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ABSTRACT

Rewards remain an opaque way to specify tasks for Reinforcement Learning,
as humans are often unable to predict the optimal behavior corresponding to
any given reward function, leading to poor reward design and reward hacking.
Language presents an appealing way to communicate intent to agents but prior
efforts to bypass reward design through language have been limited by costly and
unscalable labeling efforts. In this work, we propose a method for a completely
unsupervised alternative to grounding language instructions in a zero-shot manner
to obtain policies. We present a solution that takes the form of imagine, project,
and imitate: The agent imagines an observation sequence corresponding to the
language description of a task, projects the imagined sequence to our target domain,
and grounds it to a policy. We show that zero-shot language-to-behavior policy
can be achieved by first projecting the imagined sequences, generated using video
models, into real observations of an unsupervised RL agent and using zero-shot
imitation to mimic the projected observations. Our method, RLZero, is the first to
our knowledge to show zero-shot language to behavior generation abilities without
any supervision on a variety of tasks. We further show that RLZero can also
generate policies zero-shot from cross-embodied videos such as those scraped from
YouTube.

Project page: hari-sikchi.github.io/rlzero

1 INTRODUCTION

Underlying the many successes of RL lies the engineering challenge of task specification, where a
skilled expert painstakingly designs a reward function. Not only does this restrict the scaling of RL
agents, but it also makes those agents uninterpretable to any user inexperienced in reward design.
Even for experts, reasoning about simple reward functions is generally infeasible because these
functions can be easily hacked (Krakovna, 2018; Amodei et al., 2016; Dulac-Arnold et al., 2021);
i.e the optimal policies for the reward function produce behaviors that do not align with what the
human intended. Language is an expressive communication channel for human intent and allows
bypassing reward design, but learning a mapping from language to behaviors has historically required
collecting and annotating behaviors that correspond to language (Goyal et al., 2021a; Jang et al.,
2022; O’Neill et al., 2023). This strategy is impractical at scale where samples from the agent’s large
space of behaviors need to be labeled. Instead, an approach that makes use of models learned in a
purely unsupervised way becomes desirable.

How can generalist agents translate language commands into behaviors? Large-scale multimodal
foundation models (Wang et al., 2024a) provide us with part of the solution. Trained on large
amounts of internet data, they can generate video segments that communicate what performing a
task entails. An issue in using video generation models to demonstrate behavior is that they may
generate video frames demonstrating tasks that are out of distribution of the current agent’s domain;
for instance, the current agent can be in a simulated environment, and the video generation model
produces videos resembling the real world. In this work, we propose to fix this problem by projecting
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Figure 1: RLZero framework of imagine, project, and imitate: A video trajectory is imagined using the text
prompt in the agent’s observation space and projected to real observations. Using observation-only zero-shot
imitation learning, the generated trajectory is grounded in a policy that mimics the behavior demonstrated by the
video.

frames to agent observations under a semantic similarity scoring metric (Radford et al., 2021b; Zhai
et al., 2023). This frame-by-frame similarity search allows us to produce a sequence of observations
grounded in the agent’s interaction history and presents an expectation of what the task would look
like in the agent’s observation space. However, the discovered frame sequence might still not adhere
to environment dynamics or even be feasible. This presents us with our next question: How do we
generate behaviors that resemble the grounded imagined trajectories in a zero-shot manner? We
refer to a zero-shot RL agent as an agent that can solve any reward maximization task in a given
environment, instantly with no additional planning or learning, after an initial reward-free learning
phase, similar to Touati et al. (2023).

Prior research (Rocamonde et al., 2023; Baumli et al., 2023; Sontakke et al., 2024) has used large
Vision-Language Models (VLMs) to obtain proxy rewards for a language command. Even when
a reward function is obtained, training a policy for a reward function from scratch for each task
description in language is time-consuming, and potentially unsafe due to reward hacking. Alternately,
other works attempt to provide expert demonstrations and annotate each skill of an agent with
a language description hoping for generalization to new, unannotated skills. Collecting expert
demonstrations for the wide variety of skills possible in the world can get prohibitively expensive.
Unsupervised RL offers an ideal tool for zero-shot behavior inference, enabling an agent to leverage
task-agnostic prior interactions with the environment to encode diverse behaviors that can be queried
to obtain a near-optimal policy in a zero-shot manner given a reward function. Specifically, we rely
on the successor feature-based family of unsupervised RL methods, sometimes termed as Behavior
Foundation Models (BFM) (Touati & Ollivier, 2021; Park et al., 2024a; Agarwal et al., 2024), that
allow learning behaviors for all possible reward functions subject to model capacity constraints.
BFMs work by pretraining optimal policies for all reward functions defined in the span of learned
state features. During inference, the optimal policy corresponding to a particular reward function can
be obtained in closed form.

We sidestep the requirement of reward functions and instead frame the problem of language-to-skill
inference as matching state-only distributions to the grounded imagined trajectories. Notably,
this work leverages the capability of unsupervised RL methods to provide a zero-shot solution
to distribution matching. This approach parallels the imagination capabilities of humans to picture
in their mind possibilities in the real world (Sarbin, 2004; Sarbin & Juhasz, 1970; Pylyshyn, 2002)
and then rely on past experiences, memories, and abilities to inform their actions. Our framework
(illustrated in figure 1) attempts to do something similar — RLZero works in three simple steps: a)
Imagine: Imagine trajectories given a language command. b) Project: The frames of imagined
trajectories are projected to real observations of the agent. c) Imitate: RLZero leverages the agent’s
prior environmental interactions to output a policy in a zero-shot manner that matches the state
visitation distribution of the imagined trajectories. Our experiments show that RLZero is a promising
approach to designing an interpretable link connecting humans to RL agents. We demonstrate
that RLZero is an effective method on a variety of tasks where reward function design would
require an expert reward engineer. We show that RLZero also opens possibilities for zero-shot
cross-embodiment transfer, a first approach to be able to do this to our knowledge. Our contribution is
the framework of imagine, project, and zero-shot imitate, which diverges from the prior approach of
using VLMs as reward functions—which can be hacked—and instead focusing on zero-shot imitation
with unsupervised RL, which admits a unique solution that matches the imagined behavior.
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2 RELATED WORK

Language and Control: There is a rich history of using language to solve various tasks in RL:
task specification (Thomason et al., 2015; Goyal et al., 2021b; Ma et al., 2023; Baumli et al., 2023;
Rocamonde et al., 2023; Stepputtis et al., 2020; Brohan et al., 2022; 2023; Sontakke et al., 2024),
transfer and generalization (Goyal et al., 2021a; Jang et al., 2022; Liang et al., 2023), using language
to provide hierarchies that allow for solving long-horizon tasks (Ahn et al., 2022; Jiang et al., 2019),
driving exploration (Goyal et al., 2019; Harrison et al., 2017; Wang et al., 2023; Ma et al., 2024),
human-in-the-loop learning (Chen et al., 2020; Chevalier-Boisvert et al., 2019), giving feedback to Al
agents (Wang et al., 2024b), reward design (Yu et al., 2023), etc. Most existing methods either require
labels for mapping language to low-level actions or generate reward functions that need to be trained
by interacting with the environment to generate a low-level control policy. Recent work (Mazzaglia
et al., 2024) proposed an unsupervised approach to grounding language to low-level skills but requires
re-training the RL agent for each given task prompt. In contrast, our work presents a method that
allows for zero-shot mapping of languages to low-level skills. A large portion of prior work has been
limited to using language in a setting where expert demonstrations are provided, but this puts a heavy
burden on data collection to cover the large number of skills possible in the environment, which
quickly becomes impractical considering the vast array of interactions intelligent agents can perform
with their environments. Our approach forgoes this limitation by relying on a zero-shot RL agent
capable of mimicking arbitrary imaginations generated for a given text.

