
GRIM: Task-Oriented Grasping with Conditioning
on Generative Examples

Anonymous Author(s)
Affiliation
Address
email

Abstract: Task-Oriented Grasping (TOG) requires a robot to select grasps that are1

not only stable but also functionally appropriate for a given task. This presents a2

significant challenge, demanding a nuanced understanding of task semantics, ob-3

ject affordances, and functional constraints. Existing learning-based approaches4

often struggle with generalization due to the scarcity of large-scale, task-annotated5

grasp datasets. To overcome these limitations, we introduce GRIM (Grasp Re-6

alignment via Iterative Matching), a novel, training-free framework for TOG.7

GRIM operates on a retrieve, align, and transfer paradigm. It first queries a mem-8

ory of object-task examples, built from diverse sources including generative AI,9

web images, and human demonstrations. Given a new scene object, GRIM re-10

trieves a semantically similar example and aligns its 3D geometry to the scene11

object using a robust coarse-to-fine strategy. This alignment is guided by a com-12

bination of geometric cues and a semantic similarity score over dense DINO fea-13

tures. Finally, the task-oriented grasp from the memory instance is transferred to14

the scene object and refined against a set of geometrically stable grasps to ensure15

task compatibility and physical feasibility. By eschewing task-specific training,16

GRIM demonstrates strong generalization, achieving state-of-the-art performance17

on benchmark datasets with only a small number of conditioning examples.18

Keywords: Task-Oriented Grasping, Robotic Manipulation, Foundation Models19

1 Introduction20

The ability for robots to physically interact with the world is fundamental to their utility. While21

grasp synthesis has made significant strides in achieving geometric stability, true manipulation in-22

telligence lies in selecting grasps that are functionally suitable for a specific goal. This problem,23

known as Task-Oriented Grasping (TOG), moves beyond the question of ”Can I pick this up?” to24

”How should I pick this up to complete task X?”. For example, a hammer must be grasped by its25

handle to be used for hammering, not by its head. This requires a deep understanding of object26

affordances, task semantics, and the functional constraints they impose [1]. A primary bottleneck27

for progress in TOG is the data-scarcity problem. Supervised learning methods [1, 2] are powerful28

but depend on large, manually annotated datasets that specify which grasps are suitable for which29

tasks. Creating such datasets is labor-intensive and scales poorly, limiting the ability of these models30

to generalize to novel objects and tasks not seen during training.31

To address these challenges, we propose GRIM (Grasp Re-alignment via Iterative Matching), a32

novel training-free framework that leverages the power of pre-trained foundation models in a33

retrieve-align-transfer pipeline [3, 4]. Instead of training a model on a fixed dataset, GRIM builds a34

dynamic, evergreen memory of object-task interactions from diverse and easily accessible sources:35

synthetic data from generative models, in-the-wild images from the web, and on-demand human36

demonstrations. This diverse memory provides a rich source of functional priors, inspired by the37

cognitive concept of the world as an external memory [5].38
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Figure 1: Our memory creation pipeline. A diverse set of inputs (AI-generated video frames, web
images, human demonstrations) are processed by a hand-object reconstruction module [9]. This
yields an object mesh and a corresponding task-oriented grasp pose. We enrich the object mesh with
dense DINO features to create a feature mesh, which is stored in memory alongside the task label
and grasp pose.

When faced with a new object and task, GRIM’s workflow is as follows (Figure 2):39

1. Retrieve: It queries its memory to find the most relevant prior experience, using a joint40

similarity metric that considers both the visual appearance of the object (via DINO embed-41

dings [6]) and the semantics of the task description (via CLIP embeddings [7]).42

2. Align: It robustly aligns the 3D point cloud of the retrieved memory object with the scene43

object. This is a key contribution, employing a coarse-to-fine strategy that first uses PCA-44

reduced DINO features for a semantically-aware coarse alignment, followed by a precise45

ICP [8] refinement.46

3. Transfer & Refine: The task-specific grasp pose from the memory instance is transferred47

to the aligned scene object. This transferred pose then serves as a powerful prior to select48

and refine the best grasp from a set of pre-computed, geometrically stable candidates for49

the scene object.50

Our main contributions are:51

• A flexible and scalable memory construction pipeline that integrates object-task experi-52

ences from diverse sources, including a novel application of generative AI, circumventing53

the need for manually annotated datasets.54

• A novel 3D alignment strategy that prioritizes semantic correspondence over geometric55

shape. By matching dense DINO features, our method works effectively even with sparse,56

partial point clouds where traditional geometry-based alignment techniques often fail.57

• A complete training-free framework that shows generalization to both novel objects and58

novel tasks, validated through extensive experiments and real-world robot demonstrations.59

2 Related Work60

Task-Oriented Grasping (TOG) research has evolved from analytical methods to data-driven tech-61

niques, with a recent shift towards leveraging large-scale pre-trained models.62
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2.1 Data-Driven Approaches63

Early data-driven methods learned direct mappings from object classes and tasks to grasps [10, 11].64

However, these approaches often lacked semantic understanding and struggled to generalize [2].65

