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ABSTRACT

Deep neural networks are vulnerable to adversarial attacks. Adversarial training is
one of the most effective algorithms to increase the model’s robustness. However,
the trained models cannot generalize well to the adversarial examples on the test
set. In this paper, we study the generalization of adversarial training through
the lens of adversarial Rademacher complexity. Current analysis of adversarial
Rademacher complexity is up to two-layer neural networks. In adversarial settings,
one major difficulty of generalizing these results to deep neural networks is that
we cannot peel off the layer as the classical analysis for standard training. We
provide a method to overcome this issue and provide upper bounds of adversarial
Rademacher complexity of deep neural networks. Similar to the existing bounds
of standard Rademacher complexity of neural nets, our bound also includes the
product of weight norms. We provide experiments to show that the adversarially
trained weight norms are larger than the standard trained weight norms, thus
providing an explanation for the bad generalization performance of adversarial
training.

1 INTRODUCTION

Deep neural networks (DNNs) (Krizhevsky et al. (2012); Hochreiter & Schmidhuber (1997)) have
become successful in many machine learning tasks such as computer vision (CV) and natural language
processing (NLP). But they are shown to be vulnerable to adversarial examples (Szegedy et al. (2013);
Goodfellow et al. (2014)). A well-trained model can be easily attacked by adding a small perturbation
to the original data. Adversarial training is one of the most effective algorithms to defend against
adversarial attacks. However, generalization is one of the main issues of adversarial training. An
adversarially-trained model will overfit the adversarial examples on the training dataset, and it cannot
generalize well to the adversarial examples on the testset. For example, in the experiment of training
ResNet (He et al. (2016)) on CIFAR-10 (Krizhevsky et al. (2009)), Projected gradient descent (PGD)
adversarial training achieves 100% robust accuracy on the training set, but it only gets 45% robust
accuracy on the test set (Madry et al. (2017)). Recent works (Gowal et al. (2020); Rebuffi et al.
(2021)) mitigate the overfitting issue, but it still has a 20% generalization gap between robust test
accuracy (60%) and training accuracy (80%). On the other hand, a standard trained model can
generalize well to the test set with a 5% generalization gap. To understand why the generalization of
adversarial training behaves differently from standard training, we study the generalization issue of
adversarial training through the lens of Rademacher complexity.

In classical machine learning theory, Rademacher complexity measures the generalization capacity
of machine learning models. For depth-d neural networks, assuming that the weight matrices
W1,W2, · · · ,Wd in each of the d layers have Frobenius norms bounded by M1, · · · ,Md, and all
the data x have `2-norm bounded by B, given m training samples, the generalization gap between
population risk and empirical risk scales asO(B2d

∏d
l=1Ml/

√
m) with high probability (Neyshabur

et al. (2015)). Another works provide different norm-based complexity, such as ‖ · ‖1,∞-norm
(Bartlett & Mendelson (2002)) and spectral norm (Bartlett et al. (2017)). The work of (Golowich
et al. (2018)) reduces the dependence on depth-d from 2d to

√
d. The proofs of the above bounds are

based on the induction on layers, which is also called the ‘peeling off’ techniques. For more details,
see section 3.

1



Under review as a conference paper at ICLR 2022

In adversarial training, adversarial Rademacher complexity was first introduced in (Yin et al. (2019);
Khim & Loh (2018)) to measure the robust generalization gap. They prove that the robust generaliza-
tion gap of linear function (x→ wTx) scales asO((B+ ε)M/

√
m), where M is the upper bound of

norm of the weights w and ε is the perturbation intensity of adversarial attacks. Awasthi et al. (2020)
provides an upper bound in two-layers neural network cases. For depth-2, width-h neural networks,
with high probability, the generalization gap scales as O((B + ε)

√
hqM1M2

√
logm/m), where q

is the dimension of the data x.

One might think it is straightforward to use the induction methods in (Neyshabur et al. (2015);
Golowich et al. (2018)) to extend the adversarial Rademacher complexity in (Yin et al. (2019); Khim
& Loh (2018)) to multi-layers cases. However, it seems challenging to apply their induction methods
to adversarial cases. Let the adversarial loss be max‖x−x′‖≤ε `(f(x′), y) and f is a DNN. We cannot
peel off the layer because of the max operation in the adversarial loss. The work of (Khim & Loh
(2018)) and (Gao & Wang (2021)) also indicate the difficulty of analyzing adversarial Rademacher
complexity of DNNs. They analyze other variants of adversarial Rademacher complexity, which are
quite different from the original adversarial Rademacher complexity. See more detailed discussions
of these works in section 3. To our knowledge, direct analysis of the original adversarial Rademacher
complexity is largely missing.

In this paper, we analyze the adversarial Rademacher complexity of deep neural networks. Specifically,
for depth-d, width-h fully connected neural networks, with high probability, the robust generalization
gap scales as

O
(

(B + ε)h
√
d log d

∏d
l=1Ml√

m

)
.

Similar to the existing bounds of standard Rademacher complexity of deep neural nets, the bound
includes the product of weight norms

∏d
l=1 ‖Wl‖, but they are trained by different algorithms. We

empirically show that the adversarially trained weight norms are larger than the standard trained
weight norms, which provide an explanation why adversarial training did not generalize well. Our
contributions are listed as follow:

1. We provide a method and give upper and lower bounds for the adversarial Rademacher
complexity of deep neural nets. Compared to standard Rademacher complexity, the bound
has a higher-order dependence on the depth and width and an additional factor ε.

2. We provide experiments to analyze the relationship between the generalization gap and
the adversarial Rademacher complexity. We show that one of the reasons why adversarial
training cannot generalize well is the large weight norms of an adversarially-trained model.

2 PRELIMINARIES

2.1 GENERALIZATION GAP AND RADEMACHER COMPLEXITY

Generalization Gap. We start from the classical machine learning framework. Let F be the
hypothesis class (e.g. Linear functions, Neural networks). The goal of the learning problem is to find
f ∈ F to minimize the population riskR(f) = E(x,y)∼D[`(f(x), y)],whereD is the true distribution,
`(·) is the loss function. Since D is unknown, we minimize the empirical risk in practice. Given m
i.i.d samples S = {(x1, y1), · · · , (xm, ym)}, the empirical risk is Rm(f) = 1

m

∑m
i=1[`(f(xi), yi)].

The generalization gap or generalization error is defined as follow:

Generalization Gap := R(f)−Rm(f).

Rademacher Complexity. A classical measure of the generalization error is Rademacher com-
plexity (Bartlett & Mendelson (2002)). Given the hypothesis classH, the (empirical) Rademacher
complexity is defined as

RS(H) = Eσ
1

m

[
sup
h∈H

m∑
i=1

σih(xi, yi)
]
,

where σi are i.i.d Rademacher random variables, i.e. σi equals to 1 or −1 with equal probability.
Define the function class `F = {`(f(x), y)|f ∈ F}, we have the following generalization bound.
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Proposition 1. (Mohri et al. (2018); Bartlett & Mendelson (2002)) Suppose that the range of the loss
function `(f(x), y) is [0, C]. Then, for any δ ∈ (0, 1), with probability at least 1− δ, the following
holds for all f ∈ F ,

R(f) ≤ Rm(f) + 2CRS(`F ) + 3C

√
log 2

δ

2m
.

2.2 ROBUST GENERALIZATION GAP AND ADVERSARIAL RADEMACHER COMPLEXITY

Robust Generalization Gap. Let ˜̀(f(x), y) := max‖x′−x‖p≤ε `(f(x′), y) be the adversarial loss.
The adversarial population risk and the adversarial empirical risk are

R̃(f) = E(x,y)∼D max
‖x′−x‖p≤ε

`(f(x′), y) and R̃m(f) =
1

m

m∑
i=1

max
‖x′−x‖p≤ε

`(f(x′i), yi),

respectively. In this paper we consider general `p attacks for p ≥ 1. The robust generalization gap is
defined as follow:

Robust Generalization Gap := R̃(f)− R̃m(f).

Let the adversarial hypothesis class be ˜̀F = {˜̀(f(x), y)|f ∈ F}, according to Proposition 1, we
have the following adversarial generalization bound.

Proposition 2. (Yin et al. (2019)) Suppose that the range of the loss function ˜̀(f(x), y) is [0, C].
Then, for any δ ∈ (0, 1), with probability at least 1− δ, the following holds for all f ∈ F ,

R̃(f) ≤ R̃m(f) + 2CRS(˜̀F ) + 3C

√
log 2

δ

2m
.

Binary Classification. We first discuss the binary classification case, then we discuss the extension
to the multi-class classification case in section 5. Following (Yin et al. (2019); Awasthi et al. (2020)),
we assume that the loss function can be written as `(f(x), y) = φ(yf(x)) where φ is a non-increasing
function. Then

max
x′

`(f(x′), y) = φ(min
x′

yf(x′)).

Assume that the function φ is Lφ-Lipschitz, by Talagrand’s Lemma (Ledoux & Talagrand (2013)),
we haveRS(˜̀F ) ≤ LφRS(F̃), where we define the adversarial function class as

F̃ = {f̃ : (x, y)→ inf
‖x−x′‖p≤ε

yf(x′)|f ∈ F}. (1)

Adversarial Rademacher Complexity. We defineRS(F̃) as adversarial Rademacher complexity.
Our goal is to give upper bounds for adversarial Rademacher complexity. Then, it induces the
guarantee of the robust generalization gap.

