(B) ∨ ¬“TGN”(“S”) “SO”(“R”, “R bacteria”) ∧ “GN”(“R bacteria”) ∧ “TGN”(“S”)
⊥

.

Proof score: ρquery = (1, 1, 5)
∗ ∗ ∗

Zero-shot CoT:

To prove the answer to the query, I will use the following rules from the knowledge base:
1. Rhodospirillaceae is a type of Bacteria. (IsA(Rhodospirillaceae, Bacteria))

2. Sulfadiazine is a type of Antibiotic. (IsA(sulfadiazine, Antibiotic))

3. Antibiotics disinfect Bacteria. (Disinfects(Antibiotic, Bacteria))
Using modus ponens on rules 1, 2, and 3, I can infer that: Disinfects(sulfadiazine, Rhodospirillaceae)
Therefore, the answer is True.

Few-shot CoT:

1.Sulfadiazine is an antibacterial drug.

2. Rhodospirillaceae is a family of bacteria.

3. Sulfadiazine is not typically used as a disinfectant, but rather as an antibiotic to treat bacterial
infections.

Therefore, the answer is False.

RAG + Zero-shot CoT:

1. SubClassOf(Rhodospirillaceae, Rhodospirillaceae bacteria) (KB)

2. GramNegative(Rhodospirillaceae bacteria) (KB)

3. ∀ A:bacteria, B:Taxon, C:antibiotic, SubClassOf(A, B) && GramNegative(B) && TreatsGram-
Negative(C) =⇒ UnResistantTo(A, C) (KB)

4. UnResistantTo(Rhodospirillaceae, sulfadiazine) (inferred from 1, 2, and 3, with A = Rhodospir-
illaceae, B = Rhodospirillaceae bacteria, and C = sulfadiazine)

5. ∀ A:bacteria B:antibiotic, UnResistantTo(A, B) =⇒ CanBeUsedToTreat(A, B) (KB)

6. CanBeUsedToTreat(Rhodospirillaceae, sulfadiazine) (inferred from 4 and 5)

7. ∀ A:bacteria B:antibiotic, CanBeUsedToTreat(A, B) =⇒ CanBeUsedToKill(A, B) (KB)

8. CanBeUsedToKill(Rhodospirillaceae, sulfadiazine) (inferred from 6 and 7)

9. ∀ A:bacteria B:antibiotic, CanBeUsedToKill(A, B) =⇒ Disinfects(A, B) (KB)

10. Disinfects(Rhodospirillaceae, sulfadiazine) (inferred from 8 and 9)

Therefore, the answer is True.

RAG + Few-shot CoT:

1. Rhodospirillaceae is a gram negative bacteria,

2. sulfadiazine treats gram negative bacteria,

3. and sulfadiazine can be used to treat gram negative bacteria, therefore sulfadiazine can be used to
treat Rhodospirillaceae.

Therefore, the answer is True.

Discussion:

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

These anecdotal examples demonstrate that on a complete knowledge base (KB), LLM-TH can
successfully prove the query by resolving complementary clauses, without requiring the LLM to
generate any additional axioms.
An analysis of the proofs generated by the baseline methods reveals limitations in LLM reasoning,
particularly in zero-shot and few-shot settings. For instance, the zero-shot CoT baseline asserts that
“Antibiotics disinfect bacteria”; however, this statement is overly broad, as not all antibiotics can
disinfect all types of bacteria. While the final answer in this case is correct, there is a flaw in one of
the reasoning steps. Also, the few-shot CoT baseline produces an incorrect final answer due to an
error in reasoning. In contrast, the RAG-based baselines, utilizing both prompting styles, correctly
prove the query by leveraging retrieved facts from the KB.

F.1.2 Geographical QA

Query: Can I drive between Biyabanak and Ryam Frolovskiy?