To inject semantic knowledge, subsequent works utilized knowledge bases (KBs) and probabilistic66

logic [12, 13, 14, 15, 16], but these systems often require significant engineering to construct and67

scale the KBs.68

The release of the TaskGrasp dataset by Murali et al. [1] was a significant step, enabling methods69

like GCNGrasp which uses a Graph Convolutional Network. However, such methods are inherently70

limited by the contents of their training data and knowledge graph, struggling to generalize to con-71

cepts unseen during training. More recent works like GraspGPT [2] and GraspMolmo [17] leverage72

Large Language Models (LLMs) and Vision-Language Models (VLMs) to incorporate open-world73

knowledge, improving generalization. Nevertheless, these models still rely on a foundational train-74

ing phase on task-specific datasets [18, 19, 20], inheriting the associated data acquisition bottleneck.75

GRIM diverges fundamentally from these paradigms. It is entirely training-free, obviating the need76

for task-specific grasp annotations. By dynamically building a memory from heterogeneous data, it77

directly tackles the data scarcity and annotation challenges that constrain prior methods.78

2.2 Training-Free and Retrieval-Based Approaches79

The advent of powerful foundation models has spurred the development of training-free TOG meth-80

ods. Many approaches use LLMs or VLMs to provide semantic guidance, mapping a language81

command to a region on an object where a grasp should be executed [21, 22, 23]. While these meth-82

ods avoid training, they typically only provide coarse spatial priors (e.g., ”grasp the handle”), not83

directly executable 6D grasp poses.84

Closer to our work are retrieval-based methods. RTAGrasp [24] also proposes a training-free ap-85

proach using a memory of human demonstrations. It retrieves a relevant video and uses 2D feature86

matching to transfer a grasp point. While effective, its reliance on 2D matching can be ambigu-87

ous and less robust to viewpoint changes. RoboABC [25] uses CLIP to retrieve contact points but88

struggles to determine the full 6D grasp pose, particularly the crucial grasp orientation.89

GRIM builds upon the strengths of retrieval but makes several key improvements. Our retrieval90

is guided by a joint 3D visual (DINO [6]) and task-semantic (CLIP [7]) similarity. Crucially, we91

introduce a robust, semantically-aware 3D alignment strategy that aligns entire object point clouds,92

not just 2D features [4]. This allows for a more precise transfer of the full 6D grasp pose, which93

is then further refined against the scene object’s specific geometry. This holistic process addresses94

both ”where” and ”how” to grasp with high precision and adaptability, without the limitations of95

pre-defined datasets or explicit training.96

3 Methodology97

We introduce GRIM (Grasp Re-alignment via Iterative Matching), a training-free framework for98

TOG. Our approach follows a retrieve-align-transfer pipeline, detailed below.99

3.1 Memory Creation100

To generalize to novel scenes, we construct a memory M of object-task experiences from diverse101

data sources. Each instance in M is a tuple (FM , Gt, T,O), containing the object’s feature mesh102

FM , a 6D task-oriented grasp pose Gt, the corresponding task description T , and the object name103

O.104

The pipeline to create a single memory instance (Figure 1) begins with an image or video frame105

IHO depicting a functional grasp. We use a hand-object reconstruction model [9] to extract the106

object mesh and hand mesh. We then derive a 6D parallel-jaw gripper pose Gt from the hand107
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Figure 2: The GRIM pipeline for a given scene object and task. (1) Retrieval: The system queries
its memory using joint visual and task similarity to find the best matching prior experience (a cup
for the task ‘drink‘). (2) Alignment: The retrieved memory object (red point cloud) is aligned with
the scene object (grey point cloud) using our feature-guided iterative alignment. The colors on the
objects represent PCA-reduced DINO features, showing semantic correspondence. (3) Transfer &
Refine: The grasp from the memory object is transferred to the scene object and used to select the
best among a set of task-agnostic, stable grasp candidates (cluster of purple grasps), resulting in the
final task-oriented grasp (single purple grasp).

mesh. This conversion is done by first identifying the centroids of hand segments: the thumb, the108

combined index and middle fingers, and the palm. The gripper’s center (translation) is defined as the109

midpoint between the centroid of the thumb and the combined centroid of the opposing fingers. The110

vector connecting these centroids establishes the closing direction, and the palm’s centroid provides111

a reference point to determine the approach vector.112

To create the feature mesh FM , we sample points from the object mesh and compute a dense DI-113

NOv2 feature vector for each point, effectively creating a semantic descriptor field on the object’s114

surface, similar to Wang et al. [26] and PS et al. [27].115

A key strength of our framework is its ability to ingest data from varied sources:116

3.1.1 AI-Generated Videos.117

To create a scalable and diverse data source, we leverage generative AI [28]. For an object and task118

from a source like TaskGrasp [1], we prompt a VLM (Gemini Pro) to generate a detailed textual119

description of a video showing the correct grasp. This description, along with a starting image120

frame, is then used as a prompt for a video generation model such as VEO2 [29] to generate a121

short video. We sample a frame from this video to serve as IHO. This process allows for cheap,122

large-scale creation of functionally-grounded grasp data.123

3.1.2 In-the-Wild Web Images.124

We use images scraped from the web that show human grasping actions. For each image, we use a125

VLM to generate a plausible task description T .126

3.1.3 Test-Time Expert Demonstrations.127

Our framework supports lifelong learning. If the robot fails on a task, a human can provide a single-128

image demonstration, which is seamlessly processed and added to the memory M, improving future129

performance on similar tasks [30].130
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3.2 Memory Retrieval131

Given a novel scene containing a target object (represented by its point cloud PSO with per-point132

