Accelerating Diffusion Models for Discriminative Vision and Language
Learners

Anonymous ACL submission

Abstract

Text-to-image diffusion models have demon-
strated impressive generative capabilities, in-
dicating they internalize substantive image-
text representations. While these models have
shown promise results, their potential in down-
stream discriminative applications is largely
uncharted. In this paper, we delve into the capa-
bilities of these diffusion models and improve
the efficiency of using them as zero-shot vision
and language learners. Towards this, we in-
troduce a novel hierarchical sampling strategy
that significantly optimizes the computational
demands of these zero-shot diffusion models,
making them faster and more feasible for real-
world applications. Our work showcases the
potential of text-to-image diffusion models as
powerful tools for zero-shot image-text match-
ing and sets the stage for more practical and
effective applications of these models in real-
world settings.

1 Introduction

Advances in large-scale machine learning mod-
els have allowed them to be trained on extensive
internet-scale datasets and applied as zero-shot
learners, removing the need for task-specific train-
ing. These models, exemplified by work such
as Radford et al. (2021); Ilharco et al. (2021); Li
et al. (2023b), can now handle a wide range of tasks
without additional fine-tuning.

Among these advances, another line of work
such as generative text-to-image models built on de-
noising diffusion probabilistic techniques, includ-
ing Imagen (Saharia et al., 2022), Dalle-2 (Ramesh
et al., 2022), and Stable Diffusion (Rombach et al.,
2022; Podell et al., 2023), has attracted signifi-
cant attention. They can produce realistic, high-
resolution images from diverse text prompts, sug-
gesting that they have learned useful representa-
tions of image-text data.

Despite this progress, their application to dis-
criminative tasks remains underexplored, and their

performance relative to other pre-trained models is
not well understood. Some recent work (Li et al.,
2023a) has investigated Stable Diffusion as a gen-
erative classifier using a re-weighted variant of its
variational lower bound. However, this classifi-
cation process, which involves multiple denois-
ing steps at varying noise levels for each class,
is computationally expensive. We aim to address
these limitations by employing the Stable Diffu-
sion model for discriminative tasks and introducing
methods to accelerate its use as a zero-shot vision
and language learners.

In this paper, we present simple but effective
sampling techniques that reduce computational ef-
fort by up to a factor of 2. We systematically
evaluate our methods on three benchmark classi-
fication datasets, demonstrating that our approach
can significantly improve inference speed while
maintaining comparable classification accuracy.
This improvement brings us closer to making such
diffusion-based zero-shot classifiers practical tools
for a broad range of discriminative applications.

2 Preliminaries

This section provides a brief overview of diffusion
models and how they can be used for zero-shot
classification.

Diffusion Models: Diffusion models are latent
variable generative models defined by a forward
and a reverse Markov chain (Norris, 1998). Sup-
pose we have data distributed as g(x¢), with xg €
R?. The forward process gradually adds Gaussian
noise to generate a sequence of noisy variables
1.7 = {acl, xXro, - ,acT}:
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Figure 1: Diagram illustrating the use of diffusion models for zero-shot classification. Scores are calculated for each
text prompt, which are derived from class labels, at every sampled time step. The class corresponding to the lowest

expected score is subsequently predicted.

The reverse process removes noise step by step,
starting from Normal(zr;0, I):

T-1
po(xo.7) = p(xT) H po(Ti—1|xi). (2)
t=0
Following Kingma and Welling (2013), training in-
volves optimizing a variational lower bound, which
can be expressed as:

Lopitiusion = By ecit[lle — €o(xe,€)[3],  (3)

with &y ~ ¢(xo), € ~ Normal(0,I), t ~
U([0,T]), and c a text embedding.

Using Diffusion Models for Zero-shot Classifi-
cation In this section, we explain how a text-to-
image diffusion model can be adapted as a zero-
shot classifier for evaluation on downstream tasks.
Figure 1 illustrates the idea.

Given an image @, the goal is to predict the most

probable class assignment
g = argmaxp (y =y | )
Yi
= arg maxp @ly=vi)-ply=vyi) (@
= argmaxlogp (z | y =yi),
yi
where we assume a uniform prior p (y = y;) = %
that can be dropped from the arg max.