Relevant Rules from the KB:

Facts:

(1) “Located in”(“Biyabanak”,“Iran”),

(2) “Located in”(“Ryam Frolovskiy”,“Russia”),

(3) “Share Land Borders”(“Iran”,“Azerbaijan”)

(4) “Share Land Borders”(“Azerbaijan”,“Russia”)

Axioms:

(5)

∀A,B,“Share Land Borders”(A,B) =⇒ “Land Connected”(A,B)|A : country, B : country

(6)

∀A,B,C, “Land Connected”(A,B) ∧ “Land Connected”(B,C)

=⇒ “Land Connected”(A,C)|A : location, B : location, C : location

(7)

∀A,B,C,D,“Located in”(A,C) ∧ “Located in”(B,D) ∧ “Land Connected”(C,D)

=⇒ “Can Drive Between”(A,B)|A : location, B : location, C : location, D : location

Ground Truth Proof:

1- Applying (3) to (5) with the following substitution:

θ = {A/“Iran”, B/“Azerbaijan”} yields:

(8) “Land Connected”(“Iran”,“Azerbaijan”).

2- Applying (3) to (5) with the following substitution:

θ = {A/“Azerbaijan”, B/“Russia”} yields:

(9) “Land Connected”(“Azerbaijan”,“Russia”).

3- Applying (8), (9) to (6) with the following substitution:

θ = {A/“Iran”, B/“Azerbaijan”, C/“Russia”} yields:

(10) “Land Connected”(“Iran”,“Russia”).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

4- Applying (1), (2), (10) to (7) with the following substitution:

θ = {A/“Biyabanak”, B/“Ryam Frolovskiy”, C/“Iran”, D/“Russia”} yields:

(11) “Can Drive Between”(“Biyabanak”,“Ryam Frolovskiy”).

Therefore, the answer to the query is True.

LLM-TH:

Proof for query “Can Drive Between”(“Biyabanak”,“Ryam Frolovskiy”)

Negated query: ¬“Can Drive Between”(“Biyabanak”,“Ryam Frolovskiy”)

Note: In the following sequent calculus formulae, we use “Bi” to refer to “Biyabanak”,
“RF” to represent “Ryam Frolovskiy”, “Az‘” to refer to ‘Azerbaijan”, “CDB” to show
“Can Drive Between”, “LI” to show “Located In”, “LC” to show “Land Connected”, and “SLB”
to show ““Share Land Borders”” due to space limitations.

Step 1-

¬“CDB”(“Bi”,“RF”) “CDB”(A,B) ∨ ¬“LI”(A,C) ∨ ¬“LI”(B,D) ∨ ¬“LC”(C,D)
¬“LI(“Bi”,C)” ∨ ¬“LI”(“RF”,D) ∨ ¬“LC”(C,D)

.

Under unification θ = {A/“Biyabanak”, C/“Ryam Frolovskiy”}.
Step 2-

¬“LI”(“Bi”,C) ∨ ¬“LI”(“RF”,D) ∨ ¬“LC”(C,D) “LI”(“Bi”,“Iran”) ∧ “LI”(“RF”,“Russia”)
¬“LC”(“Iran”,“Russia”)

.

Under unification θ = {C/“Iran”, D/“Russia”}.

Step 3-
¬“LC”(“Iran”,“Russia”) “LC”(A,C) ∨ ¬“LC”(A,B) ∨ ¬“LC”(B,C)

¬“LC”(“Iran”,B) ∨ ¬“LC”(B,“Russia”)
.

Under unification θ = {A/“Iran”, C/“Russia”}.

Step 4-
¬“LC”(“Iran”,B) “LC”(“Iran”,B) ∨ ¬“SLB”(“Iran”,B)

¬“SLB”(“Iran”,B)
.

Step 5-
¬“LC”(B,“Russia”) “LC”(B,“Russia”) ∨ ¬“SLB”(B,“Russia”)

¬“SLB”(B,“Russia”)
.

Step 6-

¬“SLB”(“Iran”, B) ∨ ¬“SLB”(B, “Russia”) “SLB”(“Iran”,“Az”) ∧ “SLB”(“Az”,“Russia”)
⊥

.

Under unification θ = {B/“Az”}.