DINO features FD
SO) and a task command TS , we retrieve the most relevant memory instance.133

First, we compute a global visual descriptor F̄D
SO for the scene object by averaging its per-point134

DINO features. We encode the task command TS into a text embedding ETS
using CLIP’s text135

encoder.136

For each memory instance i ∈ M with its global object descriptor F̄D
MO,i and task embedding137

ETM,i
, we compute a joint similarity score:138

Sjoint(i) = α · simcos(F̄
D
SO, F̄

D
MO,i) + (1− α) · simcos(ETS

, ETM,i
) (1)

where simcos(·, ·) is the cosine similarity and α is a hyperparameter balancing visual and task simi-139

larity (we use α = 0.5). The memory instance (F ∗
M , G∗

t , T
∗, O∗) with the highest Sjoint is selected140

for the next stage.141

3.3 Semantic 3D Alignment142

After retrieving a memory object (source point cloud PMO, DINO features FD
MO), we must align143

it to the scene object (target point cloud PSO, features FD
SO). A purely geometric alignment like144

standard ICP would fail if the objects have different shapes (e.g., aligning a metal spatula to a plastic145

one). We therefore propose a coarse-to-fine alignment strategy guided by semantic features.146

Coarse Alignment: To reduce the dimensionality and noise of the DINO features, we apply PCA,147

projecting both FD
MO and FD

SO into a lower 4-dimensional space (DPCA = 4). We then perform a grid148

search over a discretized set of initial rotations to find a promising coarse alignment. Specifically, we149

sample 8 steps for each of the three Euler angles (roll, pitch, yaw), resulting in 83 = 512 candidate150

rotations {Ri}. For each candidate, we compute a transformation Tinit,i that aligns the point cloud151

centroids and applies the rotation. The quality of this initial transformation is evaluated using a joint152

feature-geometric score. For each point in the transformed source cloud, we find its K = 3 nearest153

neighbors in the target cloud and compute a cost based on a weighted sum of the squared Euclidean154

distance (wg = 10) and the feature dissimilarity (wf = 100). By heavily weighting the feature155

component, we prioritize finding a semantically meaningful alignment over a purely geometric one.156

The top 10 transformations with the lowest cost are selected as candidates for the fine refinement157

stage.158

Fine Refinement: The best coarse alignment is then used to initialize the Iterative Closest Point159

(ICP) algorithm. This standard ICP step refines the alignment to be geometrically precise. This160

two-step process, where semantics guide the initial guess and geometry refines it, allows for robust161

alignment even between objects that are semantically similar but geometrically distinct. The final162

output is a transformation Tfinal that maps points from the memory object’s coordinate frame to the163

scene object’s frame.164

3.4 Grasp Transfer and Refinement165

With the alignment Tfinal, we transfer the task-oriented grasp GM from memory to the scene object:166

GS = Tfinal ·GM . However, due to small alignment errors or geometric differences, GS may not be167

perfectly stable or executable.168

To find an optimal, executable pose, we follow a sample-and-refine strategy inspired by Dong et al.169

[24]. First, we use a task-agnostic grasp sampler, AnyGrasp [31], to generate a set of N geomet-170

rically stable grasp candidates {GA,i}Ni=1 on the scene object, each with a geometric quality score171

Sgeo,i.172

We then re-rank these candidates based on their compatibility with our transferred task-oriented173

grasp GS = (RS , tS). We define a task-compatibility score Stask,i for each candidate grasp GA,i =174
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(RA,i, tA,i):175

Stask,i = (vtarget · vA,i)︸ ︷︷ ︸
Orientation Sim.

+exp

(
−∥tA,i − tS∥2

2σ2

)
︸ ︷︷ ︸

Position Sim.

(2)

where vtarget and vA,i are the approach vectors of the grasps (e.g., the z-axis of the gripper frame),176

and σ is a bandwidth parameter (set to 0.02m). This score rewards candidates that are close in both177

position and orientation to the transferred task-centric pose.178

The final score for each candidate is a weighted sum of its task compatibility and geometric quality:179

Si = wtaskStask,i + wgeoSgeo,i (3)

We heavily prioritize task-compatibility by setting wtask = 0.95 and wgeo = 0.05, as AnyGrasp180

already ensures candidates have high geometric quality. The grasp candidate G∗
A with the highest181

final score Si is selected for execution.182

4 Experiments and Results183

We conduct extensive experiments to evaluate GRIM’s performance, focusing on its ability to gen-184

eralize to novel objects and tasks.185

4.1 Experimental Setup186

Baselines: We compare GRIM against three representative baselines:187

• Random: A task-agnostic baseline that randomly selects a geometrically stable grasp from188

the candidates provided by AnyGrasp.189

• RTAGrasp [24]: A state-of-the-art training-free method that uses 2D feature matching to190

transfer grasps from a video memory.191

• GraspMolmo [17]: A state-of-the-art learning-based VLM, which was fine-tuned on a192

mixture of its primary synthetic dataset (PRISM, 379k examples) and a portion of the193

TaskGrasp.194

Dataset: We evaluate all methods on the TaskGrasp dataset [1], which provides object point clouds195

and annotated task-oriented grasps. To rigorously test generalization, we use two challenging splits:196

• Held-out Objects: The memory contains no objects of the same category as the test object.197

