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ABSTRACT

We present several advances on neural operators by viewing the action of operator
layers as the minimizers of Bregman regularized optimization problems over
Banach function spaces. The proposed framework allows interpreting the activation
operators as Bregman proximity operators from dual to primal space. This novel
viewpoint is general enough to recover classical neural operators as well as a new
variant, coined Bregman neural operators, which includes the inverse activation
function and features the same expressivity of standard neural operators. Numerical
experiments support the added benefits of the Bregman variant of Fourier neural
operators for training deeper and more accurate models.

1 INTRODUCTION

Neural operators (Kovachki et al., 2021; 2023), a recent extension of neural networks, have emerged
as a versatile framework for learning mappings between function spaces. These operators have shown
great potential in solving partial differential equations (PDEs) and simulating complex dynamical
systems. The exploration of neural architectures for the approximation and learning of operators has
led to the development of a variety of models.
One influential contribution is the Fourier Neural Operator (FNO) (Li et al., 2021a), sketched in
Figure 1

NEW
, which transforms encoded input data into frequency components in order to learn intricate

relationships in the frequency domain. More recently, the Group-Equivariant FNO (G-FNO) (Helwig
et al., 2023) additionally leverages symmetries to design equivariant Fourier layers, thereby enhanc-
ing the representation power and robustness of the architecture. To better scale the depth of neural
operators, the F-FNO (Tran et al., 2023) proposed separable spectral layers and improved residual
connections, along with a bag of training tricks. The FNO are extended to Wavelet Neural Operators
(WNO) (Tripura & Chakraborty, 2023) by replacing Fourier layers with wavelet layers to further ex-
ploit multiscale information. The U-shaped Neural Operator (U-NO) (Rahman et al., 2023) adapts the
U-net architecture for neural operators, enabling mapping between function spaces through integral
operators, thus broadening the applicability of neural architectures to diverse domains. Differently,
the DeepONet architecture (Lu et al., 2021) comprises two intertwined components: a branch network
responsible for encoding discrete input function spaces, and a trunk network dedicated to encoding the
domain of output functions. Operating as a conditional model, DeepONet leverages the embedding
of inputs and outputs via a dot product operation, facilitating the approximation of complex functions
through a structured network topology. Finally, Neural Inverse Operators (NIO) (Molinaro et al.,
2023) tackle inverse problems by combining DeepONet and FNO architectures to map operators to
functions, thereby extending the applicability of neural operators to coefficient estimation tasks.
Some approaches inspired by attention mechanisms, pivotal in image and natural language pro-
cessing, have also been considered in operator learning. LOCA (Learning Operators with Coupled
Attention) (Kissas et al., 2022) facilitates robust gradient estimation, particularly in scenarios with
limited training data, by combining attention with kernel mechanisms. The General Neural Operator
Transformer (GNOT) (Hao et al., 2023) is a scalable framework based self-attention mechanisms
allowing to deal with heterogeneous inputs useful for modeling diverse physical systems.
Some physics-informed variants integrating information from PDEs during the learning process
have been proposed enhancing model interpretability and generalization: PI-DeepONet (Wang et al.,
2021) and its Long-Time Integration variant (LTI-PI-DeepONet) (Wang & Perdikaris, 2023), PINO
(Physics-Informed Neural Operator) (Li et al., 2021b) a hybrid extension of FNO, or other variations
such as V-DeepONet (Goswami et al., 2022) and Modified DeepONet (Wang et al., 2022).
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vt F Rt F−1F Rt F−1

Wtvt + bt

σ⊕

Figure 1: Illustration of the t-th layer of Fourier Neural Operators. The upper branch applies a linear
transformation Rt to the Fourier modes using the Fourier transform F and its inverse F−1. The
lower branch performs an affine transformation in the latent space.

NEW

Contributions. Unlike previous works (Kovachki et al., 2021), which directly consider the composi-
tional form of neural operators, our approach introduces a distinct perspective by formulating the
action of each operator layer as the minimizer of a regularized optimization problem over functions.
This optimization connects the current hidden representation to the next, with the choice of a regular-
ization implicitly defining the activation operator through the lens of the Bregman proximity operator.
Our expressive framework not only convers existing neural operators but also introduces a novel
variant, termed Bregman neural operator, which demonstrates improved predictive performance
as its depth increases. Its applicability is grounded by universal approximation results proven for
sigmoidal-type activation operators.

FIX
Beyond its unifying aspect and its ability to design novel neural

operators, the proposed framework allows applying the extensive body of literature on proximal
numerical optimization, of which Bregman proximity operators belong to, in order to study neural
operators. This opens the way to extend the analysis done on neural networks to (Bregman) neural
operators in the same spirit of Combettes & Pesquet (2020a;b).
Outline. The rest of the paper is organized as follows: Section 2 is dedicated to the presentation
of definitions and background knowledge on neural operators and Bregman proximity operator. In
Section 3, we introduce the operator layers as the solution of a functional optimization problem.
In addition, we show that this new mapping allows recovering the classical neural operators and
creating a more general family of so-called Bregman neural operators. In Section 4, we provide a
preliminary universal approximation result for Bregman neural operators. Finally, in Section 5, we
conduct an extended experimental study comparing on benchmark datasets our Bregman variant with
the classical FNO.

2 BACKGROUND AND DEFINITIONS

Here, we introduce some definitions required for the understanding of the rest of the paper as well
as the necessary background on neural operators and Bregman proximity operator. We will use
basic concepts from convex analysis such as subdifferential, Γ0 space and Fenchel conjugate, whose
definitions are recalled in Appendix A.

NEW
2.1 OPERATOR LEARNING: APPLICATION TO LEARNING THE SOLUTION MAP OF PDES

Operator learning finds significant applications in the context of PDEs in order to efficiently approx-
imate solutions to PDEs without the need to solve them repeatedly from scratch (Li et al., 2021b;
Serrano et al., 2023; Raonic et al., 2023). Given a nonempty bounded open set D ⊂ Rd, and some
time horizon τ > 0, we consider the generic family of PDEs over D × [0, τ ] of the form

Fa

(
(∂αu(x, t))α∈Nd+1,|α|≤k

)
= f(x, t) onD×]0, τ ] and

{
u(x, 0) = u0(x) on D,
u(x, t) = ub(x, t) on ∂D × ]0, τ ] ,

(1)
where Fa is a possibly nonlinear partial differential operator, f denotes a source term, ub is a boundary
condition, u0 is an initial condition, and u : D → Rn is the solution of the PDE.
The problem we will tackle in our numerical section is the initial value problem. This involves finding
the oracle mapping G from any initial condition function u0 to the solution u(·, τ̄) of the PDE at a
certain time horizon τ̄ ∈]0, τ ].
More generally, the oracle operator G could be a mapping between two different function spaces A
and U . Without loss of generality, given some bounded open sets D ⊂ Rd, with d ∈ N+, we let
A = A(D,Rn) and U = U(D,Rk), with n, k ∈ N+, be some separable Banach spaces of functions.
For instance, A can represent the spaces of continuous functions from D → Rn. Hereafter, A and U

2
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vt Kac
t (vt)

Wtvt + bt
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(a) Neural Operator.

vt Kac
t (vt)

Ktvt + bt

σ−1

σ⊕

(b) Bregman Neural Operator.

Figure 2: Illustration of the t-th layer of (Bregman) Neural Operators. On the left, the identity term
and the linear term Ktvt + bt have been merged into (I +Kt)vt =Wtvt.

will be referred to as the spaces of input functions and output functions, respectively. In a nutshell,
operator learning consists in finding the unknown ground-truth correspondence operator G : A → U
given N ∈ N+ pairs of input-output functions {ai, ui}Ni=1.

2.2 NEURAL OPERATORS

Among the existing models to parametrize an approximation of G, we focus on neural operators,
which are parametric mappings N : A → U of the form

(∀a ∈ A), N (a) = Q ◦ LT ◦ . . . ◦ L1 ◦ P(a), (2)

where

• P : A(D,Rn) → A(D,Rn0) is a local lifting operator mapping the input function to its
first hidden representation;

• Q : U(D,RnT ) → U(D,Rk) is a local projection operator mapping the last hidden repre-
sentation to the output function;

• For every t ∈ {1, . . . , T}, Lt : Vt−1(Dt,Rnt−1) → Vt(Dt,Rnt) is an operator layer where
each Dt ⊂ Rdt is an open bounded set, Vt = Vt(Dt,Rnt) is a suitable Banach space of
functions such that V0 = A(D,Rn0) and VT = U(D,RnT ), for consistency.

• Each component of the neural operator (2) depends on a finite dimensional parameter.
Collectively those parameters constitute a vector θ ∈ Θ ⊂ Rp.

Most methodological developments in neural operators have focused on tailoring the operator layers
L1, . . . ,LT to specific application. Traditionally, their design mirrors standard neural networks,
replacing finite-dimensional linear layers with integral linear operators in function spaces and inter-
preting activation functions as Nemytskii operators that apply nonlinear transformations pointwise.

FIX
When the input spaces Dt are the same throughout the layers and equals D, a popular class of
operator layers, sketched in Figure 2a, is of the form

Lt(vt) = σ(Wtvt +Kac
t (vt) + bt), (3)

where Wt ∈ Rnt×nt−1 is a matrix, bt ∈ Rnt is a bias vector and σ is a local nonlinear map acting
pointwise from Rnt to Rnt . Moreover, we have a non-local linear operator Kac

t : L2(D,Rnt−1) →
L2(D,Rnt). In its simplest version, Kac

t is an integral kernel operator of the form (Kac
t (v))(x) =∫

D
kt(x, y)v(y)dy

FIX
, for all x ∈ D, with kt

FIX
being a kernel to be specified (Kovachki et al., 2023).