Proof score: ρquery = (1, 1, 6)
∗ ∗ ∗

Zero-shot CoT:

To answer this query, I will use the following rules from the knowledge base:
1. CanDriveBetween(x, y) =⇒ Connected(x, y)

2. Connected(Biyabanak, Ryam Frolovskiy) =⇒ False (this is a fact in the knowledge base)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Using rule 1, I can infer that CanDriveBetween(Biyabanak, Ryam Frolovskiy) implies Con-
nected(Biyabanak, Ryam Frolovskiy).
However, according to rule 2, Connected(Biyabanak, Ryam Frolovskiy) is False.
Therefore, the answer is False.

Few-shot CoT:

1.Biyabanak is a desert in Iran,

2. and Ryam Frolovskiy is an island in the Caspian Sea, which is not connected to Iran by land.

Therefore, the answer is False.

RAG + Zero-shot CoT:

1. LocatedIn(Biyabanak, Iran) (Given in KB)

2. PartOf(Iran, Iran) (Rule: ∀ A:place or location B:place or location, LocatedIn(A, B) =⇒
PartOf(A, B))

3. ShareLandBorders(Iran, Azerbaijan) (Given in KB)

4. LandConnected(Iran, Azerbaijan) (Rule: ∀ A:country B:country, ShareLandBorders(A, B) =⇒
LandConnected(A, B))

5. LocatedIn(Ryam Frolovskiy, Azerbaijan) (Assuming this is true, since it’s not given in KB)

6. PartOf(Ryam Frolovskiy, Azerbaijan) (Rule: ∀ A:place or location B:place or location, Locate-
dIn(A, B) =⇒ PartOf(A, B))

7. CanDriveBetween(Biyabanak, Ryam Frolovskiy) (Rule: ∀ A, B, C, D, LocatedIn(A, C) &&
LocatedIn(B, D) && LandConnected(C, D) =⇒ CanDriveBetween(A, B)|A:location, B:location,
C:location, D:location)

Therefore, the answer is True.

RAG + Few-shot CoT:

1. Since Biyabanak is a desert in Iran,

2. and Ryam Frolovskiy is a place in Russia,

3.and Iran and Russia are land connected (although not explicitly stated in the provided KB, but it
can be inferred from the general knowledge that Iran and Russia share a border), then it is possible
to drive between Biyabanak and Ryam Frolovskiy.

Using the rule: ∀ A, B, C, D , LocatedIn(A, ?C) && LocatedIn(B, ?D) && LandConnected(?C, ?D)
=⇒ CanDriveBetween(A, B) With A = Biyabanak, B = Ryam Frolovskiy, C = Iran, D = Russia

Therefore, the answer is True.

Discussion:

Similar to the deductive reasoning experiment, LLM-TH produces the correct proof on a complete
knowledge base (KB) without requiring the LLM to surface commonsense axioms from it.
This example also highlights the limitations of the LLM-based baselines. For instance, the zero-shot
CoT baseline incorrectly claims that Biyabanak and Ryam Frolovskiy are not connected, leading to
an incorrect final answer. Similarly, the few-shot CoT baseline provides an inaccurate statement
about Ryam Frolovskiy, describing it as an island in the Caspian sea when it is, in fact, a forest in
Russia.
The RAG-based baselines further reveal challenges in the retrieval stage. For example, the relevant
fact about the location of Ryam Frolovskiy is not retrieved, prompting the LLM to make assumptions
in the zero-shot setting. Although the final answer in this case is correct, the reasoning steps contain
errors and deviate from the correct proof. In the few-shot prompting setting, while the final answer
is also correct, it is based on an inaccurate statement (in fact, Iran and Russia do not share a land
border).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

F.2 EXPERIMENTS ON THE INCOMPLETE KB

F.2.1 Deductive Reasoning

Query: Does Sulfadiazine resolve an infection caused by Rhodospirillaceae?