• Held-out Tasks: The memory contains no examples of the task being performed, even if it198

has seen the object category before.199

Memory: Our memory for GRIM and RTAGrasp is constructed from a combination of 180 AI-200

generated video frames, 15 web images, and 15 human demonstrations, totaling 210 instances. This201

small size highlights the data efficiency of our approach. To ensure a fair comparison with RTA-202

Grasp, we build its memory from the same source images and derive its required 2D grasp points203

from our 6D poses.204

Evaluation Metric: Following standard practice, we evaluate the methods on their ability to identify205

the correct task-oriented grasps from a set of proposals. We use the 25 annotated grasps for each206

object instance in TaskGrasp as candidates. A predicted grasp is considered correct if it is one of207

the positive examples for the given task. We report the Mean Average Precision (mAP) over all208

object-task pairs.209

4.2 Quantitative Results210

GRIM’s effectiveness and data efficiency are demonstrated in our quantitative evaluations (Table 2).211

On the full TaskGrasp dataset, GRIM achieves a Mean Average Precision (mAP) of 0.67. This result212
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Table 1: Per-category Average Precision on novel object instances from the TaskGrasp dataset.

Method Novel Instances

Paint roller Brush Tongs Strainer Pan Fork Mortar Ice Scrapper

Random 0.30 0.66 0.23 0.24 0.32 0.26 0.31 0.60
RTAGrasp 0.39 0.93 0.28 0.55 0.42 0.35 0.37 0.91
GraspMolmo 0.56 0.73 0.55 0.44 0.46 0.53 0.66 0.65

GRIM(Ours) 0.89 0.90 0.58 0.58 0.60 0.76 0.72 0.71

not only surpasses the state-of-the-art training-free method, RTAGrasp (0.58), but also, remarkably,213

outperforms GraspMolmo (0.62). This comparison is particularly significant: GraspMolmo is a214

powerful VLM trained on a massive dataset of 379,000 synthetic task-oriented grasp examples,215

whereas GRIM’s memory contains only 210 instances from heterogeneous, un-curated sources. This216

result strongly validates our central thesis: by effectively retrieving and re-aligning functional priors217

from a small but diverse memory, it is possible to achieve superior generalization without relying on218

vast, expensive, and potentially biased training datasets.219

Furthermore, GRIM’s performance advantage is most pronounced in the challenging generalization220

splits. On held-out objects and tasks, GRIM’s mAP degrades by only 3%, whereas RTAGrasp’s221

performance drops by over 10%. This underscores the robustness of our 3D semantic alignment222

strategy, which successfully transfers functional knowledge even without direct categorical or task223

precedents—a scenario where 2D feature matching proves less effective.224

To understand why our method works well, we tested it without its key parts in an ablation study225

(Table 3). The results clearly show that semantic alignment is the most critical component. Without226

it (GRIM w/o Semantic Alignment), performance drops to 0.50 mAP, which is nearly as poor as227

the random baseline. This confirms that using features is crucial for aligning objects for a task,228

especially when their shapes differ. The grasp refinement step is also important. Without it (GRIM229

w/o Grasp Refinement), performance falls to 0.59 mAP. This means the transferred grasp is a good230

starting point for the task, but it must be fine-tuned to the scene object’s geometry to be successful.231

In summary, both components are vital: semantic alignment provides the correct functional idea,232

and refinement makes that idea physically work.233

A qualitative analysis further illuminates the behavior of the semantic alignment module, particu-234

larly its failure modes. Its performance is intrinsically linked to the fidelity of the input point cloud.235

In scenarios with severe sensor noise or extreme sparsity, the process of establishing dense feature236

correspondences can break down. This corrupts geometric priors like the centroid and leads to a237

flawed coarse alignment from which the local ICP refinement cannot recover. The final transferred238

grasp is consequently misplaced and functionally irrelevant. This underscores a key dependency:239

while GRIM is robust to partial views, its ability to reason functionally is contingent on receiving a240

partial point cloud of sufficient quality to support the crucial semantic alignment stage.241

Table 2: Mean Average Precision (mAP) on the TaskGrasp dataset. GRIM consistently outperforms
all baselines, with particularly strong performance on the held-out splits, demonstrating superior
generalization.

Method All Data Held-out Obj. Held-out Tasks
Random 0.49 0.41 0.43
RTAGrasp 0.58 0.52 0.51
GraspMolmo 0.62 0.57 0.55

GRIM (Ours) 0.67 0.65 0.64
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Table 3: Ablation study of GRIM’s key components. Results are reported as Mean Average Precision
(mAP) on the full TaskGrasp dataset, demonstrating the critical role of both semantic alignment and
grasp refinement.

Configuration mAP (All Data)
Ablations:
GRIM w/o Semantic Alignment 0.50
GRIM w/o Grasp Refinement 0.59

GRIM (Full Model) 0.67

4.3 Real-World Robot Validation242

To demonstrate the practical applicability of GRIM, we deployed it on a Kinova Gen3 Lite manipu-243

lator. The scene is captured by two RGB-D cameras. We used the same 210-instance memory from244

our simulation experiments, containing no instances of the test objects. We evaluated GRIM on 5245

novel objects with associated tasks: a mallet (‘hammer‘), a kettle (‘pour‘), a spray bottle (‘spray‘),246

an aerosol can (‘spray‘), and a spoon (‘scoop‘). For each object-task pair, we performed 10 trials.247

GRIM achieved a high success rate, successfully executing the task-oriented grasp in 39 out of 50248

trials. Failures were not due to flawed grasp selection but were instead traced to perception errors;249

specifically, noise in point cloud reconstruction and calibration inaccuracies were able to disrupt the250

subsequent 3D alignment stage. Figure 3 shows qualitative examples of successful executions.251

(a) (b)

(c) (d)

Figure 3: Real-world deployment of GRIM with novel objects. The system correctly plans and
executes task-oriented grasps. The Kinova Gen3 Lite robot successfully executing the planned grasp.