Zero-shot RL: Zero-shot RL promises the ability to quickly produce optimal policies for any given
task defined by a reward function. A wide variety of methods have been developed to achieve
zero-shot RL, which are in some ways generalizations of multi-task RL (Caruana, 1997). Most of
these works assume a class of tasks where they can produce policies zero-shot. These tasks can be
goal-conditioned (Kaelbling, 1993; Durugkar et al., 2021; Agarwal et al., 2023; Sikchi et al., 2023;
Ma et al., 2022b), a linear span of certain state-features (Dayan, 1993; Barreto et al., 2017; Blier et al.,
2021b; Touati & Ollivier, 2021; Park et al., 2024a; Agarwal et al., 2024) or some combination of
some skills (Eysenbach et al., 2018; 2022; Park et al., 2024b). Recent works (Wu et al., 2018; Touati
& Ollivier, 2021; Touati et al., 2023; Park et al., 2024a; Agarwal et al., 2024) employ a successor
measure-based representation learning objective to be able to provide near-optimal policies for
arbitrary reward function subject to model capacity constraints. Our work leverages these methods
and finds the best reward supported by the representations that will produce the language-conditioned
imagined trajectory.

3 PRELIMINARIES

RLZero uses generative models to imagine trajectories from language prompts and produces a
policy by imitating a projection of this imagined trajectory. In this section, we introduce the notion of
trajectory generation, imitation learning, and zero-shot RL.

Multimodal Video-Foundation Models (ViFMs) and In-Domain Video Generation: Multimodal
ViFMs (Wang et al., 2022; 2024a; Tong et al., 2022) enable the understanding of video data in a
shared representation space of other modalities such as text or audio. These shared representations
can be used to condition video generation on different input modalities (Kondratyuk et al., 2023;
Blattmann et al., 2023). Notably, these models can utilize text prompts to guide content, style, and
motion, or employ an image as the initial frame for a subsequent video sequence. For this work, we
use off-the-shelf video generation models VM that generate a sequence of video frames {i1, 2, ...i,, }
given a task specified in natural language [ by first converting the language prompt to a common
embedding space across modalities; formally, VM : I — {iy, 42, ...i5 }.

Imitation Learning through Distribution Matching: We consider a learning agent in a Markov
Decision Process (MDP) (Puterman, 2014; Sutton & Barto, 2018) which is defined as a tuple:
M= (S, A,p,r,v,dy) where S and A denote the state and action spaces respectively, p denotes the
transition function with p(s’|s, a) indicating the probability of transitioning from s to s’ taking action
a; v denotes the reward function, v € (0, 1) specifies the discount factor and d denotes the initial
state distribution. The reinforcement learning objective is to obtain a policy 7 : S — A(A) that
maximizes expected return: E.[>7°  ~'7(s¢)], where we use E, to denote the expectation under
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Figure 2: Example Imagined Trajectories: The video model imagines frames conditioned on the task specified
as a text prompt ‘do lunges’.

the distribution induced by a; ~ 7(+|s¢), St4+1 ~ p(+|st, ar) and A(A) denotes a probability simplex
supported over A.

An imitation learning agent does not have access to the reward function, R, but has access to an
“expert” trajectory (or a set of “expert” trajectories) from a policy that maximizes the reward function.
Inverse Reinforcement Learning methods Ng et al. (2000) infer the reward function (explicitly or
implicitly) from the trajectories and produce the policy that maximizes this reward. Distribution
matching objectives Ghasemipour et al. (2020); Ni et al. (2021) for IRL have been commonly used
in some recent work (Garg et al., 2021; Sikchi et al., 2024), removing the need for inferring reward
functions altogether. The distribution matching based imitation learning objective is min, D(p™, p¥),
where p™ is the visitation distribution of the policy 7 (defined by the probability of being in state
s starting from the initial state distribution sq and following the policy 7), p¥ is the visitation
distribution exhibited by the “expert” trajectory and D is a function to compare the closeness of the
distributions. f-Divergences are commonly used as a measure of distance between distributions.

Zero Shot RL through Successor Measure (BFM): Successor Measure (Blier et al., 2021a)
learning has been recently studied (Touati & Ollivier, 2021; Agarwal et al., 2024) as an unsupervised
RL objective for its ability to describe long-term behavior of the policy in the environment.
Mathematically, successor measures define the measure over future states visited as M ™,

M7 (s,a,X) = EW[Z'ytp’T(stH € X|s,a)] VX CS. (D

t>0

Representing the successor measure for any policy 7 as ¥7 (s, a)” p(s1), these methods facilitate
extraction of a state-representation ¢(s) that is suitable for RL. Then, learning policies 7, (where the
policies are represented using latents z) that are near-optimal for a reward function defined in the
span of learned state-features r(s) = ¢(s) - z. At test time, the policy for any given reward function
can then be obtained analytically (with no additional experiential data) by solving the following linear
regression:

min(r(s) — p(s) - 2)* (2)

z

4 RLZERO: ZERO-SHOT PROMPT TO POLICY

RLZero uses components trained without any explicit supervision to map language to behaviors. For
each domain, we consider a dataset of exploratory reward-free interactions d° and a BFM (i(s), 7)
pre-trained on d©. In the following sections, we describe the steps involved in detail. First, we
present how an imagined trajectory is generated from a prompt. Then, we discuss how this imagined
trajectory is projected to real observations of an agent. Finally, we describe the zero-shot procedure
for inferring a policy that matches the behavior in the imagined trajectory.

4.1 IMAGINE: GENERATIVE VIDEO MODELING

Grounding language to tasks has historically (Goyal et al., 2021a; Jang et al., 2022; O’Neill
et al., 2023) required costly annotation labels that map language to task examples specified
through image or state trajectories. Large video-language foundation models (ViFMs) help lift
that requirement by training on vast amounts of internet videos, thus giving us a rich prior of
grounding language commands to videos. We rely on a generative video modeling approach,
GenRL (Mazzaglia et al., 2024), that uses a video-language task encoder provided by an off-the-shelf
ViFM (InternVideo2 (Wang et al., 2025)) and trains an environment-specific GRU model to imagine
a sequence of next latent states. These states are then reconstructed to pixels within the environment
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Figure 3: Grounding Imagination in Real Observations: We use nearest image retrieval defined by cosine
similarity in the embedding space to output a real observation from the dataset that matches the imagined
observation.

domain. Training the video generation model does not require labels mapping language to tasks
and is fully unsupervised. Thus, given a language instruction ¢!, we obtain a sequence of frames
(i1,2...i7) = VM (e') that represents an imagination of what the task looks like in the environment
domain. Figure 2 shows an example of what these imaginings look like using an off-the-shelf
video generation model (Mazzaglia et al., 2024). While we rely on an environment-specific
task-conditioned video generator for this work, with advancements in ViFM scaling and controllable
video generation (Bruce et al., 2024; Hu et al., 2022; Ni et al., 2023; Chen et al., 2025), a few
examples from the target environment domain may be sufficient to generate high-quality in-domain
imaginations.