Convert the label y; from each class name into
text prompts using a dataset-specific template (e.g.
yi — ¢;: A photo of a y;). Then we can convert
eq. 4 to be solved via VLB (Kingma and Welling,
2013) by:

y = argmaxlogpg (x | y = yi)
Vi
~ arg minLpisfusion (T, Yi)
Vi 11rTusion (A (5)
= argminFy . |w; ||€ — €p (X¢, c)H2 ,
yi€lyi

and w; is a weight assigned to the timestep t.

3 Accelerated Sampling

In this section, we introduce an improved, hierarchi-
cal sampling strategy that enhances the efficiency
of the sampling process for using pretrained diffu-
sion models as classifier and optimizes the process
of class prediction.

Monte-Carlo Estimation of Expectation The
expectation in Eq. 5 is approximated using Monte
Carlo estimation. We start by sampling the time
step ¢ and then deriving x; in accordance with
the forward diffusion process (Eq. 1): x; ~

q (¢ | ®o).

Class Scoring and Prediction Upon obtaining a
noisy image, we apply Stable Diffusion to denoise
and predict « from xy, yielding € = €f (x4, c, t).
We designate the squared error of the prediction,
|le — €||3, as the score for (z,y;). We compute
this score for each class N times. The final step
involves weighting the scores based on the corre-
sponding w; and averaging them across all sam-
pled timesteps to generate a prediction score for
each class.

Hierarchical Sampling Strategy In contrast to
the conventional sampling strategy suggested by Li
et al. (2023a), which allocates equal sample num-
bers to each class at every timestep, our approach
places emphasis on classes with higher prediction
probabilities.

Our strategy maintains a beam of classes, ini-
tially sized to C'/b, where C' is the total number
of classes in the dataset and b is the BeamFactor
hyper-parameter which determines the number
of classes to retain during the sampling process.
Given an input text prompt c, the process begins
by sampling NV instances from the starting timestep



Diffusion Classifier

Accelerated Diffusion Classifier

Dataset - 4 ¢ Giracy” Tnference Time ~ Accuracy _ Inference Time
CIFARI10 86.6 110h 85.5 57h
STL10 4.7 3%h 91.0 18h
FGVC 239 19h 23.1 11h

Table 1: Comparison of zero-shot classification performance and inference time between Diffusion Classifier and
Accelerated Diffusion Classifier. The Accelerated Diffusion Classifier exhibits comparable performance to the
Diffusion Classifier, albeit with the inference time for each dataset being approximately twice as long.
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Figure 2: The illustration of the proposed accelerated
sampling. Starting from the initial time step and pro-
gressing to the final one, we retain a progressively di-
minished number of class labels throughout the process.

Algorithm 1 Accelerated Diffusion Classification

1: Given: Image «, conditioning inputs C = {c;},._,, start-
ing time step to, ending time step 7', time interval At,
sampling points for each time step N, and BeamFactor b.

: Initialize Score[c;] = 1ist() for each class name c;

: Calculate ‘BeamSize’ = C'/b

: for time steps t = to, to + At,..., T do

for Sampling n € N do
Sample € ~ N(0, I)
Xt = Varx + /1 — age
for conditioning c; € C do
Score[c;].append(||le — eg(x¢, i) ||*)
end for
Refine C with ‘BeamSize’ classes of C' with low-
est mean error.

12: end for

13: end for

14: § < argminy_, mean(Score|c;])
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Dataset CLIP ResNet-50  Accelerated Diffusion Classifier
CIFAR10 75.6 85.5
STL10 94.3 91.0
FGVC 19.3 23.1

Table 2: The comparison of zero-shot classification
performance with CLIP ResNet-50 performance. As
can be observed from the three datasets, the performance
of accelerated diffusion classifier is comparable.

to. However, unlike previous methods, this process
is not repeated for every class. Instead, we retain
only the top C'/b classes that demonstrate the high-
est performance after each timestep. This selective
approach continues until a single class consistently
achieves the highest probability across s additional
samplings or each timestep has been sampled for
N times. This process is visually represented in
Figure 2.

A detailed description of the complete algorithm
is provided in Algorithm 1.

4 Experiments

Baselines We compared our accelerated diffusion
classifier with the baseline of standard diffusion
classifier introduced in Li et al. (2023a).
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Figure 3: Visualization of VAE-decoded latent fea-
tures and corresponding heatmaps at different sampled
timesteps. The prompt is “a photo of a dog.”

Dataset We evaluate the zero-shot classi-
fication performance across three datasets:
CIFAR10 (Krizhevsky and Hinton, 2009),
STL10 (Coates et al.,, 2011), and FGVC-
Aircraft (Maji et al., 2013).