5 Conclusion252

We have presented GRIM, a training-free framework for task-oriented grasping that demonstrates253

remarkable generalization capabilities by retrieving and re-aligning functional priors from a diverse254
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memory. Our key innovation is a robust 3D alignment process guided by semantic features, which al-255

lows for effective knowledge transfer between objects that are functionally similar but geometrically256

different. By leveraging generative models and other readily available data sources, GRIM circum-257

vents the data bottleneck that plagues traditional supervised methods. Our extensive experiments258

show that GRIM significantly outperforms existing training-free and learning-based approaches,259

particularly in its ability to handle novel objects and tasks.260

Future work could explore incorporating explicit geometric reasoning, perhaps through the genera-261

tion of digital twins [32], to further refine the alignment and grasp transfer process. Nevertheless,262

GRIM represents a significant step towards building more general, adaptable, and data-efficient263

robotic manipulation systems.264

References265

[1] A. Murali, W. Liu, K. Marino, S. Chernova, and A. Gupta. Same object, different grasps: Data266

and semantic knowledge for task-oriented grasping. In Conference on Robot Learning, 2020.267

[2] C. Tang, D. Huang, W. Ge, W. Liu, and H. Zhang. Graspgpt: Leveraging semantic knowledge268

from a large language model for task-oriented grasping. arXiv preprint arXiv:2307.13204,269

2023.270

[3] Y. Kuang, J. Ye, H. Geng, J. Mao, C. Deng, L. Guibas, H. Wang, and Y. Wang. Ram: Retrieval-271

based affordance transfer for generalizable zero-shot robotic manipulation. arXiv preprint272

arXiv:2407.04689, 2024.273

[4] N. Di Palo and E. Johns. Dinobot: Robot manipulation via retrieval and alignment with vision274

foundation models. arXiv preprint arXiv:2402.13181, 2024.275
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in demonstration dataset. In ICASSP 2024-2024 IEEE International Conference on Acoustics,355

Speech and Signal Processing (ICASSP), pages 7590–7594. IEEE, 2024.356

[31] H.-S. Fang, C. Wang, H. Fang, M. Gou, J. Liu, H. Yan, W. Liu, Y. Xie, and C. Lu. Anygrasp:357

Robust and efficient grasp perception in spatial and temporal domains, 2023. URL https:358

//arxiv.org/abs/2212.08333.359

[32] A. Melnik, B. Alt, G. Nguyen, A. Wilkowski, Q. Wu, S. Harms, H. Rhodin, M. Savva,360

M. Beetz, et al. Digital twin generation from visual data: A survey. arXiv preprint361

arXiv:2504.13159, 2025.362

[33] S. Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Su, L. Zhu, L. Zhang, and Y. Qiao.363

Grounding dino: Marrying dino with grounded pre-training for open-set object detection. In364

arXiv preprint arXiv:2303.05499, 2023.365

[34] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,366

A. C. Berg, W.-Y. Lo, P. Doll’ar, and R. Girshick. Segment anything. In arXiv preprint367

arXiv:2304.02643, 2023.368

[35] Y. Wang, M. Zhang, Z. Li, T. Kelestemur, K. Driggs-Campbell, J. Wu, L. Fei-Fei, and Y. Li.369

D3fields: Dynamic 3d descriptor fields for zero-shot generalizable rearrangement. In 8th An-370

nual Conference on Robot Learning, 2024.371

11

https://aistudio.google.com/
https://arxiv.org/abs/2212.08333
https://arxiv.org/abs/2212.08333
https://arxiv.org/abs/2212.08333


Appendix372

A VLM-Based Reasoning and Video Prompt Generation373

For the goal of generating a video depicting a particular task, we first prompt a VLM to describe the374

best way of grasping and generate a prompt for the same. We use Gemini-Pro as our VLM. This375

task requires the VLM to reason about the object and task semantics. We also put the scene image376

as reference for scene-conditioned reasoning.377

We notice that for many cases the grasp pose described by the VLM remains fairly the same. So, in378

order to be efficient with the number of generated videos, we use a slightly different approach. We379

first prompt the VLM to generate K (3 in our case) distinct ways of grasping the object and then map380

these three ways of grasping to all the tasks. This way is much more efficient as we are generating381

three videos per object, and these can be mapped to all the tasks present for that object. The prompts382

we use are detailed below.383

VLM Prompt: Single Task to Video Prompt

For an object {OBJ}, I want you to describe the best way a single human hand
can hold this object for the task of {TASK}. The {OBJ}’s image is given,
please refer to the image while reasoning about the grasping way for the
given task.