4.2 PROJECT: GROUNDING TO AGENT’S OBSERVATION SPACE

The imaginings produced by ViFMs can be noisy, unrealizable, and not exactly representative of the
domain. We propose to use similarity-based retrieval for the nearest frames in the dataset of the agent’s
prior environmental interactions d® to project the imagined trajectories to real observations. This
step allows us to match imagination to real observations in the semantic space. Semantic matching
also allows us the flexibility to replace imaginings with a video demonstration of a task potentially by
a different agent in a different domain (e.g. zero-shot video to policy discussed in Section 5.2). In
this work, we use a performant image embedding approach for retrieval, SigLIP (Zhai et al., 2023), to
map both the imagined frame and agent observation to the same latent embedding space, which has
been pre-trained for similarity matching on an internet-scale dataset with a contrastive objective. We
use an encoding function £ : Z — Z to individually map a sequence of images to shared text-image
embedding space. For each consecutive k length sequence of frames in the imagined trajectory, we
output the following agent observations:

Oty = ATE MAX E(0t—p:t) - E(Tt—:t)
t—k:t — .
ot 1€ (01—k:t) 1€ (e =t

Using k previous frames allows us to identify state variables that correspond to quantities such
as velocity, acceleration, etc., that are not identifiable from a single frame. This technique of
‘frame-stacking’ is commonly used in visual RL (Laskin et al., 2020) and has the effect of making the
observation inputs Markov. Using the offline interaction dataset, we find corresponding proprioceptive
states in addition to the real observation that we will subsequently use for distribution matching.
While we rely on proprioceptive states in this work to solve distribution matching, in general our
approach is not limited as BFMs may be trained with image observations if the state information is
unavailable.

vt € [T). 3)

4.3 IMITATE: DISTRIBUTION MATCHING WITH ZERO-SHOT RL

We take the distribution matching perspective of imitation learning (Ho & Ermon, 2016; Ghasemipour
et al., 2020) and find a policy that matches the state visitation distributions of the grounded imagined
trajectories (expert). We use successor measures based zero-shot RL methods (Agarwal et al., 2024;
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Touati et al., 2023) to produce policies from this distribution matching objective efficiently. These
require pretraining of successor measures using reward-free interaction data (d© with distribution p).
Finding the optimal policy simply reduces to finding the optimal latent z for the following distribution
matching objective:

Zimit = arg IninD(pﬂ-z (S)va(s))v (4)

where p? and p™ are state visitation distribution of the “expert” imagined trajectories and of
the policy 7* respectively and D can be chosen to be mean-squared error, f-divergence, Integral
Probability Metrics (IPM), etc. In general, minimizing the distance via gradient descent can provide
a solution z;,,,4+ to distribution matching. For the special case of KL divergence, Theorem | shows
that z;,,;+ can be obtained in closed form using a learned distribution ratio between expert and offline
interaction dataset p” /p.

Theorem 1. Define J(m, 1) to be the expected return of a policy T under reward r. For an offline

dataset d° with density p, a learned log distribution ratio: v(s) = log(”;((ss)) ), Dz (p™, pF) <
—J(m, T+ Dicy (57 (5, ), p(s, 0)) where 1 (s) =

(
minimizing the upper bound is given by zimi = E,[r'™"(s)p(s)] = EpE[:U(—(S))@(s)] where
denotes state features learned by the BFM.

s) Vs. The corresponding zimit

Thus, with the reward functions specified by rimit e can use the closed form solution of z;,,;; =
E,[¢(s)r"™(s)] to retrieve the policy that mimics the grounded imagined behavior. This reward
function requires learning a discriminator to obtain the distribution ratio, which can lead to instabilities,
but a heuristic yet performant alternative is to use a shaped reward function r(s) = e¥(®), similar
to Pirotta et al. (2023), which allows zero-shot inference (zimi = E, = [¢(s)]) without learning a
discriminator. We compare both approaches in Appendix C.1. The performance for both these
methods are almost identical and we defer to the latter one in all our experiments. Using a state-only
visitation matching objective can be limiting in the case where environmental dynamics permit the
permutation of observation sequences that result in the same visitation distribution. This limitation
can be relaxed by instead matching visitation on {s, s’'}. This requires minimal changes to training
the BFM, but we found this to not be a limitation with the environments we consider. The complete
algorithm for RLZero can be found in Algorithm 1

Algorithm 1 RLZero

. Init: Pretrained Video Generation Model VM, Pretrained BEM ., Offline Exploration Dataset d°
: Given: text prompt ¢

: Generate imagination video given the text prompt: {i1,¢2,..4} = VM (t)

: Project the imagined frames to real observations using embedding similarity as in Eq 3.

: Use Theorem 1 for zero-shot inference to obtain BEM({s1, $2, ..., $1}) = Zimit and return 7, _,, .

AW N =

5 EXPERIMENTS

Our experiments seek to understand the quality of behaviors that the RLZero approach is able to
produce given language prompts. The evaluation of these behaviors can be challenging as, unlike
the traditional RL setting, we do not have access to a ground truth reward function. Instead, we
have prompts that can be inherently ambiguous but reflect the reality of human-robot interaction.
An obvious evaluation metric is to ask humans how much the generated behavior resembles their
expectation of the behavior given the prompt. We use multimodal LLMs to evaluate such preferences
as a proxy to human preferences, as recent studies (Chen et al., 2024) have shown them to be
correlated (up to 79.3%).

Setup: We consider four DM control tasks (Cheetah, Walker, Quadruped, and Stickman (Mazzaglia
et al., 2024). The Stickman environment reflects a human morphology with challenging control due
to a large observation and action space. For task-conditioned video-generation we use off-the-shelf
models from Mazzaglia et al. (2024). To obtain the nearest observation corresponding to the imagined
image, we use SigLIP (Zhai et al., 2023), a state-of-the-art image-text embedding model. In all
environments, we collect data d© using a pure exploration algorithm RND (Burda et al., 2018) using
the protocol specified in ExoRL (Yarats et al., 2022). For Stickman, we augment our dataset with
replay buffers of the agent trained for run and walk behaviors, as obtaining meaningful tasks with pure
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Figure 4: RLZero in action: Qualitative examples of RL converting the given language prompts into behaviors

across different domains. Top to bottom: Cheetah, Walker, Quadruped, Stickman.
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0/5 (38.7743.69)
0/5 (40.76+9.17)
1/5 (13.84+6.02)
4/5 (85.76+22.96)
0/5 (66.62+53.43)

5/5 (686.56+386.66)
4/5 (244.82+58.80)
3/5 (192.75+42.20)
4/5 (T1.75+32.77)
5/5 (181.08+69.58)
1/5 (391.04+41.15)

4/5 (841.48+226.24)
5/5(191.41+£61.51)
4/5 (147.74+54.07)

4/5 (71.87+6.28)

4/5 (216.44+37.81)

3/5 (883.60+58.00)

Average

51.2%

Base Model

40%

44.8%

76.8%

832 %

Table 1: Win rates computed by GPT-4o0 of policies trained by different methods when compared to a base
policies trained by TD3+Image-language reward. Bolded distribution-matching returns denote statistically
significant improvement over the second best method under a Mann-Whitney U test with a significance level of
0.05.

random exploration is difficult with the large action-space of Stickman. The detailed composition
of the datasets can be found in Appendix B.3. The behavior foundation model can be trained with
any zero-shot RL method using successor features (Park et al., 2024a; Touati et al., 2023; Agarwal
et al., 2024). In our experiments, we use the Forward-Backward zero-shot RL algorithm (Touati et al.,
2023) trained on the same offline datasets d°.

Baselines: For our evaluations, we consider the setting where the agent has no access to the simulator
during test time. This setting truly reflects the ability of the agents to use prior exploratory data
to learn meaningful behaviors. We compare state-of-the-art model-free offline RL algorithms that
are capable of learning from purely offline data. For RL algorithms, the reward is obtained using
embedding similarity of image observations of agent and language, or using similarity between
video-encoding and language (Baumli et al., 2023; Rocamonde et al., 2023). We consider two
sources of reward: Image-language cosine similarity using SigL.IP embedding, and Video-language
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cosine similarity using InternVideo2 embeddings. Video-language embeddings take into account
context and can potentially lead to more accurate reward estimation. Once the rewards are available,
we use TD3 (Fujimoto et al., 2018) and IQL (Kostrikov et al., 2021) as the representative offline
RL algorithms to obtain policies. We also compare to GenRL Mazzaglia et al. (2024), the closest
approach to RLZero, that performs model-based RL in the environment to learn a policy at test time
by using embedding-similarity as a reward function.

