Improving Language Model Self-Correction with Meta-Feedback

Anonymous ACL submission

Abstract

Large language models (LLMs) are capable
of self-correct their responses by generating
feedback and refining the initial output. How-
ever, their performance may sometimes decline
following self-correction, either because the
feedback contains errors or because they un-
necessarily attempt to refine an already accu-
rate response. To address these limitations, we
investigate whether LLMs can generate meta-
feedback that pinpoints errors in the feedback
rather than the response. 1While the ability of
LLMs to generate self-feedback has been well-
researched, their potential to provide construc-
tive meta-feedback remains under-explored.
We design a novel self-correction prompting
framework, Feedback-on-Feedback (FoF),
which leverages meta-feedback to improve the
feedback before refining the response. Our
framework first samples multiple feedbacks for
the initial response, and prompts the LLM to
generate a meta-feedback that analyze the in-
consistency between these feedbacks. Based
on the meta-feedback, the LLM generates a
refined feedback that subsequently guides the
revision of the response. Our FoF framework
uniformly outperforms competitive baselines
across two base models in different sizes and
three datasets spanning arithmetic reasoning,
machine translation and programming, with an
improvement of up to 1.68% in GSMS8K task
by LLaMA3-8B model.

1 Introduction

LLMs have revolutionized the field of natural lan-
guage processing, demonstrating exceptional per-
formance across various tasks such as language
generation, translation, and question answering
(OpenAl et al., 2024). Despite their remarkable
capabilities, LLMs often struggle with producing
consistently accurate, coherent, and contextually
relevant responses (Madaan et al., 2023; Chen
et al., 2023; Welleck et al., 2022). One critical area
of improvement is the intrinsic ability of LLMs

to identify and correct errors in their own outputs.
Self-correction is the ability of language models
to identify and rectify errors, inconsistencies, or
shortcomings in their own generated outputs with-
out external intervention (Pan et al., 2023; Madaan
et al., 2023; Chen et al., 2023). This process typi-
cally involves the model first generating a critique
that identifies the limitations of its initial response,
followed by revising the response based on the self-
generated critique. The critique-revise process can
be iterated multiple times to progressively refine
the model’s output, allowing for a more thorough
and comprehensive self-correction (Madaan et al.,
2023).

Previous research on self-correction in LLMs
has explored various approaches, including itera-
tive refinement based on self-feedback (Madaan
et al., 2023), which is error correction through self-
critique (Shinn et al., 2023; Kim et al., 2023), and
improving consistency and confidence of gener-
ated answers (Li et al., 2024a,b). However, these
methods often rely on external feedback, oracle
labels which are often unavailable during inference.
Another line of research dives into the intrinsic self-
correction ability (Huang et al., 2024) of LLMs to
refine the answer without access to external infor-
mation and oracle label. However, (Huang et al.,
2024) suggest that intrinsic self-correction harms
the model performance since the model refine a cor-
rect answer into an incorrect one more frequently
than the other way round. Another limitation of
previous method besides replying on oracle labels—
the quality of LLM-generated feedbacks can be ar-
bitrarily bad without proper guidance or selection,
leading to inferior performance (Shridhar et al.,
2023; Liang et al., 2023b).This naturally leads to
why we want to use meta-feedback to improve the
quality of the feedback before applying them to
refine the answer.

Particularly, their capacity to provide construc-
tive feedback on their own self-feedback, known

Q: Jason had 20 lollipops. He gave Denny some lollipops.
Now Jason has 12 lollipops. How many lollipops did Jason give to Denny?

Base generator

Initial Answer

Step 1: Jason originally had 20 lollipops.

Step 2: The number of lollipops Jason gave
to Denny is the difference between the
original number and the remaining number,
which is 20 - 8 = 12 lollipops.

Step 3: The answer is \\boxed{12} lollipops.

There is no error in the reasoning steps.

I 1

i :

1 1

1

L Feedback 1: :[
1

1 1

{ Your answer is correct.]

1 1

Base generator

Final Answer
...(same as the initial answer)
Step 3: The answer is \\boxed{12} lollipops.

[END] o

S /

[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[

P NSNS ~
\ /'@ Critic model \\
/ \

Feedback 1:
There is no error in the reasoning steps. Your
answer is correct.

Feedback 2:

Step2: The number of lollipops given to Denny
should be the difference between 20 and 12. The
correct calculation is 20-12=8

eedback on Feedback (FoF):
Clarification are needed for your feedbacks. One
feedback suggest the reasoning steps are correct,
while another one is not.
Critic model

Refined Feedback:
Step2: Jason had 20 lollipops originally and now has

|
|
|
|
|
|
|
|
|
G |
¢#ll¥\ Base generator |
|
|
|
|
|
|
|
|
|
12. The correct calculation is 20-12=8 |

Refined answer:

....(same as the initial answer)

Step 2: The number of lollipops Jason gave to
Denny is the difference between the original
number and the remaining number, which is 20 -
12 = 8 lollipops.

Step 3: The answer is \\boxed{8} lollipops.

Figure 1: An illustrative example of FoF compared to the Self-refine setting (Madaan et al., 2023). In the

Self-refine setting (left) , the base generator generates a initial answer to the given problem, and the critic model
provides feedback on the initial response. However, since the feedback is wrong, the answer model remains with
the 'wrong answer . In the FoF setting (right) , the critic model samples two feedback on the initial response
simultaneously. The base generator identifies the need for clarification between the conflicting feedbacks, which
requires the critic model to correct the feedback. Based on the refined feedback, the answer model refines the wrong
answer and provides the correct answer .The question is from GSM8K (Cobbe et al., 2021) and all answers and

feedbacks are generated by gpt-3.5-turbo-0515.

as meta-feedback, remains less explored. This vast
capability raises an intriguing question: Can the
meta-feedback improve the quality of feedback
generated by LLLMs, and subsequently enhance
the final output?

To address these limitations, we propose a
Feedback-on-Feedback (FoF) method. FoF ad-
dresses the limitations of existing methods by lever-
aging meta-feedback to improve the quality of feed-
back and, consequently, the accuracy of the refined
answers. Unlike methods that rely on external feed-
back or oracle labels, the FoF framework 1) identi-
fies the inconsistency between multiple LLM-self-
generated feedbacks based on their semantic simi-
larities, 2) generates an additional meta-feedback
to analyze their inconsistency, 3) refines the feed-
back with meta-feedback and 4) revise the answers
with the refined feedback. An example of potential

failure in intrinsic self-correction is demonstrated
in Figure 1. When the first feedback indicates the
initial answer is correct and the second feedback
shows there is still an error in the answer, com-
bining different stances of feedback and the clar-
ification from meta-feedback together provides a
more accurate feedback. This approach enables
FoF to operate effectively in zero-shot scenarios
without demonstrations, highlighting its generaliz-
ability across various tasks.

We conduct experiments on three datasets:
GSMS8K (arithmetic reasoning) (Cobbe et al.,
2021), CSMT (machine translation) (He et al.,
2020), and MBPP (programming problem-solving)
(Austin et al., 2021). Our FoF method outperforms
the Self-Refine (Madaan et al., 2023) baseline and
standard prompt (without self-corrective feedback
and answer) across all tasks and two models includ-

ing one close source model: GPT-3.5-0515 (Brown
et al., 2020) and a open source model: LLaMA3-
8B (Touvron et al., 2023) in zero-shot setting. For
example, FoF achieves up to a 1.68% improvement
in the GSMSK task using LLaMA-3-8B ompared
to self-refine, a 6.37% improvement in the CSMT
task using LLaMA3-8B over the standard prompt,
and a 2.59% improvement in the MBPP task using
LLaMA-8B over self-refine. These results demon-
strate the effectiveness of the FoF method in im-
proving the self-correction ability of LLMs across
various tasks and model sizes.
Our contributions are threefold:

1. We introduce the FoF prompting method,
which shows meta-feedback could examine
the quality of multiple feedbacks, then im-
prove the accuracy of answer.