For the holding method, provide:

1. A concise, single-line description of the holding method. (e.g., "Holding
the knife by its handle for cutting.")

2. A detailed text-to-video generation prompt (single paragraph, 7-8 lines).
This prompt must clearly describe the grasping method, the hand’s position
relative to the object/parts. It also must specify that the video should
feature a single hand, the object, and the hand must be completely visible
throughout the video, and the entire object must be in frame at all times.

3. There must be only the right hand in the video prompt. Never use left hand
or both hands in the prompt.

Your response should be in JSON format, where each element of the array is
an object. For the object-task pair, the output JSON must have exactly two
string keys: "way_to_hold" and "video_prompt". Do not include any other text,
explanations, or markdown formatting like ‘‘‘json ... ‘‘‘ outside of the JSON
array itself.

Example of the JSON array structure for a "cup" and task of "drink":
{
"way_to_hold": "Holding a ceramic cup firmly by its D-shaped handle.",
"video_prompt": "Generate a video depicting a single human hand securely
gripping the D-shaped handle of a standard ceramic coffee cup. The fingers
should be visibly wrapped through the handle’s opening, with the thumb
pressing firmly against the top curve of the handle for stability,
ensuring the cup is held upright. The palm is not touching the body of
the cup. The hand must be completely visible throughout the video, and the
entire cup must be in frame at all times. The video should focus on the
hand-object interaction, showing the grip and the cup’s details clearly."

}
Now, generate this JSON for the object {OBJ}.

384
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VLM Prompt: K Distinct Grasping Ways

For an object "{OBJ}", I want you to describe multiple ways (3 ways preferable)
a single human hand can hold this object. Ensure the holding/grasping methods
are distinct, primarily differing in the grasping location on the object.
Assume I will also provide an image of the scene with the video generation
prompt.

For each holding method, provide:

1. A concise, single-line description of the holding method. (e.g., "Holding the
knife by its handle for cutting.")

2. A detailed text-to-video generation prompt (single paragraph, 7-8 lines).
This prompt must clearly describe the grasping method, the hand’s
position relative to the object/parts. It also must specify that the
video should feature a single hand, the object, and The hand must be
completely visible throughout the video, and the entire object must be
in frame at all times.

3. There MUST be only the right hand in the video prompt. Never use left
hand or both hands in the prompt.

Your response MUST be a JSON array, where each element of the array is an
object. Each object in the array must have exactly two string keys:
"way_to_hold" and "video_prompt". Do not include any other text,
explanations, or markdown formatting like ‘‘‘json ... ‘‘‘ outside of
the JSON array itself.

Example of the JSON array structure for a "cup":
[

{
"way_to_hold": "Holding a ceramic cup firmly by its D-shaped handle.",
"video_prompt": "Generate a video depicting a single human hand securely
gripping the D-shaped handle of a standard ceramic coffee cup. The
fingers should be visibly wrapped through the handle’s opening, with the
thumb pressing firmly against the top curve of the handle for stability,
ensuring the cup is held upright. The palm is not touching the body of
the cup. The hand must be completely visible throughout the video, and
the entire cup must be in frame at all times. The video should focus on
hand-object interaction, showing the grip and the cup’s details clearly."

},
{
"way_to_hold": "Cradling the body of a warm ceramic cup with one hand.",
"video_prompt": "Create a video showcasing a single human hand gently
cradling the main cylindrical body of a warm ceramic cup. The fingers
should be spread slightly, conforming to the curve of the cup, with
the palm providing broad support from underneath and the side. The
thumb might rest along the upper rim or side, opposite the fingers.
The hand must be completely visible throughout the video, and the
entire cup must be in frame at all times. The video should highlight
the hand’s gentle grip and the cup’s surface texture."

},
{
"way_to_hold": "Pinching the rim of an empty teacup with thumb and index
finger.", "video_prompt": "Generate a video that illustrate a single
human hand delicately holding an empty, lightweight teacup by its rim.
The grasp involves the thumb pressing on the outer surface of the rim
and the index finger (and possibly middle finger) supporting it from the
inner surface, a precise pinch grip. The remaining fingers might be curled
or extended gracefully away from the cup body. The hand must be completely
visible throughout the video, and the entire cup must be in frame at all
times. The video should focus on the hand’s dexterity and the teacup’s

385
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delicate design."
}

]
Now, generate this JSON array for the object "{OBJ}".

386

VLM Prompt: Task-Video Mapping

You are an expert in robotics and human-object interaction with a focus on
practicality. Your task is to identify ALL suitable ways a single human hand
can hold an object to perform a specific task. Prioritize inclusivity: if a
holding method is **possible or doable** for the task, even if not the
absolute most optimal or common way, it should be considered valid. We want
to ensure we capture at least one plausible holding method if any exists.

Object: "{OBJ}" (original ID: "{XXX_OBJ}")
Task to perform: "{task_name}"

Consider the following predefined ways to hold the object "{OBJ}", including
their descriptions and intended video visualizations:
{holding_options_str}

Reason deeply about the physical requirements of the task "{TASK}" when
performed with the object "{OBJ}".

Consider factors like:
- Stability needed for the task.
- Precision required.
- Force application (if any).
- Necessary orientation of the object.
- Freedom of movement for the hand or object parts.
- Safety and realism of the hold for the given task.

Based on your reasoning, identify **ALL holding methods from the list above
that are possible or doable** for a single human hand to effectively and
realistically perform the task. A task can have multiple valid ways to hold
the object. Your goal is to be comprehensive.

