
Progressive Ensemble Distillation:
Building Ensembles for Efficient Inference

Don Kurian Dennis
Carnegie Mellon University

Abhishek Shetty
University of California, Berkeley

Anish Sevekari
Carnegie Mellon University

Kazuhito Koishida
Microsoft

Virginia Smith
Carnegie Mellon University

Abstract

We study the problem of progressive ensemble distillation: Given a large, pretrained
teacher model g, we seek to decompose the model into smaller, low-inference cost
student models fi, such that progressively evaluating additional models in this
ensemble leads to improved predictions. The resulting ensemble allows for flexibly
tuning accuracy vs. inference cost at runtime, which is useful for a number of
applications in on-device inference. The method we propose, B-DISTIL, relies
on an algorithmic procedure that uses function composition over intermediate
activations to construct expressive ensembles with similar performance as g, but
with smaller student models. We demonstrate the effectiveness of B-DISTIL by
decomposing pretrained models across standard image, speech, and sensor datasets.
We also provide theoretical guarantees in terms of convergence and generalization.

1 Introduction

Knowledge distillation aims to transfer the knowledge of a large model into a smaller one [5, 23].
While this technique is commonly used for model compression, one downside is that the procedure is
fairly rigid—resulting in a single compressed model of a fixed size. In this work, we instead consider
the problem of progressive ensemble distillation: approximating a large model via an ensemble of
smaller, low-latency models such that such that progressively evaluating additional models in this
ensemble leads to improved predictions. The resulting decomposition is useful for many applications
in on-device and low-latency inference. For example, components of the ensemble can be selectively
combined to flexibly meet accuracy/latency constraints [31, 44], can enable efficient parallel inference
execution schemes, and can facilitate early-exit [4, 11] or anytime inference [36, 28] applications,
which are scenarios where inference may be interrupted due to variable resource availability.

. . .

Teacher Model

Progressive
Distillation

+ + +

Student Models

. . .+

Figure 1: In progressive ensemble distillation, a large teacher model is
distilled into an ensemble of low inference cost models. The more student
models we evaluate, the closer the ensemble’s decision boundary is to
that of the teacher model. Models in the ensemble are allowed to depend
on previously computed features to reduce overhead and inference cost.

More specifically, our work
seeks to distill a large pretrained
model, g, onto an ensemble of
‘smaller’ models, such that eval-
uating the first model produces a
coarse estimate of the prediction
(e.g., covering common cases),
and evaluating additional models
improves on this estimate (see
Figure 1). There are major ad-
vantages to such an ensemble for
on-device efficient inference.

Corresponding author: Don Dennis <dondennis@cmu.edu>.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Concretely, (i) inference cost vs. accuracy trade-offs can be controlled on-demand at execution time,
(ii) the ensemble can either be executed in parallel or in sequence, or possibly a mix of both, and (iii)
we can improve upon coarse initial predictions without re-evaluation at runtime.

While traditional distillation methods are effective when transferring information to a single model of
similar capacity, it has been shown that performance can degrade significantly when reducing the
capacity of the student model [34, 19]. Moreover, distillation of a deep network onto a weighted sum
of shallow networks rarely performs better than distillation onto a single model [9, 1].

Our insight in this work is that by composing and reusing activations and by explicitly incentivizing
models to be weak learners during distillation, we can successfully find weak learners even when
the capacity gap is relatively large. As long as these composition functions are resource-efficient,
we are able to increase our hypothesis class capacity at roughly the same inference cost as a single
model. Moreover, we show that our procedure retains the theoretical guarantees of classical boosting
methods [39]. Concretely, we make the following contributions:

• We formulate progressive ensemble distillation as a two player zero-sum game, derive a weak
learning condition for distillation, and present our algorithm, B-DISTIL, to approximately solve
this game. To make the search for weak learners in low parameter count models feasible, we
solve a log-barrier based relaxation of our weak learning condition. By allowing models to reuse
computation from select intermediate layers of previously evaluated models of the ensemble, we
can increase the model’s capacity without significantly increasing inference cost.

• We empirically evaluate our algorithm on synthetic and real-world classification tasks from com-
puter vision, speech, and sensor processing with models suitable for the respective domains. We
show that our ensemble behaves like a decomposition, allowing a run-time trade-off between
accuracy and computation, while retaining competitive performance with the teacher model.

• We provide theoretical guarantees for our algorithm in terms of in-sample convergence and
generalization performance. Our framework is not architecture or task specific and can recover
existing ensemble models used in efficient inference; we believe our work thus puts forth a general
lens to view previous work and also to develop new, principled approaches for efficient inference.

2 Background and Related Work

Efficient Inference. Machine learning inference is often resource-constrained when deployed in
practical applications due to memory, energy, cost, or latency constraints. This has spurred the
development of numerous techniques for efficient inference. Pruning and approximations of pre-
trained parameter tensors through low-rank, sparse and quantized representations [22, 3, 18, 20]
have been effective is reducing resource requirements. There are also architecture and task specific
techniques for efficient inference [12, 45, 13]. In contrast to compressing an already trained model,
algorithms have also been developed to train compressed models by incorporating resource constraints
as part of their training routines [2, 7]. More recently, algorithms have been developed to search and
find smaller sub-models from a single pre-trained model [46, 6].

Knowledge distillation. Knowledge distillation aims to transfer the knowledge of a larger model
(or model ensemble) to a smaller one [5, 23]. Despite its popularity, performing compression
via distillation has several known pitfalls. Most notably, it is well-documented that distillation
performs poorly when there is a capacity gap, i.e., the teacher is significantly larger than the
student [34, 19, 9, 1]. When performing distillation onto a weighted combination of ensembles, it
has been observed that adding additional models into the ensemble does not dramatically improve
performance over that of a single distilled model [1]. There is also a lack of theoretical work
characterizing when and why distillation is effective for compression [21]. Our work aims to address
these pitfalls by developing a principled approach for progressively distilling a large model onto
an ensemble of smaller, low-capacity ones. We defer readers to [21] for a recent survey on varied
applications of and approaches for distillation at large.

Early exits and anytime inference. Many applications stand to benefit from the output of progres-
sive ensemble distillation, which allows for flexibly tuning accuracy vs. inference cost and executing
inference in parallel. Enabling trade-offs between accuracy and inference cost is particularly useful
for applications that use early exit or anytime inference schemes. In on-device continuous (online)
inference settings, early exit models aim to evaluate common cases quickly in order to improve

2

energy efficiency and prolong battery life [11, 4]. For instance, a battery powered device contin-
uously listening for voice commands can use early exit methods to improve battery efficiency by
quickly classifying non-command speech. Many early exit methods are also applicable to anytime
inference [28, 36]. In anytime inference, the aim is to produce a prediction even when inference is
interrupted, e.g., due to resource contention or a scheduler decision. Unlike early exit methods where
the classifier chooses when to exit, anytime inference methods have no control over when they are
interrupted. We explore the effectiveness of our method, B-DISTIL, for such applications in Section 5.