2. We demonstrate improvements across multi-
ple datasets, including GSM8K, CSMT and
MBPP along GPT-3.5-0515 and LLama3-8B,
demonstrating up to 1.68% improvements in
the GSMS8K task over self-refine.

3. We highlight the importance of selecting and
integrating multiple feedback to improve an-
swer accuracy. By addressing inconsistencies
between feedback, our approach ensures more
accurate and consistent self-correction.

2 Related works

Natural language feedback. The ability of
LLMs to self-correct has garnered significant at-
tention, with various approaches proposed to en-
hance this capability. Recent advancements lever-
age model natural language feedback and iterative
refinement techniques (Ye et al., 2023; Madaan
et al., 2023; Shinn et al., 2023; Kim et al., 2023).
Approaches include evaluating alignment to guide
iterative refinement (Madaan et al., 2023; Gou
et al., 2024; Ye et al., 2023; Aggarwal et al., 2023;
Akyurek et al., 2023; Shinn et al., 2023; Paul et al.,
2024; Zheng et al., 2023; Kim et al., 2023), in-
tegrating diverse prompts and internal or external
verifiers to score reasoning paths (Gero et al., 2023;
Li et al., 2023c; Zelikman et al., 2022), and using
multi-agent debate where LLMs interact to reach
consensus (Du et al., 2023; Cohen et al., 2023; Li
et al., 2023a; Liang et al., 2023a), which is orthog-
onal to the method FoF that includes extra agents
for self-feedback.

However, some of the methods (Shinn et al.,
2023; Madaan et al., 2023; Kim et al., 2023) de-
pend on oracle labels or external feedback to de-
termine when to stop the self-correction process.
Multi-agent debate settings have also been found to
be less efficient than self-consistency approaches.
(Huang et al., 2024). These issues and limita-
tions raise questions about the true intrinsic self-
correcting capabilities of LLMs (Huang et al.,
2024). In contrast with those methods, our ap-
proach do not involve oracle label and feedback
from external verifer. Our approach completely
depends on model’s intrinsic self-feedback ability.

Consistency in reasoning steps. Numerous re-
searches showcase that the accuracy of final an-
swer is influenced by both consistency and conti-
nuity of reasoning steps (Wang et al., 2023d; Li
et al., 2023c). Consistency-relevant approaches fo-
cus on improving the consistency and confidence
of LLM-generated answers. Consistency work of-
ten involves sampling then selection framework
Works (Shridhar et al., 2023), self-consistency
samples the reasoning steps 40 times (Wang et al.,
2023d), Adaptive Consistency which reduces sam-
pling to 7.9 times with an early stop criterion, and
SCREWS (Shridhar et al., 2023) which integrates
multiple selection methods like majority-voting
and machine-selection. Confidence Matters (Li
et al., 2024a) and Think Twice (Li et al., 2024b)
sample answers, prompting the model to generate
a new answer if conflicts arise between the initial
responses. With all current works focus on the
consistency on the reasoning steps, our method is
crafted to focus on the consistency between feed-
back.

Feedback Quality Evaluation Recent studies
have focused on evaluating the quality of feed-
back to enhance the self-correction ability of LLMs
(Sun et al., 2024). Alignment evaluation ensures
LLMs’ outputs align with human values and ethical
standards by assessing biases, toxicity, and truthful-
ness (Hendrycks et al., 2023; Huang et al., 2023).
LLMs (OpenAl et al., 2024; Fu et al., 2023; Liu
et al., 2023; Ke et al., 2023; Li et al., 2023b) and
humans (Saunders et al., 2022; Wang et al., 2023c)
have been used as critics or annotators to evaluate
and improve generated outputs. CriticBench (Lan
et al., 2024) introduces a benchmark for assess-
ing feedback and meta-feedback capabilities using
both subjective GPT-4 evaluation and objective hu-
man alignment (Figure 6). Unlike CriticBench,

which relies on costly human consumption and
long prompt inputs, we use a lightweight evaluation
method with gpt3.5-0515 as a judge to provide ex-
planations and scores for feedback/meta-feedback
(Figure 10).

3 Method

In this section, we introduce the Feedback-on-
Feedback (FoF) prompting method, which con-
sists of a base generator, a critic model, and a three-
step feedback refinement process that includes feed-
back generation, meta-feedback generation, and
feedback refinement. A detailed FoF algrothm
could be found in E.

3.1 Base Generator

The base generator is a large language model
(LLM) that takes the question () as input and gener-
ates an initial answer Ry. The initial answer is gen-
erated using zero-shot chain-of-thought prompting
(Brown et al., 2020; Wei et al., 2023). Given an in-
put question (), a generation prompt pge, (Madaan
et al., 2023) (see Figure 7 in the appendix), and a
base generator BG, the initial answer Ry is gener-
ated as follows:

Ro = BG(pgen || Q) (1)

3.2 Critic Model

The critic model is another LLM that takes the CoT
which contains initial answer Ry and the question
@ as input and provides feedback on the quality of
the answer. To generate the feedback, we prompt
the critic model with the prompt ps;, shown in Fig-
ure 8 in the appendix.

The critic model samples feedback with a tem-
perature of O to generate F; and F5 based on its
training data and the given prompt (see Figure ??):

Fi,F, =CM(ps || Q, Ro) 2

3.3 Feedback Refinement

The feedback refinement process aims to improve
the quality of the feedback and generate a refined
answer. It consists of the following steps:

3.3.1 Feedback Similarity Check

We compute the semantic similarity .S between the
two feedback samples Fy and F5 using a similarity
function:

S = SemanticSimilarity (F, F») 3)

To determine different categories of feedback
similarity (agree/disagree/need clarification), we
define the thresholds #; and 6, to categorize the
feedback similarity levels. In Section 4, we will
discuss our specific settings for these thresholds.

3.3.2 Feedback-on-Feedback (FoF)
Generation

If the feedback samples F} and F3 have low sim-
ilarity, we generate FoF using the base generator
BG and the prompt py,s shown in Figure 2:

FoF = BG(pfof || F1, F2) “)

Need Clarification: Clarifications are
needed from the sampling feedbacks, try to
clarify the feedbacks

Disagree: Critic model is giving two
different feedbacks, check the feedbacks
and give the best feedback

Here are the two sampling feedbacks from
the critic model on your previously
generated reasoning step:

{Feedback Sample 1} + {Feedback Sample 2}

\\:‘ﬂeed Clarification/Disagree A///

Figure 2: The prompt used for generating FoF

3.3.3 Refined Feedback Generation

The refined feedback R I is generated by the critic
model C'M using all the history contexts including
the question @, the initial answer Ry, the FoF, and
the feedback samples I and F», and the prompt
pry (see Figure 3) :

The critic model may need clarification or
disagree with you:{fof_original}

Please give only one refined feedback based
on the fof from the critic model.

Figure 3: The prompt used for feedback refinement

RF = CM(p,s || Q, Ro, FoF, F1,Fy) (5)

3.3.4 Final Answer Refinement

The final refined answer Ry is generated by the
base generator BG using the question (), the initial
answer Ry, and the refined feedback RF', along
with the refined answer prompt p,, (see Figure 9
in appendix):

Ry = BG(pra || Q, Ro, RF) (6)

The refined answer Ry is the final output of the
FoF prompting method, which incorporates the
feedback and refinement process to improve the
accuracy and reliability of the generated answer.