Your response MUST be a JSON object containing a single key "valid_indices".
The value for "valid_indices" must be a list of integers, where each
integer is an index from the provided list of holding methods.
For example:
If methods 0 and 2 are suitable:
{

"valid_indices": [0, 2]
}
If only method 1 is suitable:
{

"valid_indices": [1]
}
If all methods (0, 1, and 2) are considered possible or doable:
{

"valid_indices": [0, 1, 2]
}

There must always be at least one index in the list. Do not include any
other text, explanation, or markdown formatting outside of this JSON object.

387

B AI Generated Video388

A significant portion of our memory dataset (86%) is constructed using AI-generated videos. For this389

purpose, we leverage the capabilities of the Veo 2 generative model. While image-based generative390
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models often struggle with interpreting complex textual prompts, we found that video generation391

models exhibit better fidelity in this regard. Specifically, generated videos demonstrate improved392

performance in adhering to grasping instructions, such as those provided by a large language model393

like Gemini.394

However, these models can still struggle with non-intuitive scenarios or when requiring nuanced395

object interaction. For instance, if an object possesses a prominent handle, the generated video396

might default to a grasp on the handle, even if the prompt specifies a different interaction point.397

Examples illustrating the outputs from our video generation pipeline, including variations based398

on different task prompts given a reference image, are presented in Figure 4. We anticipate that399

continued advancements in such generative models will directly translate to enhanced capabilities400

and performance for our overall framework, further improving its ability to learn from diverse and401

complex interactions.402

Reference Image (a) (b) (c)

Figure 4: On the left we have the reference image used for video generation. (a), (b) and (c) are
sampled frames from the generated videos using different task prompts.

C 3D Hand and Object Reconstruction from Images403

To populate our grasp memory M with task-oriented 6-DOF parallel gripper poses, we process sin-404

gle images depicting human hands interacting with objects. This process leverages and adapts the405

MCC-HO framework presented by Wu et al. [9] for hand-object 3D reconstruction. When process-406

ing AI-generated videos (as detailed in Appendix B), a representative frame is typically selected by407

sampling from the middle of the video, as grasping actions are often consistently depicted there. For408

other image sources, a single static image is used directly.409

The pipeline begins with segmenting the hand and object from the input image. For this, we employ410

Grounding SAM, which typically combines a text-promptable object detector (such as Grounding411

DINO by Liu et al. [33]) with the Segment Anything Model (SAM) by Kirillov et al. [34]. In our412

implementation, we utilize a SAM model with a ViT-Base backbone (facebook/sam-vit-base)413
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Input Mask Reconstructed Point
Cloud Rendered View Aligned hand, gripper

and object

Figure 5: Visualization of the 3D hand-object reconstruction and grasp pose derivation pipeline.
Each row shows four stages: Input image masked by Grounding SAM; Reconstructed 3D Point
Cloud (PCD); Rendered view for DINO feature alignment; and Final aligned pose showing the
reconstructed hand, the derived parallel gripper, and the target object.

for segmentation, guided by prompts to acquire precise masks of the interacting entities. These414

masks guide the subsequent 3D reconstruction.415

Following segmentation, the MCC-HO framework is used to jointly reconstruct the 3D geometry of416

both the hand and the held object from the single view. A critical part of the object reconstruction417

module, adapted for our memory creation, involves an iterative alignment procedure. This alignment418

optimizes the fit of a retrieved or generated object model to the visual and geometric cues from the419

image. The optimization function for this alignment, Lalign, is a weighted sum of a Chamfer loss420

(LCD) and a DINO PCA-based feature similarity loss (LDINO PCA):421

Lalign = LCD(Ptarget, Pcand(R, T, s)) + wDINO · LDINO PCA (4)

where:422
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• Ptarget is the combined target point cloud (from the initial object reconstruction and the423

known hand geometry).424

• Pcand(R, T, s) is the candidate object point cloud, transformed by rotation R, translation T ,425

and scale s.426

• LCD(P1, P2) =
∑

x∈P1
miny∈P2

∥x − y∥22 +
∑

y∈P2
minx∈P1

∥y − x∥22 is the Chamfer427

distance between two point sets P1 and P2.428

• LDINO PCA = 1−simcos(f̄PCA(D(Itarget)), f̄PCA(D(Icand))) measures the cosine dissimilarity429

between the mean PCA-projected DINOv2 features. D(I) represents the DINOv2 features430

extracted from an image I (facebook/dinov2-small-patch14-224, which corresponds431

to ViT-S/14), f̄PCA denotes the mean of these features after PCA projection, Itarget is the432

input image patch, and Icand is the rendered image of the candidate object.433

• wDINO is the weight for the DINO loss component, set to 0.005 in our setup.434

The alignment proceeds through several stages: an initial alignment of principal axes, followed by435

coarse rotational adjustments via flips about these axes, then fine-grained rotational refinement, and436

finally, fine-tuning of the translation. The entire pipeline, from image input to the reconstructed437

hand and object, takes approximately 7 minutes per image to process on an Nvidia RTX4060 laptop438