Two-player games, online optimization and boosting. In this work we formulate progressive
ensemble distillation as a two player zero-sum game. The importance of equilibrium of two player
zero-sum games have been recognized since the foundational work of von Neumann and Morgen-
stern [42]. Later applications by Schapire [38] and Freund [15], Freund and Schapire [16] identified
close connections between boosting and two-player games. On the basis of this result, a number
of practical boosting-based learning approaches such as AdaBoost [17], gradient boosting [33],
and XGboost [8] have been developed. Boosting has only recently seen success in modern deep
learning applications. In particular, Suggala et al. [40] propose a generalized boosting framework
to train boosting based ensembles of deep networks. Their key insight is that allowing function
compositions in feature space can help boost deep neural networks. Although they focus on training
and do not produce decompositions of pretrained models, we use a similar approach in our work to
select intermediate layers connections between ensemble components (Section 3.3). A more general
application of boosting that is similar to our setup is by Trevisan et al. [41]. They prove that given a
target bounded function g (e.g., the teacher model) and class of candidate approximating functions
f ∈ F , one can iteratively approximate g arbitrarily well with respect to F using ideas from online
learning and boosting. However, these results depend on the ability to find a function ft in iteration t
that leads to at least a small constant improvement in a round-dependent approximation loss. A key
contribution of our work is showing that such functions can be found for the practical application of
progressive ensemble distillation by carefully selecting candidate models.

3 Progressive Ensemble Distillation with B-DISTIL
As discussed, our goal in performing progressive ensemble distillation is to approximate a large model
via an ensemble of smaller, low-latency models so that we can easily trade-off between accuracy and
inference-time/latency at runtime. In this section we formalize the problem of progressive ensemble
distillation as a two player game and discuss our proposed algorithm, B-DISTIL.

3.1 Problem Formulation
Consider repeated plays of a general two player zero-sum game with the pure strategy sets comprising
of a hypothesis class F and a probability distribution P . Given a loss function L, we let the loss (and
reward) of the players be given by F (f, p) = Ex∼p[L(f, x)], and the minimax value of the game is:

max
p∈P

min
f∈F

F (f, p) . (1)

In the context of distillation, given a training set {xi}, we can think of the role of the max player
in Equation (1) as producing distributions over the training set and the role of the min player
as producing a hypothesis that minimizes the loss on this distribution. In this setting, note that
P =

{
p ∈ RN×L : pi,j ≥ 0 ∀j

∑
i pi,j = 1

}
is the product of simplices in N ×L dimensions, and

(∇fF (f, p))j =
∑
i

pi,j (f(xi)− g(xi))j . (2)

Our goal is to produce an ensemble of predictors from the set of hypothesis classes {Fm} to
approximate g ‘well’. We now appeal to tools from the framework of stochastic minimax optimization
to approximately attain the value in Equation (1) (see Appendix A for a more involved discussion).
As is common in this setup, we assume our algorithm is provided access weak gradient vector h such
that, when queried at distribution p ∈ P and for β > 0,

〈h,∇fF (f, p)〉 ≥ β. (3)
We perform this construction iteratively by searching for weak learners or weak gradients in the sense
of Equation (3) with respect to the target g in the class Fm. Conditioned on a successful search we
can guarantee in-sample convergence to the minimax value in Equation (1) (Theorem 1) and bound
the excess risk of the ensemble (Theorem 2). Although Equation (3) is a seemingly easier notion than
the full optimization, in many problems of interest even this is challenging. In fact, in the multilabel
setting that we focus on, one of the main algorithmic challenges is to construct an algorithm that can
reliably find low cost weak gradients/learners (see Section 3.3).

3

Algorithm 1 B-DISTIL: Main algorithm

Require: Target g, rounds T , data {(xi, yi)}Ni=1,
learning rate η, model classes {Fm}Mm=1

1: K+
t (i, j),K−t (i, j)← 1

2N ,
1

2N ∀(i, j)
2: F, r, t← ∅, 1, 1
3: while r < R and t < T do
4: ft = FIND-WL(K+

t ,K
−
t ,Fr)

5: if ft is NONE then
6: r ← r + 1
7: continue
8: end if
9: With l := ft − g, update K+

t ,K
−
t . ∀(i, j)

K+
t+1(i, j)←K+

t (i, j) exp(−η · l(xi)j) (4)

K−t+1(i, j)←K−t (i, j) exp(η · l(xi)j) (5)
10: Normalize K+

t ,K
−
t .

11: F, t← F ∪ {ft}, t+ 1
12: end while
13: Return 1

|F |
∑|F |
i=1 fi

Algorithm 2 FIND-WL

Require: Probability matrices K+,K−,
model class F parameterized by θ ∈
Θ, hyperparameters for SGD

1: Obtain {Fr}R1 by expanding F (Sec-
tion 3.2).

2: for F ′ ∈ {Fr}Rr=1 do
3: Initialize initial parameter θ0 ∈ F ′.
4: for i ∈ {1, . . . ,max-search} do
5: Randomly initialize fθi .
6: Run SGD to solve Equation (6).
7: if fθi is a weak learner then
8: Return fθi
9: end if

10: end for
11: end for
12: Return NONE

3.2 B-DISTIL Algorithm

Concretely, at each round t, our proposed algorithm, B-DISTIL, maintains matrices K+
t ∈ RN×L and

K−t ∈ RN×L of probabilities (in our setting, it turns out to be easier to maintain the positive errors
and the negative error separately). Note that the matrices K+

t and K−t are such that for all j ∈ [L],∑
iK

+
t (i, j)+K−t (i, j) = 1. Moreover, for all (i, j) ∈ [N]× [L], 0 ≤ K+

t (i, j),K−t (i, j) ≤ 1. The
elementsK+

t (i, j) andK−t (i, j) can be thought of as the weight on the residual errors ft−1(x)−g(x)
and g(x)− ft−1(x) respectively, up-weighting large deviations from the teacher model g(x). We
formalize our notion of weak learners in this setting using Definition 1, which can be seen as a natural
extension of the standard weak learning assumption in the boosting literature.

Definition 1 (Weak learning condition). Given a dataset {(xi, yi)}Ni=1, a target function g : X → RL
and probability matrices K+

t ,K
−
t , a function ft : X → RL is said to satisfy the weak learning

condition with respect to g, ∀j, if the following sum is strictly positive:∑
iK

+
t (i, j)(ft(xi)− g(xi))j +K−t (i, j)(g(xi)− ft(xi))j .

At each round t, with the current probability matrices K−t ,K
+
t , B-DISTIL performs two steps; first, it

invokes a subroutine FIND-WL (discussed below) that attempts to find a classifier ft ∈ Fr satisfying
the weak learning condition (Definition 1). If such a predictor is found, we add it to our ensemble
and proceed to the second step, updating the probability matrices K−t ,K

+
t based on errors made by

ft. This is similar in spirit to boosting algorithms such as AdaBoost [39] for binary classification. If
no such predictor can be found, we invoke the subroutine with the next class, Fr+1, and repeat the
search till a weak learner is found or we have no more classes to search in.

3.3 Finding Weak Learners

As mentioned above, the main difficulty in provably approximating the teacher model in this setting
is in finding a single learner ft at round t that satisfies our weak learning condition simultaneously
for all labels j. Existing boosting methods for classification treat multi-class settings (L > 1) as L
instances of the binary classification problem (one vs. all) [39]. They typically choose L different
weak learners for each instance, which is unsuitable for resource efficient on-device inference. The
difficulty is further increased by the capacity gap between the student and teacher models we consider
for distillation. Thus, along with controlling temperature for distillation, we employ two additional
strategies: 1) we use a regularizer in the objective FIND-WL solves to promote weak learning and, 2)
we efficiently reuse a limited number of stored activation outputs of previously evaluated models to
increase the expressivity of the current base class.