Hypothesis Class. We consider depth-d, width-h fully-connected neural networks,

F = {x→Wdρ(Wd−1ρ(· · · ρ(W1x) · · · )), ‖Wl‖ ≤Ml, l = 1 · · · , d}, (2)

where ρ(·) is an element-wise Lρ-Lipschitz activation function, Wl are hl × hl−1 matrices, for
l = 1, · · · , d. We have hd = 1 and h0 = q is the dimension of the data x. Let h = max{h0, · · · , hd}
be the width of the neural networks. Convolution neural networks are also included in this hypothesis
class because convolution layer can be viewed as a special form of fully-connected layer. Denote the
(a, b)-group norm ‖W‖a,b as the a-norm of the b-norm of the rows of W . We consider two cases,
Frobenius norm and ‖ · ‖1,∞-norm in equation (2). Additionally, we assume that ‖X‖p,∞ = B.

2.3 RADEMACHER COMPLEXITY AND COVERING NUMBER

Covering Number. Our solution for adversarial Rademacher complexity is based on the covering
number. We first provide the definition of covering number.
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Definition 1 (ε-cover). Let ε > 0 and (V ,d(·, ·)) be a metric space, where d(·, ·) is a (pseudo)-metric.
C ⊂ V is an ε-cover of V , if for any v ∈ V , there exists v′ ∈ C s.t. d(v, v′) ≤ ε. Define the smallest
|C| as ε-covering number of V and denote as N (V, d(·, ·), ε).

Next, we define the ε-covering number of a function class F . Given the sample dataset S =
{(x1, y1), · · · , (xm, ym)} with xi ∈ Rd, let ‖f‖2S = 1

m

∑m
i=1 f(xi, yi)

2 be a pseudometric of
F . Define the ε-covering number of F be N (F , ‖ · ‖S , ε). Let D be the diameter of F with
D = 2 maxf∈F ‖f‖S .
Proposition 3 (Dudley’s integral). The Rademacher complexityR(F) satisfiy

RS(F) ≤ 12√
m

∫ D/2

0

√
logN (F , ‖ · ‖S , ε)dε.

The proof of Dudley’s integral can be found in statistic textbooks (e.g. (Wainwright (2019))). Based
on this, we can bound the covering number of the function class F to give an upper bound of the
Rademacher complexity.

3 RELATED WORK

Adversarial Attacks and Defense. Starting from the work of (Szegedy et al. (2013)), it has now
been well known that deep neural networks trained via standard gradient descent based algorithms
are highly susceptible to imperceptible corruptions to the input data (Goodfellow et al. (2014); Chen
et al. (2017); Carlini & Wagner (2017); Madry et al. (2017)). This has led to a series of work aimed at
training neural networks robust to such perturbations (Wu et al. (2020); Gowal et al. (2020); Wu et al.
(2020)) and works aimed at designing more sophisticated attacks to attack the classifiers (Athalye
et al. (2018); Tramer et al. (2020); Chen et al. (2017)).

Adversarial Generalization. The work of (Schmidt et al. (2018); Raghunathan et al. (2019); Zhai
et al. (2019)) have shown that in some scenarios achieving adversarial generalization requires more
data. The work of (Attias et al. (2021); Montasser et al. (2019)) explains generalization in adversarial
settings using VC-dimension. Cullina et al. (2018) studies PAC-learning guarantees in the adversarial
setting via VC-dimension. VC-dimension usually depends on the number of parameters in the model,
while Rademacher complexity usually depends on the weight matrices. Rademacher complexity
usually provides tighter generalization bounds (Bartlett (1998)). Neyshabur et al. (2017b) uses a
pac-bayesian approach to provide a generalization bound for neural networks. Sinha et al. (2017)
study the generalization of an adversarial training algorithm in terms of distributional robustness. The
work of (Xing et al. (2021a;b); Javanmard et al. (2020)) study the generalization properties in the
setting of linear regression. Gaussian mixture models are used to analyze adversarial generalization
(Taheri et al. (2020); Javanmard et al. (2020); Dan et al. (2020)). The work of (Allen-Zhu & Li
(2020)) explains adversarial generalization through the lens of feature purification.

Adversarial Rademacher Complexity. Researchers have analyzed adversarial Rademacher com-
plexity in linear and two-layers neural networks cases. In linear cases, the upper bounds can be
directly derived by definition (Khim & Loh (2018); Yin et al. (2019)). In two-layers neural networks
cases, an upper bound is derived using Massart’s Lemma (Awasthi et al. (2020)). It seems that these
proofs cannot be extended to multi-layers cases. Moreover, based on the definition of adversarial
function class F̃ in equation (1), the candidate functions are not composition functions, but with an
inf operation in front of the neural networks. Then, the induction on layers seems not applicable in
calculating adversarial Rademacher complexity for deep neural networks. The works of (Khim &
Loh (2018)) and (Gao & Wang (2021)) indicate the difficulty of analyzing adversarial Rademacher
complexity. They analyze other variants of adversarial Rademacher complexity of DNNs. The first
one introduce tree transformation, but it overestimates the adversarial loss. The second one considers
fast gradient sign methods (FGSM) adversarial examples, but it also requires additional assumption
on the gradient.
In Appendix B, we provide the details of the above bounds and discuss why these methods seem
not applicable in multi-layers cases. We also provide a comparison of adversarial generalization
in Rademacher complexity framework and other frameworks. In the next section, we provide our
solution of adversarial Rademacher complexity based on covering number and analyze each factor in
the upper bound.
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4 OUR SOLUTION OF ADVERSARIAL RADEMACHER COMPLEXITY

The following Theorem states an upper bound of adversarial Rademacher complexity in the Frobenius
norm cases.
Theorem 1 (Frobenius Norm Bound). Given the function class F in equation (2) under Frobbe-
nius Norm, and the corresponding adversarial function class F̃ in equation (1). The adversarial
Rademacher complexity of deep neural networksRS(F̃) satisfies

RS(F̃) ≤ 24√
m

max{1, q
1
2−

1
p }(‖X‖p,∞ + ε)Ld−1

ρ

√√√√ d∑
l=1

hlhl−1 log(3d)

d∏
l=1

Ml. (3)

By assuming that Lρ = 1, p ≤ 2, ‖X‖p,∞ = B, and h = max{h0, · · · , hd}, we have

RS(F̃) ≤ O
(

(B + ε)h
√
d log(d)

∏d
l=1Ml√

m

)
. (4)

Because of the inf operation of the function in F̃ , we cannot peel off the layers or calculate the
covering number by induction on layers. Our proof is based on calculating the covering number of F̃
directly. Below we sketch the proof. The completed proof is provided in Appendix A.

Step 1: Diameter of F̃ . We first calculate the diameter of F̃ . We have

2 max
f̃∈F̃
‖f̃‖S ≤ 2Ld−1

ρ max{1, q
1
2−

1
p }(‖X‖p,∞ + ε)

d∏
l=1

Ml
∆
= D.

Step 2: Distance to F̃c. Let Cl be δl-covers of {‖Wl‖F ≤Ml}, l = 1, 2, · · · , d. Let

Fc = {f c : x→W c
dρ(W c

d−1ρ(· · · ρ(W c
1x) · · · )),W c

l ∈ Cl, l = 1, 2 · · · , d}

and F̃c = {f̃ : (x, y)→ inf
‖x−x′‖p≤ε

yf(x′)|f ∈ Fc}.

For all f̃ ∈ F̃ , we need to find the smallest distance to F̃c, i.e. we need to calculate the

max
f̃∈F̃

min
f̃c∈F̃c

‖f̃ − f̃ c‖S .

∀(x, y) ∈ D, given f and f c, let x∗ = arg inf‖x−x′‖p yf(x′) and xc = arg inf‖x−x′‖p yf
c(x′).

Let z =

{
xc if f(x∗) ≥ f c(xc)
x if f(x∗) < f c(xc)

and gab (z) = Wbρ(· · ·Wa+1ρ(W c
a · · · ρ(W c

1 z) · · · ))). Then

|f(z)− f c(z)| = |g0
d(z)− gdd(z)| ≤ |g0

d(z)− g1
d(z)|+ · · ·+ |gd−1

d (z)− gdd(z)| ≤
d∑
l=1

Dδl
2Ml

.

Let δl = 2Mlε/dD, l = 1, · · · , d, we have maxf̃∈F̃ minf̃c∈F̃c ‖f̃ − f̃ c‖S ≤
∑d
l=1

Dδl
2Ml
≤ ε.

Step 3: Covering Number of F̃ . Then, We can calculate the ε-covering number N (F̃ , ‖ · ‖S , ε).
Because F̃c is a ε-cover of F̃ . The cardinality of F̃c is

N (F̃ , ‖ · ‖S , ε) = |F̃c| ≤ (
3dD

2ε
)
∑d

l=1 hlhl−1 . (5)

Step 4: Integration. By Dudley’s integral, we obtain the bound in Theorem 1.

Remark: Step 2 is the critical step in the proof. In words, if we calculate the covering number of the
class of d-layers neural nets directly, we only need to define the optimal adversarial example one
time. Then we can calculate the other things using this adversarial example. In contrast, if we want to
do it layer by layer, the optimal adversarial example will be changed when we add or peel off a layer.
This is why the induction methods fail in adversarial settings.
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Theorem 2 (‖ · ‖1,∞-Norm Bound). Given the function class F in equation (2) under ‖ · ‖1,∞-norm,
and the corresponding adversarial function class F̃ in equation (1). The adversarial Rademacher
complexity of deep neural networksRS(F̃) satisfies

RS(F̃) ≤ 24√
m

(‖X‖p,∞ + ε)Ld−1
ρ

√√√√ d∑
l=1

hlhl−1 log(3d)

d∏
l=1

Ml. (6)

In the case of ‖ · ‖1,∞-norm, the bound is similar to the bound in the Frobenius norm case except the
term max{1, q1/2−1/p}. Therefore, for all p ≥ 1, the ‖ · ‖1,∞-norm bound have the same order in
equation (4).
Theorem 3 (Lower Bound). Given the function class of DNNs F in equation (2), and the corre-
sponding adversarial function class F̃ in equation (1). Exist sample dataset S, s.t. the adversarial
Rademacher complexity of deep neural networksRS(F̃) satisfies

RS(F̃) ≥ Ω

(
(B + ε)

∏d
l=1Ml√

m

)
. (7)

The proof of the above Theorem is based on constructing a scalar network and is provided in Appendix
A. The gap between the upper bound and the lower bound is the dependence on depth-d and width-h,
h
√
d log d. In the next section, we extend the adversarial Rademacher complexity to the Multi-class

classification cases.