5.1 BENCHMARKING ZERO-SHOT PERFORMANCE FOR CONTINUOUS CONTROL

The ability to specify prompts and generate agent behavior allows us to explore complex behaviors
that might have required complicated reward function design. We curate a set of 25 tasks across 4
DM-control environments. Each of the agents has unique capabilities as a result of its embodiment,
and the prompts are specified to be reasonable tasks to expect for the specific domain. Furthermore,
we filtered out prompts for which our off-the-shelf video generation model was unable to faithfully
generate videos. We discuss this more in Appendix B.2. For each prompt, we generate behaviors for
5 seeds. The performance of any given method is evaluated as the win rate over the base method.
We chose the base model for our comparisons as the policies trained via TD3 on image-language
rewards. For each seed, we present the observation frames that the output policy by different methods
generates and pass it to a Multimodal LLM capable of video understanding, which is used as a judge.
Since the number of tokens can get quite large with the long default horizon of the agent (1000
frames), we subsample the videos by choosing every 8 frames and selecting the first 64 frames of size
256 x 256. We observed this subsampling to retain temporal consistency and the effective horizon
(8 x 32 = 256) to be long enough to demonstrate the task requested by the prompt.

Table | demonstrates the win rates by different
methods when evaluated by GPT-4o-preview.
We find that RLZero achieves a win rate of
83.2% when compared to the best baseline
(GenRL) which achieves a win rate of 76.8%. A
GenRL requires test-time learning with every 3 ¢ -.
task averaging =~ 3 hours of training on c
NVIDIA-A40 GPU compared to our method ' ‘ ‘ :
which requires ~ 25 seconds to output a policy. - 4 " - ; =

. . AN S A A N
Figure 4 shows examples of behaviors output =
by RLZero on some of the prompts from ‘ Z | =, | <,
our evaluation set. We also consider a more <
fine-grained metric for comparison — average
return under the distribution-matching reward
function. We learn a discriminator between the
projected states for a given imagination (p%)
and the offline interaction dataset p. Under
the shaped reward function (Section 4.3),
r(s) = e’(s) = p¥/p we compute returns for
all the methods; a higher return indicates that
a method is better able to match the projected
imaginations.

Figure 5: Examples for cross embodied imitation:

%’2 ZEROi)SHOT e RLZero can mimic motions demonstrated in YouTube
IDEO-TO-POLICY: CAN RLZERO SUCCEED 0 A generated videos zero-shot. Top 2 rows: Stickman

AT CROSS-EMBODIMENT IMITATION? (2D Humanoid), Bottom 2 rows: SMPL 3D Humanoid.

The intermediate stage in RLZero of matching
the closest observations in the offline dataset
to a frame from a video is based on semantic
similarity. This means that we are not restricted to generating videos in the same domain of the agent
and still expect semantic search to generalize for out-of-domain matching. Subsequently, we can skip
the imagine step completely if we are given an expert video demonstration. To investigate this, we
consider a collection of videos scraped from Youtube as well as videos generated by open-source
video generation tools like MetaAl and empirically test if RLZero is able to replicate the behaviors.
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We focus on Humanoid environments here as they reflect human embodiment closely and allow us to
use human videos from the internet. In addition to the Stickman (2D Humanoid) environment we
also experiment with SMPL (3D Humanoid) Loper et al. (2023) using an open-source BFM Tirinzoni
et al. that reflects the human morphology more accurately.

Video Descriptions SMODICE RLZero
§ Human in backflip position — (16.054 3.44) 2/5 (14.27+ 0.02)
S Downward facing dog yoga pose — (15.63 £2.74) 1/5 (14.11£0.04)
g Cow yoga pose — (6.72+ 7.81) 5/5(14.994+0.02)
= Downward dog with one leg raised in the air — (7.04+£3.32) 5/5 (15.3540.03)
g Lying on back with one leg raised in the air —(9.074+2.07) 5/5(12.55+0.01)
S Lying on back with both legs raised in the air — (8.45£3.71) 5/5 (9.5540.06)
£ High plank yoga pose — (12.83£ 7.76) 5/5 (15.08+0.03)
g Sitting down with legs laid in the front — (12.01£1.06) 5/5(15.2440.02)
& Warrior III pose — (17.2745.09) 3/5 (15.2240.01)
2 Front splits —(13.44+2.39) 4/5 (15.21+0.01)
=
'E A karate kick position —(50.02 £ 0.023) | 5/5(199.90 £ 0.01)
g A cat doing a handstand —(0.19 + 0.24) 5/5(199.86 4+ 0.02)
= An arabesque ballet position — (10.024+ 0.01) 5/5(199.92 + 0.04)
g Animated wikiHow demonstration of a cartwheel —(0.19 +0.24) 5/5(199.91 +£ 0.04)
= Running — (58.08 + 0.46) 5/5(199.87+0.01)
- Lying crunches — (0.10+ 0.20) 5/5 (199.8940.04)
E Plank position —(0.048 £+ 0.03) 5/5(199.91+0.04)
7

Table 2: Cross Embodied Evaluation: Distribution Matching Return and Winrates

Table 2 shows the results for cross-embodied imitation across 17 video-clips. We use similar metrics
to Section 5.1, but modified the GPT-40 prompt to take in the frames from the original video instead
of a specified task description. We compare against SMODICE (Ma et al., 2022a) which allows for
using state-only observational data in conjunction with suboptimal offline data for imitation learning.
This allows us to ablate the quality of imitation produced by a successor measure-based method that
uses one policy model for all tasks as opposed to SMODICE which trains a new policy for each
task. GenRL requires a world model of the environment which is not available for SMPL as we only
have access to the pretrained policy. RLZero achieves a win rate of 80% against SMODICE for
Stickman and 100% for SMPL Humanoid. This matches the observation from Pirotta et al. (2023)
that DICE-based methods lag behind in performance on observation-only imitation tasks. Figure 5
shows a qualitative comparison of the video and the obtained behavior on a few videos. Details about
videos used can be found in Appendix C.2.

5.3 ABLATION AND FAILURE CASES

Imagination-free behavior generation: While the imagine, project, and imitate framework allows
for the interpretability of the agent’s behavior, we investigate if we can amortize the imagination
and embedding search cost by directly mapping the language embedding to the skill embedding in
the Behavior Foundation Model’s latent space. For this, we consider sampling z uniformly in the
latent space of the BFM and embedding the generated image observation sequence through a ViFM,
which we denote by e. Given the observation sequence, we generate the z;,,;+ using the zero-shot
inference process and learn a mapping from e — z;,,;+ using a small 3-layer MLP. On the same
tasks considered in Fig 5, we observe imagination-free RLZero to have a win rate of 65.71% over
TD3 base model on Walker environment when compared to RLZero that had a win rate of 91.4%
(detailed results in Table 7). A more thorough explanation of imagination-free RLZero can be found
in Appendix B.6.

Failures: Our proposed method RLZero is not without failures. The stages of imagination and
projection can fail individually, but the failures remain interpretable, i.e., by investigating the videos
and the closest state match, we can comment on the agent’s ability to faithfully complete that task to
a certain extent.
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1. What I cannot imagine, I cannot imitate: The video generation model used in our work
from Mazzaglia et al. (2024) is fairly small and limited in capability. We encountered limitations
when generating complex behaviors with this model and found it to be sensitive to prompt engineering.
Fortunately, as models get bigger and are trained on a larger set of data, this limitation can be overcome.
Figure 6a shows some examples of these failures with the corresponding prompts.

2. Limitation of semantic search-based image retrieval: In this work, we used SigL.IP, which
has shown commendable performance for image retrieval tasks. We observed failure cases in the
following scenarios (e.g. Figure 6b): a) Background distractors: We observe the image-similarity to
latch on to features from the background and produce incorrect retrieval; b) Rough symmetries: In
tasks where the agent is roughly symmetric (e.g. Walker when the head and legs are almost identical
with a slight difference in width) the image retrieval fails by giving an incorrect permutation w.r.t the
rough symmetries.

6 CONCLUSION

Language presents an appealing and
human-friendly alternative to reward design for
task specification. In this work, we presented
a completely unsupervised approach for
grounding language to low-level behavior in a
zero-shot manner. A completely unsupervised
approach allows us to bypass requiring costly
annotators for labeling a wide variety of ) ] ] ]
behaviors with language, and a zero-shot (a) Irpagmed behngrs: Top: stickman: ’rals’e har3d
approach allows us to avoid training during while standing in place’, Bottom: walker: ’kick
deployment time along with the advantage of
generating the behaviors instantaneously. We
propose RLZero, a framework to imagine what
a behavior specified by a text prompt looks like
and to ground that imagination to a policy via
zero-shot imitation. Unlike methods that learn
intermediate reward functions, this approach is
not prone to reward hacking as the distribution
matching objective specifies the task completely Figure 6: Failure Cases in RLZero

and accurately. Our evaluations show that the

behaviors generated by RLZero show an improvement over using reward functions derived from
image-language of video-language models.