4

Log-barrier regularizer. To find a weak learner, the FIND-WL method minimizes the sum of two
loss terms using stochastic gradient descent. The first is standard binary/multi-class cross-entropy
distillation loss [23], with temperature smoothing. The second term is defined in Equation (6):

− 1

γ

∑
i,j

I+
ij log

(
1 +

l(xi)j
2B

)
+ (1− I+

ij) log
(

1− l(xi)j
2B

)
(6)

Here I+
ij := I[K+

t (i, j) > K−t (i, j)], B is an upper bound on the magnitude of the logits, and
l(xi) := f(xi)− g(xi). To see the intuition behind Equation (6), assume the following holds; ∀(i, j),

(K+
t (i, j)−K−t (i, j))(f(xi)− g(xi))j > 0. (7)

Summing over all xi, we can see that this is sufficient for f to be a weak learner with respect to
g. Equation (6) is a soft log-barrier version of the weak learning condition, that penalizes those
(i, j) for which Equation (7) does not hold. By tuning γ we can increase the relative importance
of the regularization objective, encouraging ft to be a weak learner potentially at the expense of
classification performance.

Intermediate layer connections and profiling. As discussed in Section 2, distillation onto a linear
combination of low capacity student models often offers no better performance than that of any single
model in the ensemble trained independently. For boosting, empirically we see that once the first
weak learner has been found in some class Fm of low-capacity deep networks, it is difficult to find a
weak learner for the reweighed objective from the same class Fm. To work around this we let our
class of weak learners at round t include functions that depend on the output of intermediate layers of
previous weak learners [40].

As a concrete example, consider a deep fully connected network with U layers, parameterized as
f = Wφ1:U . Here φ1:u can be thought of as a feature transform on x using the first u layers
into Rdu and W ∈ RdU×L is a linear transform. With two layer fully connected base model class
F0 := {W (0)φ

(0)
1:2 |W (0) ∈ RL×d2} (dropping subscript m for simplicity), we define:

Fr = {W (r)φ
(r)
1:2(id + φ

(r−1)
1:2)} and, F ′r{W (r)φ

(r)
2 (id + φ

(r)
1 + φ

(r−1)
1)} ,

with id(x) := x. It can be seen that {Fr} and {F ′r} define a variant of residual connection based
networks [27]. It can be shown that classes of function {Fr} (and {F ′r}) increase in capacity with r.
Moreover, when evaluating sequentially the inference cost of a model from Fr is roughly equal to
that of F , since each subsequent evaluation reuses stored activations from previous evaluations. For
this reason the parameter count of each Fr remains the same as that of the base class. Note that by
picking the base class as dense networks at various scales and connections as dense connections our
algorithm can recover MSDNets studied in [27]. Similarly, by picking the base class as root nodes,
and connections as binary connections, we recover an HNE from [36].

We informally refer to the process of constructing {Fr} given a choice of base class F0, the parameter
R and the connection type as expanding F0. Note that while intermediate connections help with
capacity, they often reduce parallelizability as models become mutually dependent. As a practical
consequence dependencies on activation outputs of later layers are preferred, and we use the Rasley
et al. [35] profiler to measure inference cost during training rounds and rank models (see Appendix C).

4 Theoretical Analysis
In this section we provide theoretical analysis and justification for our method. First, we show that
the ensemble output produced by algorithm 1 converges to g at O(1/

√
T) rate, provided that the

procedure FIND-WL succeeds at every time t.
Theorem 1. Suppose the class F satisfies that for all f ∈ F , ‖f − g‖∞ ≤ G∞. Let F = {ft} be
the ensemble after T rounds of Algorithm 1, with the final output Ft = 1

T

∑T
t=1 ft. If ft satisfies

eq. (7) for all t ≤ T then for T ≥ ln 2N and η = 1
G∞

√
ln 2N
T , we have for all j

‖Ft,j − gj‖∞ ≤ G∞

√
ln 2N

T
, (8)

where Ft,j and gj are the jth coordinates of the functions Ft and g respectively.

5

We defer the details of the proof to the Appendix B. The main idea behind the proof is to bound the
rate of convergence of the algorithm towards the minimax solution. This proceeds by maintaining a
potential function and keeping track of its progress through the algorithm. The bounds and techniques
here are general in the sense that for various objectives and loss functions appropriate designed weak
learners give similar rates of convergence to the minimax solution. Furthermore, a stronger version
that shows exponential rates can be shown by additionally assuming an edge for the weak learner.

In addition to the claim above about the in-sample risk, we also show that the algorithm has a strong
out-of-sample guarantee. We show this by bounding the generalization error of the algorithm in terms
of the generalization error of the class F . In the following theorem, we restrict to the case of binary
classification for simplicity, but the general result follow along similar lines. Let CT denote the class
of functions of the form

FT (x) = sign(1
T

T∑
i=1

ft(x)),

where ft are functions in class F . We then have the following generalization guarantee:
Theorem 2 (Excess Risk). Suppose data D contains of N iid samples from distribution D and that
the function g has ε margin on data D with probability µ, i.e., Prx∼D [|g(x)| < ε] < µ. Further,
suppose that the class CT has VC dimension d. Then, for T ≥ 4G2

∞ ln 2N/ε2, with probability 1− δ
over the samples, the output FT of algorithm 1 satisfies:

err(FT) ≤ êrr(g) +O

(√
d ln(N/d) + ln(1/δ)

N

)
+ µ .

Note that the above theorem can easily be adapted to the case of margins and VC dimension of
the class CT being replaced with the corresponding fat-shattering dimensions. Furthermore, in the
setting of stochastic minimax optimization, one can get population bounds directly by thinking of
sample losses and gradients as stochastic gradients to the population objective. This is for example
the view taken by [40]. In our work, we separate the population and sample bounds to simplify the
presentation and the proofs.

5 Empirical Evaluation

We now evaluate B-DISTIL on both real-world and simulated datasets and over a variety of architecture
types. We consider six real world datasets across three domains—vision, speech and sensor-data—as
well as two simulated datasets. This allows us to evaluate our method on five architecture types: fully
connected, convolutional, residual, densely connected networks and recurrent networks. Our code
can be found at: github.com/metastableB/bdistil.

5.1 Dataset Information

For experiments with simulated data, we construct two datasets. The first dataset, referred to as
ellipsoid is a binary classification dataset. Here the classification labels for each data point x ∈ R32

are determined by the value of xTAx for a random positive semidefinite matrix A. The second
simulated dataset, cube, is for multiclass classification with 4 classes. Here labels are determined by
distance to vertices from {−1, 1}32 in R32, partitioned into 4 classes.