GPU.439

Once the 3D point cloud of the human hand is accurately reconstructed by the MCC-HO mod-440

ule, we convert this detailed five-fingered representation into a simplified 6-DOF parallel gripper441

pose. This conversion is achieved using our algorithm, which first identifies key segments of the442

hand—specifically the thumb, index finger, middle finger, and the palm/back of the hand—by pro-443

cessing the hand vertices. The centroids of these segments are then used to define the gripper’s444

characteristics. The midpoint between the thumb centroid and the combined centroid of the index445

and middle fingers defines the gripper’s center (translation). The vector connecting the thumb and446

opposing fingers establishes the primary axis for gripper width and one component of its orienta-447

tion. The palm centroid provides a reference point to better estimate the approach vector and thus448

the complete 3D orientation (rotation matrix) of the gripper. The distance between the opposing fin-449

ger segments determines the gripper width, and an estimated gripper finger length is derived based450

on the hand’s overall dimensions and the relative positions of the segments. This method robustly451

extracts a functional parallel gripper pose suitable for robotic execution.452

D Feature Guided Alignment453

The most crucial part of our grasp transfer framework lies in Feature Guided 3D alignment. We454

use DINOv2-vitl14’s visual features for creating our feature-rich point cloud, both for the memory455

object and the scene. Subsequently, we segment the target object using Grounded-SAM to obtain its456

feature-rich point cloud, a process similar to that described by Wang et al. [35]. We explored various457

algorithms for source and target point cloud alignment, including pure geometric alignment and pure458

feature-based alignment. However, we found that neither performs optimally in isolation. Pure geo-459

metric alignment necessitates that the target and source point clouds possess roughly similar shapes;460

even with complete point clouds, it frequently converges to a flipped orientation of the correct one.461

Furthermore, this method suffers particularly in cases involving noisy or partial point clouds. As462

for purely feature-based matching, we observe that methods effective in 2D image domains—such463

as those in Murali et al. [1]—do not translate well to 3D. This is primarily because DINO features,464

being trained on 2D images, capture only visual information. When these features are distilled into465

3D, they suffer from object symmetry, often leading to incorrect correspondences such as matching466

features from the right side of an object to its left, and vice versa.467

To this end, we designed a hybrid alignment algorithm that synergistically leverages both visual468

features and geometric cues. This approach is formalized by a cost function for each potential point469

pair (pm, ps,k) between the memory point cloud (m) and a scene point cloud (s), calculated as a470
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Alignment on Same Object Category

(a) Ladle to Ladle (b) Mortar to Mortar (c) Mug to Mug (d) Scissors to Scissors

Alignments between Objects of Different Category

(e) Ladle to Grater (f) Ladle to Tiller (g) Ladle to Squeegee (h) Ladle to Whisk

(i) Ladle to Paint Roller (j) Mug to Mixing Bowl (k) Mug to Pitcher
(l) Mug to Measuring
Cup

(m) Pan to Spatula (n) Pan to Grater (o) Spatula to Pan (p) Spatula to Spoon

(q) Spatula to Fork (r) Spoon to Toilet Brush (s) Spoon to Paint Roller (t) Spoon to Hammer

Figure 6: Examples of Feature Guided Iterative Alignment. The source object (from memory)
is aligned to the target object (from the scene). The framework demonstrates robust alignment
both within the same object category and across different categories, highlighting its generalization
capabilities.

weighted sum:471

Cpair = wg∥pm − ps,k∥2 + wf (1− cos(F
′D
M,pm

, F
′D
S,ps,k

)) (5)

where pm is a point from the memory object, ps,k is a point from the scene object, and F
′D
X,p de-472

notes the PCA-DINO feature of point p in dataset X . The terms wg and wf represent the weights473

assigned to the geometric and feature similarity components, respectively. Our Feature Guided Iter-474
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Matching Pair Feature-Guided Alignment Pure Geometrical Alignment

Ladle to Grater

Mortar to Mortar

Mug to Pitcher

Mug to Measuring Cup

Pan to Grater

Spoon to Paint Roller

Figure 7: Comparison of object alignments. Column 1 describes the matching pair (Source in red,
Target in blue). Column 2 shows results from our Feature-Guided Alignment, which consistently
produces semantically correct poses. Column 3 shows results from a Pure Geometrical Alignment,
which often fails by converging to incorrect local minima or flipped orientations.

ative Alignment approach is able to perform well even in cases where pure geometric methods fail,475

demonstrating significant robustness and accuracy.476
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The generalization of our feature-guided alignment is particularly evident when aligning objects of477

different categories, as illustrated in the second section of Figure 6. For instance, our framework478

demonstrates that an object in memory possessing a handle, such as a Ladle, can successfully gen-479

eralize its alignment to various other objects in the scene that also feature handles, like a Grater or a480

Whisk. This ability to identify and match salient functional parts like handles across diverse object481

types underscores the semantic understanding embedded within our hybrid approach, facilitated by482

the DINO features guiding the geometric alignment.483

Further highlighting the advantages of our method, Figure 7 provides a direct visual comparison484

between pure geometric alignment and our feature-guided alignment for several challenging pairs.485

For the pure geometric alignment results shown, we effectively set the feature weight wf = 0 in486

Equation 5, relying solely on geometric proximity (wg maintained). As can be observed, the pure487

geometric approach often misaligns, converges to local minima, or results in flipped orientations.488

In contrast, our feature-guided alignment consistently produces more accurate and semantically cor-489

rect alignments. With these results, it becomes apparent that our Feature Guided Iterative Alignment490

stands superior, offering a more robust and generalizable solution for 3D object alignment in com-491

plex scenarios.492
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