4.1 Experimental Results

In Table 1, we show that the Accelerated Diffusion
Classifier exhibits comparable performance to the
Diffusion Classifier, albeit with the inference time
for each dataset being approximately twice as long.
In Table 2, we shows the comparison with CLIP
using ResNet-50 as the backbone and ours can
achieve competitive performance as well.

Figure 3 provides a qualitative analysis. The
upper row shows VAE-decoded images of latent
features at various sampled timesteps, while the
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Figure 4: The compare of different sampling start
timestep.

lower row depicts their corresponding heatmaps.
As the timesteps progress, the image becomes in-
creasingly coherent, clearly depicting the features
of a dog. This highlights the alignment between the
text prompt and the visual representation, showcas-
ing the effectiveness of the hierarchical sampling
in capturing semantic correlations.

4.2 Ablation Study: Sampling from Other
Directions

We additionally conducted experiments to investi-
gate the impact of alternative hierarchical sampling
directions. The two alternative strategies we em-
ployed were: 1. Sampling in reverse order, that is,
we begin with the noisy image and gradually re-
duce the sampling numbers as the images become
cleaner. 2. Initiating sampling from the midpoint
T'/2 and then sampling time ¢ from a uniform dis-
tribution in the range [7'/2 — At,T'/2 + At].

The results of these experiments are displayed
in Figure 4. It can be observed that starting from
to, corresponding to the cleanest image, yields the
highest accuracy. This intuitively makes sense as
noiseless images contain more information that can
be better aligned with the text prompts.

5 Related Work

Diffusion Probabilistic Models (DPMs) Diffu-
sion Probabilistic Models (DPMs), encompassing
diffusion (Sohl-Dickstein et al., 2015) and score-
based generative models (Song and Ermon, 2019),
have emerged as potent tools for image genera-
tion in recent years. The evolution of DPMs over
the past couple of years has been marked by sig-
nificant enhancements, particularly in sampling
techniques like classifier-free guidance (Ho and
Salimans, 2021). DPMs conventionally leverage
convolutional U-Net architectures (Ronneberger
et al., 2015), incorporating cross-attention layers.

These works have demonstrated the diffusion mod-
els’ potential ability via minimizing the objective
of the distance between the predicted noise and the
ground truth during training. These objectives can
be extended to implementing diffusion models as
classifiers (Li et al., 2023a; Clark and Jaini, 2023)
and we further improve the efficiency in this work.

Generative Models for Discriminative Tasks
The potential of generative models in discrimina-
tive tasks has been a focal point in recent research
in the fields of natural language processing and ma-
chine learning. One prevalent approach involves
fine-tuning the model for a specific discriminative
task. For instance, Dai et al. (2021) improved per-
formance on several discriminative tasks, includ-
ing named entity recognition and machine trans-
lation, by fine-tuning a large transformer-based
language model. In a similar vein, Yang et al.
(2019) introduced a model that amalgamates a gen-
erative model for text generation and a discrimi-
native model for sentiment analysis. Wang et al.
(2018) proposed a method for adapting a generative
model for language translation to the discriminative
task of language classification, yielding superior
results compared to established baselines. There
are also instances of using generative models for
discriminative tasks, such as initializing a discrimi-
native model to enhance performance (Mao et al.,
2019), or pre-training a discriminative model for
domain adaptation (Chen et al., 2020). Recent stud-
ies (Li et al., 2023a; Clark and Jaini, 2023) propose
the application of pre-trained diffusion models for
zero-shot classification. Also, Wei et al. (2023)
have restructured diffusion models as masked au-
toencoders, achieving state-of-the-art classification
accuracy in video tasks.

6 Conclusion

Our work offers novel insights into the capabili-
ties of stable diffusion. We posit that text-to-image
generative diffusion models can learn powerful rep-
resentations and serve as an efficient and fast vision
and language learner. The hierarchical sampling
strategy we introduce serves as a stepping stone
towards making these models more accessible and
practical for a wider range of applications, thereby
unlocking new potential for their deployment in
real-world scenarios.



7 Limitations

Our approach relies on pre-trained text-to-image
diffusion models, which may inherit biases and
ethical concerns from the data used during their
initial training. These biases could influence pre-
dictions in unintended ways, particularly in applica-
tions involving sensitive or diverse datasets. While
our method improves the efficiency of using such
models for discriminative tasks, addressing these
underlying biases and ensuring ethical deployment
remains an important area for future research.
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