Specific examples include those based upon a convolution performed in the Fourier space (Li et al.,
2021a; Kovachki et al., 2021), a graph kernel network (Anandkumar et al., 2020) or its multipole
variant (Li et al., 2020) to name a few.
Hereafter, we follow a different path and propose to interpret operator layers from the viewpoint
of a proximal optimization by seeing the parametric form of (3) as the minimizer of a Bregman
regularized optimization problem. This novel perspective allows us to propose a novel architecture,
displayed in Figure 2b, of the form

Lt(vt) = σ(σ−1(vt) +Ktvt +Kac
t (vt) + bt), (4)

involving an additional nonlinear term σ−1(vt), and where Kt ∈ Rnt×nt−1 is a matrix
FIX

. In this
formulation, when all the weights are zero, then Lt is the identity operator. A similar architecture
was originally proposed in Frecon et al. (2022) in the finite dimensional setting. Extending this work
to neural architectures acting on Banach function spaces requires addressing non-trivial mathematical

3
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challenges. These include defining operator layers rigorously, particularly the proper formulation
of Legendre functions on function spaces, the associated Bregman divergence, and the Bregman
proximity operator. In the next section, we formalize these notions, laying the groundwork for the
proposed novel perspective on neural operators. The reader interested in the technical details is
invited to refer to Appendix A.

NEW
2.3 BREGMAN PROXIMITY OPERATOR

The definition of Bregman proximity operator relies on the choice of a Bregman divergence, loosely
called distance, which itself is built upon a Legendre function (see, e.g., Rockafellar (1970)).

Definition 1 (Legendre function). A function ϕ : Rn → ]−∞,+∞] is called Legendre if it is proper
convex lower semicontinuous and satisfies the following properties: i) int(domϕ) = dom ∂ϕ and
∂ϕ is single-valued on its domain; ii) ϕ is strictly convex on int(domϕ).

In the finite dimensional setting, Legendre functions ϕ are typically built from an elementary Legendre
function φ : R →] − ∞,+∞] as ϕ : x ∈ Rn →

∑n
i=1 φ(xi). Since here we stand in an infinite

dimensional setting, i.e., Lebesgue function space, the counterpart of the previous finite sum structure
is a convex integral functional defined below. Also, we will allow vector valued functions.

Fact 1 (Convex integral functionals on Lebesgue spaces based on Legendre function). Let D ⊂ Rd

be an open bounded set. Let p, q ∈ [1,+∞] be conjugate exponents, that is such that 1/p+ 1/q = 1,
and set V := Lp(D,Rn) and V∗ = Lq(D,Rn). The spaces V and V∗ can put in duality via the
pairing V × V∗ → R, (v, u) 7→ ⟨v, u⟩ =

∫
D
⟨v(x), u(x)⟩dx. Let ϕ ∈ Γ0(Rn) be a Legendre

function and let Φ: V → ]−∞,+∞] be such that

Φ(v) =

∫
D

ϕ(v(x))dx. (5)

Then Φ ∈ Γ0(V), dom ∂Φ = {v ∈ V | for a.e. x ∈ D, v(x) ∈ int(domϕ) and (∇ϕ) ◦ v ∈ V∗}, ∂Φ
is single valued on dom ∂Φ, and, for every v ∈ dom ∂Φ, ∂Φ(v) = {∇ϕ ◦ v}. The unique element
∇ϕ ◦ v of ∂Φ(v) will be denoted by ∇̃Φ(v), suggesting it will serve as a kind of gradient of Φ at v1

The integral functional Φ in (5) inherits certain properties of ϕ, such as p-uniform convexity —
an extension of strong convexity when p = 2. This characteristic, proved in Proposition 4 of the
appendix, will play a pivotal role in Remark 1. Additionally, we have the property detailed in
Remark 7 of the appendix

NEW
.

We are now equipped to define Bregman distances in Lebesgue spaces. We recall that the concept of
Bregman divergence was introduced by Bregman in the pioneering work of (Bregman, 1967) in the
context of alternating projection methods. It provides a generalization of a kind of distance measure,
such as the Euclidean distance, which finds application in statistics and machine learning to quantify
notably the difference between distributions.

Definition 2 (Bregman distance in Lebesgue spaces). Under the notations of Fact 1, the Bregman
distance with respect to Φ is defined as

DΦ : V × V → [0,+∞] , DΦ(u, v) =

{
Φ(u)− Φ(v)− ⟨u− v, ∇̃Φ(v)⟩ if v ∈ dom ∂Φ

+∞ otherwise.

Finally, we can define the Bregman proximity operator (Nguyen, 2017), which extends the (Euclidean)
proximity operator, widely used in optimization. The Euclidean proximity operator itself generalizes
projections by replacing the indicator function of a convex set with appropriate convex functions. For
additional details, the reader can refer to Bauschke & Combettes (2017).

FIXDefinition 3 (Bregman proximity operator). Let V = Lp(D,Rn) with p ∈ [1,+∞[. Let g ∈
Γ0(V) and let Φ ∈ Γ0(V) be defined as in Fact 1, with ϕ ∈ Γ0(Rn) be Legendre and such that
ran ∂(Φ + g) = V∗. Then the Bregman proximity operator of g relative to Φ is defined as

proxΦg : V∗ → V, v∗ 7→ argmin
{
⟨ · ,−v∗⟩+Φ+ g

}
.

1Note that in general the domain of the function Φ has empty interior, so Gâteaux and/or Frechet differential
cannot be properly defined.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Lt−1 Lt Lt+1L1P LT Q
vt

∈ Vt−1

vt+1

∈ Vt

vt Kac
t (vt)

Ktvt + bt

Mt ∇̃Φt

proxΦt
gt⊕

⇔
vt+1 = Lt(vt) = argminw∈Vt

{
− ⟨w,Kac

t (vt) +Ktvt︸ ︷︷ ︸
=Kt(vt)

+bt⟩+ gt(w) +DΦt(w,Mtvt)
}

Figure 3: Illustration of the Bregman proximal viewpoint on operator layers. The action of each
operator layer is viewed as the minimizer of the regularized optimization problem where each term in
the objective can be linked to a part of the architecture, as evidenced by the color code.

NEW

Note that proxΦg is well-defined since Φ + g is strictly convex and lower semicontinuous and
ran ∂(Φ + g) = V∗, and it holds proxΦg = [∂(Φ + g)]−1.

Remark 1.

(i) If V = Lp(D,Rn) with p ∈ ]1,+∞[, the condition ran ∂(Φ + g) = V∗ is satisfied if ϕ is
p-uniformly convex (see Proposition 4 in the appendix). Moreover, by Remark 7, if p = 1 and
domϕ∗ = Rn, then ran ∂Φ = V∗.

(ii) If instead of ran ∂(Φ + g) = V∗, one asks the stronger condition ran(∂Φ + ∂g) = V∗, then
we have ∂(Φ + g) = ∂Φ + ∂g and the Bregman proximity operator writes down as proxΦg =

(∂Φ+ ∂g)−1 and ran(proxΦg ) ⊂ dom ∂Φ.

3 REVISITING NEURAL OPERATORS

In Section 3.1, we propose a novel Bregman proximal viewpoint on operator layers. Then, we
establish several connections. First, we show in Section 3.2 that the proposed framework is general
enough to recover most classical operator layers when the Legendre function ϕ is the Euclidean
distance. Second, we show in Section 3.3 how it yields a new variant of neural operators when ϕ
defines a general Bregman divergence. Finally, we apply our framework to Fourier neural operators
in Section 3.4.

3.1 BREGMAN PROXIMAL VIEWPOINT ON OPERATOR LAYERS

Departing from usual kernel-based points of view (Kovachki et al., 2021), we suggest defining operator
layers as the solution of functional optimization problems. For every t = 1, · · · , T , Lt : Vt−1 → Vt,

Lt(v) = argmin
w∈Vt

{
−⟨w,Kt(v)+bt⟩+gt(w)+DΦt

(w,Mtv)

}
= proxΦt

gt

(
∇̃Φt(Mtv)+Kt(v)+bt

)
,

(6)
where

• Φt : Vt → ]−∞,+∞] is a convex integral functional on an appropriate Lebesgue space based
on some Legendre function ϕt ∈ Γ0(Rnt), as defined in Fact 1. DΦt : Vt ×Vt → [0,+∞] is the
corresponding Bregman distance as detailed in Definition 2

• Mt : Vt−1 → Vt is a bounded linear operator which maps dom ∂Φt−1 into dom ∂Φt,
• bt ∈ V∗

t and Kt : Vt−1 → V∗
t is a bounded linear operator of the form

Kt(v)(x) =

∫
Dt−1

κt(x, dy)v(y),

with κt : Dt×B(Dt−1) → Rnt×nt−1 a (transition) kernel fromDt−1 toDt

FIX
, meaning a function

which is measurable with respect to the first variable and a finite measure with respect to the
second variable.

5
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• gt ∈ Γ0(Vt) and ran(∂Φt + ∂gt) = V∗
t .

Equation (6) is highly general, featuring an outer operation (the proxΦt
gt ) and an inner operation (the

∇̃Φt), and can formally represent various layer architectures sketched in Figure 3. A key step in
establishing this connection involves relating the proximity operator to activation operators. There are
multiple ways to achieve this by varying the choice of the pair (Φt, gt). In the following sections, we
explore two specific choices for this pair, demonstrating how (6) recovers classical neural operators
(3) (where ∇̃Φt is the identity) and introduces a novel architecture (4), in which ∇̃Φt acts as the
inverse activation operator.