5 MARGIN BOUNDS FOR MULTI-CLASS CLASSIFICATION

5.1 SETTING FOR MULTI-CLASS CLASSIFICATION

The setting for multi-class classification follows (Bartlett & Mendelson (2002)). In a K-class
classification problem, let Y = {1, 2, · · · ,K}. The functions in the hypothesis class F map X to
RK , the k-th output of f is the score of f(x) assigned to the k-th class.

Define the margin operatorM(f(x), y) = [f(x)]y−maxy′ 6=y[f(x)]y′ . The function makes a correct
prediction if and only if M(f(x), y) > 0. We consider a particular loss function `(f(x), y) =
φγ(M(f(x), y)), where γ > 0 and φγ : R→ [0, 1] is the ramp loss:

φγ(t) =


1 t ≤ 0

1− t
γ 0 < t < γ

0 t ≥ γ.

The loss function `(f(x), y) satisfies:

1(y 6= arg max
y′∈[K]

[f(x)]y′) ≤ `(f(x), y) ≤ 1([f(x)]y ≤ γ + max
y′ 6=y

[f(x)]y′). (8)

Define the function class `F := {(x, y) 7→ φγ(M(f(x), y)) : f ∈ F}. Since φγ(t) ∈ [0, 1] and
φγ(·) is 1/γ-Lipschitz, by combining (8) with Theorem 1, we can obtain the following direct corollary
as the generalization bound in the multi-class classification.
Corollary 1 (Mohri et al. (2018)). Consider the above multi-class classification setting. For any
fixed γ > 0, we have with probability at least 1− δ, for all f ∈ F ,

P(x,y)∼D

{
y 6= arg max

y′∈[K]
[f(x)]y′

}

≤ 1

m

m∑
i=1

1([f(xi)]yi ≤ γ + max
y′ 6=y

[f(xi)]y′) + 2RS(`F ) + 3

√
log 2

δ

2m
.

In adversarial training, let Bpx(ε) = {x′ : ‖x′ − x‖p ≤ ε} and we define the adversarial function
class ˜̀F := {(x, y) 7→ maxx′∈Bp

x(ε) `(f(x′), y) : f ∈ F}. We have
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Corollary 2 (Yin et al. (2019)). Consider the above adversarial multi-class classification setting.
For any fixed γ > 0, we have with probability at least 1− δ, for all f ∈ F ,

P(x,y)∼D

{
∃ x′ ∈ Bpx(ε) s.t. y 6= arg max

y′∈[K]
[f(x′)]y′

}

≤ 1

m

m∑
i=1

1(∃ x′i ∈ Bpxi
(ε) s.t. [f(x′i)]yi ≤ γ + max

y′ 6=y
[f(x′i)]y′) + 2RS(˜̀F ) + 3

√
log 2

δ

2m
.

5.2 ADVERSARIAL RADEMACHER COMPLEXITY

Under the multi-class setting, we have the following bound for adversarial Rademacher complexity.
Theorem 4. Given the function class F in equation (2) under Frobbenius Norm, and the correspond-
ing adversarial function class F̃ in equation (1). The adversarial Rademacher complexity of deep
neural networksRS(˜̀F ) satisfies

RS(˜̀F ) ≤ 48K

γ
√
m

max{1, q
1
2−

1
p }(‖X‖p,∞ + ε)Ld−1

ρ

√√√√ d∑
l=1

hlhl−1 log(3d)
d∏
l=1

Ml. (9)

The ‖ · ‖1,∞-norm bound is similar, except the term max{1, q
1
2−

1
p }. Below we sketch the proof.

Step 1: Let F̃k = {(x, y) → inf‖x′−x‖≤ε([f(x′)]y − [f(x′)]k), f ∈ F}, then RS(˜̀F ) ≤
KRS(˜̀Fk). Step 2: By the Lipschitz property of φγ(·), RS(˜̀Fk) ≤ 1

γRS(Fk). Step 3: The
calculation ofRS(F̃k) follows the binary case.

5.3 COMPARISON OF THE BOUNDS

Now, we compare the difference between the bounds for (standard) Rademacher complexity and
adversarial Rademacher complexity. We have shown that

RS(`F ) ≤ O
(
B
√
d
∏d
l=1Ml

γ
√
m

)
andRS(˜̀F ) ≤ O

(
(B + ε)h

√
d log d

∏d
l=1Ml

γ
√
m

)
, (10)

where we use the upper bound ofRS(F) in (Golowich et al. (2018)).

Algorithm-Independent Factors. In the two bounds, the algorithm-independent factors include
Sample size B, perturbation intensity ε, depth-d, and width-h. To simplify the notations, we let
Cstd = B

√
d andCadv = (B+ε)h

√
d log d be the constants in standard and adversarial Rademacher

complexity, respectively. We simply have Cadv > Cstd.
Algorithm-Dependent Factors. In the two bounds, the margins γ and the product of the ma-
trix norms

∏d
l=1 ‖Wl‖ depend on the training algorithms. To simplify the notations, we de-

fine Wstd :=
∏d
l=1 ‖Wl‖/γ if the training algorithm is standard training. Correspondingly, let

Wadv :=
∏d
l=1 ‖Wl‖/γ if the training algorithm is adversarial training. In the next section, we

conduct experiments to show that Wadv > Wstd.

Notation of generalization gaps. In the next section, we use E(·) and Ẽ(·) to denote the standard
and robust generalization gap. We use fstd and fadv to denote the standard- and adversarially-trained
model. Our goal is to understand why the robust generalization gap of an adversarial training model
is large, which is quite different from the standard generalization gap of a standard-trained model,
i.e., we want to analyze why Ẽ(fadv) > E(fstd). Based on the standard and adversarial Rademacher
complexity bounds, it is suggested that

Ẽ(fadv) ∝ CadvWadv and E(fstd) ∝ CstdWstd.

To analyze the individual effect of factors Cadv and Wadv, we further introduce two kinds of
generalization gaps, the robust generalization gap of a standard-trained model (Ẽ(fstd)) and the
standard generalization gap of an adversarially-trained model (E(fadv)). The standard and adversarial
Rademacher complexity suggest that

Ẽ(fstd) ∝ CadvWstd and E(fadv) ∝ CstdWadv.

7



Under review as a conference paper at ICLR 2022

6 EXPERIMENT

As we discuss in the previous section, the product of weight norm
∏d
l=1 ‖Wl‖ and the margin γ are

algorithm-dependent factors controlling the generalization gap. We provide experiments comparing
the difference between these terms in standard and adversarial settings. Since the bounds also hold
for convolution neural networks, we consider the experiments of training VGG networks (Simonyan
& Zisserman (2014)) on CIFAR-10 (Krizhevsky et al. (2009)). We use the experiments on VGG-19
to illustrate the results. Other experiments are provided in Appendix C.

V
G

G
-1

9

(a) (b) (c) (d)

Figure 1: Product of the Frobenius norm in the experiments on CIFAR-10. The red lines are the results
of standard training. The blue lines are the results of adversarial training. (a): Standard Generalization
gap, the blue line represents E(fadv) and the red line represents E(fstd). (b): Robust Generalization
Gap, the blue line represents Ẽ(fadv) and the red line represents Ẽ(fstd). (c):

∏d
l=1 ‖Wl‖F of the

neural networks. (d):
∏d
l=1 ‖Wl‖F /γ of the neural networks, the blue line represents Wadv and the

red line represents Wstd.

Training Settings. For both standard and adversarial training, we use the stochastic gradient
descent (SGD) optimizer, along with a learning rate schedule, which is 0.1 over the first 100 epochs,
down to 0.01 over the following 50 epochs, and finally be 0.001 in the last 50 epochs. For adversarial
settings, we adopt the `∞ PGD adversarial training (Madry et al. (2017)). The perturbation intensity
is set to be 8/255. We set the number of steps as 20 and further increase it to 40 in the testing phase.
For the stepsize in the inner maximization, we set it as 2/255. In Corollary 2, we need to use the
optimal adversarial examples to calculate the margin and the robust generalization gap, but it is
unknown in practice. We use the PGD adversarial examples as substitutes.

Calculation of Margins. We adopt the setting in (Neyshabur et al. (2017a)). In standard training,
we set the margin over training set to be 5th-percentile of the margins of the data points in S. i.e.
Prc5{f(xi)[yi] − maxy 6=yi f(x)[y]|(xi, yi) ∈ S}. In adversarial settings, we set the margin over
training set to be 5th-percentile of the margins of the PGD-adversarial examples of S. The choice of
5th-percentile is because the training accuracy is 100% in all the experiments. We provide ablation
studies about the percentile in the Appendix C.