4 Experiments

4.1 Models

We utilize state-of-the-art language models as the
base generator and critic in our FoF framework:

We use the GPT-3.5-turbo model and LLaMA3-
8B, one is open-source model and another is pro-
prietary model. They demonstrated strong perfor-
mance in various natural language tasks, includ-
ing question answering and reasoning. We utilize
the LLaMA3-8B model, which balances advanced
capabilities with computational efficiency. Since
GPT4 is considered as a strong model due to its
performance on various benchmarks and its large
parameter 1.76 trillion (OpenAl et al., 2024), We
show the usage pf GPT-4 as critic model which
showcase that higher quality feedback from strong
model would enhance the model accuracy,

4.2 Benchmarks

We evaluate the performance of our FoF approach
on two diverse benchmarks:

Math Reasoning: We use the GSM8K dataset
(Cobbe et al., 2021), comprising 8.5K grade school
math word problems to assess multi-step reasoning
and numerical accuracy. For our evaluation, we
specifically utilize the test set from GSM8K, which
contains 1,319 examples.

Machine Translation: We employ the Common-
sense Machine Translation (CSMT) dataset (He
et al., 2020) to evaluate translation quality, using
automatic metrics BLEURT (Sellam et al., 2020)
and COMET (Stewart et al., 2020). Bleurt (Sellam
et al., 2020) is a learned evaluation metric based on
BERT, which takes source text as reference. While
COMET is s neural framework, which takes source
text along with the gold answer translation as ref-
erences. We take the test set from CSMT, which
contains 200 examples.

Programming Problem Solving: We use the
MBPP (Multiple Benchmark Programming Prob-
lems) dataset (Austin et al., 2021), featuring 974
Python problems to test the model’s ability to gen-
erate correct and efficient code. We perform ex-
periments on the test set of MBPP, which contains

500 python problems, where each problems has 3
unit tests. We follow prior work in including the
first unit test in the prompt as part of the problem
desciption (Chen et al., 2023, 2021), and keep the
remaining 2 unit tests hidden for full evaluation.
We evaluate MBPP based on the pass@k metric,
pass@k indicates the proportion of problems for
which at least one out of k generated solutions is
correct (Chen et al., 2021). We use pass@1 to
evaluate FoF’s performance on MBPP.

Note that we only ran these experiments once.
To ensure fairness between the Self-Refine and FoF
settings, we designed FoF to take the initial answer
and first round feedback from Self-Refine as part
of the sampling feedback in the first round.

4.3 Baselines

CoT-Prompting: Chain-of-Thought (CoT)
prompting (Wei et al., 2023) is a technique
that elicits reasoning in large language models
by encouraging them to generate intermediate
reasoning steps before arriving at the final answer.
This method enhances the model’s ability to
solve complex problems by breaking down the
problem-solving process into smaller steps, where
the prompt contains "let’s think step by step".

Self-refine Prompting: The primary baseline
method in this study is the Self-Refine method
(Madaan et al., 2023). Self-refine prompting is an
iterative refinement method that enables the model
to generate self-feedback and use it to improve its
initial outputs. Self-refine Prompting is also be ref-
ereed as critical prompting by Huang et al. (Huang
et al., 2024), which contains the guided sentence
like "find the error in your reasoning step".

4.4 Feedback Sampling

In our experiments, we sample 2 feedback re-
sponses from the critic model with a temperature
of 0.7. This temperature value ensures that the gen-
erated feedback samples are diverse (Renze and
Guven, 2024; Wang et al., 2020, 2023a), allowing
us to test the core idea of generating meta-feedback
effectively.

4.5 Stop Condition

We follow the setup by Self-Refine (Madaan et al.,
2023), where the feedback refinement process stops
when it reaches the feedback round limit or when
the feedback contains the phrase "there is no error".

4.6 Semantic Similarity Threshold

The semantic similarity threshold 6; and 05, set at
0.5 and 0.8 respectively. These thresholds were
chosen based on manual inspection of a few ex-
amples from the validation set. Optimizing these
thresholds is resource-consuming, as it would re-
quire extensive hyperparameter tuning.

* If 0 < S < 0.5, the feedback samples are
considered to disagree with each other.

¢ If 0.5 < § < 0.8, the feedback samples need
clarification, examples could be find in 5.3.

* If S > 0.8, the feedback samples are consid-
ered to agree with each other.

5 Result

5.1 Main result

By comparing our approach with standard prompt-
ing method and self-refine prompting method, we
can directly observe impact of meta-feedback on
enhancing the feedback quality , which results in
better final asnwer accuracy. We perform evalua-
tions using two different large-scale models across
three benchmark datasets. These evaluations span
multiple types of tasks, covering arithmetic reason-
ing, commonsense reasoning, and programming
problem solving.

As summarized in Table 1, the FoF method
consistently demonstrates improvements across all
benchmarks compared to the standard prompt and
Self-Refine. For instance, using GPT-3.5-0515,
our FoF method achieved an average accuracy
of 78.71% on GSMB8K, representing a 0.79% im-
provement over the standard prompt and a slightly
increase compared to Self-Refine. Notably, for
the LLaMA3-8B model, the FoF method achieve
45.17% accuracy, marking a 3.58% improvement
over the standard prompt and a 1.68% increase
compared to Self-Refine. The improvements from
our method tend to decrease as the model capability
increases, yet the decision refinement stage consis-
tently enhances performance across all models. It
is notable that the performance of GPT-3.5-0515 on
GSMSK decrease after applying Self-Refine, this
is aligned with the finding of Huang et al (Huang
et al., 2024). In the MBPP task, we assessed the
effectiveness of the FoF method using the GPT-
3.5-0515 and LLaMA3-8B models. As shown in
Table 1, the FoF method achieved an accuracy of

Low Acc

0.18 IO.G
0.4

-0.2

0.12

0.01

Answer Accuracy

High Acc

Low duality High duality
Self-Refine Feedback Score

> o
&<
g3 021 0.06 |O.6
30
(o]
& 0.4
g
g -0.2
2 o001 0.72
co
g T

Low duality High quality
FoF Feedback Score

Figure 4: Heatmaps comparing feedback score corre-
lation with answer accuracy for Self-Refine (top) and
FoF (bottom) approaches. Low accuracy (0-0.5) and
high accuracy (0.5-1) are shown along with low (0-5)
and high (5-10) feedback quality. Self-Refine shows
weak correlation, with 42% of data in the low feedback
and low accuracy quadrant. FoF shows positive cor-
relation, s with 72% of data in the high feedback and
high accuracy quadrant. Note the imbalance: 228/500
examples have Self-Refine feedback and 118/500 have
FoF feedback, indicating fewer examples for FoF but
still demonstrating that higher feedback quality leads to
higher accuracy in the MBPP task.

75.27% with GPT-3.5-0515, reflecting a 3.77% im-
provement over the standard prompt and a 1.19%
increase compared to the Self-Refine method.

In the Machine Translation Tasks, we evaluate
the performance using the BLEU and COMET met-
rics. Our FoF approach achieves significant im-
provements in both BLEU and COMET scores af-
ter 4 rounds of iterative refinement. The BLEU
score increases from 63.77 to 67.37, while the
COMET score improves from 71.5 to 75.27. These
results demonstrate the effectiveness of the FoF
mechanism in enhancing the quality of the gener-
ated translations via iterative feedback and refine-
ment rounds.