FIXRemark 2 (Form of linear operator Kt). Often in applications, the kernel of the linear operator Kt is
split into two terms: an absolutely continuous part and a single pure point part, i.e., κt = κact + κpt

FIX
,

where, for every x ∈ Dt, and measurable set A ⊂ Dt−1,

κact (x,A) =

∫
A

kt(x, y)dy and κpt (A) = Ktδφt(x)(A),

FIX
with kt : Dt ×Dt−1 → Rnt×nt−1 , Kt ∈ Rnt×nt−1 , φt : Dt → Dt−1 measurable, and δφt(x) the

delta Dirac at φt(x) ∈ Dt−1. Thus, we have

Kt(v)(x) = Kac
t (v)(x) +Kp

t (v)(x) =

∫
Dt−1

kt(x, y)v(y)dy +Ktv(φt(x)).

Remark 3 (Special case of identical domains). The linear operator Mt should be chosen so that it
maps dom ∂Φt−1 to dom ∂Φt. However, in (6), if the function ϕt does not depend on t and all the
domains Dt are the same, then it is also true that the convex integral functional Φt does not depend
on t too. Then, we have dom ∂Φt−1 = dom ∂Φt and for the linear operator Mt we are allowed to
choose the identity operator.
Remark 4.

(i) In view of Remark 1(ii), the condition ran(∂Φt+∂gt) = V∗
t implies that proxΦt

gt = (∂Φt+∂gt)
−1

and hence ran(proxΦt
gt ) ⊂ dom ∂Φt. In this way domLt = M−1

t (dom ∂Φt−1) and ran(Lt) ⊂
dom ∂Φt and the composition (2) is well-defined provided that for the lifting operator P it holds
ran(P) ⊂ dom ∂Φ1 (e.g., if P(v)(x) = ∇ϕ∗1(Pv(x))).

(ii) When Vt−1 = Vt and Mt is the identity, the operator layer (6) takes the form

proxΦt
gt (∇̃Φt(v)− Btv) = (∂Φt + ∂gt)

−1(∇̃Φt − Bt)(v),

where Bt : Vt → V∗
t . This is a Bregman forward-backward operator, which is well-known in the

context of operator splitting methods in optimization (Nguyen, 2017; Bùi & Combettes, 2021).

Concluding this section, we stress that as long as the couple (Φt, gt) admits an explicit (closed
form) Bregman proximity operator, this would define additional new types of operator layers.

FIX
In

Nguyen (2017), the author shows a number of examples (at the end of Section 2, from Example 2.9
to Example 2.12) of such couples that yield an explicit Bregman proximity operator. As a matter of
fact, one may consider layers of type

v 7→ σ2(σ
−1
1 (v) +Kt(v) + bt),

with σ1 being strictly monotone and σ2 monotone, serving as activation operators appropriately
coupled.

FIX
Classical and Bregman neural operators emerge as special cases, where i) σ1 = Id and σ2 is

any monotone function, for the former, and ii) σ1 = σ2 is strictly monotone, for the latter. Note that
having σ1 = σ2 implies that the numerical implementation does not require to have an explicit form
of σ−1

1 , as latter discussed in Remark 5 (ii).
NEW

3.2 CLASSICAL NEURAL OPERATORS

Our first result, stated in the proposition below, unifies a broad class of classical neural operator
layers through the prism of the optimization viewpoint of (6) when DΦt is the Euclidean distance

FIX
.

Proposition 1 (Unifying classical neural operators). Let Vt = L2(Dt,Rnt) be some Hilbert function
space and Ψt(v) =

∫
Dt

∑nt

i=1 ψ(vi(x))dx, where ψ ∈ Γ0(R) is a strongly convex Legendre function.

6
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Table 1: Relationship between Legendre function ψ and activation function ψ∗′.

domψ ψ ψ′ ψ∗ ψ∗′

[−1, 1] t 7→ −
√
1− t2 t 7→ t/

√
1− t2 t 7→

√
1 + t2 ISRU

[0, 1] t 7→ t log t+ (1− t) log(1− t) t 7→ log( t
1−t

) t 7→ log(1 + et) Sigmoid

[−1, 1] t 7→ log(1− t2) + t arctanh(t) arctanh log cosh tanh

[−1, 1] t 7→
√
1− t2 + t arcsin(t) arcsin − cos sin

R>0 t 7→ 1
β2Li2(e

−βt) + 1
2
t2 t 7→ 1

β
log(eβt − 1) t 7→ − 1

β2Li2(−eβt) SoftPlusβ

Consider the Euclidean distance defined from the elementary Legendre function ϕt = (1/2)| · |2 ∈
Γ0(Rnt) (see Section 2.3) and set gt = Ψt − (1/2)∥ · ∥2. Then gt ∈ Γ0(Vt) and Lt defined in (6)
acts between L2 spaces as follows

Lt(v) = prox
1
2∥·∥

2

Ψt− 1
2∥·∥

2

(
Mtv +Kt(v) + bt

)
= ∇Ψ∗

t (Mtv +Kt(v) + bt), (7)

where ∇Ψ∗
t = (ψ∗)′( · ) matches a variety of monotone activation operators σ. In addition, when

the domains are all the same, say Dt = D, Mt = I , and the linear operator Kt = Kac
t +Kp

t is as
given in Remark 2, then Lt(v) = ∇Ψ∗

t ((I +Kt)v +Kac
t (v) + bt), where (I +Kt) can be written

as Wt. A schematic representation is reported in Figure 2a.

In essence, Proposition 1 shows that the parametric structure of operator layers can be interpreted via
the Bregman proximal operator, when the Bregman distance reduces to the Euclidean distance. The
crucial aspect in establishing this connection is the observation that the Euclidean proximity operator
of gt = Ψ− (1/2)∥ · ∥2 simplifies to ∇Ψ∗ = (ψ∗)′( · ), aligning with a broad spectrum of activation
operators given an appropriate selection of ψ. We report in Table 1 the corresponding ψ to retrieve
several well-known activation operators. A proof concerning the characterization of the SoftPlus
function is included in the appendix. To the best of our knowledge, ∇Ψ∗

t can only match monotonic
activation operators, which notably discards GeLu and swish. To be more precise, Proposition 1 is
general enough to deal with the broad class of activation functions that can be viewed as a proximity
operators, which essentially boils down to any increasing 1-Lipschitzian function (see Proposition
2.3 in Combettes & Pesquet (2020a)). While this connection has been previously noted in the neural
network literature (Combettes & Pesquet, 2020a; Frecon et al., 2022), our work extends this analysis
to function spaces.

3.3 BREGMAN NEURAL OPERATORS

We now provide the counterpart of Proposition 1 for general Bregman distance.
Proposition 2 (Designing Bregman neural operators). Let Vt = Lp(Dt,Rnt) be some Lebesgue
function space and Ψt(v) =

∫
Dt

∑nt

i=1 ψ(vi(x))dx, where ψ ∈ Γ0(R) is a p-uniformly convex
Legendre function (̸= | · |2/2). Consider the Bregman distance in function space defined from the
elementary Legendre function ϕt(w) =

∑nt

i=1 ψ(wi) (see Section 2.3) and set gt = 0. Then Lp

defined in (6) acts between Lp spaces as follows

Lt(v) = proxΨt
0

(
∇̃Ψt(Mtv) +Kt(v) + bt

)
= ∇Ψ∗

t (∇̃Ψt(Mtv) +Kt(v) + bt), (8)

where ∇Ψ∗
t = (ψ∗)′( · ) matches a variety of monotone activation operators σ. In addition, when the

domains are all the same, say Dt = D and the linear operator Kt is of the form given in Remark 2,
then we can take Mt = I and

Lt(v) = ∇Ψ∗
t (∇̃Ψt(v) +Ktv +Kac

t (v) + bt). (9)

Concerning the operators ∇Ψ∗
t = (ψ∗)′( · ) and ∇Ψ∗

t = ψ′( · ), we stress that any of the ψ listed in
Table 1 are appropriate choices. Since (ψ∗)′( · ) and ψ′( · ) are inverse of each other, the layer of (9)
boils down to

Lt(v) = σ(σ−1(vt) +Ktv +Kac
t (v) + bt), (10)

where any invertible and monotone activation operator is allowed. Its schematic representation is
reported in Figure 2b. This novel variant, called Bregman Neural Operator simply differs from

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

classical neural operators by the additional term involving the inverse activation operator. Finally, we
note that the form of (9) corresponds to a mirror descent step (Nemirovskij & Yudin, 1983; Beck &
Teboulle, 2003) with mirror map ∇̃Ψt.
Remark 5.

(i) When Kt, Kac
t and bt are zeros and Mt is the identity, then Lt reduces to the identity.

(ii) Concerning (10), we should ensure to feed the first layer with functions in domL1 as discussed
in Remark 4 (i). This condition is for instance satisfied if (Pv)(v) = ∇ψ∗

1(Pv(x)) = σ(Pv(x)).
Note that in such situation, the inverse activation function does not need to have an explicit form.
Indeed, when composing the different layers in (10), the inner inverse activation function will be
cancelled out by the outer one.

3.4 CASE OF FOURIER NEURAL OPERATORS

We study the implications of the proposed viewpoint in the peculiar case of Hilbert function spaces
with equal input and output spaces, i.e., Vt = V∗

t = L2(D,Rn) for every t ∈ {1, . . . , T}.
A popularly encountered scenario in practice is that where D = Td is the unit torus and the kernel
associated to the absolutely continuous part of Kt is translation invariant, i.e., kt(x, y) = kt(x− y),
thus indicating a convolution structure. Fourier operator layers (Li et al., 2021a) are then devised by
leveraging the convolution theorem, stating that the action of Kac

t can be written as a linear operator
in the Fourier domain:

Kac
t (v)(x) =

∫
D

kt(x− y)v(y)dy = F−1(Rt · F(v))(x), (11)

with F : L2(Td,Rn) → ℓ2(Zd,Rn) being the Fourier transform, F−1 its inverse, and Rt ∈
ℓ2(Z2,Rn×n). Often, Rt does not range in the entire ℓ2(Z2,Rn×n) space but is parametrized
by a finite parameter (Kovachki et al., 2023). It follows that the Bregman variant of Fourier operator
layer reads Lt(v) = σ(σ−1(v)+Wtv+F−1(Rt · F(v))+ bt). The classical Fourier neural operator
layer is retrieved by omitting the σ−1(v) term.