Standard and Robust Generalization Gap. In Figure 3 (a) and (b), we plot the standard and
robust generalization gap of both standard-trained and adversarially-trained models. We use the
results using 50000 training samples to discuss the experiments. Firstly, in Figure 3 (a), we can see
that E(fstd) is small (=10.45%). On the other hand, an adversarial-trained model has a larger standard
generalization gap (E(fadv)=26.34%). It is a widely observed phenomenon that adversarial training
hurts standard generalization. One reason is that adversarial training overfits the adversarial examples
and performs worse on the original examples. Secondly, in Figure 3 (b), the robust generalization
gap of a standard-trained model is very small (Ẽ(fstd) = 0). It is because the standard-trained model
can easily be attacked on both the training set and test set. Then, the robust training accuracy and
test accuracy are closed to 0%. Therefore, the robust generalization gap is also 0. On the contrary,
Ẽ(fadv)=58.90%, i.e. the adversarial generalization is bad. This is also observed in the previous
studies, and we aim to discuss the reasons.
Adversarially-trained Models Have Larger Weight Norms, i.e. Wadv > Wstd. In Figure 3 (c),
we can see that the

∏d
l=1 ‖Wl‖F of adversarial training is much larger than the

∏d
l=1 ‖Wl‖F of

standard training. In (d), the
∏d
l=1 ‖Wl‖F is divided by γ, we can see that the Figures is similar

to the Figures in (c), Wadv is larger than Wstd. One of the reasons why Wadv > Wstd is neural
networks need more capacity to fit the adversarial examples.

8
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Table 1: Comparison of the four kinds of generalization Gap introduced in Section 5.3. The
experiments are training VGG-19 on CIFAR-10. Notice that Ẽ(fstd)=0% is a degenerated case, with
training error=100%. In the other three cases, the training errors≈0%.

Standard-trained models Adversarially-trained models
Types of Generalization Gaps Standard Robust Standard Robust

Training Errors 0% 100% 0% 0.02%
Test Errors 10.45% 100% 26.34% 58.92%

Generalization Gaps E(fstd)=10.45% Ẽ(fstd)=0% E(fadv)=26.34% Ẽ(fadv)=58.90%

Ẽ(fstd)=0% is a degenerated case. In Table 1, we show the training and test errors for all kinds
of generalization gaps. We can see that the robust training error for a standard-trained model is equal
to 100%. Since the model does not fit any adversarial examples in the training set, there is nothing to
generalize to the adversarial examples in the test set. The generalization gap becomes meaningless.
And the Rademacher complexity bound Ẽ(fstd) ≤ O(CadvWstd/

√
m) becomes a trivial bound. In

the other three cases, the training errors are all ≈0%. The generalization gaps are meaningful. We
aim to analyze why Ẽ(fadv) > E(fstd) by analyzing Ẽ(fadv) > E(fadv) > E(fstd).

The effect of Cadv . We first compare the difference between Ẽ(fadv) and E(fadv). We can see
that Ẽ(fadv) = 58.90% > E(fadv) = 26.34%. For an adversarially-trained model, the robust
generalization gap is larger than the standard generalization gap. If we use the bounds of adversarial
and standard Rademacher complexity as approximations of the robust and standard generalization
gap, i.e., Ẽ(fadv) ∝ CadvWadv and E(fadv) ∝ CstdWadv, Ẽ(fadv) > E(fadv) can be explained by
Cadv > Cstd since Wadv are the same in the two bounds.

The effect of Wadv . Similarly, we compare the difference between E(fadv) and E(fstd). We
can see that E(fadv) = 26.34% > E(fstd) = 10.45%. This is a widely observed phenomenon
that adversarial training hurts standard generalization. It can also be explained by the Rademacher
bounds. If we use the bounds of standard Rademacher complexity as approximations, i.e., E(fadv) ∝
CstdWadv and E(fstd) ∝ CstdWstd, Ẽ(fadv) > E(fadv) can be explained by Wadv > Wstd.
In summary, we can use a simple formula to explain why Ẽ(fadv) > E(fadv) > E(fstd) through the
lens of Rademacher complexity. That is

CadvWadv > CstdWadv > CstdWstd.

The difficulty of adversarial generalization comes from two parts, the constant Cadv and the weight
norms Wadv. The first part Cadv is independent of the algorithms. It comes from the minimax
problem of adversarial training itself, and it cannot be avoided. The second part Wadv depends on
the algorithms. Therefore, the product of the weight norms is an important factor for the robust
generalization of adversarial training.

Ablation Studies. We provide other ablation studies in Appendix C. First, we consider different
VGG architecture and give the experiments on VGG-11, 13, and 16. Secondly, We consider different
percentile of the margins of the training dataset. Thirdly, we provide the experiments on ‖·‖1,∞-norm.
We can see that the ‖ · ‖1,∞-norm bound has a larger magnitude than the Frobenius norm bound.
Then, we provide the experiments on CIFAR-100. Finally, the large weight norms suggest adding
a regularization term on the weights during training. We provide experiments with and without
weight decay and see that the one with weight decay has a smaller generalization gap and a smaller∏d
l=1 ‖Wl‖F /γ. These experiments suggest the strong relationship between robust generalization

gap and the product of weight norms.

7 CONCLUSION

In this paper, we first provide upper bounds for the adversarial Rademacher complexity of deep neural
networks. Then, we experimentally investigate these bounds and show that the product of weight
norms is a key factor explaining why adversarial training cannot generalize well. We think our results
will motivate more theoretical research to understand adversarial training and empirical research to
improve the generalization of adversarial training.
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A PROOF OF THE THEOREMS

A.1 PROOF OF THEOREM 1

Theorem 1 (Frobenius Norm Bound). Given the function class F in equation (2) under Frobbe-
nius Norm, and the corresponding adversarial function class F̃ in equation (1). The adversarial
Rademacher complexity of deep neural networksRS(F̃) satisfies

RS(F̃) ≤ 24√
m

max{1, q
1
2−

1
p }(‖X‖p,∞ + ε)Ld−1

ρ

√√√√ d∑
l=1

hlhl−1 log(3d)

d∏
l=1

Ml.

By assuming that Lρ = 1, p ≤ 2, ‖X‖p,∞ ≤ B, and h = max{h0, · · · , hd}, we have

RS(F̃) ≤ O
(

(B + ε)h
√
d log(d)

∏d
l=1Ml√

m

)
.

Because of the inf operation of the function in F̃ , we cannot peel off the layers or calculate the
covering number by induction on layers. Our proof is based on calculating the covering number of F̃
directly. Before we provide the proof, we first introduce the following lemma.

Lemma 1 (Covering number of norm-balls). Let B be a `p norm ball with radiusW . Let d(x1,x2) =
‖x1 − x2‖p. Define the ε-covering number of B as N (B, d(·, ·), ε), we have

N (B, d(·, ·), ε) ≤ (1 + 2W/ε)q.

In the case of Frobenius norm ball of m× n matrices, we have the dimension q = m× n and

N (B, ‖ · ‖F , ε) ≤ (1 + 2W/ε)m×n ≤ (3W/ε)m×n.

Lemma 2. if x∗i ∈ {x′i|‖xi − x′i‖p ≤ ε}, we have

‖x∗i ‖r∗ ≤ max{1, q1− 1
r−

1
p }(‖X‖p,∞ + ε).

Proof: If p ≥ r∗, by Holder’s inequality with 1/r∗ = 1/p+ 1/s,

‖x∗i ‖r∗ ≤ sup ‖1‖s‖x∗i ‖p = ‖1‖s‖x∗i ‖p = q
1
s ‖x∗i ‖p = q1− 1

r−
1
p ‖x∗i ‖p.

Equality holds when all the entries are equal. If p < r∗, we have

‖x∗i ‖r∗ ≤ ‖x∗i ‖p.

Equality holds when one of the entries of θ equals to one and the others equal to zero. Then

‖x∗i ‖r∗ ≤max{1, q1− 1
r−

1
p }‖x∗i ‖p

≤max{1, q1− 1
r−

1
p }(‖xi‖p + ‖xi − x∗i ‖p)

≤max{1, q1− 1
r−

1
p }(‖X‖p,∞ + ε).

Lemma 3. Let A be a m× n matrix and b be a n-dimension vector, we have

‖A · b‖2 ≤ ‖A‖F ‖b‖2.

Proof: let Ai be the rows of A, i = 1 · · ·m, we have

‖A · b‖2 =

√√√√ m∑
i=1

(Aib)2 ≤

√√√√ m∑
i=1

‖Ai‖22‖b‖22 =

√√√√ m∑
i=1

‖Ai‖22
√
‖b‖22 = ‖A‖F ‖b‖2.
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Step 1: Diameter of F̃ . We first calculate the diameter of F̃ . ∀f ∈ F , given (xi, yi), let x∗i =
inf‖xi−x′i‖p≤εp yf(x′i), and we let xli be the output of x∗i pass through the first to the l− 1 layer, we
have

|f̃(xi, yi)| = | inf
‖xi−x′i‖p≤εp

yf(x′i)|

= |Wdρ(Wd−1x
d−1
i )|

(i)

≤ ‖Wd‖F · ‖ρ(Wd−1x
d−1
i )‖2

= ‖Wd‖F · ‖ρ(Wd−1x
d−1
i )− ρ(0)‖2

(ii)

≤ LρMd‖Wd−1(xd−1
i )‖2

≤ · · ·

≤ Ld−1
ρ

d∏
l=2

Ml‖W1x
∗
i ‖2

≤ Ld−1
ρ

d∏
l=1

Ml · ‖x∗i ‖2

(iii)

≤ Ld−1
ρ

d∏
l=1

Ml max{1, q
1
2−

1
p }(‖X‖p,∞ + ε),

where inequality (i) is because of Lemma 3, inequality (ii) is because of the Lipschitz propertiy of
activation function ρ(·), inequality (iii) is because of Lemma 2. Therefore, we have

2 max
f̃∈F̃
‖f̃‖S = 2

(
1

m

m∑
i=1

|f̃(xi, yi)|2
) 1

2

≤ 2Ld−1
ρ max{1, q

1
2−

1
p }(‖X‖p,∞ + ε)

d∏
l=1

Ml
∆
= D.