We also use six real world datasets for our experiments. Our image classification experiments use the
CIFAR-10, CIFAR-100, TinyImageNet and ImageNet datasets. For time-series classification tasks we
use the Google-13 speech commands dataset. Here the task is keyword detection: given a one-second
buffer of audio, we need to identify if any of 13 predefined keywords have been uttered in this. Finally,
we use the daily sports activities (DSA) dataset for experiments with sensor data. Here the task is
identifying the activity performed by an individual from a predefined set of sports activities, using
sensor data. For detailed information of all datasets used see Appendix C.

5.2 Model Architecture Details

Teacher models. We use deep fully connected (FC) networks for classification on Ellipsoid and
convolutional networks for Cube. For image classification on CIFAR-10 and ImageNet dataset we
use publicly available, pretrained ResNet models. We train reference DenseNet models for the

6

github.com/metastableB/bdistil

0.1 0.2 0.3
frac. inference time

80

90

Ac
cu

ra
cy

 (%
)

FC-32,32,64

(a) Cube

0.25 0.50 0.75
frac. inference time

80

85

90

95
FC-16,16,16

(b) Ellipsoid

0.0 0.5 1.0
frac. inference time

70

80

90

ResNet56

(c) CIFAR-10

0.2 0.4 0.6
frac. inference time

50

60

70

DenseNet121

(d) CIFAR-100

0.5 1.0
frac. inference time

20

40

60

Ac
cu

ra
cy

 (%
)

ResNet110

(e) TinyImageNet

0.5 1.0
frac. inference time

20

40

60

80 ResNet101

(f) ImageNet-1k

0.2 0.4
frac. inference time

80.0

82.5

85.0

87.5
GRU32

(g) DSA-19

0.0 0.2 0.4 0.6
frac. inference time

60

80

LSTM128

NORESHED
RESHED
Teacher
B DSTILL

(h) Google-13

Figure 2: Accuracy vs. inference-time trade-offs. Inference time is reported as a fraction of teacher’s inference
time along with average ensemble accuracy and error bars. B-DISTIL performs this trade-off at runtime. The
baseline NO-RESHED at inference time τw (x-axis) is the accuracy of a single model that is allowed |τw−0| time
for inference. Similarly the baseline RESHED at τw is the accuracy of an ensemble of models, where the model w
is allowed |τw − τw−1| time to perform its inference. This is also the latency between the successive predictions
from B-DISTIL. We can see that B-DISTIL (green) remains competitive to the oracle baseline (NO-RESCHED,
blue) and outperforms weighted averaging (RESCHED, yellow).

CIFAR-100 dataset based on publicly available training recipes (see Appendix C). As both spoken
audio data (Google-13) and sensor-data (DSA-19) are time series classification problems, we use
recurrent neural networks (RNNs). We train an LSTM-based architecture [24] on Google-13 and a
GRU-based architecture [10] on DSA-19. Except for the pretrained ResNet models, all other teacher
models are selected based on performance on validation data.

Student models. For all distillation tasks, for simplicity we design the student base model class
from the same architecture type as the teacher model, but start with significantly fewer parameters
and resource requirements. We train for at most T = 7 rounds, keeping η = 1 in all our experiments.
Whenever FIND-WL fails to find a weak learner, we expand the base class F using the connection
specified as a hyperparameter. Since we need only at most T = 7 weak learners, we can pick
small values of R (say, 2). The details of the intermediate connections used for each dataset,
hyperparameters such as the regularization parameter γ in Equation 6 and hyperparameters for SGD
can be found in Appendix C and D

5.3 Experimental Evaluation and Results

First, we present the trade-off between accuracy and inference time offered by B-DISTIL in the context
of anytime inference and early prediction. We compare our models on top-1 classification accuracy
and total floating point operations (FLOPs) required for inference. We use a publicly available
profiler [35] to measure floating point operations. For simplicity of presentation, we convert these to
the corresponding inference times (τ) on a reference accelerator (NVIDIA 3090Ti).

Anytime inference. As discussed previously, in the anytime inference setting a model is required
to produce a prediction even when its execution is interrupted. Standard model architectures can
only output a prediction once the execution is complete and thus are unsuitable for this setting. We
instead compare against the idealized baseline where we assume oracle access to the inference budget
which is usually only available after the execution is finished or is interrupted. Under this assumption,
we can train a set of models suitable various inference time constraints, e.g., by training models at
various depths, and then pick the one that fits the current inference budget obtained by querying the
oracle. We refer to this baseline as NO-RESHED and compare B-DISTIL to it on both synthetic and
real world datasets in Figure 2. This idealized baseline can be considered an upper bound on the
accuracy of B-DISTIL for a fixed inference budget.

7

Dataset Algorithm Early-prediction Acc
T = 50% T = 75% T = 100%

Acc (%) Frac Acc (%) Frac Acc (%)

Google-13 E-RNN 88.31 0.48 88.42 0.65 92.43
B-DISTIL 87.41 0.49 89.31 0.71 92.25

DSA-19 E-RNN 83.5 0.55 83.6 0.56 86.8
B-DISTIL 82.1 0.53 84.1 0.58 87.2

Table 1: Early prediction performance. Performance of the ensemble produced by B-DISTIL to the E-RNN
algorithm [11]. The accuracy and the cumulative fraction of the data early predicted at 50%, 75% and 100% time
steps are shown. At T = 100, frac. evaluated is 1.0. The ensemble output by B-DISTIL with the early-prediction
loss is competitive to the E-RNN algorithm. Unlike E-RNN, a method developed specifically for early prediction
of RNNs, B-DISTILL is more generally applicable across model architecures and can also be used for offline.

B-DISTIL can improve on its initial prediction whenever inference jobs are allowed to be rescheduled.
To contextualize this possible improvement, we consider the case where the execution is interrupted
and rescheduled (with zero-latency, for simplicity) at times {τ1, τ2, . . . , τW }. We are required
to output a prediction at each τw. As an idealized baseline, assume we know these interrupt
points in advance. One possible solution then is as follows: select models with inference budgets
|τ1|, |τ2−τ1|, . . . , |τw−τw−1|. Sequentially evaluate them and at at each interrupt τw, and output the
(possibly weighted) average prediction of the w models. We call this baseline RESCHED. Since the
prediction at τw is a weighted average of models, we expect its performance to serve as a lower-bound
for the performance of B-DISTIL. In the same figure (Figure 2) we compare B-DISTIL to RESHED.

We see that at all interrupts points in Figure 2, the predictions provided by B-DISTIL are competitive
to that of the idealized baseline RESHED which requires the inference budget ahead of time for
model selection, while being able to improve on its initial predictions if rescheduled. For instance,
for the CIFAR-100 dataset and at the interrupt point at 0.5 on the x-axis, the predictions produced
by B-DISTIL are comparable to a single model of the same inference duration, while being able to
allow interrupts at all the previous points.

Early prediction. To evaluate the applicability of our method for early prediction in online time-
series inference, we compare the performance of B-DISTIL to that of E-RNN from [11]. Unlike
B-DISTIL, which can be applied to generic architectures, E-RNN is a state-of-the-art method for
early prediction that was developed specifically for RNNs. When training, we set the classification
loss to the early-classification loss used in E-RNN training. We evaluate our method on the time-series
datasets GoogleSpeech and DSA. The performance in terms of time-steps evaluated is compared in
Table 1. Here, we see that B-DISTIL remains competitive to E-RNN for early prediction. Unlike
E-RNN, B-DISTIL also offers early prediction for offline/batch evaluation time-series data. For such
cases, a threshold can be tuned similar to E-RNN and B-DISTIL can evaluate the models in its ensemble
in order of increasing cost, exiting when the prediction score crosses this threshold.