In this section, we addressed FNOs because they are widely used and simplify the analysis. In this
respect, we note that we just specified the action of Kac

t
FIX

by expressing it via direct and inverse Fourier
series. So, in the end, it is only about finding efficient parametrizations, in some ℓp space, of linear
integral operators between Lebesgue spaces. This has been achieved by using the Fourier transform,
but in principle other transformations could be considered, provided we have an unconditional basis
of the Lebesgue space of functions and an efficient way to compute the coefficients. For instance, the
wavelet transform can be incorporated in Proposition 1 and Proposition 2 to retrieve WNOs (Tripura
& Chakraborty, 2023) and their novel Bregman variant, respectively. In a nutshell, our framework is
transparent to the parametrization of Kac

t .

4 EXPRESSIVITY OF BREGMAN NEURAL OPERATORS

In this section, we give a preliminary positive result concerning the universal approximation properties
of Bregman neural operators.

In the following, the activation function σ : R → I is required to be a homeomorphism between R and
an open interval I of R and of sigmoidal type, meaning that limt→−∞ σ(t) = 0 and limt→+∞ σ(t) =
1. Moreover, we assume that A and U are as follows

A(D,Rn) =


C(D,Rn)

Lp(D,Rn)

Wm,p(D,Rn)

and U(D,Rk) =

{
C(D,Rk)

Lp(D,Rk),

with p ∈ [1,+∞[, m ∈ N+, and D being the closure of D. The reason for considering the closure is
tied to PDE applications, where it is necessary to evaluate functions on the domain’s boundary.

FIXTheorem 3. Let σ, A and U be set as above. Let G : A → U be a continuous operator. Then for any
compact set K ⊂ A and ε > 0 there exists a Bregman neural operator Nθ : A → U of the type (2)
such that each component depends on a finite dimensional Bregman neural network and

sup
u∈K

∥G(u)−Nθ(u)∥U ≤ ε.

8
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Figure 4: Results on 1D Burgers (viscosity ν=10−3)

Here θ ∈ Rp collects all the (finite number of) parameters of the finite dimensional Bregman neural
networks defining the components in (2).

This theorem is based on the fact that we were able to prove this same result for Bregman neural
networks in finite dimensional spaces. See Appendix B.

5 NUMERICAL EXPERIMENTS

The primary objective of our numerical experiments is to evaluate and assess the added benefits of the
Bregman variant of the simplest neural operator, namely Fourier Neural Operator (FNO) as it often
serves as the building block for more sophisticated models. Additional models such as WNO (Tripura
& Chakraborty, 2023) and its Bregman variant, F-FNO (Tran et al., 2023) and a ResNet-like variant
of FNO are studied in the appendix.

NEW

5.1 EXPERIMENTAL SETTING

Datasets. We have selected a range of benchmark datasets resulting from the resolution of PDEs
used both in the original FNO paper (Li et al., 2021a) and in the PDEBench suite (Takamoto et al.,
2022), which is the top leading repository providing datasets commonly studied in physics-based
machine learning. They represent various dynamics and complexities pertinent to physical modeling
tasks. Hereafter, we consider initial value problems where the goal is to learn the mapping between
the initial condition ai and the solution at some future time ui from n = 104 pairs {ai, ui}ni=1. A
description of the experimental settings and the learning procedure is provided in Appendix C.
Models. We consider the FNO (Li et al., 2021a) and its Bregman variant (BFNO), described in
Section 3.4. Note that, by design, both versions yield the same training time and memory usage. The
lifting and projection layers, namely P and Q in (2), are convolutional layers with kernel size 1 and
width 128. Note that, for BFNO, we add an activation operator after P to ensure that the conditions
of Remark 4 (i) are met. Following the code of Li et al. (2021a), we use the ReLU activation for
FNO while, for BFNO, we resort to an invertible approximation: SoftPlus with parameter β = 103 to
make it almost indistinguishible from ReLU. Hereafter, we consider models made of T ∈ {4, 8, 16}
Fourier layers with a width 64 (resp. 32) and 16 (resp. 12) maximum number of Fourier modes for
1D (resp. 2D) problems. Note that two ablation studies in Appendices D.5 and D.6 reveal marginal
improvements from adding batch normalization layers or replacing SoftPlus with ReLU.

NEW

5.2 RESULTS AND ANALYSIS

Illustration and impact of the number of layers T . We illustrate the behavior of the prediction
error as the number of operator layers T increases. To this end, we conducted an experiment using
the Burgers’ dataset with viscosity ν = 10−3, with results presented in Figure 4a. First, we observe
that BFNO systematically yields lower prediction error, irrespectively of T . Second, the performance
of FNO degrades starting from T = 16, while BFNO demonstrates better performance as T increases
until it reaches a plateau at T = 64. The same conclusion holds for other datasets and our Bregman
variant of WNO, as illustrated in Appendix D.2.

NEW
We believe that this interesting property is due to the

added term of BFNO which helps in stabilizing the learning since BFNO layers reduce to the identity

9
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Table 2: Relative error of FNO and BFNO models on benchmark PDEs.

4 layers 8 layers 16 layers
FNO BFNO FNO BFNO FNO BFNO

1D Advection 1.0± 0.0% 0.7 ± 0.0% 1.4± 0.1% 0.6 ± 0.1% 1.8± 0.1% 0.6 ± 0.1%

1D Burgers (ν=10−1) 0.5± 0.0% 0.3 ± 0.0% 0.7± 0.0% 0.3 ± 0.0% 0.9± 0.0% 0.4 ± 0.0%

1D Burgers (ν=10−3) 5.5± 0.1% 5.4 ± 0.1% 5.4± 0.1% 4.1 ± 0.2% 6.5± 0.1% 3.5 ± 0.2%

2D NS (ν=10−3) 4.6± 0.1% 4.3 ± 0.1% 4.1± 0.1% 4.0 ± 0.0% 3.9 ± 0.1% 4.0± 0.1%

2D NS (ν=10−4) 13.5 ± 0.1% 13.7± 0.1% 13.0± 0.2% 12.6 ± 0.1% 12.6± 0.1% 12.2 ± 0.1%

1D NS 58.2± 0.6% 57.0 ± 0.6% 58.2± 0.6% 56.8 ± 0.8% 59.7± 0.6% 56.5 ± 0.6%

2D Darcy 34.6± 0.0% 33.4 ± 0.2% 32.8± 0.2% 31.5 ± 0.4% 32.9± 0.2% 30.0 ± 0.5%

when all the weights are zero. In Figure 6a, we report one instance of an input-output pair and the
best predicted output by FNO and BFNO, showing that BFNO better predicts the sharp edges. An
analysis of the weight probability density distribution is provided in Appendix D.7.

FIXLearning the solution map. As previously mentioned, we consider the problem of learning the
mapping between the initial condition and the solution of a PDE at some future time. In Table 2,
we compare the prediction performance, in terms of ℓ2 relative error, between FNO and BFNO for
T = {4, 8, 16} layers across different PDEs of varying complexities. Results indicate that BFNO
consistently yields better or comparable prediction performance. Additionally, the behavior observed
with the Burgers’ PDE, where the performance improves or stabilizes without degrading as T
increases, also holds for other PDEs. In contrast, FNO may suffer from a degradation of performance.
The reader may refer to Appendix D.2 for an analysis up to 64 layers, where we demonstrate that the
favorable behavior of the Bregman variant extends not only to FNOs but also to WNOs. In addition,
a detailed version of Table 2 is provided in Appendix D.3, where the prediction performance is also
analyzed both in frequency bands and on the boundary of the domain, leading to similar conclusions.
This behavior underscores BFNO’s ability to circumvent challenges commonly encountered when
training deep models, a capability further demonstrated through additional experiments detailed in
Appendix D.4, which highlight its advantages over F-FNO and a ResNet-like FNO.

NEWLearning the time-step evolution map. We now consider the problem of learning the mapping
between the solution at some time t and the solution at t + 25. Then we pose our model in an
autoregressive mode, where the output is fed again to the input of the model, repeating it 8 times.
Results provided in Figure 4b show that BFNO actually benefits from better prediction at each
horizon.

6 CONCLUSION

In summary, our contributions are twofold: we have provided a novel theoretical framework that
broadens the understanding of neural operators through the lens of a Bregman regularized optimization
problem, and we have introduced Bregman neural operators that achieve enhanced performance as
their depth increases. As part of our theoretical advancements, we have also established universal
approximation results for Bregman neural architectures with sigmoidal-type activation functions.
However, it must be acknowledged that a gap exists between this result and common practices,
which predominantly rely on ReLU-like activations, as in our work, opening the door to new
theoretical developments.