Higher Feedback Quality Leads to Better An-
swer Figure 4 visualizes the correlation between
feedback scores and answer accuracies for both
methods. The FoF heatmap reveals a strong pos-
itive correlation, with 72% of data points falling

GSM8K CSMT MBPP
Acc Acc with Oracle Label BLEURT COMET Acc

GPT-3.5-0515 + Initial Answer 77.92 77.92 63.77 71.50 71.50

+ Self-refine 7742 78.79 66.07 74.08 74.08

+ FoF 78.71 80.08 67.37 75.27 75.27
Llama-3-8B + Initial Answer 41.59 41.59 60.30 62.45 45.30

+ Self-refine 43.49 44.02 63.07 66.03 49.08

+ FoF 45.17 45.7 66.29 68.03 51.67

Table 1: The performance comparison between our FoF method and the self-refine method

FoF Incorrect to Correct
FoF Correct to Incorrect
Self-Refine Incorrect to Correct
40 Self-Refine Correct to Incorrect

"]
o
o
c
£30
(%]
Y=
5 50
@
20
2 38
g 1 14
H 7
10 7
9
8 8 5
°
e Round 1 Round 2 Round 3
Rounds

Figure 5: Comparison of FoF and Self-Refine meth-
ods (Madaan et al., 2023) on GSMS8K using the GPT-
3.5-turbo-0515 model. Wrong — Correct: Number of
initially incorrect answers changed to correct across 3
answer rounds. Correct — Wrong: Number of initially
correct answers changed to incorrect across 3 answer
rounds.

into the high feedback score and high answer accu-
racy quadrant. In contrast, the Self-Refine heatmap
shows a weaker correlation, with data points dis-
tributed across all quadrants.

Our analysis suggests that refining feedback
through an iterative process improves the corre-
lation between feedback scores and answer accu-
racy. Our analysis indicates that iterative feedback
refinement enhances the correlation between feed-
back scores and answer accuracies. This finding
is consistent with CriticBench (Lan et al., 2024),
which states that higher feedback quality leads to
improved accuracy in question answering.

FoF Changes More Answers Than Self-Refine
We further evaluate the changes in the answers
after applying self-correction with the FoF method.
The results on the GSMS8K datasets by GPT-3.5-
0515 model are illustrated in Figure 3. Our FoF
method significantly increases the rate of Incorrect

Base Critic ~ Prompt Type # of Feedback GSM8K
Model Model Samples Accuracy

+ Standard Prompt 0 77.27

+ Self-refine 0 79.26
GPT-3.5 GPT35 | Selfrefine 2 77.78

+ FoF 2 79.79

+ Standard Prompt 0 78.24

+ Self-refine 0 85.88
GPT-3.5 GPT-4 + Self-refine 2 85.48

+ FoF 2 86.05

Table 2: Ablation study on the impact of critic model
quality on final accuracy. Results are shown for the
GSMSK dataset with GPT-3.5 as the base generator and
using GPT-3.5, GPT-4 as the critic model.

— Correct changes, demonstrating its effectiveness
in enhancing answer accuracy. The pie charts in
Figures 4 and 5 provide a clearer comparison of the
two approaches after 4 rounds of refinement. While
both methods have similar percentages of wrong-
to-wrong transitions (22.5% for FoF and 22.4%
for Self-Refine), Figure 5 demonstrate that FoF
outperforms Self-Refine in the wrong-to-correct
category (3.2% vs. 3.5%) in each round. FoF
exhibits greater diversity compared to Self-Refine
in terms of answer generation. This aligns with
Huang et al. (Huang et al., 2024), who notes that
mischanges result in self-correction failures.The
improvements of FoF across tasks are due to fewer
mischanges in feedback and answer rounds.

5.2 Ablation Studies

We conducted an ablation study to investigate
the impact of the critic model’s quality on the fi-
nal performance of our FoF approach. We com-
pared two critic models, GPT-3.5 and GPT-4, while
keeping the base generator fixed as GPT-3.5. Ta-
ble 2 presents the results on the GSM8K dataset.
The findings highlight the importance of the critic

model’s quality in the FoF framework. By employ-
ing a more advanced language model as the critic,
the system can generate higher-quality critiques,
which in turn guide the base generator to produce
more accurate corrections. This finding aligns with
the results presented in CriticBench (Lan et al.,
2024), which evaluates the critique capabilities of
various LLMs and emphasizes the importance of
high-quality critiques for model improvement.

We also included a self-refine with two sampling
variants to ensure a comparison using the same
amount of API calls and a similar number of to-
kens. We sampled two feedbacks to not exceed
the token limit of 4098. In this setting, self-refine
generates two sampling feedbacks, and the base
generator selects the one it has the most confidence
in. The results indicate that LLMs lack the ability
to choose the best feedback without external verifi-
cation mechanisms, such as consistency checks.

5.3 Case Study

5.3.1 Failed Examples and Analysis

While our FoF method demonstrates significant im-
provements in self-correction capabilities, it is im-
portant to acknowledge and analyze the instances
where the method did not perform as expected. In
this example, the initial answer is correct but in-
cludes incorrect intermediate steps. The two feed-
back samples provide incorrect guidance, leading
FoF to agree with the inaccurate feedback and pro-
duce a refined response that reinforces the wrong
answer. This case illustrates how multiple inaccu-
rate feedback samples can compound errors, dis-
tracting FoF from identifying the correct solution.
Consequently, FoF fails to recognize the initial an-
swer as correct and follows the misleading feed-
back, resulting in an incorrect final answer. More
failed and successful examples are available in B.1
and B.1.4.

Gold Answer: (...detailed reasoning steps)
7*2=14

Initial Answer: (...detailed reasoning steps)
5*%(14/5) = 5*2 = 10 (Correct initial answer
with wrong middle steps)

Feedback sample 1: The solution should
round 14/5 (which equals 2.8) up to 3. (Wrong
feedback which focuses on fractions.) Feed-
back sample 2: The reasoning steps deduce
the total number of old records brought in by
the 5 people as 10. (Wrong feedback which
leads to the incorrect answer) Clarifications
are needed.

FoF: The first feedback seems not directly re-
lated to the problem, while the second feed-
back claims the reasoning steps are correct.
Based on the reasoning steps, I also think it is
correct. (FoF agrees with the incorrect feed-
back)

\

6 Conclusion

In this study, we investigated the FoF approach
for enhancing the intrinsic self-correction (Huang
et al., 2024) capability of LLMs by applying meta-
feedback (Lan et al., 2024) in the feedback refine-
ment process. By applying our FoF method, LLMs
achieve higher accuracy in math reasoning tasks
and better quality in generation tasks and machine
translation tasks. The study also highlights the
importance of critic model quality in generating
high-quality feedback, which has a impact on the
base generator’s performance. The FoF method
exhibits a positive correlation between feedback
scores and answer accuracy, indicating that higher
feedback quality leads to improved performance.
The ablation study emphasizes the significance of
the critic model’s quality in the FoF framework,
with more advanced language models as critics
leading to more accurate corrections by the base
generator. Future work could explore the integra-
tion of various feedback sources, including human-
in-the-loop (Cai et al., 2023; Mosqueira-Rey et al.,
2022) with more sampling involved. With the rapid
development of LLM research, there are more ad-
vanced metrics to evaluate semantic similarity, such
as semantic entropy (Kuhn et al., 2023) and Sim-
Gpt (Wang et al., 2023b). In this work, we propose
FoF with the basic semantic similarity metric, co-
sine similarity, to show some primary results in this
new area.

7 Limitations

Despite the promising results of the FoF approach,
our study has several limitations. Our findings con-
tribute to the growing body of research on LLM
self-correction and highlight the importance of de-
veloping structured approaches to guide LLMs in
refining their outputs. However, it is crucial to
acknowledge the biases and limitations of using
LLMs as critics in math reasoning tasks, as dis-
cussed by Zheng et al. (Zheng et al., 2023). The
limited capability of LLMs in grading math and
reasoning questions could impact the effectiveness
of FoF and Self-refine on datasets like GSM8K.