5.4 Training Considerations and Scalablility

Connections. Our method uses intermediate connections to improve its performance. Although
these connections are designed to be efficient, they still have an overhead cost over an averaging based
ensemble. The FLOPs required to evaluate intermediate connections corresponding to the distillation
tasks in Figure 2 is shown in Figure 3. Here, we compare the FLOPs required to evaluate the model
from round T to the FLOPs required evaluate the intermediate connections used by this model. Note
that summing up all the FLOPs up to a round T , in Figure 3 gives the total FLOPs required to for
the ensemble with the first T models. For all our models, the overhead of connections is negligible
when compared to the inference cost of the corresponding model.To evaluate the benefits offered
by the intermediate connections, we can compare the results of B-DISTIL run with connections and
B-DISTIL without connections. The latter case can be thought of as running the AdaBoost algorithm
for distillation. Note that this is the same as the RESCHED baseline (weighted averaging).

On comparing the B-DISTIL plot in Figure 2 to the plot of RESCHED highlights the benefit of using
intermediate connections. As in this work our focus is on finding weak learners in the presence
of capacity gap, and we do not explore additional compression strategies like quantization, hard
thresholding, low-rank projection that can further reduce inference cost.

8

0 2 4
Round (T)

0.00

0.05

0.10

0.15

0.20

Fr
ac

. f
lo

ps

LSTM128
Model Conn.

(a) Google-13

0 1 2 3
Round (T)

0.00

0.05

0.10

0.15

GRU32

(b) DSA-19

0 2 4
Round (T)

0.0

0.1

0.2

ResNet56

(c) CIFAR10

0 2 4
Round (T)

0.00

0.05

0.10

0.15

DenseNet121

(d) CIFAR-100

Figure 3: Overhead of connections. The floating point operations required to evaluate the model added in
round T , compared to that required to evaluate just the connections used by this model. We present the results
corresponding to datasets that have models with smaller required FLOPs overall. We see that even for these
models the connections add relatively little overhead.

Overheads of training/distillation. B-DISTIL requires additional compute and memory compared
to a single model’s training. Maintaining the two matricesK+

t andK−t requires an additionalO(NL)
memory. Even for relatively large datasets with, say, N = 106 samples and L = 1000 classes, this
comes out to a few gigabytes. Note that the two matrices can be stored in on disk and a batch can be
loaded into memory for loss computation asynchronously using data loaders provided by standard ML
frameworks. Thus the additional GPU memory requirement is quite small, O(bL) for a mini-batch
size b, same as the memory required to maintain one-hot classification labels for a mini-batch. Since
gradient computation is required only for the model being trained in each round, which typically is
smaller than the teacher model, the backward pass is relatively cheap. For large datasets, loading the
data for the teacher model forward pass becomes the bottleneck. See Appendix D for discussion on
data loading, training time, and resource requirements for a ImageNet distillation.

Sorting {F}t using profiling. As mentioned in Section 3 B-DISTIL assumes the hypothesis classes
in {F}t are ordered on some metric, say, inference time. In practice, we achieve this at run-time
by starting with a small base model, and profiling subsequent models considered in later rounds at
run-time. For example, in PyTorch, we can use the torch.autograd.profiler module to profile
the forward pass of a model. As a heuristic, we then sort the models in {F}t based on the average
inference time of the models in the ensemble.

6 Limitations, Broader Impact, and Future Work

In this paper we explore the problem of progressive ensemble distillation, in which the goal is to
produce an ensemble of small weak learners from a large model, where components of the ensemble
enable progressively better results as the ensemble size increases. To address this problem we
propose B-DISTIL, an algorithm for progressive ensemble distillation, and demonstrate that it can be
useful for a number of applications in efficient inference. In particular, our approach allows for a
straightforward way to trade off accuracy and compute at inference time, and is critical for scenarios
where inference may be interrupted abruptly or where variable levels of accuracy can be tolerated.
We experimentally demonstrate the effectiveness of B-DISTIL by decomposing well-established deep
models onto ensembles for data from vision, speech, and sensor domains. Our procedure leverages a
stochastic solver combined with log barrier regularization for finding weak learners, use profiling for
model selection and use intermediary connections to circumvent the issue of model capacity gap.

A key insight in this work is that posing distillation as a two player zero-sum game allows us to
abstract away model architecture details into base class construction F . This means that, conditioned
on us finding a ‘weak learner’ from the base class, we retain the guarantees of the traditional boosting
setup. Since these weak learners are only required to produce small improvements between rounds,
we are able to reliably find such models. A caveat and potential limitation of this abstraction is that
the user must design F . Our research primarily focuses on on-device continuous inference, but our
distillation procedure also holds benefits for cloud/data-center inference settings. This includes tasks
like layer-fusion, load-balancing, and improved resource utilization, which merit further investigation
in future studies. Finally, it is important to mention that our work prioritizes optimizing model
accuracy while enabling compressed forms. However, another area for future research is exploring
additional impacts of our approach on metrics such as fairness or robustness [25, 26, 32].

9

7 Acknowledgements

This work was supported in part by National Science Foundation Grants IIS2145670 and
CCF2107024, a Meta Faculty Award, and the Private AI Collaborative Research Institute. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the National Science Foundation or any other funding agency.

References
[1] Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation

and self-distillation in deep learning. In The Eleventh International Conference on Learning
Representations, 2022.

[2] Jose M Alvarez and Mathieu Salzmann. Compression-aware training of deep networks. Ad-
vances in Neural Information Processing Systems, 2017.

[3] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the
state of neural network pruning? Proceedings of Machine Learning and Systems, 2020.

[4] Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. Adaptive neural networks
for efficient inference. In International Conference on Machine Learning, 2017.

[5] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In
International Conference on Knowledge Discovery and Data-mining, 2006.

[6] Arnav Chavan, Zhiqiang Shen, Zhuang Liu, Zechun Liu, Kwang-Ting Cheng, and Eric P Xing.
Vision transformer slimming: Multi-dimension searching in continuous optimization space. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.

[7] Changan Chen, Frederick Tung, Naveen Vedula, and Greg Mori. Constraint-aware deep neural
network compression. In Proceedings of the European Conference on Computer Vision, 2018.

[8] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In International
Conference on Knowledge Discovery and Data-mining, 2016.

[9] Jang Hyun Cho and Bharath Hariharan. On the efficacy of knowledge distillation. In Internationa
Conference on Computer Vision, 2019.

[10] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On
the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014.

[11] Don Dennis, Chirag Pabbaraju, Harsha Vardhan Simhadri, and Prateek Jain. Multiple instance
learning for efficient sequential data classification on resource-constrained devices. Advances in
Neural Information Processing Systems, 2018.

[12] Don Dennis, Durmus Alp Emre Acar, Vikram Mandikal, Vinu Sankar Sadasivan, Venkatesh
Saligrama, Harsha Vardhan Simhadri, and Prateek Jain. Shallow rnn: accurate time-series
classification on resource constrained devices. Advances in Neural Information Processing
Systems, 2019.