NEW
Beyond the unifying aspect of our framework and its ability to design

novel neural architectures, our framework also paves the way to use the rich body of literature on
monotone operators to study neural operators. In the context of neural networks, an example of
fruitful application of the latter is given in Combettes & Pesquet (2020a) where the authors provide
asymptotic properties of neural networks (as the number of layers tends to infinity). One can also
consider the work in Combettes & Pesquet (2020b) where the authors yield quantitative insights
into the stability properties of neural networks. As for our setting, we can guess that such results
might be extended to Bregman neural networks/operators by leveraging the notion of so called D-firm
operators studied in Bauschke et al. (2003), meaning operators that are firmly nonexpansive with
respect to a Bregman divergence.
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A ADDITIONAL TECHNICAL FACTS

We begin by introducing the necessary notations used throughout the paper.
NEWNotations. Let V and V∗ be two Banach spaces put in duality via the pairing ⟨·, ·⟩ : V × V∗ → R. If

Φ: V → ]−∞,+∞], we denote by domΦ = {v ∈ V |Φ(v) < +∞} its effective domain. For every
proper convex function Φ: V → ]−∞,+∞], we set its subdifferential

∂Φ(v) = {v∗ ∈ V∗ | for all u ∈ V, Φ(u) ≥ Φ(v) + ⟨u− v, v∗⟩},
if v ∈ domΦ, and ∂Φ(v) = ∅, otherwise. We set dom ∂Φ = {v ∈ domΦ | ∂Φ(v) ̸= ∅}
and the range ran ∂Φ = {v∗ ∈ V∗ | ∃v ∈ V s.t. v∗ ∈ ∂Φ(v)}. When ∂Φ(v) is a singleton, we
denote by ∇̃Φ its unique element. If Φ: V → ]−∞,+∞], its Fenchel conjugate is the function
Φ∗ : V∗ → ]−∞,+∞] such that Φ∗(v∗) = supv∈V⟨v, v∗⟩ − Φ(v). We denote by Γ0(V) the set of
proper convex and lower-semicontinuous functions on V . The Fenchel-Moreau theorem ensures that
Φ ∈ Γ0(V) ⇒ Φ∗ ∈ Γ0(V∗). We denote by ⟨ · , · ⟩ and | · | the Euclidean scalar product and norm
in Rn. If D ⊂ Rd is a nonempty bounded Borel set and p ∈ [1,+∞], we denote by Lp(D,Rn) the
Lebesgue space of p-integrable functions (essentially bounded functions, if p = +∞) from D to Rn.

MOVE
A.1 CONSIDERATIONS FOR LEGENDRE FUNCTION AND BREGMAN PROXIMAL OPERATORS

At the core of our framework, lies the connection between activation operators and Bregman proximity
operators whose definition involves the Bregman divergence itself defined from a Legendre function
Φ ∈ Γ0(V). The latter acts on Lebesgue function space V = LP (D,Rn) and can be built from an
elementary legendre function ϕ ∈ Γ0(Rn) through the convex integral functional described in Fact 1.
We provide below several considerations.

NEW

Remark 6. One can prove that ϕ is Legendre if and only if ϕ∗ is Legendre. Moreover, if ϕ is Legendre,
then ϕ and ϕ∗ are differentiable on int(domϕ) and int(domϕ∗) respectively and

∇ϕ : int(domϕ) → int(domϕ∗) and ∇ϕ∗ : int(domϕ∗) → int(domϕ)

are bijective and inverse of each other.

MOVE
Remark 7. In Fact 1, suppose that p = 1 and domϕ∗ = Rn. Then ran ∂Φ = V∗. Indeed, we note
that ∇ϕ : int(domϕ) → Rn is a continuous bijection with inverse ∇ϕ∗, which is also continuous.
Therefore if we let u ∈ V∗ = L∞(D,Rn) and set v = (∇ϕ∗) ◦ u, since u is essentially bounded,
we have that v is essentially bounded too, and hence integrable. In the end v ∈ L1(D,Rn) and
u = (∇ϕ) ◦ v ∈ ∂Φ(v).

MOVEDefinition 3 of Bregman proximity operators in general Banach spaces requires that ran ∂(Φ + g) is
the full dual space. The following result gives a simple situation in which such condition is satisfied.
Proposition 4. Let ϕ ∈ Γ0(Rn) be a Legendre function, let p ∈ [1,+∞[, and suppose that ϕ is
p-uniformly convex with constant c > 0, meaning that

∀ y, y′ ∈ Rn,∀λ ∈ ]0, 1[ : ϕ((1−λ)y+λy′)+λ(1−λ) c
p
|y − y′|p ≤ (1−λ)ϕ(y)+λϕ(y′). (12)

Let V = Lp(D,Rn). Then the integral functional Φ: V → ]−∞,+∞] defined as in Fact 1 is
p-uniformly convex with respect to the norm ∥ · ∥p. Moreover, for every g ∈ Γ0(V) such that
domΦ ∩ dom g ̸= ∅, we have dom(Φ + g)∗ = V∗ and (Φ + g)∗ is Fréchet differentiable on V∗.
Thus V∗ = dom ∂(Φ + g) = ran ∂(Φ + g).

Proof. It follows by integrating (12). The second part follows by Zalinescu (2002, Theorem 3.5.10),
considering that Φ+ g is also p-uniformly continuous.

A.2 LINK BETWEEN ACTIVATION FUNCTION AND PROXIMITY OPERATOR

As demonstrated in the work of Combettes & Pesquet (2020a), many activation functions σ can be
expressed as proximity operators proxg = argmint∈R g(t) +

1
2 (· − t)2 for some appropriate convex

function g. The simplest case is that of the ReLu activation function, recalled below.

14
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Example 1 (ReLu). The rectified linear unit function σ : t ∈ R 7→ max(t, 0) ∈ R can be expressed
as the proximity operator proxg of g = ı[0,+∞[. Henceforth, proxg reduces to the projection onto the
positive orthant.

We also provide a novel characterization of SoftPlus.

Example 2 (SoftPlus). Given β > 0, the SoftPlus activation function, i.e., σ : t 7→ SoftPlusβ(t) ≜
(1/β) log(exp(βt) + 1), is the proximity operator of

g : t ∈ R>0 7→ 1

β2
Li2(e

−βt) ∈ R>0, (13)

where Li2 is the dilogarithm function defined as Li2 : t 7→ −
∫ t

0
log(1−u)

u du.

Proof. For every s ∈ R, proxg(s) = argmint∈R{h(t) ≜ g(t) + (1/2)(s − t)2} with
h(t) = (1/β2)Li2(e

−βt) + (1/2)(s − t)2 = ψ(t) − st + (1/2)s2 where we introduced ψ(t) =

(1/β2)
(
Li2(e

−βt) + (1/2) log(e−βt)2
)
= (1/β2)

∫ e−βt

log(r/(1− r))/rdr. The latter can be writ-
ten as ψ(t) = (1/β)

∫ t
log(eβr − 1)dr up to a constant. Finally, since h is strongly convex, the

minimum is attained for t such that h′(t) = 0, which yields log(eβt − 1) = βs ⇔ t = σ(s), thus
ending the proof.
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(a) Representation of t 7→ g(t) = 1
β2Li2(e

−βt)
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(b) Representation of proxg(t) = SoftPlusβ(t)

Figure 5: Illustration of SoftPlus as a proximity operator.

We present an illustration of the convex function g defined in Eq. 13 in Figure 5a. Intuitively, it
serves as a smooth surrogate for the indicator function of the positive orthant ı[0,+∞[. A larger value
of β > 0 leads to a closer approximation. This aligns with the representation of SoftPlus as the
proximity operator of g from Eq. 13, depicted in Fig. 5b where a larger β makes SoftPlus closer to
ReLU.

B APPROXIMATION RESULTS FOR BREGMAN NEURAL NETWORKS AND
OPERATORS

B.1 BREGMAN NEURAL NETWORKS

We consider first shallow Bregman neural networks for finite dimensional spaces. Let σ : R → I be a
homeomorphism, where I is an open interval in R. We d ∈ N+ and set

BN2(σ; I
d) = span

{
σ(σ−1(m⊤x) + w⊤x+ b)

∣∣m ∈ ∆d−1, w ∈ Rd, b ∈ R
}
. (14)

Remark 8. Since m belongs to the standard simplex ∆d−1, m⊤x is a convex combination of
elements of I and so it is an element of I . Thus, since σ−1 : I → R, the functions in BN2(σ; I

d) are
well-defined from Id → R.

The following result follows from an adaptation of the argument in Cybenko (1989) to our different
architecture (14).
Theorem 5. Suppose that σ is sigmoidal, meaning that limt→−∞ σ(t) = 0 and limt→+∞ σ(t) = 1.
Then, the space BN2(σ; I

d) is dense in C(Id,R) with respect to the topology of uniform convergence
on compact sets.
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Proof. Let K ⊂ Id be a compact set. We prove that the trace space BN2(σ; I
d)|K is dense in

C(K,R). To that purpose, we rely on the following general fact concerning dense sets in Banach
space (see, e.g., Brezis (2011)). Let B be a Banach space, let A ⊂ B. Then the following propositions
are equivalent.

• spanA is dense in B

• A⊥ = {u∗ ∈ B∗ | ∀u ∈ A : ⟨u, u∗⟩ = 0} = {0}.

• ∀u∗ ∈ B∗, (∀u ∈ A : ⟨u, u∗⟩ = 0) ⇒ u∗ = 0.

This implies that for our purpose we can equivalently prove that

∀µ ∈ M(K) :

(
∀ f ∈ BN2(σ; I

d) :

∫
K

fµ = 0

)
⇒ µ = 0,

where M(K) is the space of signed finite Radon measures on K (the dual of C(K)). Thus, let µ be a
signed measure on K and suppose that

∀ f ∈ BN2(σ; I
d) :

∫
K

fdµ = 0. (15)

Fix w ∈ Rd,m ∈ ∆d−1, and b ∈ R. Define, for every λ > 0 and c ∈ R

σλ,c : I → R, x 7→ σ(σ−1(m⊤x) + λ(w⊤x+ b) + c).

It is clear that σλ,c ∈ BN2(σ; I
d). Moreover,

lim
λ→+∞

σλ,c(x) =

 1 if w⊤x+ b > 0
0 if w⊤x+ b < 0
σ(σ−1(m⊤x) + c) if w⊤x+ b = 0.

 := γ(x).

Define the sets

Π+
w,b =

{
x ∈ K

∣∣w⊤x+b > 0
}
, Π−

w,b =
{
x ∈ K

∣∣w⊤x+b < 0
}
, Πw,b =

{
x ∈ K

∣∣w⊤x+b = 0
}
.