To mitigate these limitations and enhansce the ro-
bustness of our FoF method, future research should
explore incorporating techniques such as swapping
positions, using few-shot examples, penalizing un-
necessarily lengthy feedback, and employing differ-
ent LLMs for generating initial responses and feed-
back. Additionally, integrating chain-of-thought
prompting, human alignment, or reference-guided
grading (Wei et al., 2023; Ouyang et al., 2022;
Dong et al., 2023; Yoon, 2023; Hasanbeig et al.,
2023) could improve the LLM’s ability to generate
accurate feedback for math and reasoning ques-
tions.

References

Pranjal Aggarwal, Aman Madaan, Yiming Yang, and
Mausam. 2023. Let’s sample step by step: Adaptive-
consistency for efficient reasoning and coding with
llms. Preprint, arXiv:2305.11860.

Afra Feyza Akyurek, Ekin Akyurek, Ashwin Kalyan,
Peter Clark, Derry Tanti Wijaya, and Niket Tandon.
2023. RLA4F: Generating natural language feedback
with reinforcement learning for repairing model out-
puts. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 7716-7733, Toronto,
Canada. Association for Computational Linguistics.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models. Preprint, arXiv:2108.07732.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin

Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Zefan Cai, Baobao Chang, and Wenjuan Han.
2023. Human-in-the-loop through chain-of-thought.
Preprint, arXiv:2306.07932.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. Preprint,
arXiv:2107.03374.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. Preprint, arXiv:2304.05128.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Roi Cohen, May Hamri, Mor Geva, and Amir Glober-
son. 2023. Lm vs Im: Detecting factual errors via
cross examination. Preprint, arXiv:2305.13281.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan
Zhang, Winnie Chow, Rui Pan, Shizhe Diao, Jipeng
Zhang, Kashun Shum, and Tong Zhang. 2023. Raft:
Reward ranked finetuning for generative foundation
model alignment. Preprint, arXiv:2304.06767.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B.
Tenenbaum, and Igor Mordatch. 2023. Improving
factuality and reasoning in language models through
multiagent debate. Preprint, arXiv:2305.14325.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei
Liu. 2023. Gptscore: Evaluate as you desire.
Preprint, arXiv:2302.04166.

Zelalem Gero, Chandan Singh, Hao Cheng, Tris-
tan Naumann, Michel Galley, Jianfeng Gao, and
Hoifung Poon. 2023. Self-verification improves
few-shot clinical information extraction. Preprint,
arXiv:2306.00024.

https://arxiv.org/abs/2305.11860
https://arxiv.org/abs/2305.11860
https://arxiv.org/abs/2305.11860
https://arxiv.org/abs/2305.11860
https://arxiv.org/abs/2305.11860
https://doi.org/10.18653/v1/2023.acl-long.427
https://doi.org/10.18653/v1/2023.acl-long.427
https://doi.org/10.18653/v1/2023.acl-long.427
https://doi.org/10.18653/v1/2023.acl-long.427
https://doi.org/10.18653/v1/2023.acl-long.427
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2306.07932
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2304.05128
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2305.13281
https://arxiv.org/abs/2305.13281
https://arxiv.org/abs/2305.13281
https://arxiv.org/abs/2304.06767
https://arxiv.org/abs/2304.06767
https://arxiv.org/abs/2304.06767
https://arxiv.org/abs/2304.06767
https://arxiv.org/abs/2304.06767
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2302.04166
https://arxiv.org/abs/2306.00024
https://arxiv.org/abs/2306.00024
https://arxiv.org/abs/2306.00024

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong
Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
2024. Critic: Large language models can self-
correct with tool-interactive critiquing. Preprint,
arXiv:2305.11738.

Hosein Hasanbeig, Hiteshi Sharma, Leo Betthauser, Fe-
lipe Vieira Frujeri, and Ida Momennejad. 2023. Al-
lure: Auditing and improving llm-based evaluation
of text using iterative in-context-learning. Preprint,
arXiv:2309.13701.

Jie He, Tao Wang, Deyi Xiong, and Qun Liu. 2020.
The box is in the pen: Evaluating commonsense rea-
soning in neural machine translation. In Findings
of the Association for Computational Linguistics:
EMNLP 2020, pages 3662-3672, Online. Association
for Computational Linguistics.

Dan Hendrycks, Collin Burns, Steven Basart, An-
drew Ceritch, Jerry Li, Dawn Song, and Jacob Stein-
hardt. 2023. Aligning ai with shared human values.
Preprint, arXiv:2008.02275.

Jie Huang, Xinyun Chen, Swaroop Mishra,

Huaixiu Steven Zheng, Adams Wei Yu, Xiny-

ing Song, and Denny Zhou. 2024. Large language

models cannot self-correct reasoning yet. Preprint,
arXiv:2310.01798.

Yue Huang, Qihui Zhang, Philip S. Y, and Lichao
Sun. 2023. Trustgpt: A benchmark for trustwor-
thy and responsible large language models. Preprint,
arXiv:2306.11507.

Pei Ke, Bosi Wen, Zhuoer Feng, Xiao Liu, Xuanyu Lei,
Jiale Cheng, Shengyuan Wang, Aohan Zeng, Yuxiao
Dong, Hongning Wang, Jie Tang, and Minlie Huang.
2023. Critiquellm: Scaling 1lm-as-critic for effective
and explainable evaluation of large language model
generation. Preprint, arXiv:2311.18702.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer.
2023. Language models can solve computer tasks.
Preprint, arXiv:2303.17491.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. 2023.
Semantic uncertainty: Linguistic invariances for un-
certainty estimation in natural language generation.
Preprint, arXiv:2302.09664.

Tian Lan, Wenwei Zhang, Chen Xu, Heyan Huang,
Dahua Lin, Kai Chen, and Xian ling Mao. 2024. Crit-
icbench: Evaluating large language models as critic.
Preprint, arXiv:2402.13764.

Loka Li, Guangyi Chen, Yusheng Su, Zhenhao
Chen, Yixuan Zhang, Eric Xing, and Kun Zhang.
2024a. Confidence matters: Revisiting intrinsic
self-correction capabilities of large language mod-
els. Preprint, arXiv:2402.12563.

Moxin Li, Wenjie Wang, Fuli Feng, Fengbin Zhu, Qi-
fan Wang, and Tat-Seng Chua. 2024b. Think twice
before assure: Confidence estimation for large lan-
guage models through reflection on multiple answers.
Preprint, arXiv:2403.09972.

10

Ruosen Li, Teerth Patel, and Xinya Du. 2023a.
Prd: Peer rank and discussion improve large
language model based evaluations. Preprint,
arXiv:2307.02762.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023b. Alpacaeval: An
automatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2023c. Making
large language models better reasoners with step-
aware verifier. Preprint, arXiv:2206.02336.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,
Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu, and
Shuming Shi. 2023a. Encouraging divergent thinking
in large language models through multi-agent debate.
Preprint, arXiv:2305.19118.

Weixin Liang, Yuhui Zhang, Hancheng Cao, Binglu
Wang, Daisy Ding, Xinyu Yang, Kailas Vodrahalli,
Siyu He, Daniel Smith, Yian Yin, Daniel McFar-
land, and James Zou. 2023b. Can large language
models provide useful feedback on research pa-
pers? a large-scale empirical analysis. Preprint,
arXiv:2310.01783.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. G-eval:
NLG evaluation using gpt-4 with better human align-
ment. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 2511-2522, Singapore. Association for Com-
putational Linguistics.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Shashank Gupta, Bodhisattwa Prasad Majumder,
Katherine Hermann, Sean Welleck, Amir Yazdan-
bakhsh, and Peter Clark. 2023. Self-refine: It-
erative refinement with self-feedback. Preprint,
arXiv:2303.17651.