[13] Devvrit, Sneha Kudugunta, Aditya Kusupati, Tim Dettmerst, Kaifeng Chen, Inderjit Dhillon,
Yulia Tsvetkov, Hannaneh Hajishirzi, Sham Kakade, Ali Farhadi, and Prateek Jain. Matformer:
Nested transformer for elastic inference. arXiv preprint arXiv:2310.07707, 2023.

[14] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive.
ics.uci.edu/ml.

[15] Yoav Freund. Boosting a weak learning algorithm by majority. In Workshop on Computational
Learning Theory, 1990.

[16] Yoav Freund and Robert Schapire. Game theory, on-line prediction and boosting. Conference
on Learning Theory, 2000.

10

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

[17] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 1997.

[18] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

[19] Mengya Gao, Yujun Wang, and Liang Wan. Residual error based knowledge distillation.
Neurocomputing, 2021.

[20] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer.
A survey of quantization methods for efficient neural network inference. arXiv preprint
arXiv:2103.13630, 2021.

[21] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 2021.

[22] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in Neural Information Processing Systems, 2015.

[23] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
stat, 1050:9, 2015.

[24] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation,
1997.

[25] Sara Hooker, Aaron Courville, Gregory Clark, Yann Dauphin, and Andrea Frome. What do
compressed deep neural networks forget? arXiv preprint arXiv:1911.05248, 2019.

[26] Sara Hooker, Nyalleng Moorosi, Gregory Clark, Samy Bengio, and Emily Denton. Characteris-
ing bias in compressed models. arXiv preprint arXiv:2010.03058, 2020.

[27] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In IEEE conference on Computer Vision and Pattern Recognition,
2017.

[28] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Wein-
berger. Multi-scale dense networks for resource efficient image classification. In International
Conference on Learning Representations, 2018.

[29] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced
research). URL http://www.cs.toronto.edu/~kriz/cifar.html.

[30] Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015.

[31] Hao Li, Hong Zhang, Xiaojuan Qi, Ruigang Yang, and Gao Huang. Improved techniques for
training adaptive deep networks. In International Conference on Computer Vision, 2019.

[32] Lucas Liebenwein, Cenk Baykal, Brandon Carter, David Gifford, and Daniela Rus. Lost in
pruning: The effects of pruning neural networks beyond test accuracy. Proceedings of Machine
Learning and Systems, 2021.

[33] Llew Mason, Jonathan Baxter, Peter Bartlett, and Marcus Frean. Boosting algorithms as gradient
descent. Advances in Neural Information Processing Systems, 1999.

[34] Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Matsukawa, and Hassan
Ghasemzadeh. Improved knowledge distillation via teacher assistant. In AAAI Conference on
Artificial Intelligence, 2020.

[35] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System
optimizations enable training deep learning models with over 100 billion parameters. In
International Conference on Knowledge Discovery & Data Mining, 2020.

[36] Adria Ruiz and Jakob Verbeek. Anytime inference with distilled hierarchical neural ensembles.
In Proceedings of the AAAI Conference on Artificial Intelligence, 2021.

11

http://www.cs.toronto.edu/~kriz/cifar.html

[37] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision,
2015.

[38] Robert E Schapire. The strength of weak learnability. Machine learning, 1990.

[39] Robert E Schapire and Yoav Freund. Boosting: Foundations and algorithms. Kybernetes, 2013.

[40] Arun Suggala, Bingbin Liu, and Pradeep Ravikumar. Generalized boosting. Advances in Neural
Information Processing systems, 2020.

[41] Luca Trevisan, Madhur Tulsiani, and Salil Vadhan. Regularity, boosting, and efficiently
simulating every high-entropy distribution. In IEEE Conference on Computational Complexity,
2009.

[42] John von Neumann and Oskar Morgenstern. Theory of games and economic behavior, 1944.

[43] Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition, 2018.

[44] Li Yang and Deliang Fan. Dynamic neural network to enable run-time trade-off between
accuracy and latency. In Asia and South Pacific Design Automation Conference. Association for
Computing Machinery, 2021.

[45] Sean I Young, Wang Zhe, David Taubman, and Bernd Girod. Transform quantization for cnn
compression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

[46] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural
networks. In International Conference on Learning Representations, 2018.

12

A Two-Player Minimax Games

In this section, we will look at the setting of two-player minimax games more closely.

Consider a class of hypotheses F and class of probability distributions P . In addition, consider
a loss function L : F × X → R that is convex in its first argument. We consider two players
whose pure strategy sets are F and P respectively. The loss and reward of the players is given by
F (f, µ) = Ex∼p[L(f, x)] and the minmax value of the game is

max
p∈P

min
f∈F

F (f, µ) . (9)

Note that this game is convex in the hypothesis player and concave in the distribution player. The
objective of the game for the hypothesis player is trying to find a hypothesis that has low loss on
the worst case distribution from class P . Conversely, the distribution player is trying to construct a
distribution that is as hard as possible for the hypothesis player to learn.

Also, note that under reasonable conditions on F and P , we have the minimax theorem holds (see
Chapter 6, Schapire and Freund [39]),

max
p∈P

min
f∈F

Ex∼p[L(f, x)] = min
f∈∆(F)

max
p∈P

Ex∼p[L(f, x)]. (10)

Here, ∆ (F) is the set distributions over functions F . From this, we can see that as long as we are
allowed to aggregate functions from the base class, we have can do as well as we could if we had
access to the distribution

The interesting algorithmic question would be to find a distribution over hypotheses that achieves the
minimum above. Note that the loss function is stochastic and thus, we need to formalize the access
the player has to the loss function. We will formulate this in the following stochastic way.
Definition 2. An algorithm ORACLE is said to be a (β, δ) weak-gradient if

〈ORACLE(f, p),∇fF (f, p)〉 ≥ β (11)

with probability 1− δ.

Here∇f denotes the functional gradient of F . This notion is similar to the weak learning assumptions
usually used in the boosting literature. Given such an oracle one can ask for methods similar to first
order methods for convex optimization, such as gradient descent, to solve the minimax problem.
These algorithms iteratively maintain candidate solutions for the both the players and update each of
these using feedback from the state of the other player. In our particular setting, the hypothesis player
updates using the vector h in eq. (3).

Motivating Example. Let F be a class of hypotheses, let P is the set of all distributions over a
finite sample set {x1, . . . , xn} and let L be the 0-1 loss. Note that in this setting, the oracle from
Definition 2 is analogous to weak learning. In this setting, from the minmax theorem and the existence
of a weak learner, we get that there is a single mixture of hypothesis of

∑
i αifi such that loss under

every distribution in P which corresponds to zero training error. Thus we can think of boosting
algorithms as approximating this minmax equilibrium algorithmically. Similarly, the weak learning
condition in [40] is similar in spirit to the condition above.

With the condition from Definition 2, one can consider many frameworks for solving minimax games.
One general technique is to consider two no-regret algorithms for online convex optimization to play
against each other. Let us briefly look at the definition of regret in this setting.
Definition 3 (No-Regret). Let K,A be convex sets. At each time, a player observes a point xt ∈ K
and chooses an action at ∈ A. The regret of the algorithm is defined as

RT = max
a∈A

T∑
t=1

〈a, xt〉 −
T∑
t=1

〈at, xt〉. (12)

Online learning is a well-studied area of machine learning with a rich set of connections to various
areas in mathematics and computer science. In particular, there are frameworks in order to construct
algorithms such as follow-the-perturbed leader, follow-the-regularized leader and mirror descent.