Relevant Rules from the KB:

Facts:

(1) “Subclass of”(“Rhodospirillaceae”“Rhodospirillaceae bacteria”),

(2) “Gram Negative”(“Rhodospirillaceae bacteria”)

(3) “Treats Gram Negative”(“Sulfadiazine”)

Axioms:

(4)

∀A,B,C, “Subclass of”(A,B) ∧ “Gram Negative”(B) ∧ “Treats Gram Negative”(C)

=⇒ “Unresistant To”(A,C)|A: “Bacteria”,B: “Taxon”,C: “Antibiotic”

(5)

∀A,B,“Unresistant To”(A,B) =⇒ “Can be Used to Treat”(A,B)|A: “Bacteria”,
“B: Antibiotic”

(6)

∀A,B,“Can be Used to Treat”(A,B) =⇒ “Can be Used to Kill”(A,B)|A: “Bacteria”,
“B: Antibiotic”

(7) ∀A,B,“Can be Used to Kill”(A,B) =⇒ “Disinfects”(A,B)|A: “Bacteria”,“B: Antibiotic”

Ground Truth Proof:

1- Applying (1), (2), (3) to (4) with the following substitution:

θ = {A/“Rhodospirillaceae”, B/“Rhodospirillaceae bacteria”, C/“Sulfadiazine”} yields:

“Unresistant To”(“Rhodospirillaceae”,“Sulfadiazine”).

2- Applying “Unresistant To”(“Rhodospirillaceae”,“Sulfadiazine”) to (5)

with θ = {A/“Rhodospirillaceae”, B/“Sulfadiazine”} yields:

“Can be Used to Treat”(“Rhodospirillaceae”,“Sulfadiazine”)

3-Applying “Can be Used to Treat”(“Rhodospirillaceae”,“Sulfadiazine”) to (6)

with θ = {A/“Rhodospirillaceae”, B/“Sulfadiazine”} yields:

“Can be Used to Kill”(“Rhodospirillaceae”,“Sulfadiazine”)

4- Applying “Can be Used to Kill”(“Rhodospirillaceae”,“Sulfadiazine”) to (7)

with θ = {A/“Rhodospirillaceae”, B/“Sulfadiazine”} yields:

5- “Disinfects”(“Rhodospirillaceae”,“Sulfadiazine”).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

6- Using the commonsense axiom (absent from the KB) that:

∀A,B,“Disinfects”(A,B)

=⇒ “Resolves Infection Caused By”(A,B)|A: “Bacteria”,“B: Antibiotic”

Therefore, the answer to the query is True.

LLM-TH:

Proof for query “Resolves Infection Caused By”(“Rhodospirillaceae”,“Sulfadiazine”):

Negated query: ¬“Resolves Infection Caused By”(“Rhodospirillaceae”,“Sulfadiazine”)
Note: In the following sequent calculus formulae, we use “R” to refer to “Rhodospirillaceae”,
“S” to represent “Sulfadiazine”, “GN” to show “Gram Negative”, “TGN”, to denote
“Treats Gram Negative”, “SO” to show “Subclass Of” due to space limitations.

Step 1-

¬“Resolves Infection Caused By”(“R”,“S”) “Disinfects(A,B)” ∨ ¬“Can be Used to Kill(A,B)”
¬“Can be Used to Kill”(“R”,“S”)

.

Under unification θ = {A/“Rhodospirillaceae”, B/“Sulfadiazine”}.

In this step, by theory resolving ¬“Resolves Infection Caused By”(“R”,“S”) with
“Disinfects”(A,B), the LLM successfully surfaced the commonsense axiom:

∀A,B,“Disinfects”(A,B)

=⇒ “Resolves Infection Caused By”(A,B)|A: “Bacteria”,“B: Antibiotic”.

Step 2-

¬“Can be Used to Kill”(“R”,“S”) “Can be Used to Kill”(A,B) ∨ ¬“Can be Used to Treat”(A,B)
¬“Can be Used to Treat(“R”,“S”)”

.

Under unification θ = {A/“Rhodospirillaceae”, B/“Sulfadiazine”}.

Step 3-

¬“Can be Used to Treat”(“R”,“S”) “Can be Used to Treat”(A,B) ∨ ¬“Unresistant To”(A,B)
¬“Unresistant To(“R”,“S”)”

.

Step 4-

¬“Unresistant To”(“R”,“S”) “Unresistant To”(A,B) ∨ ¬“SO”(A,B) ∨ ¬“GN”(B) ∨ ¬“TGN”(C)
¬“SO”(“R”,B) ∨ ¬“GN”(B) ∨ ¬“TGN”(“S”)

Under unification θ = {A/“Rhodospirillaceae”, C/“Sulfadiazine”}.