Step 2: Distance to F̃c. Let Cl be δl-covers of {‖Wl‖F ≤Ml}, l = 1, 2, · · · , d. Let

Fc = {f c : x→W c
dρ(W c

d−1ρ(· · · ρ(W c
1x) · · · )),W c

l ∈ Cl, l = 1, 2 · · · , d}

and F̃c = {f̃ : (x, y)→ inf
‖x−x′‖p≤ε

yf(x′)|f ∈ Fc}.

For all f̃ ∈ F̃ , we need to find the smallest distance to F̃c, i.e. we need to calculate the

max
f̃∈F̃

min
f̃c∈F̃c

‖f̃ − f̃ c‖S .

∀(xi, yi), i = 1, · · · , n, given f̃ and f̃ c with ‖Wl −W c
l ‖F ≤ δl, l = 1, · · · , d, consider

|f̃(xi, yi)− f̃ c(xi, yi)|
=| inf
‖xi−x′i‖p

yif(x′i)− inf
‖xi−x′i‖p

yif
c(x′i)|

Let
x∗i = arg inf

‖xi−x′i‖p
yif(x′i), and xci = arg inf

‖xi−x′i‖p
yif

c(x′i),

we have
|f̃(xi, yi)− f̃ c(xi, yi)|

=|yif(x∗i )− yif c(xci )|
=|f(x∗i )− f c(xci )|.

Let

zi =

{
xci if f(x∗i ) ≥ f c(xci )
xi if f(x∗i ) < f c(xci )
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Then,

|f̃(xi, yi)− f̃c(xi, yi)|
=|f(x∗i )− f c(xci )|
≤|f(zi)− f c(zi)|.

Define gab (·) as

gab (z) = Wbρ(Wb−1ρ(· · ·Wa+1ρ(W c
a · · · ρ(W c

1 z) · · · ))).

In words, for the layers b ≥ l > a in gab (·), the weight is Wl, for the layers a ≥ l ≥ 1 in gab (·), the
weight is W c

l . Then we have f(zi) = g0
d(zi), f(zi) = gLd (zi). We can decompose

|f(zi)− f c(zi)|
=|g0

d(zi)− gdd(zi)|
=|g0

d(zi)− g1
d(zi) + · · ·+ gd−1

d (zi)− gdd(zi)|
≤|g0

d(zi)− g1
d(zi)|+ · · ·+ |gd−1

d (zi)− gdd(zi)|.

(11)

To bound the gap |f(zi)− f c(zi)|, we first calculate |gl−1
d (zi)− gld(zi)| for l = 1, · · · , d.

|gl−1
d (zi)− gld(zi)|

=|Wdρ(gl−1
d−1(zi))−Wdρ(gld−1(zi))|

(i)

≤‖Wd‖F ‖ρ(gl−1
d−1(zi))− ρ(gld−1(zi))‖2

(ii)

≤ LρMd‖gl−1
d−1(zi)− gld−1(zi)‖2

(iii)
= LρMd‖Wd−1ρ(gl−1

d−2(zi))−Wd−1ρ(gld−2(zi))‖2
≤ · · ·

≤Ld−lρ

d∏
j=l+1

Mj‖Wlρ(gl−1
l−1(zi))−W c

l ρ(gl−1
l−1(zi))‖2

where (i) is due to Lemma 3, (ii) is due to the bound of ‖WL‖ and the Lipschitz of ρ(·), (iii) is
because of the definition of gab (z). Then

|gl−1
d (zi)− gld(zi)|

≤Ld−lρ

d∏
j=l+1

Mj‖Wlρ(gl−1
l−1(zi))−W c

l ρ(gl−1
l−1(zi))‖2

=Ld−lρ

d∏
j=l+1

Mj‖(Wl −W c
l )ρ(gl−1

l−1(zi)))‖2

(i)

≤Ld−lρ

d∏
j=l+1

Mj‖Wl −W c
l ‖F ‖ρ(gl−1

l−1(zi)))‖2

(ii)

≤ Ld−lρ

d∏
j=l+1

Mjδl‖ρ(gl−1
l−1(zi)))‖2,

(12)
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where inequality (i) is due to Lemma 3, inequality (ii) is due to Lemma 3 the assumption that
‖Wl −W c

l ‖F ≤ δl. It is lefted to bound ‖ρ(gl−1
l−1(zi)))‖∞, we have

‖ρ(gl−1
l−1(zi)))‖2

=ρ(gl−1
l−1(zi)))− ρ(0)‖2

≤Lρ‖gl−1
l−1(zi))‖2

=Lρ‖W c
l−1ρ(gl−2

l−2(zi)))‖2
≤Lρ‖W c

l−1‖F ‖ρ(gl−2
l−2(zi)))‖2

≤LρMl−1‖ρ(gl−2
l−2(zi)))‖2

≤ · · ·

≤Ll−1
ρ

l−1∏
j=1

Mj max{1, q
1
2−

1
p }(‖X‖p,∞ + ε).

(13)

combining inequalities (12) and (13), we have

|gl−1
d (zi)− gld(zi)|

≤Ld−1
ρ

∏d
j=1Mj

Ml
δl max{1, q

1
2−

1
p }(‖X‖p,∞ + ε)

=
Dδl
2Ml

.

(14)

Therefore, combining inequalities (15) and (14), we have
|f(zi)− f c(zi)|
≤|g0

d(zi)− g1
d(zi)|+ · · ·+ |gd−1

d (zi)− gdd(zi)|

≤
d∑
l=1

Dδl
2Ml

.

(15)

Then

max
f̃∈F̃

min
f̃c∈F̃c

‖f̃ − f̃ c‖S ≤
d∑
l=1

Dδl
2Ml

.

Let δl = 2Mlε/dD, l = 1, · · · , d, we have

max
f̃∈F̃

min
f̃c∈F̃c

‖f̃ − f̃ c‖S ≤
d∑
l=1

Dδl
2Ml

≤ ε.

Step 3: Covering Number of F̃ . We then calculate the ε-covering numberN (F̃ , ‖·‖S , ε). Because
F̃c is a ε-cover of F̃ . The cardinality of F̃c is

N (F̃ , ‖ · ‖S , ε) =|F̃c| =
d∏
l=1

|Cl|
(i)

≤
d∏
l=1

(
3Ml

δl
)hlhl−1 =(

3dD

2ε
)
∑d

l=1 hlhl−1 ,

where inequality (i)) is due to Lemma 1.

Step 4, Integration. By Dudley’s integral, we have

RS(F̃) ≤ 12√
m

∫ D/2

0

√
logN (F̃ , ‖ · ‖S , ε)dε

≤ 12√
m

∫ D/2

0

√√√√(

d∑
l=1

hlhl−1) log(3dD/2ε)dε

=
12D

√∑d
l=1 hlhl−1
√
m

∫ 1/2

0

√
log(3d/2ε)dε.

(16)
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Integration by part, we have

∫ 1/2

0

√
log(3d/2ε)dε

=
1

2

(
3
√
πerfc(

√
log 3d) +

√
log 3d

)
≤1

2

(
3
√
πexp(−

√
log 3d

2
) +

√
log 3d

)
=

1

2

(√
π

d
+
√

log 3d

)
≤1

2

(
2
√

log 3d

)
=
√

log 3d.

(17)

Plug equation (17) to equation (16), we have

RS(F̃) ≤ 24√
m

max{1, q
1
2−

1
p }(‖X‖p,∞ + ε)Ld−1

ρ

√√√√ d∑
l=1

hlhl−1 log(3d)

d∏
l=1

Ml.

A.2 PROOF OF THEOREM 2

Theorem 2 ((‖ · ‖1,∞-Norm Bound). Given the function class F in equation (1) under ‖ · ‖1,∞-norm,
and the corresponding adversarial function class F̃ in equation (2). The adversarial Rademacher
complexity of deep neural networksRS(F̃) satisfies

RS(F̃) ≤ 24√
m

(‖X‖p,∞ + ε)Ld−1
ρ

√√√√ d∑
l=1

hlhl−1 log(3d)

d∏
l=1

Ml.

The proof is mimilar to the proof of the Frobenius norm bound. We first introduce the following
inequality.

Lemma 4. Let A be a m× n matrix and b be a n-dimension vector, we have

‖A · b‖∞ ≤ ‖A‖1,∞‖b‖∞.

Proof: let Ai be the rows of A, i = 1 · · ·m, we have

‖A · b‖∞ = max |Aib| ≤ max ‖Ai‖1‖b‖∞ = ‖A‖1,∞‖b‖∞.

Step 1: Diameter of F̃ . We first calculate the diameter of F̃ . ∀f ∈ F , given (xi, yi), let x∗i =
inf‖xi−x′i‖p≤εp yf(x′i), and we let xli be the output of x∗i pass through the first to the l− 1 layer, we
have
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|f̃(xi, yi)| = | inf
‖xi−x′i‖p≤εp

yf(x′i)|

= |Wdρ(Wd−1x
d−1
i )|

(i)

≤ ‖Wd‖1,∞ · ‖ρ(Wd−1x
d−1
i )‖∞

= ‖Wd‖F · ‖ρ(Wd−1x
d−1
i )− ρ(0)‖∞

(ii)

≤ LρMd‖Wd−1(xd−1
i )‖∞

≤ · · ·

≤ Ld−1
ρ

d∏
l=1

Ml · ‖x∗i ‖∞

(iii)

≤ Ld−1
ρ

d∏
l=1

Ml(‖X‖p,∞ + ε),

where inequality (i) is because of Lemma 4, inequality (ii) is because of the Lipschitz propertiy of
activation function ρ(·), inequality (iii) is because of Lemma 2. Therefore, we have

2 max
f̃∈F̃
‖f̃‖S = 2

(
1

m

m∑
i=1

|f̃(xi, yi)|2
) 1

2

≤ 2Ld−1
ρ (‖X‖p,∞ + ε)

d∏
l=1

Ml
∆
= D.