They are intersections of half-spaces and hyperplanes with K. So,

γ(x) = χ
Π+

w,b

(x) + σ(σ−1(m⊤x) + c)χ
Πw,b

(x),

where χA is the characteristic functions of the set A ⊂ Id. Since σ is bounded we can apply the
Lebesgue’s dominated convergence theorem and get

lim
λ→+∞

∫
K

σλ,cdµ︸ ︷︷ ︸
=0

=

∫
K

γdµ = µ(Π+
w,b) +

∫
Πw,b

σ(σ−1(m⊤x) + c)dµ(x).

Note that the integral on the left is zero by the hypothesis (15). In this way we proved that

∀m ∈ ∆d−1,∀w ∈ Rd,∀ b,∀ c ∈ R : µ(Π+
w,b) +

∫
Πw,b

σ(σ−1(m⊤x) + c)dµ(x) = 0. (16)

Now observe that (16) implies∣∣∣µ(Π+
w,b)

∣∣∣ = ∣∣∣∣ ∫
Πw,b

σ(σ−1(m⊤x)+c)dµ(x)

∣∣∣∣ ≤ ∫
Πw,b

|σ(σ−1(m⊤x) + c)| d|µ|(x) → 0 as c→ −∞,

since |σ(σ−1(m⊤x) + c)| → 0 as c → −∞ (pointwise), where |µ| is the total variation of µ.
Therefore, µ(Π+

w,b) = 0. Then (16) yields

∀ c ∈ R :

∫
Πw,b

σ(σ−1(m⊤x) + c)dµ(x) = 0.
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Moreover, by assumption σ(σ−1(m⊤x) + c) → 1 as c → +∞ (pointwise) and hence, again by
Lebesgue’s dominated convergence theorem,

lim
c→+∞

∫
Πw,b

σ(σ−1(m⊤x) + c)dµ(x)︸ ︷︷ ︸
=0

=

∫
Πw,b

1dµ = µ(Πw,b),

which yields µ(Πw,b) = 0. In the end we proved that the measure µ is zero on all the sets of type

Πw,b and Π+
w,b.

Now the proof continues as in Cybenko (1989, Lemma 1), and we can conclude that µ = 0.

Now we address the vectorial case. We set

BN2(σ; I
d,Rk) :=

{
Qσ(σ−1(Mx) +Wx+ b)

∣∣∣∣ r ∈ N+, Q ∈ Rk×r,W,M ∈ Rr×d,
with M right stochastic, and b ∈ Rr

}
,

where σ and σ−1 are applied component-wise.
Corollary 6. We have that

BN2(σ; I
d,Rk) = (BN2(σ; I

d))k := BN2(σ; I
d)× · · · × BN2(σ; I

d)︸ ︷︷ ︸
k times

(17)

and it is dense in C(Id,Rk), in the topology of uniform convergence on compact sets.

Proof. In view of Theorem 5, it is clear that (BN2(σ; I
d))k is dense in C(Id,R)k ≊ C(Id,Rk)

in the topology of uniform convergence on compact sets. Let’s prove equality (17). The in-
clusion BN2(σ; I

d,Rk) ⊂ (BN2(σ; I
d))k is immediate. Let f : Id → Rk with components

fj ∈ BN2(σ; I
d), j = 1, . . . , k. Then, there exists r ∈ N+, and for each j ∈ {1, . . . , k}, qj ∈ Rr,

Wj ∈ Rr×d, bj ∈ Rr, and Mj ∈ Rr×d right stochastic matrix (the rows are positive and sum one),
such that

fj(x) = q⊤j σ(σ
−1(Mjx) +Wjx+ bj).

Then considering the block matrices

M =

M1

...
Mk

 ∈ Rkr×d, W =

W1

...
Wk

 ∈ Rkr×d, b =

b1...
bk

 ∈ Rkr, Q =


q⊤1 0 · · · 0
0 q⊤2 · · · 0
...

...
. . .

...
0 0 · · · q⊤k

 ∈ Rk×kr,

we have
f(x) = Qσ(σ−1(Mx) +Wx+ b),

and hence f ∈ BN2(σ; I
d,Rk). The statement follows.

A general deep Bregman neural network with T layers is defined as follows

BNT (σ; I
d,Rk) =

{
WT ◦ LT−1 ◦ · · · ◦ L1

}
,

where, for every t = 1, . . . , T − 1,

Lt : I
nt−1 → Int , x 7→ σ(σ−1(Mtx) +Wtx+ bt), (18)

with Wt ∈ Rnt×nt−1 , bt ∈ Rnt and Mt ∈ Rnt×nt−1 right stochastic, for t = 1, . . . , T − 1, with
n0 = n and WT ∈ Rk×nT−1 . Note that also the dimensions n1, . . . , nT−1 can be chosen freely.
Clearly for a deep network with T > 2, if we take, for every t = 2, . . . , T − 1, nt = n1, Wt = 0,
bt = 0, and Mt equals to the identity, then the layers Lt with t = 2, . . . , T − 1 act as the identity
operator and hence

BN2(σ; I
d,Rk) ⊂ BNT (σ; I

d,Rk).

Therefore, BNT (σ; I
d,Rk) is dense in C(Id,Rk) for the topology of uniform convergence on compact

sets.
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Remark 9. Often in applications it is desirable to have functions defined on the entire space Rd. In
this case one can simply precompose the functions in BNT (σ; I

d,Rk) by the homeomorphism

x ∈ Rd → σ(x) ∈ Id

obtaining a dense set in C(Rd,Rk) (for any T ≥ 2). Such space is then denoted by BNT (σ;Rd,Rk).

Let D ⊂ Rd be any nonempty bounded open set. If F(Rd) is any class of real functions from Rd to
R we denote by F|D the set of restrictions to D of the functions in F(Rd). In the following according
to Remark 9 we put

BNT (σ;Rd,Rk) =
{
WT ◦ LT−1 ◦ · · · ◦ L1 ◦ σ

}
, (19)

which is a dense space in C(Rd,Rk) with respect to the topology of uniform convergence on compact
sets.

Lemma 7. Suppose that σ is a sigmoidal activation function as in Theorem 5. Let p ∈ [1,+∞[.
Then BNT (σ;Rd,Rk)|D is dense in Lp(D,Rk) (in the norm ∥·∥p).

Proof. It is well known that Cc(D,Rk) is dense in Lp(D,Rk) and hence C(Rn,Rk)|D is dense in
Lp(D,Rk) (in the norm ∥·∥p). Moreover, BNT (σ;Rn,Rk)|D is dense in C(Rd,Rk)|D (in the norm
∥·∥∞). On the other hand

∀ f ∈ C(Rd,Rk)|D : ∥f∥p =
(∫

D

|f |pdx
)1/p

≤ ∥f∥∞ |D|1/p.

Thus, if f ∈ Lp(D,Rk) and ε > 0,

∃ g ∈ C(Rd,Rk)D s.t. ∥f − g∥p ≤ ε

2

∃h ∈ BNT (σ;Rd,Rk)|D s.t. ∥g − h∥∞ ≤ ε

2|D|1/p
⇒ ∥g − h∥p ≤ ε

2

and hence ∥f − h∥p ≤ ε.

Remark 10. It is sometimes required that neural networks, of any depth, include constant functions.
Standard feed-forward neural networks have the form

(WT ·+bT ) ◦ σ(WT−1 · +bT−1) ◦ · · · ◦ σ(W1 · +b1),

so it is clear that they include constant functions (just take WT = 0). However, for Bregman neural
networks as defined in (19)-(18) this is not clear. An immediate modification to achieve this goal
is to explicitly add a constant bT in the last layer. Another possibility is to lift the input space by
one dimension, precomposing the neural network with a (free) linear embedding. In particular, if we
consider the canonical embedding

J : Rd → Rd+1 : x 7→
[
x
0

]
,

and define the following matrices

W̃t =

[
Wt 0
0 1

]
, M̃t =

[
Mt 0
0 1

]
, b̃t =

[
bt

−σ(0)

]
, (for t<T) W̃T = [WT bT /σ(0)] ,

then, for t = 1, . . . , T − 1, according to (18), we have

∀ y ∈ Int−1 : L̃t

[
y

σ(0)

]
= σ

(
σ−1

(
M̃t

[
y

σ(0)

])
+ W̃t

[
y

σ(0)

]
+ b̃t

)
=

[
Lty
σ(0)

]
and hence

W̃T ◦ L̃T−1 ◦ · · · ◦ L̃1 ◦ σ ◦ J =WT ◦ LT−1 ◦ · · · ◦ L1 ◦ σ + bT .

18
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B.2 BREGMAN NEURAL OPERATORS

Now we start addressing the proof of Theorem 3. We will rely on the work of Kovachki et al. (2023),
from which, for the sake of reader’s convenience, we report the following facts.
Fact 2 (Lemma 28 and 30 in Kovachki et al. (2023)). Let D ⊂ Rd be a bounded set and let
L ∈ (Wm,p(D))∗, for some m ≥ 0 and 1 ≤ p < +∞, or L ∈ (C(D))∗. Then, for any closed and
bounded set K ⊂ A and ε > 0, there exists a function κ ∈ C∞

c (D) such that

sup
v∈K

∣∣∣L(v)− ∫
D

κ(x)v(x)dx
∣∣∣ < ε.

Fact 3 (Lemma 22 and 26 in Kovachki et al. (2023)). Let D ⊂ Rd be a bounded set and let A and U
be any one of the Banach spaces C(D) or Wm,p(D), with m ≥ 0 and 1 ≤ p < +∞. Let G : A → U
be a continuous operator, K ⊂ A be a compact set and ε > 0. Then there exist J, J ′ ∈ N and

R : A → RJ , f : RJ → RJ′
, S : RJ′

→ U ,

with R and S linear continuous and f continuous, such that

sup
v∈K

∥G(v)− (S ◦ f ◦R)(v)∥ < ε.