Step 5-

¬“SO”(“R”,B) ∨ ¬“GN”(B) ∨ ¬“TGN”(“S”) “SO”(“R”, “R bacteria”) ∧ “GN”(“R bacteria”) ∧ “TGN”(“S”)
⊥

.

Therefore, the query is proven to be True with the Proof score: ρquery = (1, 0.981, 5)

∗ ∗ ∗

RAG + Zero-shot CoT:

1. SubClassOf(Rhodospirillaceae, Rhodospirillaceae bacteria) (from KB)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

2. GramNegative(Rhodospirillaceae bacteria) (from KB)

3. ∀A, B, C, SubClassOf(A, B) ∧ GramNegative(B) ∧ TreatsGramNegative(C) =⇒
UnResistantTo(A,C) (from KB)

4. SubClassOf(Rhodospirillaceae, Rhodospirillaceae bacteria) =⇒
PartOf(Rhodospirillaceae, Rhodospirillaceae bacteria) (from KB, using the rule
∀A, B, SubClassOf(A, B) =⇒ PartOf(A, B)|A: animal, B: Taxon)

5. PartOf(Rhodospirillaceae, Rhodospirillaceae bacteria)∧GramNegative(Rhodospirillaceae bacteria)∧
TreatsGramNegative(sulfadiazine) =⇒ UnResistantTo(Rhodospirillaceae, sulfadiazine) (from 2,
4, and the assumption that sulfadiazine treats Gram-Negative bacteria)

6. ∀A, B, UnResistantTo(A, B) =⇒ CanBeUsedToTreat(A, B)|A:bacteria, B:antibiotic (from KB)

7. UnResistantTo(Rhodospirillaceae, sulfadiazine) =⇒
CanBeUsedToTreat(Rhodospirillaceae, sulfadiazine) (from 5 and 6)

8. ∀A, B, CanBeUsedToTreat(A, B) =⇒ CanBeUsedToKill(A, B)|A: bacteria, B: antibiotic (from
KB)

9. CanBeUsedToTreat(Rhodospirillaceae, sulfadiazine) =⇒
CanBeUsedToKill(Rhodospirillaceae, sulfadiazine) (from 7 and 8)

10. ∀A, B, CanBeUsedToKill(A, B) =⇒ Disinfects(A, B)|A: bacteria, B: antibiotic (from KB)

11. CanBeUsedToKill(Rhodospirillaceae, sulfadiazine) =⇒
Disinfects(Rhodospirillaceae, sulfadiazine) (from 9 and 10) Therefore, the answer is True.

RAG + Few-shot CoT:

1- Rhodospirillaceae is a gram-negative bacteria,

2- and sulfadiazine treats gram-negative bacterias. Therefore, the answer is True.

Discussion:

This example demonstrates how LLM-TH can perform commonsense reasoning on an incomplete
KB. Since no complementary literal for “Resolves Infection Caused By” is found, LLM-TH invokes
the LLM to perform a theory resolution step. In this step, it correctly selects “Disinfects” as the
clause with the highest priority for theory resolution, enabling it to provide the correct proof.
In this example, all baselines are also able to produce the correct proof. However, the RAG+zero-
shot CoT baseline exhibits minor errors, such as selecting incorrect KB rules in step 4 and neglecting
KB facts in step 5, instead basing its reasoning on an assumption.

F.2.2 Geographical QA

Query: Can I take a road trip between Ryam Frolovskiy and Biyabanak?

Relevant Rules from the KB:

Facts:

(1) “Located in”(“Biyabanak”,“Iran”),

(2) “Located in”(“Ryam Frolovskiy”,“Russia”),

(3) “Share Land Borders”(“Iran”,“Azerbaijan”)

(4) “Share Land Borders”(“Azerbaijan”,“Russia”)

Axioms:

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

(5)

∀A,B,“Share Land Borders”(A,B) =⇒ “Land Connected”(A,B)|A : country, B : country

(6)

∀A,B,C, “Land Connected”(A,B) ∧ “Land Connected”(B,C)

=⇒ “Land Connected”(A,C)|A : location, B : location, C : location

(7)

∀A,B,C,D,“Located in”(A,C) ∧ “Located in”(B,D) ∧ “Land Connected”(C,D)

=⇒ “Can Drive Between”(A,B)|A : location, B : location, C : location, D : location

Ground Truth Proof:

1- Applying (3) to (5) with the following substitution:

θ = {A/“Iran”, B/“Azerbaijan”} yields:

(8) “Land Connected”(“Iran”,“Azerbaijan”).