Eduardo Mosqueira-Rey, Elena Herndndez-Pereira,
David Alonso-Rios, José Bobes-Bascaran, and Angel
Fernandez-Leal. 2022. Human-in-the-loop machine
learning: a state of the art. Artificial Intelligence
Review, 56.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke

https://arxiv.org/abs/2305.11738
https://arxiv.org/abs/2305.11738
https://arxiv.org/abs/2305.11738
https://arxiv.org/abs/2309.13701
https://arxiv.org/abs/2309.13701
https://arxiv.org/abs/2309.13701
https://arxiv.org/abs/2309.13701
https://arxiv.org/abs/2309.13701
https://doi.org/10.18653/v1/2020.findings-emnlp.327
https://doi.org/10.18653/v1/2020.findings-emnlp.327
https://doi.org/10.18653/v1/2020.findings-emnlp.327
https://arxiv.org/abs/2008.02275
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2306.11507
https://arxiv.org/abs/2306.11507
https://arxiv.org/abs/2306.11507
https://arxiv.org/abs/2311.18702
https://arxiv.org/abs/2311.18702
https://arxiv.org/abs/2311.18702
https://arxiv.org/abs/2311.18702
https://arxiv.org/abs/2311.18702
https://arxiv.org/abs/2303.17491
https://arxiv.org/abs/2302.09664
https://arxiv.org/abs/2302.09664
https://arxiv.org/abs/2302.09664
https://arxiv.org/abs/2402.13764
https://arxiv.org/abs/2402.13764
https://arxiv.org/abs/2402.13764
https://arxiv.org/abs/2402.12563
https://arxiv.org/abs/2402.12563
https://arxiv.org/abs/2402.12563
https://arxiv.org/abs/2402.12563
https://arxiv.org/abs/2402.12563
https://arxiv.org/abs/2403.09972
https://arxiv.org/abs/2403.09972
https://arxiv.org/abs/2403.09972
https://arxiv.org/abs/2403.09972
https://arxiv.org/abs/2403.09972
https://arxiv.org/abs/2307.02762
https://arxiv.org/abs/2307.02762
https://arxiv.org/abs/2307.02762
https://github.com/tatsu-lab/alpaca_eval
https://arxiv.org/abs/2206.02336
https://arxiv.org/abs/2206.02336
https://arxiv.org/abs/2206.02336
https://arxiv.org/abs/2206.02336
https://arxiv.org/abs/2206.02336
https://arxiv.org/abs/2305.19118
https://arxiv.org/abs/2305.19118
https://arxiv.org/abs/2305.19118
https://arxiv.org/abs/2310.01783
https://arxiv.org/abs/2310.01783
https://arxiv.org/abs/2310.01783
https://arxiv.org/abs/2310.01783
https://arxiv.org/abs/2310.01783
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://doi.org/10.1007/s10462-022-10246-w
https://doi.org/10.1007/s10462-022-10246-w
https://doi.org/10.1007/s10462-022-10246-w

Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simén Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Fukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerdn Uribe, Andrea Vallone, Arun Vijayvergiya,

11

Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Bar-
ret Zoph. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. Preprint, arXiv:2203.02155.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak
Nathani, Xinyi Wang, and William Yang Wang. 2023.
Automatically correcting large language models: Sur-
veying the landscape of diverse self-correction strate-
gies. Preprint, arXiv:2308.03188.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beat-
riz Borges, Antoine Bosselut, Robert West, and
Boi Faltings. 2024. Refiner: Reasoning feed-
back on intermediate representations. Preprint,
arXiv:2304.01904.

Matthew Renze and Erhan Guven. 2024. The effect of
sampling temperature on problem solving in large
language models. Preprint, arXiv:2402.05201.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills,
Long Ouyang, Jonathan Ward, and Jan Leike. 2022.
Self-critiquing models for assisting human evaluators.
Preprint, arXiv:2206.05802.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning robust metrics for text genera-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7881-7892, Online. Association for Computational
Linguistics.

Noah Shinn, Federico Cassano, Edward Berman, Ash-
win Gopinath, Karthik Narasimhan, and Shunyu Yao.
2023. Reflexion: Language agents with verbal rein-
forcement learning. Preprint, arXiv:2303.11366.

Kumar Shridhar, Harsh Jhamtani, Hao Fang, Ben-
jamin Van Durme, Jason Eisner, and Patrick Xia.
2023. Screws: A modular framework for reasoning
with revisions. Preprint, arXiv:2309.13075.

Craig Stewart, Ricardo Rei, Catarina Farinha, and Alon
Lavie. 2020. COMET - deploying a new state-of-
the-art MT evaluation metric in production. In Pro-
ceedings of the 14th Conference of the Association
for Machine Translation in the Americas (Volume 2:
User Track), pages 78—109, Virtual. Association for
Machine Translation in the Americas.

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2308.03188
https://arxiv.org/abs/2308.03188
https://arxiv.org/abs/2308.03188
https://arxiv.org/abs/2308.03188
https://arxiv.org/abs/2308.03188
https://arxiv.org/abs/2304.01904
https://arxiv.org/abs/2304.01904
https://arxiv.org/abs/2304.01904
https://arxiv.org/abs/2402.05201
https://arxiv.org/abs/2402.05201
https://arxiv.org/abs/2402.05201
https://arxiv.org/abs/2402.05201
https://arxiv.org/abs/2402.05201
https://arxiv.org/abs/2206.05802
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2303.11366
https://arxiv.org/abs/2309.13075
https://arxiv.org/abs/2309.13075
https://arxiv.org/abs/2309.13075
https://aclanthology.org/2020.amta-user.4
https://aclanthology.org/2020.amta-user.4
https://aclanthology.org/2020.amta-user.4

Shichao Sun, Junlong Li, Weizhe Yuan, Ruifeng Yuan,
Wenjie Li, and Pengfei Liu. 2024. The critique of
critique. Preprint, arXiv:2401.04518.

Hugo Touvron, Thibaut Lavril, Gautier [zacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Chi Wang, Susan Xueqing Liu, and Ahmed H. Awadal-
lah. 2023a. Cost-effective hyperparameter optimiza-
tion for large language model generation inference.
Preprint, arXiv:2303.04673.

Pei-Hsin Wang, Sheng-Iou Hsieh, Shih-Chieh Chang,
Yu-Ting Chen, Jia-Yu Pan, Wei Wei, and Da-Chang
Juan. 2020. Contextual temperature for language
modeling. Preprint, arXiv:2012.13575.

Shuhe Wang, Beiming Cao, Shengyu Zhang, Xiaoya Li,
Jiwei Li, Fei Wu, Guoyin Wang, and Eduard Hovy.
2023b. Sim-gpt: Text similarity via gpt annotated
data. Preprint, arXiv:2312.05603.

Tianlu Wang, Ping Yu, Xiaoqing Ellen Tan, Sean
O’Brien, Ramakanth Pasunuru, Jane Dwivedi-Yu,
Olga Golovneva, Luke Zettlemoyer, Maryam Fazel-
Zarandi, and Asli Celikyilmaz. 2023c. Shepherd:
A critic for language model generation. Preprint,
arXiv:2308.04592.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. 2023d. Self-consistency im-
proves chain of thought reasoning in language mod-
els. Preprint, arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Sean Welleck, Ximing Lu, Peter West, Faeze Brah-
man, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. 2022. Generating sequences by learning to
self-correct. Preprint, arXiv:2211.00053.

Seonghyeon Ye, Yongrae Jo, Doyoung Kim, Sungdong
Kim, Hyeonbin Hwang, and Minjoon Seo. 2023.
Selfee: Iterative self-revising llm empowered by self-
feedback generation. Blog post.