In the following we set D ⊂ Rd be a bounded set and

A(D,Rn0) =Wm,p(D,Rn0) or A(D,Rn0) = C(D,Rn0),

where the integer m ≥ 0 and p ∈ [1,+∞[. Moreover we will assume that (by possibly changing
the definition slightly) Bregman neural networks include constant functions (recall Remark 10).
Because of the density result given in the previous section, we can essentially follow the same line
of arguments in Kovachki et al. (2023), but we need to take special care of the different structure of
Bregman neural network/operators (in particular in Lemma 10).
Lemma 8. Let L ∈ A∗ and K ⊂ A be a compact set. Then there exists h ∈ BN2(σ;Rd,Rn0)|D
such that

sup
v∈K

∣∣∣L(v)− ∫
D

⟨h(x), v(x)⟩ dx
∣∣∣ < ε.

Proof. The space A is (isomorphic to) a product space, meaning A =
∏n0

i=1 Ai, where Ai is a
space of real valued functions on D. Set Ki = pri(K), which is a compact set of Ai, so that
K ⊂

∏n0

i=1Ki. Then L : A → R can be written as Lv =
∑n0

i=1 Livi with Li : Ai → R. By Fact 2,
for every i = 1, . . . , n0, there exists κi ∈ Cc(D) such that

sup
vi∈Ki

∣∣∣Livi −
∫
D

κivi dx
∣∣∣ < ε

2n0
.

Let κ ∈ Cc(D,Rn0) with components κi ∈ Cc(D). Then∣∣∣Lv − ∫
D

⟨κ(x), v(x)⟩ dx
∣∣∣ = ∣∣∣ n0∑

i=1

Livi −
n0∑
i=1

∫
D

κivi dx
∣∣∣ ≤ n0∑

i=1

|Livi −
∫
D

κivi dx| <
ε

2
.

Since A ⊂ L1(D,Rn0) we set γ = supv∈K ∥v∥1 < +∞. Moreover, since Bregman shal-
low neural networks are dense in the space of continuous functions (Remark 9), there exists
h ∈ BN2(σ;Rd,Rn0)|D such that ∥h− κ∥∞ ≤ ε/(2γ) and hence, for every v ∈ K,∣∣∣ ∫

D

⟨κ, v⟩d x−
∫
D

⟨h, v⟩d x
∣∣∣ = ∣∣∣ ∫

D

⟨κ−h, v⟩ dx
∣∣∣ ≤ ∫

D

|κ(x)− h(x)||v(x)| d x ≤ ∥κ− h∥∞ ∥u∥1 <
ε

2
.

Therefore,∣∣∣Lv − ∫
D

⟨h, v⟩ dx
∣∣∣ ≤ ∣∣∣Lv − ∫

D

⟨κ, v⟩ dx
∣∣∣+ ∣∣∣ ∫

D

⟨κ, v⟩ dx−
∫
D

⟨h, v⟩ dx
∣∣∣ < ε

and the statement follows.
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Lemma 9. Let R : A → RJ be a linear continuous operator, K ⊂ A a compact set and ε > 0. Then
there exists a linear continuous operator RBN : A → RJ acting as

v 7→ RBNv =

∫
D

h(y)v(y) dy,

where h ∈ BN2(σ;Rd,RJ×n0)|D, such that

sup
v∈K

|Rv −RBNv| < ε.

Proof. Consider the components Rj : A → R, j = 1, . . . , J . Then Rj ∈ A∗, and by Lemma 8

∃hj ∈ BN2(σ;Rd,Rn0)|D s.t. sup
v∈K

∣∣∣Rjv −
∫
D

⟨hj(x), v(x)⟩ dx
∣∣∣ ≤ ε√

J
.

Let h : Rd → RJ×n0 with

h(x) =

h1(x)
⊤

...
hJ(x)

⊤

 .
Clearly h ∈ BN2(σ;Rd,RJ×n0)|D and

∀ v ∈ K :
∣∣∣Rv − ∫

D

h(x)v(x) dx
∣∣∣2 =

J∑
i=1

∣∣∣Rjv −
∫
D

⟨hj(x), v(x)⟩ dx
∣∣∣2 < ε2

and the statement follows.

Remark 11. Both the linear continuous operators R and RBN in Lemma 9 can be canonically lifted
to Lebesgue spaces as follows.

R : A → Lp(D,RJ), Rv = (Rv)1D

RBN : A → Lp(D,RJ), RBNv = (RBNv)1D,

where 1D denotes the constant function x 7→ 1 on D. Moreover RBN is actually an integral operator.
Indeed if we define the kernel

κh : D ×D → RJ×n0 , κh(x, y) = h(y)

we have

(RBNv)(x) = RBNv =

∫
D

h(y)v(y) dy =

∫
D

κh(x, y)v(y) dy.

The following result is the analogue of Kovachki et al. (2023, Lemma 35) and establishes that a finite
dimensional Bregman neural network can be canonically lifted in Lebesgue spaces. However, here
we need to take care of the domain of the Bregman operator layers.

Lemma 10. Let f ∈ BNT (σ;RJ ,RJ′
), D ⊂ Rd a nonempty open set and p ∈ [1,+∞]. Then there

exists a neural operator

NBN : Lp(D,RJ) → Lp(D,RJ′
), NBN = KT ◦ LT−1 ◦ · · · ◦ L1 ◦ σ,

where, for every t = 1, . . . , T − 1,

Lt(v) = σ(σ−1(Mtv) +Ktv + bt)

and such that the linear integral operators Mt and Kt and the functions bt are defined (parametrized)
by finite dimensional Bregman shallow neural networks and

∀w ∈ RJ : NBN(w1D) = f(w)1D,

where 1D denotes the constant function x 7→ 1 on D.
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Proof. By definition

f = KT ◦ LT−1 ◦ · · ·L1 ◦ σ, Lt(w) = σ(σ−1(Mtw) +Ktw + bt),

where σ : R → I and, for t = 1, . . . , T ,Kt ∈ Rnt×nt−1 and bt ∈ Rnt , and for every t = 1, . . . , T−1,
Mt ∈ Rnt×nt−1 , is right stochastic, n0 = J and nT = J ′. Since, we are assuming that Bregman
neural networks contain constant functions (recall the sentence before Lemma 8), we have

• bt1D ∈ BN2(σ;Rd,Rnt)|D ⊂ C(D,Rnt)

• κt =
1

|D|
Kt1D×D ∈ BN2(σ;Rd × Rd,Rnt×nt−1)|D×D ⊂ C(D ×D,Rnt×nt−1) and

Kt : L
p(D,Rnt−1) → Lq(D,Rnt)

v 7→ (Ktv)(x) =

∫
D

κt(x, y)v(y) dy =

∫
D

1

|D|
Ktv(y) dy = Ktv̄,

where v̄ is the mean value of v. So that Ktv = (Ktv̄)1D is a constant function.

• µt =
1

|D|
Mt1D×D ∈ BN2(σ;Rd × Rd,Rnt×nt−1)|D×D ⊂ C(D ×D,Rnt×nt−1)

Mt : L
p(D,Rnt−1) → Lp(D,Rnt)

v 7→ (Mtv)(x) =

∫
D

µt(x, y)v(y) dy =

∫
D

1

|D|
Mtv(y) dy =Mtv̄.

Moreover, since Mt is right stochastic, if the function v has range (almost everywhere) in
Int−1 , we have that v̄ ∈ Int−1 ⇒ Mtv̄ ∈ Int , Hence

Mt(dom ∂Φt−1) ⊂ dom ∂Φt.

Indeed, recall that Φt : L
p(D,Rnt) → ]−∞,+∞] and

∀ v ∈ Lp(D,Rnt) : Φt(v) =

∫
D

ϕt(v(x)) dx, ∀w ∈ Rnt : ϕt(w) =

nt∑
i=1

ψ(wi)

with ψ : R → ]−∞,+∞] Legendre, int(domψ) = I , domψ∗ = R, σ = (ψ∗)′, and
σ−1 = ψ′, so that dom ∂Φt =

{
v ∈ Lp(D,Rnt) | for a.e. x ∈ D, v(x) ∈ Int

}
and for

v ∈ domΦt, ∂Φt(v) = {∇ϕ ◦ v}.

It follows from the previous considerations that if v ∈ dom ∂Φt−1 ⊂ Lp(D,Rnt−1), we have
Kt(v) = (Ktv̄)1D and Mtv = (Mtv̄)1D, and hence

Lt(v) = σ(σ−1(Mtv) +Ktv + bt1D)(x) = σ(σ−1(Mtv̄) +Ktv̄ + bt).

Note that here Vt = Lp(D,Rnt). Thus, we have

Lt(v) = (Ltv̄)1D,

meaning that the operator layer Lt transforms any function in Lp(D,Rnt) into a constant function,
where the constant is the mean value of the function, transformed via the standard (finite dimensional)
Bregman layer Lt. In particular, if w ∈ RJ , we have

L1(σ(w1D)) = L1(σ(w)1D) = L1(σ(w))1D

L2(L1(σ(w1D))) = L2(L1(σ(w))1D) = L2(L1(σ(w)))1D,

and so on. Therefore, if we set

NBN = KT ◦ LT−1 ◦ · · · ◦ L1 ◦ σ,

the statement follows.
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Remark 12. Let S : RJ′ → U(D,Rk) be linear (and continuous) and set

∀ i = 1, . . . , J ′ : sj = Sej ∈ U ,

where (ej)1≤j≤J′ is the canonical basis of RJ′
. Define the function s : D → Rk×J′

, with s(x) =
[s1(x) · · · s′J(x)], which has the sj’s as columns. Then

∀w ∈ RJ′
: Sw = S

( J′∑
j=1

wjej

)
=

J′∑
j=1

wjsj ⇒ (Sw)(x) =

J′∑
j=1

wjsj(x) = s(x)w.