(b) Failed projection for a cross-embodied video.

Future Directions: RLZero opens up the possibility of prompting to generate a policy. Zero-shot
approaches are always expected to be near-optimal due to the projection of a reward to a low
dimensional space as well as limited coverage of offline interaction data. But this serves as a good
initialization for further fine-tuning. How to fine-tune efficiently without forgetting remains an
open question. Furthermore, learned skills can be combined according to the hierarchy specified
in language instructions, allowing for the completion of complex long-horizon tasks. Since the
mechanism of RLZero allows for interoperability to some extent by observing the nearest states as well
as imagination, automatic failure detection becomes appealing. For the setting of prompt-to-policy,
we lack accurate evaluation metrics since the true reward function is unknown, and human evaluation
can be subjective. Finally, with larger context-window video understanding models, we believe
an end-to-end pipeline of language embedding to task embedding (imagination-free RLZero) can
become more appealing.

10
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APPENDIX

A PROOF FOR THEOREM 1

Theorem 1. Define J(m,r) to be the expected return of a policy m under reward r. For an offline
E

dataset d° with density p, a learned log distribution ratio: v(s) = log(pp(gs)) ), Dicr(p™, pF) <

—J(m, 7" + Dy (p™(s,a), p(s,a)) where r'™i(s) = v(s) Vs. The corresponding zimi

imit (S)

p(s)] = EPE[:V((&)) ©o(s)] where

minimizing the upper bound is given by Zimir = E,[r
denotes state features learned by the BFM.

Proof. Let p be the density of the offline dataset, p”™ be the visitation distribution w.r.t. policy 7 and
p¥ be the expert density. The distribution matching objective mentioned in Equation 4 using KL
divergence is given as:

min Dxp, (o] 1p7) ®)

With simple algebraic manipulation, the divergence can be simplified to,

us

Dici (o lp") =Eps [log /5] + Epe [log =] ©)
=E,-[log pﬁfi)] + Dr(p7(5)ll(s)) @
E
= — J(.log %) + Drcr (0" ()] () ®
E
<= J(mlog ©) + Dicn (07(s. )l (s, 0)) ©

The last line follows from the fact that D1, (p™ (s)||p(8)) < Drr(p™(s,a)||p(s, a)).

Dicr (57 (5, 0)] (5, @)) = By (s llog ’;(())1 (10)
b e ()
B8 D afy) .
= IEp"(s,a) [log pp(is))] + Ep’“(s,a) [log m} (12)
= Ep‘”(s) [log pp(is))] + ]Ep"'(s,a) [IOg T:g?as;)] (13)
— Dicr (" (5)[1p(5)) + Eanpr [Dicr ((als) [7°(als))]  (14)
> Dgr(p™(s)||p(s)) (15)

Rewriting the minimization of the upper bound of KL as a maximization problem by reversing signs,
we get:

E
max J(m,log %) — Drr(p"(s,a)|lp(s,a)) (16)

E
The first term is an RL objective with a reward function given by log(%), and the second term is an
offline regularization to constrain the behaviors of offline datasets. Following prior works Kim et al.
(2022); Ma et al. (2022a), since our BFM is trained on an offline dataset and limited to output skills in
support of dataset actions, and we can ignore the regularization to infer the latent z parameterizing the
E
skill. A heuristic yet performant alternative is to use a shaped reward function of £—, which allows

us to avoid training the discriminator completely and was shown to lead to performant imitation
in Pirotta et al. (2023). [
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B EXPERIMENTAL DETAILS

B.1 ENVIRONMENTS

B.1.1 DM-CONTROL ENVIRONMENTS

We use continuous control environments from the DeepMind Control Suite (Tassa et al., 2018).

Walker: The agent has a 24 dimensional state space consisting of joint positions and velocities and
6 dimensional action space where each dimension of action lies in [—1, 1]. The system represents a
planar walker.

Cheetah: The agent has a 17 dimensional state space consisting of joint positions and velocities and
6 dimensional action space where each dimension of action lies in [—1, 1]. The system represents a
planar biped “cheetah”.

Quadruped: The agent has a 78 dimensional state space consisting of joint positions and velocities
and 12 dimensional action space where each dimension of action lies in [—1, 1]. The system represents
a 3-dimensional ant with 4 legs.

Stickman: Stickman was recently introduced as a task that bears resemblance to a humanoid
in Mazzaglia et al. (2024). It has a 44 dimensional observation space and a 10 dimensional action
space where each dimension of action lies in [—1, 1].

SMPL 3D Humanoid: The agent has a 358 dimensional state space consisting of joint positions
and velocities and 69 dimensional action space where each dimension of action lies in [—1, 1]. The
system represents a 3-dimensional humanoid.

For all the environments we consider image observations of size 64 x 64. All DM Control tasks have
an episode length of 1000.

B.2 EVALUATION PROTOCOL

To evaluate models for behavior generation through language prompts, we considered a set of 4
prompts per environment. One key consideration in designing these prompts was the generative video
model’s capability of generating reasonable imagined trajectories. Due to computing limitations, we
were restricted to using a fairly small video embedding ( 1 billion parameters) and generation model
(43 million parameters). The interpretability of our framework allows us to declare failures before
they happen by looking at the generations for imagined trajectories.

For the set of task prompts specified by language, there is no ground truth reward function and there
does not exist a reliable quantitative metric to verify which of the methods perform better. Instead,
since humans communicate their intents via language, humans are the best judge of whether the agent
has demonstrated the behavior they intended to convey. In this work we use a Multimodal LLM
as a judge, following studies by prior works demonstrating the correlation of LLMs judgment to
humans (Chen et al., 2024). We use GPT-40 model as the judge, where the GPT-40 model is provided
with two videos, one generated by a base method, and another generated by one of the methods we
consider, and asked for preference between which video is better explained by the text prompt for the
task. When inputting the videos to the judge, we randomize the order of the baseline and proposed
methods to reduce the effect of anchoring bias. The prompt we use to compare the two methods is
given here:

For prompt to policies:

response = client.chat.completions.create (
model=MODEL,
messages=|[
{"role": "system", "content": "For the given summarization:\
"{task prompt}’, which video is more aligned with the summarization?"},
{"role": "user", "content": [
"Video A",
*map (lambda x: {"type": "image_url",

"image_url": {"url": f’data:image/jpg;base6d, {x}’\
}}, videol),
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"Video B",

*map (lambda x: {"type":
"image_u
1}, vide

"image_url"
rl": {"url"
o2),

’

: f’data:image/Jjpg;base64d, {x}’\

"FIRST provide a one-sentence comparison of the two videos\

and explain which you feel the given summarization explains better.\

SECOND, on a new line, state only A’ or

"B’ to indicate\

which video is better explained by the given \
summarization. Your response should use

the format:\

Comparison: <one-sentence comparison and explanation>\

Better explained by summ
]
}

1,

For cross-embodiment video to policies:

cross_embodied_video_description
cross_embodied_video) ]

response = client.chat.completio
model=MODEL,
messages=|[
{"role": "system

to the original

{"role": "user",
"Video A",
*map (lambda

arization:

<'A" or 'B’>"

= [+map (lambda x: {"type":
"image_url": {"url": f’data:image/jpg;base6d, {x}’'}},

ns.create (

", "content":
"{cross_embodied_video_description}’,
following given videos describe a behavior more similar

video?"},
"content":

x: {"type":

"image_

[

"image_url",
url": {"URL":

f’data:image/jpg;basebd, {x}’,

by
"Video B",
*smap (lambda

b,

"FIRST provide a one-sentence comparison of

videol),

x: {"type":