Su-Youn Yoon. 2023. Short answer grading using one-
shot prompting and text similarity scoring model.
Preprint, arXiv:2305.18638.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D.
Goodman. 2022. Star: Bootstrapping reasoning with
reasoning. Preprint, arXiv:2203.14465.

12

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
Preprint, arXiv:2306.05685.

https://arxiv.org/abs/2401.04518
https://arxiv.org/abs/2401.04518
https://arxiv.org/abs/2401.04518
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2303.04673
https://arxiv.org/abs/2303.04673
https://arxiv.org/abs/2303.04673
https://arxiv.org/abs/2012.13575
https://arxiv.org/abs/2012.13575
https://arxiv.org/abs/2012.13575
https://arxiv.org/abs/2312.05603
https://arxiv.org/abs/2312.05603
https://arxiv.org/abs/2312.05603
https://arxiv.org/abs/2308.04592
https://arxiv.org/abs/2308.04592
https://arxiv.org/abs/2308.04592
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2211.00053
https://arxiv.org/abs/2211.00053
https://arxiv.org/abs/2211.00053
https://kaistai.github.io/SelFee/
https://kaistai.github.io/SelFee/
https://kaistai.github.io/SelFee/
https://arxiv.org/abs/2305.18638
https://arxiv.org/abs/2305.18638
https://arxiv.org/abs/2305.18638
https://arxiv.org/abs/2203.14465
https://arxiv.org/abs/2203.14465
https://arxiv.org/abs/2203.14465
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

A Experiment Prompts with demonstration

Here are the shortened versions of the experimental prompts, including instructions and demonstrations.
For clarity, only 1-2 demonstrations are provided per prompt. Each demonstrated result string is high-
lighted for readability, though this highlighting is not part of the actual prompt. Following each prompt, a
test question and a cue (e.g., "Answer:") are provided to indicate where the result string should be placed.

A.1 Initial Answer Generation

FoF on GSMS8K with the Initial Answer Round Shown Below

system
Can you answer this question by writing reasoning steps and the answer:

On Monday, Walt walked 4 miles. Tuesday, he walked 6 times as many miles as he walked on
Monday. His total mileage Monday through Wednesday was 41 miles. How many miles did he
walk on Wednesday?

Please ensure your reasoning steps only consists of the essential steps and the final answer should
be a single numerical number, in the form

boxedanswer, at the end of your response.

assistant
Reasoning steps: 1. On Monday, Walt walked 4 miles. 2. On Tuesday, he walked 6 times as many
miles as he walked on Monday. Therefore, he walked 4 * 6 = 24 miles on Tuesday. 3. His total
mileage Monday through Wednesday was 41 miles. So, he walked a total of 4 + 24 + x = 41 miles,
where x represents the number of miles he walked on Wednesday. 4. Solving the equation, we get
X =41 - 4 - 24 = 13. Therefore, Walt walked 13 miles on Wednesday. Answer: .

A.2 Feedback Generation

FoF on GSMB8K with 2 Sampled Feedback Shown Below

assistant
There is an error in the code above because of lack of understanding of the question. What is the
error? To find the error, go through semantically complete reasoning steps, and check if everything
looks good

user
Here are the two sampling feedback from the critic model on your previously generated reasoning
step:

The reasoning steps provided by the programmer model are incorrect. The mistake lies in step 4
where the equation is solved incorrectly. The correct equation should be 4 + 24 + x = 41, not 4
+ 24 + x =41 - 4 - 24. The reasoning steps provided by the programmer model are correct and
logical. There are no logical issues with the steps to solve the math word problem.

Clarifications are needed from the sampling feedback, try to clarify the feedback.

13

A.3 FoF Generation

FoF on GSMS8K with Refined Feedback Shown Below

assistant
Based on the two sampling feedback, there seems to be a disagreement about the correctness of the
reasoning steps provided by the programmer model. One feedback suggests that there is a mistake
in step 4, while the other feedback states that the reasoning steps are correct and logical.
To clarify the feedback, it would be helpful to understand the specific issue pointed out in step 4
by the first feedback. Additionally, it would be beneficial to know whether there are any other
concerns or suggestions related to the reasoning steps provided.

user
Here is the refined feedback from the critic model.
The reasoning steps provided by the programmer model are correct and logical. There is no mistake
in step 4 where the equation is solved.

A.4 Final Answer Generation

FoF on GSMS8K with the Final Answer Round Shown Below

user
Can you improve the reasoning steps in natural languages according to the feedback? Please ensure
your final answer should be a single numerical number, in the form

boxedanswer, at the end of your response.

assistant
Reasoning steps: 1. On Monday, Walt walked 4 miles. 2. On Tuesday, he walked 6 times as
many miles as he walked on Monday. Therefore, he walked 4 * 6 = 24 miles on Tuesday. 3. His
total mileage Monday through Wednesday was 41 miles. So, the combined distance he walked
on Monday, Tuesday, and Wednesday is 4 + 24 + x = 41 miles, where x represents the number of
miles he walked on Wednesday. 4. Solving the equation, we get x =41 -4 - 24 = 13.

Therefore, Walt walked 13 miles on Wednesday. Answer:

boxed13.

Feedback 1: The error in the reason-
ing steps is the assumption that the to-
tal mileage for Monday through Wednes-
day is given as 41 miles. The prompt
does not provide any information about
the total mileage for Monday through
Wednesday. Therefore, we cannot as-
sume that the equation 7x + x + Wednes-
day’s mileage =41 is correct. The correct
approach would be to set up the equation
7x + Wednesday’s mileage = 41, but we
would need additional information or a
different equation to solve for Wednes-
day’s mileage.

B Comparison between FoF and other
existing works

B.1 Failed Examples and Analysis

While our Feedback-on-Feedback (FoF) method
demonstrates significant improvements in self-
correction capabilities, it is important to acknowl-
edge and analyze the instances where the method
did not perform as expected. Understanding these
failures can provide valuable insights into the lim-
itations of our approach and highlight areas for
future improvement.

B.1.1 Failed Example 1: Arithmetic

Reasonin . .
g Despite iterative refinement, the final answer

In one instance from the GSMS8K dataset, the initial
answer model generated the following response to
a multi-step arithmetic problem:

Here are feedbacks from the critic model on your
previously generated reasoning steps:

remained incorrect due to the conflicting nature
of the feedback provided. This indicates that our
method struggles when presented with contradic-
tory critiques, especially in arithmetic reasoning
tasks where precision is crucial.

Iterative
Answer

Automated
Critique

Zero-shot Consistency on

Answer

Consistency on
Feedback

Self-Refine (Madaan et al., 2023)
Self-Verification (Gero et al., 2023)
Reflexion (Shinn et al., 2023)
Self-Debug (Chen et al., 2023)
SelFee (Ye etal., 2023)

Critical Prompt (Huang et al., 2024)
Think Twice (Li et al., 2024b)
Confidence Matters (Li et al., 2024a)
FoF (Ours)

v

SN N NN
AN N N N

SN

v
v
v v

Table 3: Summary of related work on intrinsic self-correction (Huang et al., 2024) This table categorizes intrinsic
self-correction methods based on five properties: Iterative Answer (the use of multiple rounds of answer genera-
tion), Automated Critique (whether the critique is generated automatically), Zero-shot (whether the method can
perform without additional examples), Consistency on Answer (consistency in generating the correct answer), and
Consistency on Feedback (consistency in the feedback provided).