Step 2: Distance to F̃c. Let Cil be δl-covers of {‖W i
l ‖1 ≤ Ml}, l = 1, 2, · · · , d, i = 1, · · · , hl,

where W i
l is the ith row of W i

l . Let

Fc = {f c : x→W c
dρ(W c

d−1ρ(· · · ρ(W c
1x) · · · )),W ci

l ∈ Cil , i = 1, · · · , hl, l = 1, 2 · · · , d}

and F̃c = {f̃ : (x, y)→ inf
‖x−x′‖p≤ε

yf(x′)|f ∈ Fc}.

For all f̃ ∈ F̃ , we need to find the smallest distance to F̃c, i.e. we need to calculate the

max
f̃∈F̃

min
f̃c∈F̃c

‖f̃ − f̃ c‖S .

∀(xi, yi), i = 1, · · · , n, given f̃ and f̃ c with |W i
l −W ci

l | ≤ δl, i = 1, · · · , hl, l = 1, · · · , d, we have
‖Wl −W c

l ‖1,∞ ≤ δl. By the same argument as the step 2 of the proof o Theorem 3, we have

max
f̃∈F̃

min
f̃c∈F̃c

‖f̃ − f̃ c‖S ≤
d∑
l=1

Dδl
2Ml

.

Let δl = 2Mlε/dD, l = 1, · · · , d, we have

max
f̃∈F̃

min
f̃c∈F̃c

‖f̃ − f̃ c‖S ≤
d∑
l=1

Dδl
2Ml

≤ ε.

Step 3: Covering Number of F̃ . We then calculate the ε-covering numberN (F̃ , ‖·‖S , ε). Because
F̃c is a ε-cover of F̃ . The cardinality of F̃c is

N (F̃ , ‖ · ‖S , ε) =|F̃c| =
d∏
l=1

hl∏
i=1

|Cil |
(i)

≤
d∏
l=1

(
3Ml

δl
)hlhl−1 =(

3dD

2ε
)
∑d

l=1 hlhl−1 ,

where inequality (i)) is due to Lemma 1.
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Step 4, Integration. By the same argument as the step 4 of the proof o Theorem 1, integration by
part, we have

RS(F̃) ≤ 24√
m

(‖X‖p,∞ + ε)Ld−1
ρ

√√√√ d∑
l=1

hlhl−1 log(3d)

d∏
l=1

Ml.

A.3 PROOF OF THEOREM 3

Theorem 3 (Lower Bound). Given the function class F in equation (2), and the coressponding
adversarial function class F̃ in equation (1). Exist sample dataset S, s.t. the adversarial Rademacher
complexity of deep neural networksRS(F̃) satisfies

RS(F̃) ≥ Ω

(
(B + ε)

∏d
l=1Ml√

m

)
.

The proof of the above Theorem is based on constructing a scalar network. By the definition of
Rademacher complexity, ifH′ is a subset ofH, we have

RS(H′) = Eσ
1

m

[
sup
h∈H′

m∑
i=1

σih(xi, yi)
]
≤ Eσ

1

m

[
sup
h∈H

m∑
i=1

σih(xi, yi)
]

= RS(H).

Therefore, it is enough to lower bound the complexity of F̃ ′ in a particular distribution D, where F̃ ′
is a subset of F̃ . Let

F̃ ′ = {x→ inf
‖x′−x‖p≤ε

yMd ·M2w
Tx|w ∈ Rq, ‖w‖2 ≤M1}.

We first prove that F̃ ′ is a subset of F̃ . In F̃ , we let the activation function ρ(·) be a identity mapping.
Let

W1 =


w
0
...
0

 ∈ Rh1×h0 , Wl =


Ml 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

 ∈ Rhl×hl−1 , l = 2, · · · , d. (18)

Then, we have ‖Wl‖ ≤Ml and F̃ with additional constraint in equation (18) reduce to F̃ ′. In other
words, F̃ ′ is a subset of F̃ .

It turns out that we need to lower bound the adversarial Rademacher complexity of linear hypothesis.
The results are given by the work of (Yin et al. (2019); Awasthi et al. (2020)). Below we state the
result.
Proposition 4. Given the function class G = {x → ywTx|w ∈ Rq, ‖w‖r ≤ W} and G̃ = {x →
inf‖x′−x‖r≤ε yw

Tx|w ∈ Rq, ‖w‖r ≤W}, the adversarial Rademacher complexityRS(G̃) satisfies

RS(G̃) ≥ max

{
RS(G),

εmax{1, q1− 1
r−

1
p }W

2
√
m

}
.

Since the standard Rademacher complexity

RS(G) =
W

m
Eσ‖

m∑
i=1

σixi‖r∗,

let ‖xi‖ = B with equal entries for i = 1, · · · ,m, by Lemma 2 we have

RS(G) =
W

m
Eσ|

m∑
i=1

σi|max{1, q1− 1
r−

1
p }B.
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By Khintchine’s inequality, we know that there exists a universal constant c > 0 such that

Eσ|
m∑
i=1

σi| ≥ c
√
m.

Then, we have

RS(G) =
cW√
m

max{1, q1− 1
r−

1
p }B.

Therefore,

RS(G̃) ≥ max

{
RS(F),

εmax{1, q1− 1
r−

1
p }W

2
√
m

}
≥ 1

1 + 2c
RS(F) +

2c

1 + 2c
× εmax{1, q1− 1

r−
1
p }W

2
√
m

≥ c

1 + 2c

(
(B + ε) max{1, q1− 1

r−
1
p }W√

m

)
.

Let W =
∏d
l=1Ml, we have

RS(F̃) ≥ Ω

(
max{1, q1− 1

r−
1
p }(B + ε)

∏d
l=1Ml√

m

)
,

where r = 2 for frobenius norm bound and r = 1 for ‖ · ‖1,∞-norm bound.

A.4 PROOF OF THEOREM 4

Theorem 4. Given the function class F in equation (2) under Frobbenius Norm, and the correspond-
ing adversarial function class F̃ in equation (1). The adversarial Rademacher complexity of deep
neural networksRS(˜̀F ) satisfies

RS(˜̀F ) ≤ 48K

γ
√
m

max{1, q
1
2−

1
p }(‖X‖p,∞ + ε)Ld−1

ρ

√√√√ d∑
l=1

hlhl−1 log(3d)

d∏
l=1

Ml.

The (1,∞)-norm bound is similar, except the term max{1, q
1
2−

1
p }.

Proof: Firstly, we have

˜̀(f(x), y) = max
‖x−x′‖≤ε

φγ(M(f(x), y))

=φγ( inf
‖x−x′‖≤ε

M(f(x), y))

=φγ( inf
‖x−x′‖≤ε

([f(x)]y −max
y′ 6=y

[]f(x)]y′))

=φγ( inf
‖x−x′‖≤ε

inf
y′ 6=y

([f(x)]y − [f(x)]y′))

=φγ( inf
y′ 6=y

inf
‖x−x′‖≤ε

([f(x)]y − [f(x)]y′)).

= max
y′ 6=y

φγ( inf
‖x−x′‖≤ε

([f(x)]y − [f(x)]y′)).

Define
hk(x, y) = inf

‖x−x′‖≤ε
([f(x)]y − [f(x)]k) + γ1(y = k),

we now prove that

max
y′ 6=y

φγ( inf
‖x−x′‖≤ε

([f(x)]y − [f(x)]y′)) = max
k

φγ(hk(x, y)).

If
inf
y′ 6=y

inf
‖x−x′‖≤ε

([f(x)]y − [f(x)]y′) ≤ γ,
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we have
inf
y′ 6=y

inf
‖x−x′‖≤ε

([f(x)]y − f(x)]y′)) = inf
k
hk(x, y).

If
inf
y′ 6=y

inf
‖x−x′‖≤ε

([f(x)]y − [f(x)]y′) > γ,

we have
φγ( inf

y′ 6=y
inf

‖x−x′‖≤ε
([f(x)]y − [f(x)]y′)) = φγ(inf

k
hk(x, y)) = 0.

Therefore, we have

˜̀(f(x), y) = φγ(inf
k
hk(x, y)) = max

k
φγ(hk(x, y)).

DefineHk = {hk(x, y) = inf‖x−x′‖≤ε([f(x)]y − f(x)]k) + γ1(y = k)|f ∈ F}, we have

R(˜̀F )
(i)

≤ KR(φγ ◦ Hk)
(ii)

≤ K

γ
R(Hk), (19)

where inequality (i) is the Lemma 9.1 of (Mohri et al. (2018)), inequality (ii) is due to the Lipschitz
property of φγ(·). Now, define fk(x, y) = inf‖x−x′‖≤ε([f(x)]y − f(x)]k), we have hk(x, y) =

fk(x, y) + γ1(y = k). Define the function class

Fk = {fk(x, y) = inf
‖x−x′‖≤ε

([f(x)]y − [f(x)]k)|f ∈ F}.