"image_url",

"image_url": {"URL":
f’data:image/ jpg;base6d, {x}’,

video2),

the two videos and explain \

which you feel matches the behavior
shown in original video better
state only A’ or \
"B’ to indicate which video is better aligned
to the task demonstrated in the original video.
Your response should use \

SECOND, on a

the format:\
Comparison:

new line,

<one-sentence comparison and explanation>\

Better matches the original video: <'A’

]
}

B.3 DATASET COLLECTION FOR ZERO-SHOT RL

"image_url",

or

f"For the original wvideo:
which of the

rBr >N

For Cheetah, Walker, Quadruped, and Stickman environments, our data is collected following a pure
exploration algorithm with no extrinsic rewards. In this work, we use intrinsic rewards obtained from
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Random Network Distillation (Burda et al., 2018) to collect our dataset based on the protocol by
ExoRL (Yarats et al., 2022) and using the implementation from repository ExoRL repository. For
Cheetah, Walker, and Quadruped, our dataset comprises 5000 episodes and equivalently 5 million
transitions, and for Stickman, our dataset comprises 10000 episodes or equivalently 10 million
transitions. Due to the high dimensionality of action space in Stickman, RND does not discover a lot
of meaningful behaviors; hence we additionally augment the dataset with 1000 episodes from the
replay buffer of training for a ‘running’ reward function and 1000 episodes of replay buffer trained
on a ‘standing’ reward function.

B.4 BASELINES

Zero-shot text to policy behavior has not been widely explored in RL literature. However, Offline RL
using language-based rewards utilizes an offline dataset to learn policies and is thus zero-shot in terms
of rolling out the learned policy. This makes it a meaningful baseline to compare against. Offline RL
uses the same MDP formulation as described in Section 3 to learn a policy 7 : S — A(A), given
a reward function r : S — R and offline dataset D. The offline dataset consists of state, action,
next-state, reward transitions (s, a, s’,(s)). One of the core challenges of Offline RL is to learn a
Q-function that does not overestimate the reward of unseen actions, which then at evaluation causes
the agent to drift from the support of the offline dataset D.

We implement two offline RL baselines to compare with RLZero— Implicit Q-learning (IQL, Kostrikov
et al. (2021)) and Offline TD3 (TD3, Fujimoto & Gu (2021)). Both of these methods share the same
offline dataset as used to learn the successor measure in RLZero, which is described in Section 5,
and gathered using RND. Since these datasets are reward-free, we must still construct a reward
function that provides meaningful rewards for an agent achieving the behavior that aligns with the
text prompt. Formally, given language instruction el € &, frame stack (0t—ky Ot—k+1,---,0t) €L,
and embedding VLM ¢ : £ — Z, which can also embed frame stacks ¢ : Z — Z (and where
observations o; € Z, and we use o; for this section), the reward for a corresponding language
instruction and frame stack k is the cosine similarity between the stacked language embedding and
the frame embedding:

_ d(e') - P(0r—kxt)
p(e) M| @(0r—k:t)l

For any individual task, ¢! is fixed and this is a reward function dependent on observations (as
represented by a frame stack o;_.;). Notice that this representation closely matches that in Equation 3,
but instead of finding the optimal sequence of observations, we simply compute reward as the cosine
similarity between language and frames. Since the strength of the embedding space is vital to the
quality of the reward function for offline RL, we evaluate two different vision-language models:

7(01—kit, €') a7

Image-language reward (SigLIP Zhai et al. (2023)): take a stack of 3 frames encode them using
SigLIP, then the reward is computed as the cosine distance of the embeddings and the SigL.IP
embedding of language.

Video-language reward (InternVideo2 Wang et al. (2024a)): this method takes in previous frames
00:t—1 as context and uses it to generate an embedding of the current frame observation o;. The
video encoder then takes the cosine similarity of ¢(0g.;) and ¢(e'). This allows the reward function
to provide rewards based not only on reaching certain states, but the agent exhibiting temporally
extended behaviors that match the behavior. In practice, providing rewards using an image-based
encoder for frame stacks can be challenging for tasks such as walking because they require context,
and video-based rewards offer a way to better encode the temporal context.

B.4.1 OFFLINE RL

Implicit Q-learning (Kostrikov et al., 2021) Implicit Q-learning builds on the classic TD error
(revised in our context of language-instruction rewards):

L(e) = E(s,a,s’,a’)ND[(T(sa el) + PYQQA(S/’ a/) - Q9(Sv a))Z]

to learn a Q function Q. IQL builds on this loss to handle the challenge of ensuring that the Q-values
do not speculate on out-of-distribution actions while also ensuring that the policy is able to exceed the
performance of the behavior policy. Exceeding the behavior policy is important because the dataset is
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collected using RND, meaning that any particular trajectory from the dataset is unlikely to perform
well on a language reward. The balance of performance is achieved by optimizing the objective with
expectile regression:

L(u) = |7 — 1(u < 0)]u?

Where 7 > 0.5 is the selected expectile. Expectile regression gives greater weight to the upper
expectiles of a distribution, which means that the Q function will focus more on the upper values of
the Q function.

Rather than optimize the objective with Q(s’,a’) directly, IQL uses a value function to reduce
variance to give the following objectives:

LV(w) = E(s,a)ND[L‘IQ—(QQ(Sa a)Vw(S))}

LQ (9> = E(s,a,s’,a’)wD[Lg (T(Sa el> + Vw(s/) - QH (8, a))]
Using the Q-function, a policy can be extracted using advantage weighted regression:

L(¢) = Es,a)~plexp(B(Qo(s, a) = Vi (s))) log my (als)].
Where £ is the inverse temperature for the advantage term.
TD3 (Fujimoto et al., 2018):

TD3 was demonstrated to be the best performing algorithm when learning from exploratory RND
datasets in (Yarats et al., 2022). While TD3 does not explicitly address the challenges discussed
in implicit Q-learning and learns using Bellman Optimality backups, the approach is simple and
works well in practice. The algorithm uses a deterministic policy extraction 7 : S — A to give the
following objective:

7 = argmax E, q)~p[Q(s, 7(s))]

B.5 RLZERO

B.5.1 TEXT TO IMAGINED BEHAVIOR WITH VIDEO MODELS

To generate a proposed video frame sequence, we utilize the GenRL architecture and provide the
workflow using equations from the original paper (Mazzaglia et al., 2024). First, the desired text
prompt is embedded with the underlying video foundation model InternVideo2 (Wang et al., 2024a)

e = f](gl)T(y) These embeddings are then repeated 7 frames times (We USE 7 frames = 32) tO
match the temporal structure expected by the world model. The repeated text embeddings are
passed through an aligner module e(v) = fy(e(")). The aligner is implemented as a UNet and
it is used to address the multimodality gap (Liang et al., 2022) when embeddings from different
modalities occupy distinct regions in the latent space. Next, the aligned video embeddings are
concatenated with temporal embeddings. The temporal embeddings are one-hot encodings of the time
step modulo 1 ¢,.qmes providing frame-level positional information. The first embedding is passed
to the world model connector py;(s;|e) to initialize the latent state. For each subsequent time step,
the sequence model h; = fy(s;—1,a1—1, hy—1) (implemented as a GRU) updates the deterministic
state h;. The deterministic state h; is mapped to a stochastic latent state (s;) using the dynamics
predictor py(s¢|h:). The dynamics predictor, implemented as an ensemble of MLPs, predicts the
sufficient statistics (mean and standard deviation) for a Normal distribution over s;. During inference,
the mean of this distribution is used as the latent state. Finally, the latent state s; is passed to a
convolutional decoder py(z+|s¢) to reconstruct the video frame ;. This process is repeated for all
time steps (t =1, ..., N frames)-