Let’s assume that Walt walked x miles on
Monday. On Tuesday, he walked 6 times
as many miles as he walked on Monday,
which is 6x miles. The total mileage for
Monday through WednesSday is given
as 41 miles. Let’s represent Wednesday’s
mileage as y miles. So, the equation rep-
resenting the total mileage would be x +
6x +y = 41. Simplifying the equation,
we have 7x + y = 41. Since we don’t
have any other information, we cannot
determine the exact values of x and y
individually. Therefore, we cannot deter-
mine the specific number of miles Walt
walked on Wednesday without additional

information. Answer: | Unknown |.

B.1.2 Failed Example 2: Machine Translation

For the machine translation task using the CSMT
dataset, the model was asked to translate the Chi-
nese sentence "f AR [F]) FHR—HL F K 2
. " into English. The initial translation was as
follows:

Translation: "He wants to recruit cadres
from the same village to go underwater
together and engage in drug trafficking."

The critic model’s feedback included one re-
sponse indicating that the translation was accurate,
while another suggested an alternative translation
to better capture the idiomatic meaning. The gold
answer was:

Gold Answer: "He wants to take the
cadres of the same village to sell drugs
with him."

15

This example highlights the difficulty in han-
dling idiomatic expressions and the need for a more
nuanced understanding of context during the feed-
back generation process.

B.1.3 Failed Example 3: Programming
Problem Solving

In the MBPP dataset, the model was tasked with
solving a programming problem that required gen-
erating a function to find the volume of a triangular
prism. The initial response was:

def find_Volume(base, height, length):
return base * height * length

The critic model provided the following feed-
back:

Feedback: There is no error in the code
provided. The function ‘find_Volume*
correctly calculates the volume by mul-
tiplying the base, height, and length to-
gether.

However, the gold answer revealed that the func-
tion should calculate the volume of a triangular
prism, which requires dividing the product by 2:

Gold Answer: def find_Volume(L,b,h):
return (L *b *h)/2)

The final solution did not incorporate the correct
formula for calculating the volume of a triangu-
lar prism, resulting in an incorrect function. This
failure illustrates the challenge of correctly inter-
preting and implementing mathematical formulas
in code generation tasks.

B.1.4 Successful Examples and Analysis

Despite multiple inaccurate feedback samples, a
robust FoF process can identify and clarify the er-
rors, leading to a correct refined feedback and final
answer.

In this example, the initial answer is incorrect,
and both feedback samples provide wrong sugges-
tions. However, FoF successfully identifies the
errors in both feedback samples, then provides a
clear explanation of the correct formula, demon-
strating its ability to identify and clarify errors in
the feedback samples. This leads to a refined feed-
back that provides the correct answer, showcasing
the robustness of FoF in handling inaccurate feed-
back and guiding the model towards the correct
solution.

Successful example due to correct FoF clarifi-

cation

Gold Answer:

def find_rect_num(n):
return n * (n + 1)

Initial Answer:

def find_rect_num(n):
returnnx (n+1) *x (2*n+1)//6

Feedback sample 1: The answer is using
wrong formula, the correct formula should be
(n* M+ 1)//2)** 2. (Wrong feedback)
Feedback sample 2: The given answer com-
plicates the problem; the answer should be n
** 2. (Wrong feedback)

Clarifications are needed from the sampling
feedback, try to clarify the feedback.

FoF: The refined answers provided in both
feedback are incorrect. Feedback sample 1
uses wrong formula. Feedback sample 2 over-
simplifies the problem by suggesting n ** 2.
The correct formula for the number of rectan-
gles that can be formed using n points on a
line is n * (n + 1). (FoF correctly identifies the
errors in the feedback samples)

Refined Feedback: The correct formula for
the question should be n * (n + 1) (Correct
Refined feedback)

\

C Criticbench evaluation method
D Prompts
E FoF algorithm

16

///'
%
&

K
ps

Objective evaluation:

Human annotated
feedback/meta-feedback

Machine generated
feedback/meta-feedback

Subjective evaluation:

Given: Question,Generated Answer,
Generated feedback, Reference
high-quality feedback

Prompt: First generate another
feedback, then explain it, compare
it with reference feedback

Output: CoT Evaluation by GPT4
+ Score

)

Figure 6: Overview of two evaluation methods in Crit-
icbench

Can you answer this question by writing
reasoning steps and the answer:{question}

Please ensure your reasoning steps only
consist of the essential steps and the
final answer should be a single numerical
number, in the form \\boxed{answer}, at the
end of your response.

Figure 7: The initial prompt used for generating initial
answer

Below, you'll find the reasoning steps from
the programmer model:{Reasoning Steps}

Assume the reasoning steps could be correct
or wrong.

Please go through semantically and
logically complete reasoning steps, check
if everything looks good and give your
feedback.

Figure 8: The feedback prompt used for generating F}
and F5

//;;re are the feedbacks from the critic ‘\\\

model on your previously generated
reasoning :{feedback}

Can you improve the reasoning steps in
natural languages according to the
feedbacks?

Please ensure your final answer should be
a single numerical number, in the form

\\boxed{{answer}}, at the end of your
kesponse.

/

Figure 9: The prompt used for feedback refinement

Algorithm 1 FoF Algorithm

Require: Question (), Base Generator BG, Critic Model C'M, Semantic Similarity Thresholds 61, 65,

Feedback Rounds

Ensure: Final Answer Ry

1

18:

: Ry <= BG(pgen || Q)

while Round < Feedback Rounds do
Fi, Fy < CM(pso || Q, Ro)
S < SemanticSimilarity (F7, F3)
if S < 91 01‘«91 <S< 02 then

needed

Ry < BG(pyor || Q, Ro, RF)

return Iy
end if
R() R f
Round + Round + 1
: end while
return [y

FoF < BG(pfof || F1, F2)

RE < CM(pyy || Q, Ro, FoF, Fy, F3)
else

RF + F1
end if

if RF contains "this answer is correct" then

> Initial generation (Eqn. 1)
> Iterative refinement loop
> Feedback generation (Eqn. 2)

> If feedback 1 and 2 disagree with each other or clarification

> FoF generation (Eqn. 4)
> Refine feedback (Eqn. 5)

> Use first feedback

> Refine initial answer (Eqn. 6)

> Check for stop condition

> Update initial answer for the next iteration

> Increment round counter

> Return final answer after maximum rounds

You are an experienced code reviewer responsible for
evaluating the feedback provided on a code snippet.
Please adhere to the following guidelines during your
review:

~

1. Begin by analyzing the accuracy and helpfulness of the
feedback in relation to the given code. Provide
constructive comments, and then affirm the feedback's
quality with a score from 1 to 18, where 1 denotes the
lowest quality and 10 denotes the highest quality.

2. You have access to the code snippet as well as the
feedback provided. However, you will not have access to the
improved code (if any) based on the feedback.

3. The feedback should correctly identify any errors or

areas of improvement in the code. If the feedback is

\\\iiifrrect or not constructive, it should be given a low <‘////
score.

Figure 10: The prompt used for scoring feedback quality

17

	Introduction
	Related works
	Method
	Base Generator
	Critic Model
	Feedback Refinement
	Feedback Similarity Check
	Feedback-on-Feedback (FoF) Generation
	Refined Feedback Generation
	Final Answer Refinement

	Experiments
	Models
	Benchmarks
	Baselines
	Feedback Sampling
	Stop Condition
	Semantic Similarity Threshold

	Result
	Main result
	Ablation Studies
	Case Study
	Failed Examples and Analysis

	Conclusion
	Limitations
	Experiment Prompts with demonstration
	Initial Answer Generation
	Feedback Generation
	FoF Generation
	Final Answer Generation

	Comparison between FoF and other existing works
	Failed Examples and Analysis
	Failed Example 1: Arithmetic Reasoning
	Failed Example 2: Machine Translation
	Failed Example 3: Programming Problem Solving
	Successful Examples and Analysis

	Criticbench evaluation method
	Prompts
	FoF algorithm