We have

R(Hk) =
1

m
Eσ sup

hk∈Hk

m∑
i=1

σih
k(xi, yi)

=
1

m
Eσ sup

hk∈Hk

m∑
i=1

σi

[
fk(x, y) + γ1(y = k)

]

=
1

m
Eσ sup

hk∈Hk

m∑
i=1

σif
k(x, y) +

1

m
Eσ

m∑
i=1

σiγ1(y = k)

=
1

m
Eσ sup

fk∈Fk

m∑
i=1

σif
k(x, y)

=R(Fk)

Finally, we need to bound the Rademacher complexity ofR(Fk). Notice that

[f(x)]y − [f(x)]k = (W y
d −W

k
d )ρ(Wd−1(ρ(· · ·W1(x) · · · ))),

and we have ‖W y
d −W k

d ‖F ≤ 2Ml. By Theorem 3 (the results in binary classification case), we
have

R(Fk) ≤ 48√
m

max{1, q
1
2−

1
p }(‖X‖p,∞ + ε)Ld−1

ρ

√√√√ d∑
l=1

hlhl−1 log(3d)

d∏
l=1

Ml. (20)

Combining inequalities (20) and (19), we obtain that

RS(˜̀F ) ≤ 48K

γ
√
m

max{1, q
1
2−

1
p }(‖X‖p,∞ + ε)Ld−1

ρ

√√√√ d∑
l=1

hlhl−1 log(3d)

d∏
l=1

Ml.

B DISCUSSION ON EXISTING METHODS FOR RADEMACHER COMPLEXITY

In this section, we discuss the related work, discuss the existing methods in calculating Rademacher
complexity, and identify the difficulty of analyzing adversarial Rademacher complexity.
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B.1 EXISTING METHODS

‘Layer Peeling’ Bounds. The main idea of calculating the Rademacher complexity of multi-layers
neural networks is the ‘peeling off’ technique (Neyshabur et al. (2015)). We denote g ◦ F as the
function class {g ◦ f |f ∈ F}. By Talagrand’s Lemma, we have RS(g ◦ f) ≤ LgRS(F). Based
on this property, we can obtain RS(Fl) ≤ 2LρMlRS(Fl−1), where Fl is the function class of
l-layers neural networks. Since the Rdemacher complexity of linear function class is bounded by
O(BM1/

√
m), we can get the upper bound O(B2dLd−1

ρ

∏d
l=1Ml/

√
m) by induction. We can

remove the Lρ by assuming that Lρ = 1 (e.g. Relu activation function).

Golowich et al. (2018) improves the dependence on depth-d from 2d to
√
d. The main idea is to

rewrite the Rademacher complexity Eσ[·] as Eσ exp ln[·]. Then, we can peel off the layer inside the
ln(·) function and the 2d now appears inside the ln(·).

Covering Number Bounds. Bartlett et al. (2017) uses a covering numbers argument to show that
the generalization gap scale as

Õ
(
B
∏d
l=1 ‖Wl‖√
m

( d∑
l=1

‖Wl‖2/32,1

‖Wl‖2/3

)3/2)
,

where ‖ · ‖ is the spectral norm. The proof is based on the induction on layers. Let Wl be the weight
matrix of the present layer and Xl be the output of X pass through the first to the l − 1 layer. Then,
one can compute the matrix covering number N ({WlXl}, ‖ · ‖2, ε) by induction.

Adversarial Generalization Bounds. Researchers have analyzed adversarial Rademacher com-
plexity in linear and two-layers neural networks cases. In linear cases, the upper bounds can be
directly derived by definition (Khim & Loh (2018); Yin et al. (2019)). In two-layers neural networks
cases, an upper bound is derived using Massart’s Lemma (Awasthi et al. (2020)). These proofs cannot
be extended to multi-layers cases. Moreover, based on the definition of adversarial function class
F̃ in equation (1), the candidate functions are not composition functions, but with an inf operation
in front of the neural networks. Then, the induction on layers seems not applicable in calculating
adversarial Rademacher complexity for deep neural networks. The works of (Khim & Loh (2018))
and (Gao & Wang (2021)) indicate the difficulty of analyzing adversarial Rademacher complexity.
They analyze other variants of adversarial Rademacher complexity of DNNs.

‘Tree Transformation’ Bound. Khim & Loh (2018) introduces a tree transformation T and shows
that max‖x−x′‖≤ε `(f(x), y) ≤ `(Tf(x), y). Then, we have the following upper bound for the
adversarial population risk. For δ ∈ (0, 1),

R̃(f) ≤ R(Tf) ≤ Rm(Tf) + 2LRS(T ◦ F) + 3

√
log 2

δ

2m
.

It gives an upper bound of the robust population risk by the empirical risk and the standard Rademacher
complexity of T ◦ f . RS(T ◦ F) can be viewed as an approximation of adversarial Rademacher
complexity. However, the empirical risk Rm(Tf) is not the objective in practice. This analysis does
not provide a guarantee for robust generalization gaps.

FGSM Attack Bound. The work of (Gao & Wang (2021)) tries to provide an upper bound for
adversarial Rademacher complexity. To deal with the max operation in the adversarial loss, they
consider FGSM adversarial examples. Then, the adversarial loss max‖x′−x‖≤ε `(x, y) becomes
`(f(xFGSM ), y). By some assumptions on the gradient, they provide an upper bound for the
Rademacher complexity of `(f(xFGSM ), y). However, the bound includes some parameters of the
assumptions on the gradients, and FGSM underestimates the adversarial examples. It is hard to
use this bound to analyze adversarial generalization. Therefore, the existing bounds give limited
interpretations in understanding the generalization of adversarial training.
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B.2 WHY LAYER PEELING IS NOT APPLICABLE IN ADVERSARIAL SETTING?

We first take a look at the layer peeling technique.

RS(H) = Eσ
1

m

[
sup
h∈H

m∑
i=1

σih(xi)
]

= Eσ
1

m

[
sup

h′∈Hd−1,‖Wd‖≤Md

m∑
i=1

σiWdρ(h′(xi))
]

≤MdEσ
1

m

[
sup

h′∈Hd−1

∥∥∥∥ m∑
i=1

σiρ(h′(xi))

∥∥∥∥]

≤ 2MdLρEσ
1

m

[
sup

h′∈Hd−1

m∑
i=1

σih
′(xi)

]
= 2MdLρRS(Hd−1),

In adversarial settings, if we directly apply the layer peeling technique, we have

RS(H̃) = Eσ
1

m

[
sup
h∈H

m∑
i=1

σi max
‖xi−x′i‖≤ε

h(x′i)
]

= Eσ
1

m

[
sup

h′∈Hd−1,‖Wd‖≤Md

m∑
i=1

σiWdρ(h′(x∗i (h)))
]

≤MdEσ
1

m

[
sup

h′∈Hd−1

∥∥∥∥ m∑
i=1

σiρ(h′(x∗i (h)))

∥∥∥∥]

≤ 2MdLρEσ
1

m

[
sup

h′∈Hd−1

m∑
i=1

σih
′(x∗i (h))

]

6= 2MdLρEσ
1

m

[
sup

h′∈Hd−1

m∑
i=1

σih
′(x∗i (h

′))

]
= 2MdLρRS(H̃d−1),

where x∗i (h) is the optimal adversarial example given a d-layers neural networks, x∗i (h
′) is the

optimal adversarial example given a d − 1-layers neural networks. x∗i (h) 6= x∗i (h
′) is the main

reason why layer peeling cannot be directly extended to the adversarial settings.

This is the main reason why the work we introduce above studied the variants of adversarial
Rademacher complexity. Once they take off the max operation by some approximation (e.g., let
max‖x−x′‖≤ε `(f(x), y) ≤ `(Tf(x), y)), they don’t have the issue x∗i (h) 6= x∗i (h

′) and they can
use the layer peeling technique to bound the variants of adversarial Rademacher complexity. The
main drop back is that they change the definition of adversarial Rademacher complexity. These
bounds cannot provide theoretical guarantee on the robust generalization gap.

B.3 WHY COVERING NUMBER CAN HELP AVOIDING THIS ISSUE?

In our opinion, it is hard to modify the procedure of layer peeling such that it is applicable in
adversarial settings. Therefore, we try to bound the adversarial Rademacher complexity in a different
way, using the covering number. In the proof of Theorem 1, we can see that we can avoid the issue of
x∗i (h) 6= x∗i (h

′). Specifically, when we calculate the covering number of the whole function class F̃
directly, we only need to define the optimal adversarial examples x∗i for a d-layer neural networks.
We don’t need to consider the optimal adversarial examples of neural networks with fewer layers.
This is the benefit of covering numbers.
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B.4 COMPARISON OF DIFFERENT ADVERSARIAL GENERALIZATION BOUNDS

VC-Dimension Bounds. A classical approach in statistical learning is to use VC dimension to
bound the generalization gap. It is thus natural to apply the VC-dim framework to adversarial setting,
as (Cullina et al. (2018); Montasser et al. (2019); Attias et al. (2021)) did. However, these works did
not provide a computable bound on the adversarial generalization gap, as explained next. letH be
the hypothesis class (e.g. the set of neural networks with a given architecture).

In the work of (Cullina et al. (2018)), the authors defined adversarial VC-dim (AVC) and gave an
bound on adversarial generalization gap with respect to AV C(H). However, they did not show how
to calculate AVC of neural works. Therefore, their paper did not provide a computable bound for
adversarial generalization gap.

In the work of(Montasser et al. (2019)), the authors defined the adversarial function class as LUH
, where L is the loss and U is the uncertainty set. They bound the adversarial generalization gap
by LUH, which is different from AV C(H) of (Cullina et al. (2018)). However, the authors did not
provide a computable bound of as well, which means that their paper did not provide a computable
bound of the adversarial adversarial generalization gap.