B.5.2 GROUNDING IMAGINED OBSERVATIONS TO OBSERVATIONS IN OFFLINE DATASET

As described in Section 4, we ground imagined sequences by retrieving real offline states based
on similarity in an embedding space. This enables us to create a suitable z-vector for distribution
matching which is the expected value of the state features under the distribution of imagined states
(Pimagined)- During our dataset collection phase, we save both the agent’s proprioceptive state as
well as the corresponding rendered images and search over the images to then find the corresponding
state. Our code supports both stacked-frame embeddings and single-frame embeddings. We find that
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stacked-frame embeddings were helpful in modeling temporal dependencies through velocity and
acceleration, which are crucial for recreating the intended behavior. SigL.IP (Zhai et al., 2023), which
replaces CLIP’s (Radford et al., 2021a) softmax-based contrastive loss with a pairwise sigmoid loss,
resulted in qualitatively better matches to exact positions within sequences, imitating behavior more
accurately than CLIP. For both models, we use the OpenCLIP (Ilharco et al., 2021) framework. Our
matching process first involves precomputing embeddings offline, which are stored in chunks of up
to 100,000 frames to optimize memory usage and retrieval speed. During inference, we load this
file and embed the query frame sequence from GenRL (Mazzaglia et al., 2024) into the same latent
space. We process these query embeddings by dividing them into chunks of k-frame sequences (% is
generally 3 or 5), where each sequence consists of the current frame and the k£ — 1 preceding frames.
If there are not enough preceding frames, we repeat the first frame to fill the gap. For each chunk of
saved embeddings, we compute dot products between the query chunk and all subsequences of size k
in the saved embeddings. We track the highest similarity score for each query chunk and return the
frames corresponding to the closest embedding sequences.

B.5.3 TRAINING A ZERO-SHOT RL AGENT

In this work, we chose Forward-Backward (FB) (Touati & Ollivier, 2021) as our zero-shot RL
algorithm and trained it on proprioceptive inputs. Our implementation follows closely from the
author’s codebase . Specifically, FB trains Forward, Backward, and Actor networks. The backward
networks are used to map a demonstration or a reward function to a skill, which is then used to learn
a latent-conditional Actor. The hyperparameters for our FB implementation are listed below:

Implementation: We build upon the codebase for FB https://github.com/
facebookresearch/controllable agent and implement all the algorithms under
a uniform setup for network architectures and the same hyperparameters for shared modules across
the algorithms. We keep the same method-agnostic hyperparameters and use the author-suggested
method-specific hyperparameters. The hyperparameters for all methods can be found in Table 3:

Table 3: Hyperparameters for zero-shot RL with FB.

Hyperparameter Value
Replay buffer size 5 x 105, 10 x 10° (for stickman)
Representation dimension 128
Batch size 1024
Discount factor 0.98
Optimizer Adam
Learning rate 3x 107
Momentum coefficient for target networks 0.99
Stddev o for policy smoothing 0.2
Truncation level for policy smoothing 0.3
Number of gradient steps 2 x 108
Regularization weight for orthonormality loss (ensures diversity) 1

FB specific hyperparameters

Hidden units (F’) 1024
Number of layers (F') 3
Hidden units (b) 256
Number of layers (b) 2

B.6 IMAGINATION-FREE RLZERO

In this section, we propose an alternate method (Figure 7) for mapping a task description into a
usable policy. Instead of first embedding a text prompt e, generating a video, then mapping the video
to a policy parametrization, we propose to map the text prompt directly to a policy parametrization.
To do this, we learn a latent mapper m : e — Zimiwon that relates the latent space of a ViLM
to the latent space of our policy parametrization. The mapper is a 3 layer MLP with hidden size of 512.

Pretraining: We first generate a dataset of episodes containing diverse behaviors by rolling out the
behavior foundation model conditioned on a uniformly random sampled z. The resulting image
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observation sequences are then down-sampled (by 8) and sliced to break up each episode into smaller
chunks of length 8; this preprocessing step helps increase the behavioral diversity and improves the
ability of the ViFM to capture semantic meaning. The resulting clips are then embedded using a
ViFM (InternVideo2 (Wang et al., 2024a)) where each embedding is denoted by e (as in Section
5.3). Now, we have a set of sequences of length 8 consisting of image observation along with their
proprioceptive states, and the embedding for the image sequence.

Figure 7: Illustrative diagram of imagination-free RLZero inference

Now, an obvious option is to map the embedding of image sequence to the z that generated the
trajectory. Unfortunately, the way BFMs are trained, they do not account for optimal policy invariance
to reward functions. That is multiple reward functions that induce the same optimal policy are mapped
to different encodings in the Z-space. This presents a problem for the latent mapper, as it becomes a
one-to-many mapping for any language encoding. We present an alternative solution which ensures
that only one target z is used for a given distribution of states induced by a language encoding. To
achieve this we turn back to the imitation learning objective where the sequence of proprioceptive
states is used to obtain a policy representation using Lemma | which gives the latent z corresponding
to the policy that minimizes the distribution divergence to the sequence of given states. We refer to the
policy representation embedding space from the Forward-Backward representation as Zipitation-Space.

When optimizing the latent mapper m, we minimize the following loss:

m(e) * Zimitation

- [m(e)l - || zimitation||

E(D, m) = E(Zimi!a!i0n7e)ND

The latent space of the Backward representation is aligned with the latent space of the policy
parametrization, so learning a mapping from the ViFM space to the Backward space is equivalent to
learning a mapping from the ViFM space to the policy parametrization space.

Inference: During inference, the language prompt is embedded to a latent vector e¢!. A known
issue with multimodal embedding models is the embedding gap (Liang et al., 2022), which makes
the video embeddings unaligned with text embeddings. To account for this gap, we use an aligner
trained in an unsupervised fashion from previous work Mazzaglia et al. (2024) to align the language
embedding (eflli gnea)- Then the aligned embedding is passed through the latent mapper to get the
policy conditioning z;mtation, Which gives us the policy that achieves the desired behavior specified
through language.

C ADDITIONAL RESULTS

C.1 ZERO-SHOT IMITATION: DISCRIMINATOR VS DISCRIMINATOR-FREE

We experiment whether optimizing a tighter bound to KL divergence at the expense of training an
additional discriminator in Lemma 1 leads to performance improvements. Table 4 shows that using a
discriminator does not lead to a performance improvement and a training-free inference time solution
achieves a slightly higher win rate.
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\ RLZero with discriminator RLZero
Walker
Lying Down 5/5 5/5
Walk like a human 5/5 5/5
Run like a human 5/5 5/5
Do lunges 5/5 5/5
Cartwheel 5/5 4/5
Strut like a horse 5/5 5/5
Crawl like a worm 1/5 3/5
Quadruped
Cartwheel 4/5 4/5
Dance 5/5 5/5
Walk using three legs 4/5 5/5
Balancing on two legs 4/5 5/5
Lie still 2/5 2/5
Handstand 4/5 3/5
Cheetah
Lie down 1/5 2/5
Bunny hop 5/5 5/5
Jump high 5/5 5/5
Jump on back legs and 5/5 5/5
backflip
Quadruped walk 2/5 4/5
Stand in place like a dog 4/5 3/5
Stickman
Lie down stable 5/5 4/5
Lunges 5/5 5/5
Praying 4/5 4/5
Headstand 5/5 4/5
Punch 4/5 4/5
Plank 4/5 3/5
Average 82.4% 83.2%

Table 4: Win rates computed by GPT-4o of policies trained by different methods when compared to base policies
trained by TD3+Image-language reward.

C.2 CROSS EMBODIMENT EXPERIMENTS

Tables 5 and 6 describe the videos used for cross-embodiment along with the win rate of the
behaviors generated by RLZero when compared to a base model which trains SMODICE (Ma et al.,
2022a) on the nearest states found with the same grounding methods as RLZero.