2- Applying (3) to (5) with the following substitution:

θ = {A/“Azerbaijan”, B/“Russia”} yields:

(9) “Land Connected”(“Azerbaijan”,“Russia”).

3- Applying (8), (9) to (6) with the following substitution:

θ = {A/“Iran”, B/“Azerbaijan”, C/“Russia”} yields:

(10) “Land Connected”(“Iran”,“Russia”).

4- Applying (1), (2), (10) to (7) with the following substitution:

θ = {A/“Biyabanak”, B/“Ryam Frolovskiy”, C/“Iran”, D/“Russia”} yields:

(11) “Can Drive Between”(“Biyabanak”,“Ryam Frolovskiy”).

5- Using the commonsense axiom (absent from the KB) that:

∀A,B,“Can Drive Between”(A,B)

=⇒ “Can Take Road Trip Between”(A,B)|A: “location”,“B: location”

Therefore, the answer to the query is True.

LLM-TH:

Proof for query “Can Drive Between”(“Biyabanak”,“Ryam Frolovskiy”)

Negated query: ¬“Can Drive Between”(“Biyabanak”,“Ryam Frolovskiy”)

Note: In the following sequent calculus formulae, we use “Bi” to refer to “Biyabanak”,
“RF” to represent “Ryam Frolovskiy”, “Az‘” to refer to ‘Azerbaijan”, “CTRTP” to show
“Can Take Road Trip Between”, “CDB” to show “Can Drive Between”, “LI” to show “Located In”,
“LC” to show “Land Connected”, and “SLB” to show ““Share Land Borders”” due to space limi-
tations.

Step 1-

¬“CTRTB”(“Bi”,“RF”) “CDB”(A,B) ∨ ¬“LI”(A,C) ∨ ¬“LI”(B,D) ∨ ¬“LC”(C,D)
¬“LI(“Bi”,C)” ∨ ¬“LI”(“RF”,D) ∨ ¬“LC”(C,D)

.

Under unification θ = {A/“Biyabanak”, C/“Ryam Frolovskiy”}.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

In this step, by theory resolving ¬“Can Take Road Trip Between”(“Bi”, “RF”) with
“Can Drive Between”(A,B), the LLM successfully surfaced the commonsense axiom:

∀A,B,“Can Drive Between”(A,B)

=⇒ “Can Take Road Trip Between”(A,B)|A: “location”,“B: location”.

Step 2-

¬“LI”(“Bi”,C) ∨ ¬“LI”(“RF”,D) ∨ ¬“LC”(C,D) “LI”(“Bi”,“Iran”) ∧ “LI”(“RF”,“Russia”)
¬“LC”(“Iran”,“Russia”)

.

Under unification θ = {C/“Iran”, D/“Russia”}.

Step 3-
¬“LC”(“Iran”,“Russia”) “LC”(A,C) ∨ ¬“LC”(A,B) ∨ ¬“LC”(B,C)

¬“LC”(“Iran”,B) ∨ ¬“LC”(B,“Russia”)
.

Under unification θ = {A/“Iran”, C/“Russia”}.

Step 4-
¬“LC”(“Iran”,B) “LC”(“Iran”,B) ∨ ¬“SLB”(“Iran”,B)

¬“SLB”(“Iran”,B)
.

Step 5-
¬“LC”(B,“Russia”) “LC”(B,“Russia”) ∨ ¬“SLB”(B,“Russia”)

¬“SLB”(B,“Russia”)
.

Step 6-

¬“SLB”(“Iran”, B) ∨ ¬“SLB”(B, “Russia”) “SLB”(“Iran”,“Az”) ∧ “SLB”(“Az”,“Russia”)
⊥

.

Under unification θ = {B/“Az”}.