In the work of (Attias et al. (2021)), the authors assume that the perturbation set U(x) is finite, i.e.,
for each sample x, there are only k adversarial examples that can be chosen. They showed that the
adversarial generalization gap can be bounded by

O
(

1

ε2
(
√
kV C(H) log(

3

2
+ a)kV C(H)) + log

1

δ

)
.

Note that there is a computable bound of V C(H), which is the number of parameters, thus in terms
of ”computable”, this bound is stronger than the previous two. However, this comes at a price: their
bound depends on k, the number of allowed examined perturbed samples. This is a deviation from the
original notion of adversarial generalization, where U(x) is assumed to be an infinite set (k 6= +∞).
In contrast, our bound is for the ”original” adversarial generalization gap, which allows k = +∞.

Adversarial Generalization Bounds in Other Settings. The work of (Xing et al. (2021a;b); Ja-
vanmard et al. (2020)) study the generalization properties in the setting of linear regression. Gaussian
mixture models are used to analyze adversarial generalization (Taheri et al. (2020); Javanmard et al.
(2020); Dan et al. (2020)).

Certified robustness. A series of works study the certified robustness within the norm constraint
around the original data. Cohen et al. (2019) privides an analysis on certified robustness via random
smoothing. Lecuyer et al. (2019) studies certified robustness through the lens of differential privacy.

Other Theoretical Studies on Adversarial Examples. A series of works (Gilmer et al. (2018);
Khoury & Hadfield-Menell (2018)) study the geometry of adversarial examples. The off-manifold
assumption tells us that the adversarial examples leave the underlying data manifold (Szegedy et al.
(2013)). Pixeldefends (Song et al. (2017)) uses a generative model to show that adversarial examples
lie in a low probability region of the data distribution. The work of (Ma et al. (2018)) uses Local
Intrinsic Dimensionality (LID) to argues that the adversarial subspaces are of low probability, and lie
off the data submanifold.

C ADDITIONAL EXPERIMENTS

In this section, we provide additional experiments.

C.1 EXPERIMENTS ON VGG-11 AND VGG-13

In Figure 2, we show the experiments on VGG-11 and VGG-13. As we can see, the results are
the same as the results in Figure 3, the gap of product of Frobenius norm between standard and
adversarial training is large, which yields bad generalization.
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Figure 2: Product of the Frobenius norm in the experiments on VGG networks. The red lines are
the results of standard training. The blue lines are the results of adversarial training. The first row
are the experiments on VGG-11. The second row are the experiments on VGG-13. (a) and (e):
Generalization gap. (b) and (f): Margin γ over training set. (c) and (g):

∏d
l=1 ‖Wl‖F of the neural

networks. (d) and (h):
∏d
l=1 ‖Wl‖F /γ of the neural networks.
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Figure 3: Product of the Frobenius norm in the experiments on CIFAR-10. The red lines are the
results of standard training. The blue lines are the results of adversarial training. The first row is
the experiments on VGG-16. The second row is the experiments on VGG-19. (a) and (e): Standard
Generalization gap. (b) and (f): Robust Generalization Gap. (c) and (g):

∏d
l=1 ‖Wl‖F of the neural

networks. (d) and (h):
∏d
l=1 ‖Wl‖F /γ of the neural networks.

‖·‖1,∞-Norm Bounds. The ‖·‖1,∞-norm bounds are shown in Figure 4. Similar the the Frobenius
norm bounds,The gap of

∏d
l=1 ‖Wl‖1,∞ between adversarial training and standard training are large.

But the magnitude of
∏d
l=1 ‖Wl‖1,∞ is larger than the magnitude of

∏d
l=1 ‖Wl‖F .
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Figure 4: Product of the ‖ · ‖1,∞-Norm in the experiments on CIFAR-10. The red lines are the
results of standard training. The blue lines are the results of adversarial training. (a)

∏d
l=1 ‖Wl‖1,∞

of VGG-16 networks. (b)
∏d
l=1 ‖Wl‖1,∞/γ of VGG-16 networks. (c)

∏d
l=1 ‖Wl‖1,∞ of VGG-19

networks. (d)
∏d
l=1 ‖Wl‖1,∞/γ of VGG-19 networks.

C.2 ABLATION STUDY OF MARGINS

In Figure 5, we show the results of the margins in 1th, 3th, and, 5th-percentile of the training dataset.
Since the (robust) training accuracy is 100%, the choice of percentile will not affect the results. As
we can see in the Figure, in all the cases, the margins of standard training are larger than the margins
of adversarial training. Since the margins appear in the divider in the upper bound of Rademacher
complexity, the margins of the training dataset have some small effects on the bad generalization of
adversarial training.

C.3 EXPERIMENTS ON CIFAR-100

Perfomance. In Table 2, we show the performance of standard training and adversarial training
on CIFAR-100 using VGG-16 and 19 networks. We can see that using smaller number of training
samples is unable to train an acceptable VGG-networks on CIFAR-100. Therefore it is hard use only
50000 training samples to study the trends of the weight norm using the experiments on CIFAR-100.
We compare the product of weight norm between standard and adversarial training.

Product of Weight Norms. In Figure 6, we show the results of on training VGG-19-16 and VGG-
19 on CIFAR-100. Similar to the experiments on CIFAR-10, we can see that the adversarially trained
models have larger weight norm that that of the standard trained model.

Table 2: Accuracy of standard and adversarial training on CIFAR-100 using VGG-16 and 19 networks.
For standard training model, we shows the clean accuracy. For adversarial training model, we show
the robust accuracy against PGD attacks.

No. of Samples 10000 20000 30000 40000 50000
VGG-16-STD 0.26 0.44 0.54 0.60 0.63
VGG-16-ADV 0.12 0.15 0.17 0.18 0.19
VGG-19-STD 0.32 0.47 0.53 0.58 0.62
VGG-19-ADV 0.12 0.16 0.17 0.19 0.21

C.4 WEIGHT DECAY

The upper bounds of adversarial Rademacher complexity suggest adding a regularization term on the
weights to improve generalization, which is essentially weight decay. In Figure 7, we provide the
experiments of adversarial training with and without weight decay. In Figure 7 (a) and (c), we can
see that adversarial training with weight decay has a smaller robust generalization gap. In Figure 7
(b) and (d), adversarial training with weight decay have a smaller product of weight norms. These
experiments show the relationship between the robust generalization gap and the product of weight
norms.
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Figure 5: Ablation study of margins. The first to the 4th rows are the experiments on VGG-11, 13,
16, and 19, respectively.
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Figure 6: Product of the Frobenius norm in the experiments on VGG networks on CIFAR-100. The
red lines are the results of standard training. The blue lines are the results of adversarial training.
The first row are the experiments on VGG-16. The second row are the experiments on VGG-19. (a)
and (e): Generalization gap. (b) and (f): Margin γ over training set. (c) and (g):

∏d
l=1 ‖Wl‖F of the

neural networks. (d) and (h):
∏d
l=1 ‖Wl‖F /γ of the neural networks.
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Figure 7: Experiments on the effects of weight decay. (a) Robust generalization gap with or without
weight decay on VGG-16. (b) Frobenius norm with or without weight decay on VGG-16. (c) Robust
generalization gap with or without weight decay on VGG-19. (d) Frobenius norm with or without
weight decay on VGG-19.

D OPEN PROBLEM

In this section, we list some open problems.

How to bridge the gap between the upper bound and the lower bound? There are two ways:
one way is to show a depth/width-dependent lower bound as the reviewer suggested (increase lower
bound); another way is to show a depth/width-independent upper bound (reduce upper bound). We
briefly discuss which way is possible, and then discuss the technical challenges in both ways.

Which way is more likely to be true? If the upper bound can be improved to be depth-width-
independent (thus matching our lower bound), then fundamentally the lower bound cannot be
improved. Such a possibility exists. Actually, we are more inclined to this possibility, i.e., we tend to
believe it is more promising to reduce the upper bound to be depth-width-independent, rather than
increasing the lower bound. Anyhow, we don’t have strong evidence of this possibility.

Technical challenge on increasing the lower bound (obtain a depth/width-dependent lower bound). In
the current analysis, we construct a class of scalar networks to provide the lower bound. We obtain a
closed-form expression of the adversarial examples. To obtain a depth/width-dependent lower bound,
we need to: i) construct a more general function class of neural networks, and ii) then calculate the
optimal adversarial examples in this class of neural networks. Currently, the challenge lies in the first
step (construction). We have not tried hard to construct the function class so far, and we leave it to
future work.

Can we reduce the upper bound (remove the dependence on depth/width in the upper bound)? This
seems quite difficult by the current analysis. More specifically, the dependence h

√
dlogd is probably

unavoidable by our current approach of calculating the covering number. Despite the technical
difficulty, we suspect that reducing the upper bound is doable by using a new tool other than covering
number and layer peeling. This is surely nontrivial.

Why adversarial training yields larger weight norms? In our opinion, it is because we require
the additional capacity of the neural networks to fit the adversarial examples. As in the discussion of
the work of (Neyshabur et al. (2017a)), we require more capacity of the model to fit random labels.
A model with larger weight norms has a better ability to fit the training data. There might be other
reasons, for example, the loss landscape of the minimax problem of adversarial training, the implicit
bias of PGD attacks, or the implicit bias of adversarial training.

Is the widely used regularization techniques essentially reducing weight norms? In adversarial
training, there are many training tricks to reduce overfitting and yield better generalization, for
example, stochastic weight averaging, early stopping, adversarial weight perturbation, and cyclic
learning. It is an open problem that whether these techniques are related to the weight norms.

How to design better algorithms to improve generalization? Our analysis suggests that adding
regularization to the weight norms could improve generalization. The explicit regularization to
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control the weight norms is weight decay, which is widely used. How to design implicit control on
the weight norms is an open problem.
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