13

Our algorithm can be seen as a version of mirror descent with the entropy regularizer and Theorem 1
as a version of the regret guarantee for the algorithm. In addition to those mentioned above, there
are several other frameworks considered to solve minimax games such as variational inequalities,
extragradient methods, optimistic methods, etc. We believe this general framework is a useful one to
consider for many learning tasks, especially in settings where we have function approximation.

B Proofs of Main Theorems

Here, we provide a proof of Theorem 1, which is restated below:
Theorem. Suppose the class F satisfies that for all f ∈ F , ‖f − g‖∞ ≤ G∞. Let F = {ft} be the
ensemble after T rounds of Algorithm 1, with the final output Ft = 1

T

∑T
t=1 ft. Then for T ≥ ln 2N

and

η =
1

G∞

√
ln 2N

T
we have for all j

‖Ft,j − gj‖∞ ≤ G∞

√
ln 2N

T
− 1

T

T∑
t=1

γt(j)

where Ft,j and gj are the jth coordinates of the functions Ft and g respectively.

Proof. For simplicity, we assume that ft and g are scalar valued functions, since the proof goes
through coordinate-wise. At each time, define the edge of the weak learning algorithm to be

γt =
∑
i

K+
t (i)(ft(xi)− g(xi)) +

∑
i

K−t (i)(g(xi)− ft(xi))

Let Zt denote the normalizing constant at time t, that is,

Zt =
∑
i

K+
t (i) exp (−η (ft (xi)− g(xi))) +K−t (i) exp (η (ft (xi)− g(xi)))

From the update rule, we have

K+
T+1(i) =

K+
T (i)eη(fT (xi)−g(xi))

ZT

=
K+

1 (i) exp
(
−η
∑T
t=1 (ft (xi)− g(xi))j

)
∏T
t=1 Zt

=
K+

1 (i) exp (−ηT (FT (xi)− g(xi))∏T
t=1 Zt

and similarly

K−T+1(i) =
K−1 (i) exp (ηT (FT (xi)− g(xi))∏T

t=1 Zt

First, we bound ln(Zt):

ln(Zt) = ln

(∑
i

K+
t (i) exp(−η(ft(xi)− g(xi))) +

∑
i

K−t (i) exp(η(ft(xi)− g(xi)))

)

≤ ln

(∑
i

K+
t (i)

(
1− η(ft(xi)− g(xi)) + η2(ft(xi)− g(xi))

2
)

+
∑
i

K−t (i)
(
1 + η(ft(xi)− g(xi)) + η2(ft(xi)− g(xi))

2
))

≤ ln

(
1− η

∑
i

K+
t (i)(ft(xi)− g(xi)) + η

∑
i

K−t (i)(ft(xi)− g(xi)) + η2G2
∞

)
≤ −ηγt + η2G2

∞

14

where the second step follows from the identity exp(x) ≤ 1 + x + x2 for x ≤ 1, provided that
η ≤ 1

G∞
. This gives us a bound on regression error after T rounds:

−ηT (FT (xi)− g(xi)) = ln(K+
T+1(i))− ln(K+

1 (i)) +

T∑
t=1

ln(Zt)

≤ ln

(
K+
T+1(i)

K+
1 (i)

)
+

T∑
t=1

−ηγt + η2G2
∞

= ln

(
K+
T+1(i)

K+
1 (i)

)
+ η2TG2

∞ − η
T∑
t=1

γt

≤ ln 2N + η2TG2
∞ − η

T∑
t=1

γt ,

where the last bound follows since K+
1 = 1

2N and K+
T+1 ≤ 1. Similarly, we have the bound

ηT (FT (xi)− g(xi)) ≤ ln 2N + η2TG2
∞ − η

T∑
t=1

γt

Combining the two equations we get that

sup
i
|FT (xi)− g(xi)| = ‖FT − g‖∞ ≤

ln 2N

ηT
+ ηG2

∞ −
1

T

T∑
t=1

γt .

If we choose η = 1
G∞

√
ln 2N
T to minimize this expression, then we get the following bound on

regression error:

‖Ft − g‖∞ ≤ −
1

T

T∑
t=1

γt +G∞

√
ln 2N

T
.

which is exactly Equation (8). Note that the value of η only satisfies the condition η ≤ 1
G∞

when
T ≥ ln 2N , which is the time horizon after which the bound holds. This finishes the proof of
Theorem 1.

Now, we provide a proof of Theorem 2 which follows from the VC dimension bound and Theorem 1.
Before we begin, we setup some notation. Given a function f , distributionD over space X ×Y where
X is the input space and Y is the label space, and data D consisting of N iid samples (x, y) ∼ D, we
define

êrr(f) = Pr
(x,y)∼D

[sign(FT (x) 6= y)] err(f) = Pr
(x,y)∼D

[sign(FT (x) 6= y)]

Theorem (Excess Risk). Suppose data D contains of N iid samples from distribution D. Suppose
that the function g has large margin on data D, that is

Pr
x∼D

[|g(x)| < ε] < µ

Further, suppose that the class CT has VC dimension d, then for

T ≥ 4G2
∞ ln 2N
ε2 ,

with probability 1− δ over the draws of data D, the generalization error of the ensemble FT obtained
after T round of Algorithm 1 is bounded by

err(FT) ≤ êrr(g) +O

(√
d ln(N/d) + ln(1/δ)

N

)
+ µ

15

Proof. Recall the following probability bound Schapire and Freund [39, theorem 2.5] which follows
Sauer’s Lemma:

Pr [∃f ∈ CT : err(f) ≥ êrr(f) + ε] ≤ 8
(me
d

)d
e−mε

2/32

which holds whenever |D| = N ≥ d. It follows that with probability 1 − δ over the samples, we
have for all f ∈ CT

err(f) ≤ êrr(f) +O

(√
d ln(N/d) + ln(1/δ)

N

)
(13)

Since we choose T =
4G2

∞ ln 2N
ε2 , by Theorem 1, we have

∀x ∈ D : ‖Ft − g‖1 ≤ G∞

√
ln 2N

T
≤ ε

2

Since g has ε margin on data with probability 1− µ, we have

êrr(Ft) ≤ êrr(g) + µ (14)

Combining eqs. (13) and (14), we get

err(FT) ≤ êrr(g) +O

(√
d ln(N/d) + ln(1/δ)

N

)
+ µ

which completes the proof.

C Dataset Information and Training Recipe

We use six publicly available real world datasets in our experiments. The train-test splits for all the
dataset as well as the sources are listed here:

C.1 Dataset

Dataset Train-samples Test/Val-samples Num.-labels Source

CIFAR-10 50000 10000 10 [29]
CIFAR-100 50000 10000 100 [29]
DSA-19 6800 2280 19 [14]
Google-13 52886 6835 13 [43]
ImageNet-1k 1281167 50000 1000 [37]
TinyImageNet-200 100000 10000 200 [30]

We use two synthetic datasets in our experiments, ellipsoid and cube. To construct the ellipsoid
dataset, we first sample a 32× 32 matrix B, each entry sampled iid. We define A := BTB as our
positive semi-definite matrix, and I[xTAx ≥ 0] determines the label of a data point x. We sample
10k points uniform randomly from [−1, 1]32 and determine their labels to construct our data sample.
We randomly construct a 80-20 train-test split for our experiments.