Therefore, the query is proven to be True with the proof score: ρquery = (1, 0.994, 6)

∗ ∗ ∗

RAG + Zero-shot CoT:

1- From the knowledge base, we have: PartOf(Biyabanak, Iran) (from the given KB)

2- PartOf(Ryam Frolovskiy, Belarus) (not mentioned in the KB, but assuming it’s true for the sake
of the query)

3- Using the rule:

“∀A,B,C,PartOf(A, B) ∧ PartOf(B, C) =⇒ PartOf(A, C)|A: location,B: location,C: location”,
We can infer: PartOf(Biyabanak, Asia) (since Iran is part of Asia)

4- and PartOf(Ryam Frolovskiy, Europe) (since Belarus is part of Europe)

5- Using the rule: ∀A, B, C, LandConnected(A, B) ∧ LandConnected(B, C) =⇒
LandConnected(A, C)|A:country,B:country,C:country, we can infer: Not LandConnected(Iran,
Belarus) (since Iran is in Asia and Belarus is in Europe, and they are not land-connected)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

6- Using the rule:“∀A,B,C,D,LocatedIn(A, C) ∧ LocatedIn(B, D) ∧ LandConnected(C, D) =⇒
CanDriveBetween(A, B)|A: location, B: location, C: country, D: country”, we cannot infer
CanDriveBetween(Biyabanak, Ryam Frolovskiy) since Iran and Belarus are not land-connected.
Therefore, the answer is False.

RAG + Few-shot CoT:

1- To determine if you can take a road trip between Biyabanak and Ryam Frolovskiy, we need to
check if Biyabanak and Ryam Frolovskiy are located in countries that are land connected.
2- From the KB, we know that Biyabanak is part of Iran,

3- and Ryam Frolovskiy is not mentioned in the KB, but since it is not mentioned,
we will assume it is in Russia (based on the name).

4- From the KB, we also know that Iran and Russia are land connected (rule 1).

5- Using the rule “∀A,B,C,D,LocatedIn(A, C) ∧ LocatedIn(B, D) ∧ LandConnected(C, D) =⇒
CanDriveBetween(A, B)|A: location, B: location, C: country, D: country”, we can infer that you can
take a road trip between Biyabanak and Ryam Frolovskiy. Therefore, the answer is True.

Discussion:

This example further illustrates the successful application of LLM-based theory resolution by LLM-
TH, where a theory resolution step leverages the LLM’s commonsense knowledge to address KB
incompleteness. Specifically, in Step 1, the LLM surfaces a commonsense axiom to theory resolve
¬Can Drive Between” with ¬Can Take Road Trip Between”.
This example also highlights the limitations of the RAG-based baselines. Due to a failure in retriev-
ing facts about Ryam Frolovskiy, the RAG+Zero-shot CoT baseline makes an incorrect assumption
about its location. Furthermore, subsequent reasoning steps are flawed, resulting in a wrong an-
swer. Although the RAG+Few-shot CoT baseline provides the correct final answer, its reasoning
process is not entirely reliable. Notably, because the LLM lacks access to a fact about the location
of Ryam Frolovskiy, it makes an assumption about its location—which happens to be correct in this
case. However, it also incorrectly references a rule in the KB that states Iran and Russia are land
connected, even though no such rule exists in the KB.
These examples underscore the limited reliability of existing LLM-based baselines when combining
commonsense reasoning with factual information.

30

	Introduction
	Related Works
	Methodology
	LLM-TH Algorithm

	Fixing Erroneous Resolutions in LLM-TH
	Experiments
	Tasks and Datasets Description
	Baselines and Evaluation
	RQ1: Reasoning Performance on Complete KB
	RQ2: Reasoning Performance on Incomplete KBs
	RQ3: Influence of Typing on Efficiency

	Conclusion
	Proof of Lemma 1
	Proof of Repairability of LLM-TH
	Explanation of the LLM-TH Algorithm
	Commonsense Reasoning
	Prompts Used For Language Models
	Anecdotal Examples
	Experiments on the Complete KB
	Deductive Reasoning
	Geographical QA

	Experiments on the Incomplete KB
	Deductive Reasoning
	Geographical QA