Prompt Descriptions Video Link/Meta AI Prompt ‘Win rate vs SMODICE
= Human in backflip position animated human trying backflip 2/5
E Downward facing dog yoga pose right profile of yoga pose downward facing dog 1/5
E Cow yoga pose Moves (2019) 5/5
= Downward dog with one leg raised in the air Moves (2019) 5/5
z Lying on back with one leg raised in the air Nicole (2021) 5/5
Q Lying on back with both legs raised in the air LivestrongWoman (2014) 5/5
g High plank yoga pose Well+Good (2019a) 5/5
E Sitting down with legs laid in the front Calisthenicmovement (2021) 5/5
2 Warrior III pose Yoga (2022) 3/5
2] Front splits Suarez (2022) 4/5

Table 5: Comparison of Win rates vs SMODICE for Stickman

C.3 IMAGINATION-FREE RLZERO COMPLETE RESULTS

We consider an ablation of our method by understanding the need for imagination by replacing the
step with an end-to-end learning alternative. This is a novel baseline described in Appendix B.6.
Table 7 shows the results of this end-to-end alternative which maps the shared latent space of video
language models to behavior policy.
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Prompt Descriptions Video Link/Meta AI Prompt Win rate vs SMODICE
=
.E A karate kick position a karate kick 5/5
g A cat doing a handstand a side profile of cat doing headstand 5/5
= An arabesque ballet position ballet movement 5/5
: Animated wikiHow demo of a cartwheel wikiHow (2019) 5/5
* Running running 5/5
- Lying crunches Well+Good (2019b) 5/5
E Plank position Well+Good (2019a) 5/5
7

Table 6: Comparison of Win rates vs SMODICE for 3D SMPL Humanoid

Environment/Task RLZero \ RLZero (Imagination-Free)
Walker
Lying Down 5/5 5/5
Walk like a human 5/5 4/5
Run like a human 5/5 1/5
Do lunges 5/5 5/5
Cartwheel 4/5 5/5
Strut like a horse 5/5 3/5
Crawl like a worm 3/5 0/5

Table 7: Win rates computed by GPT-40 of policies trained by different methods when compared to base policies
trained by TD3+Image-language reward. RLZero shows marked improvement over using embedding cosine
similarity as reward functions.

C.4 MORE FAILURE CASES

We include more failure cases in Figure 8 and Figure 9 as they can help in understanding the
limitations of RLZero better and may inform future work.

C.5 RLZERO EVALUATION WITH VIDEO-EMBEDDING SIMILARITY

In this section, we experiment with another metric for comparison — embedding similarity between a
video of the generated behavior and the text. We use InternVideo2 to embed the videos and take the
cosine similarity with the prompt used to generate the behavior. Table 8 shows the results for this
metric of comparison. Unfortunately, we observed that the similarity score is frequently higher even
for behaviors that differ significantly from the prompt. This points to a limitation of using this metric
for evaluation. Some reasons for this failure could be the limited context length of 8 for the video
embedding model or a misalignment between video and text embedding vectors (Liang et al., 2022).
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Figure 8: More examples of failed imagination by the video generation model used in RLZero. From top to
bottom: Walker - ‘kick’, Quadruped - ‘bunny hop’, Cheetah - ‘frontroll’, Stickman - ‘raise hands while standing
in place’

Image-language reward Video-language reward RLZero
IQL TD3 (Base Model) TD3 IQL
Walker
Lying Down 2/5(0.95+0.00) - (0.89+0.02) 2/5(0.93£0.01)  5/5(0.94+£0.01) | 5/5(0.9340.00)
Walk like a human 1/5 (0.9340.00) - (0.83+0.02) 3/5(0.92+0.01)  4/5 (0.944-0.00) 5 (0.98+0.00)
Run like a human 5/5 (0.95+0.02) - (0.88+0.03) 1/5(0.91£0.01)  2/5 (0.94+0.00) (0.9640.00)
Do lunges 4/5 (0.94+0.01) - (0.91+0.02) 2/5(0.92+0.00)  3/5(0.9340.00) | 5/5(0.94+0.01)
Cartwheel 4/5(0.95+0.01) - (0.93+0.01) 3/5(0.94+0.01)  4/5(0.9640.01) | 4/5(0.95+0.01)
Strut like a horse 5/5 (0.96+0.00) - (0.94+0.02) 1/5 (0.94£0.00)  3/5 (0.9640.03) | 5/5 (0.964-0.00)
Crawl like a worm 4/5 (0.93+0.00) - (0.92+0.01) 1/5 (0.92+£0.01)  2/5(0.954+0.01) | 3/5 (0.8940.01)
Quadruped
Cartwheel 1/5 (0.95+0.00) - (0.95+0.00) 3/5(0.95+0.01)  1/5 (0.95+0.01) | 4/5 (0.92+0.02)
Dance 5/5 (0.94+0.00) - (0.94+0.00) 3/5(0.94+0.02)  1/5(0.94+0.01) | 5/5(0.93+0.01)
Walk using three legs 2/5 (0.92+0.00) - (0.91+£0.00) 2/5(0.91+0.01)  3/5(0.93+0.01) | 5/5(0.93£0.01)
Balancing on two legs 2/5(0.93+0.01) - (0.93+0.00) 2/5(0.93+£0.01)  2/5(0.93+0.00) | 5/5 (0.94+0.02)
Lie still 1/5 (0.87+0.00) - (0.90+0.01) 3/5(0.94+0.00)  2/5 (0.95+0.00) | 2/5 (0.92+0.00)
Handstand 2/5 (0.91+0.01) - (0.91+0.02) 4/5(0.92+0.01)  2/5 (0.94+0.00) | 3/5 (0.91=£0.00)
Cheetah
Lie down 3/5(0.924+0.02) - (0.87+£0.00) 2/5(0.9440.00)  3/5(0.94+0.01) | 2/5(0.904+0.01)
Bunny hop 3/5 (0.98+0.00) - (0.98+0.00) 1/5 (0.98+0.00)  3/5(0.9740.02) | 5/5 (0.964-0.00)
Jump high 3/5(0.94+£0.01) -(0.94+0.01) 0/5(0.94%£0.01)  5/5(0.93£0.01) | 5/5(0.931+0.01)
Jump on back legs and backflip | 3/5 (0.93+0.01) - (0.9240.00) 0/5(0.91£0.01)  2/5(0.924+0.01) | 5/5(0.914+0.01)
Quadruped walk 3/5 (0.96+0.02) - (0.85+0.01) 3/5(0.98+0.00)  3/5(0.9940.01) | 4/5(0.97+0.01)
Stand in place like a dog 4/5(0.93+0.01) - (0.88+0.00) 3/5(0.98+0.01)  0/5 (0.98+0.00) | 3/5(0.97-0.00)
Stickman
Lie down stable 2/5 (0.92+0.00) -(0.91+0.01) 4/5(0.93+0.00)  1/5 (0.93+0.00) | 4/5 (0.91=0.00)
Lunges 0/5 (0.92+0.00) -(0.93+0.02) 2/5(0.9240.01)  0/5 (0.92+0.00) | 5/5(0.96+0.00)
Praying 1/5 (0.85+0.00) - (0.89+0.02) 0/5 (0.87£0.01)  0/5 (0.874+0.01) | 4/5 (0.9140.00)
Headstand 2/5 (0.90+0.01) - (0.90+0.00) 2/5(0.90+0.01)  1/5 (0.87+0.01) | 4/5 (0.90+0.00)
Punch 2/5 (0.89+0.02) - (0.88+0.02) 3/5(0.88+0.02)  4/5(0.91£0.00) | 4/5 (0.90£0.02)
Plank 0/5 (0.90+0.01) -(0.93+0.03) 0/5 (0.89+0.01)  0/5 (0.9340.00) | 3/5 (0.9640.00)
Average 51.2% (0.926)  Base Model (0.908) 40% (0.927) 44.8% (0.936) 83.2% (0.933)

Table 8: Win rates computed by GPT-40 of policies trained by different methods when compared to a base
policies trained by TD3+Image-language reward. RLZero shows marked improvement over using embedding
cosine similarity as reward functions.
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Figure 9: More examples of failed grounding by the image retrieval model used in RLZero. The top image
shows the imagined frame or frame from the embodied video, and the bottom is the nearest frame obtained from
the agent’s prior interaction dataset.
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