To construct cube, we first sample 16 vertices uniform randomly from [−1, 1]32 and split them into
4 equal sets, say {S1, . . . , S4}. As before, we sample 10k points uniformly from [−1, 1]32 and
determine the label y(x) of each point x based on the closest vertex in {S1, . . . , S4}.

y(x) = arg min
i

min
x′∈Si

‖x− x′‖.

C.2 Training Recepies

We use stochastic gradient descent (SGD) with momentum for all our experiements. For experiments
on CIFAR100 and CIFAR10, we use a learning rate of 0.1, a momentum paramter of 0.9, and weight
decay of 5× 10−4. We train for 200 epochs and reduce the learning rate by a factor of 0.2 in after

16

Teacher model Residual Blocks Embedding dims Strides

ResNet56
1 8 1

2,2 8,8 1,1
2,2 16,16 1,2

2,2,3 16,32,64 1,2,2
Table 2: Base model configuration used for ResNet56 distillation on CIFAR-10.

Teacher model Blocks growth-rate

DenseNet121
4, 8 12

4, 8, 8 6
8, 16, 12 6

Table 3: Configuration used for DenseNet121 distillation on CIFAR-100.

30%, 60% and 90% of the epoch execution. We perform a 4-GPU data-parallel training for ImageNet
with a per-gpu batch size of 256, learning rate 0.1, momentum 0.9, regularization γ of 1.0, and a
weight decaur of 1e− 4. We train for 90 epochs with and discount the learning rate by a factor of
0.1 at 30% and 60% epochs. For experiments with time series data, Google-13 and DSA-19, we use
a fixed learning rate of 0.05 and a momentum of 0.9. We do not use weight decay or learning rate
scheduling for time-series data.

C.3 Profiling Based Model Selection

To estimate execution latency, we leverage a third-party library, such as the Deep Speed frame-
work [35], which enables us to measure the total floating-point operations required for inference. By
randomly initializing a single sample with a batch size of 1, we obtain the FLOPs values for various
real-world datasets. This profiling process serves as a reliable indicator of real-world performance,
allowing us to rank the models based on their profiles. Notably, the profiling results only need to
hold relative to other candidate models. Furthermore, we can utilize existing profiling models, such
as ARM Fast Models for ARM-based mobile platforms, QEMU for x86 platforms, and NVIDIA
NSight’s GPU emulators for GPU platforms, to estimate the performance on different hardware
architectures. However, it’s important to note that these software-based solutions provide approximate
performance estimates, and accurate evaluation of real performance requires access to the actual
hardware. We are not restricted to latency based rankings. In fact, other useful metrics like throughput
in sample processed per second, can also be used for candidate model selection.

D Base Model Configuration

The base class configurations used for all our experiments in Figure 2 is provided in Tables 2, 3, 6
and 7. Note that we use standard model architectures implemented in Pytorch and the parameters
correspond to the corresponding function arguments in these implementation. We use pretrained
models from the torchvision library.

Teacher model Residual Blocks Embedding dims Strides

ResNet110

2, 2 16, 16 1,2
2, 3 32, 64 1,2

2, 2, 3 16, 32, 64 1,1,2
2, 3, 3 16, 32, 64 1,2,2

Table 4: Base models for TinyImageNet.

17

Teacher model Residual Blocks Embedding dims Strides

ResNet101

2, 2 16, 16 1,2
2, 3 32, 64 1,2

2, 2, 3 16, 32, 64 1,1,2
2, 3, 3 32, 32, 64 1,2,2

Table 5: Base models for ImageNet.

Teacher model hid. dims.

LSTM128

4,4
16,8

20,12
20,32

Table 6: Configuration used for LSTM128
distillation on Google-13.

Teacher model hid. dims.

GRU32
4,4

8,16
16,16
32,16

Table 7: Configuration used for GRU32 distillation
on DSA-19.

E Additional Results

E.1 Connections and parallel execution schedules.

Our focus in this work has been sequential execution of the models. While reusing previously
computed features is clearly beneficial for finding weak learners in this setup, the presence of
connections across models prevent them from being scheduled together for execution whenever
otherwise possible. To manage this trade off between parallelization and expressivity, we try to
restrict the number of connections to at most one between models, and further restrict the connection
to later layers of the model. Connections in the later layers of networks impose fewer sequential
blocks in inference and allows for better parallelization.

Let φt,l(x) denote the activation produced at layer l by the weak learner at round t, on data-point x.
Then some of the connections we consider are

• φ(t,l)(x)− φ(t+1,l)(x), to learn the error in features at layer l.

• φ(t,l)(x) + id(x), standard residual connection at layer l.

• φ(t+1,l)[φ(1,l)(x), . . . , φt,l)(x)], dense connections at layer l across rounds.
• Simple accumulation operations.
• Recurrent networks: LSTM and GRU.

E.2 Training ImageNet and Throughput Optimization

Large datasets like ImageNet require additional care to ensure good resource utilization. Since the
backward pass of our training only involve a single student model, it can be computed quite efficiently
even for large datasets. This is particularly true in earlier rounds. For such cases we use simple
producer consumer architecture where a GPU is dedicated to producing and queuing data batches
and target predictions produced by the teacher. Training routines running on separate GPUs consume
these batches for their training.

As mentioned in Section 3, since B-DISTIL only cares that it is provided with an ordered list of
candidates, we can modify the weak learning finding step to prefer weak learners that provide
higher inference throughput, measured as samples processed per second. Throughput metric is more
meaningful in the cloud inference deployment setting where batched inference is the norm. The
ability to trade a small performance for the number of inference requests to process can be useful in
such settings. Implementation details can be found in the included code base. We note that we do
not optimize for throughput and inference latency simultaneously in this work, but is an interesting
direction of future research.

18

(a) Sequential schedule

(b) Hybrid schedule

Figure 4: A schematic description of a sequential execution scheme for an ensemble of four models, being
evaluated one after the other from left to right. The last model in the ensemble reuses the actions of the previous
one, causing a blocking dependency. Thus we cannot trivially execute all models in parallel. However, since the
connection is between the last layers of the network, we can construct hybrid execution schemes as in (b). Here,
pairs of models are executed together.

19

	Introduction
	Background and Related Work
	Progressive Ensemble Distillation with B-DISTIL
	Problem Formulation
	B-DISTIL Algorithm
	Finding Weak Learners

	Theoretical Analysis
	Empirical Evaluation
	Dataset Information
	Model Architecture Details
	Experimental Evaluation and Results
	Training Considerations and Scalablility

	Limitations, Broader Impact, and Future Work
	Acknowledgements
	Two-Player Minimax Games
	Proofs of Main Theorems
	Dataset Information and Training Recipe
	Dataset
	Training Recepies
	 Profiling Based Model Selection

	 Base Model Configuration
	Additional Results
	Connections and parallel execution schedules.
	Training ImageNet and Throughput Optimization