Thus, the action of S can be represented by a matrix-valued function with columns in U . Moreover,
the linear operator S can be lifted to a linear integral operator from Lp(D,RJ′

) to U . Indeed if we
define the kernel

κs : D ×D → Rk×J′
, κs(x, y) =

1

|D|
s(x),

for every v ∈ Lp(D,RJ′
), we have

(Sv)(x) =
∫
D

κs(x, y)v(y) dy =

∫
D

1

|D|
s(x)v(y) dy = s(x)v̄,

where v̄ is the mean value of v. In the end S : Lp(D,RJ′
) → U and

∀ v ∈ Lp(D,RJ′
) : Sv = Sv̄,

and hence, for every w ∈ RJ′
, S(w1D) = Sw, meaning that S is actually an extension of S to the

Lebesgue space Lp(D,RJ′
).

Lemma 11. Let S : RJ′ → U(D,Rk) be linear (and continuous). Let K ⊂ RJ′
be a compact set

and ε > 0. Then there exists a function h ∈ BN2(σ;Rd,Rk×J′
)|D so that for the corresponding

linear operator SBN : RJ′ → U defined as

∀w ∈ RJ′
: (SBNw)(x) =

J′∑
i=1

wjhj(x) = h(x)w,

according to Remark 12, we have

sup
w∈K

∥Sw − SBNw∥U < ε.

Finally we are ready for the proof of Theorem 3.

Proof of Theorem 3. It follows from Fact 3 that there exist J, J ′ ∈ N and

R : A → RJ , f : RJ → RJ′
, S : RJ′

→ U ,

with R and S linear continuous and f continuous, such that

sup
v∈K

∥G(v)− (S ◦ f ◦R)(v)∥ < ε.

Now, taking advantage of the previous lemmas we want to replace the operators R and S with
analogue operators depending on shallow Bregman neural networks, and the function f with a
Bregman neural network. It follows from Lemma 9 that for every n ∈ N there exist

RBN
n : A → RJ linear continuous operator such that sup

v∈K
|Rv −RBN

n v| < 1

n+ 1
,

where RBN
n depends on a Bregman shallow network hn as specified in Lemma 9. Clearly this implies

that limn→+∞RBN
n v = Rv uniformly on K, so that the set

K1 := R(K) ∪
⋃
n∈N

RBN
n (K) ⊂ RJ
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is compact (see Kovachki et al. (2023, Lemma 21)). Since f is continuous, it is uniformly continuous
on K1, hence given ε > 0 there exists δ > 0 such that

∀w,w′ ∈ K1 : |w − w′| < δ ⇒ |f(w)− f(w′)| < ε

3 ∥S∥
.

Moreover, there exists fBN ∈ BN2(σ;RJ ,RJ′
) such that

sup
w∈K1

|f(w)− fBN(w)| < ε

3 ∥S∥
.

Let’s take n ∈ N such that 1/(n+ 1) < δ. Then,

∀ v ∈ K : Rv,RBN
n v ∈ K1 and |Rv −RBN

n v| < 1

n+ 1
< δ ⇒ |f(Rv)− f(RBN

n v)| < ε

3 ∥S∥
.

Finally, since fBN(K1) is compact, by Lemma 11, there exist SBN : RJ′ → U such that

sup
w∈fBN(K1)

∥Sw − SBNw∥U <
ε

3
.

Therefore, for every v ∈ K we have∥∥S(f(Rv))− SBN(fBN(RBN
n v))

∥∥
U ≤

∥∥S(f(Rv))− S(f(RBN
n v))

∥∥
U +

∥∥S(f(RBN
n v))− S(fBN(RBN

n v))
∥∥
U

+
∥∥S(fBN(RBN

n v))− SBN(fBN(RBN
n v))

∥∥
U

≤ ∥S∥ |f(Rv)− fBN(RBN
n v)|+ ∥S∥ |f(RBN

n v)− fBN(RBN
n v)|

+
∥∥S(fBN(RBN

n v))− SBN(fBN(RBN
n v))

∥∥
U

<
ε

3
+
ε

3
+
ε

3
= ε.

In the end, for every v ∈ K,∥∥G(v)− SBN(fBN(RBN
n v))

∥∥
U ≤ ∥G(v)− S(f(Rv))∥U+

∥∥S(f(Rv))− SBN(fBN(RBN
n v))

∥∥
U < 2ε.

Now in order to conclude the proof, it is sufficient to lift the operators RBN and SBN to Lebesgue
spaces, as described in Remark 11 and Remark 12, and the function fBN to Bregman neural operator
as described in Lemma 10 and recognize that

SBN ◦ NBN ◦ RBN
n = SBN ◦ fBN ◦RBN

n .

Indeed, for every v ∈ A, we have

SBN(NBN(RBN
n v)) = SBN(NBN((RBN

n v)1D)) = SBN(fBN((RBN
n v))1D) = SBN(fBN((RBN

n v))).

The statement follows.
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C EXPERIMENTAL SETTINGS

We adopt the same experimental setting as in the PDEBench repository (Takamoto et al., 2022). For
the sake of information, we recall the considered problems and PDEs and the specific settings we
consider when appropriate. The learning procedure used is presented at the end of this section.

C.1 1D ADVECTION EQUATION

The advection equation is a linear Partial Differential Equation (PDE) modeling the transport of a
fluid quantity u, namely its velocity field, defined by the following equation:

∂tu(x, t) + β∂xu(x, t) = 0, x ∈ (0, 1), t ∈ (0, 2], (20)
u(x, 0) = u0(x), x ∈ (0, 1), (21)

with β a constant advection speed. Note that this system admits an exact solution: u(t, x) =
u0(x− βt).

For this dataset, we follow the setting given in Takamoto et al. (2022), Section D.1 by taking β = 0.4.
We learn the mapping between the value of the field at t = 0 (u(x, 0)) and the value at time t = 2
(u(x, 2)), i.e. we learn the mapping between the first and the last temporal value of each sample.

C.2 1D BURGERS EQUATION

The Burgers’ equation is a PDE describing the nonlinear advection and diffusion of a velocity field,
defined as follows:

∂tu(x, t) + ∂x(u
2(x, t)/2) = ν/π∂xxu(x, t), x ∈ (0, 1), t ∈ (0, 2], (22)
u(x, 0) = u0(x), x ∈ (0, 1), (23)

where ν is the diffusion coefficient, which is assumed to be constant in this dataset.

We follow again the setup presented in Takamoto et al. (2022), section D.2, with ν = 0.001. As in the
previous dataset, we learn the mapping from the field at t = 0 as input to the field at t = 2 as target.

C.3 1D COMPRESSIBLE NAVIER-STOKES EQUATIONS (1D NS)

The compressible Navier-Stokes equations describe the motion of viscous fluids that can change
in density due to compression or expansion. This can be described through the following partial
differential equations:

∂tσ + ∂x · (σu) = 0, (24)
σ(∂tu + u · ∂xu) = −∂xp+ η△u + (ζ + η/3)∂xxu), (25)

∂t(ϵ+ σv2/2) + ∂x · [(p+ ϵ+ σv2/2)u− u · σ′] = 0, (26)
where σ is the mass density, u = u(x, t) is the fluid velocity, p is the gas pressure, ϵ is an internal
energy described by the equation of state, σ′ is the viscous stress tensor, and η and ζ are shear and
bulk viscosity, respectively.

In our experiments, we consider the setup introduced in Takamoto et al. (2022), Section D.5, fixing
η = 10−8, ζ = 10−8 and out-going boundary conditions. We learn the mapping of the velocity v
from time t = 10 as input to time t = 15 as target. For this dataset, we added a symmetrical padding
preprocessing to replicate periodic boundary conditions (as prescribed in the original FNO code (Li
et al., 2021a)).

C.4 2D INCOMPRESSIBLE NAVIER-STOKES EQUATIONS (2D NS)

We also consider a dataset from the 2D Navier-Stokes equation for a viscous, incompressible fluid in
vorticity form on the unit torus (Li et al., 2021a) defined as follows:

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, Tfinal]

∇ · u(x, t) = 0, x ∈ (0, 1)2, t ∈ (0, Tfinal]

w(x, 0) = w0(x), x ∈ (0, 1)2
(27)
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with u is the 2D velocity field, w = ∇× u is the vorticity, w0 : (0, 1)2;→ R is the initial vorticity
function, ν ∈ R+ is the viscosity coefficient, and f : (0, 1)2 → R is the forcing function.

We follow the setup introduced in Li et al. (2021a), Section A.3.3, with ν = 10−3 and ν = 10−4. We
learn the mapping of the velocity field v from sample time t = 10 to t = 50 for ν = 10−3 and from
t = 10 to t = 20 for ν = 10−4.

C.5 DARCY FLOW

We consider a dataset based on the steady state of the 2D Darcy Flow equation on the unit square,
representing the flow through porous media and defined as follows:

−∇(a(x)∇u(x)) = f(x), x ∈ (0, 1)2,

u(x) = 0, x ∈ ∂(0, 1)2.
(28)

We follow the setup described in Takamoto et al. (2022), Section D.4, with f(x) fixed to the constant
β = 0.1.

C.6 LEARNING PROCEDURE

Models are trained using the Adam optimizer with a constant learning rate, a batch size of 128 for
1D problems (resp. 32 for 2D problems), a maximum of 2000 epochs and an early stopping strategy
with patience of 100 epochs and δ = 10−3. The learning rate is validated on a grid of multiple values
equally spaced in logarithmic scale. If not mentioned otherwise, we use 8000 (resp. 1000) training
samples for 1D (resp. 2D) problems, and 1000 samples each for validation and testing. All results are
averaged over four random splittings.

Experiments have been made on an internal clusters of GPUs with memory from 10Go to 45Go. All
the experiments can be achieved with GPUs with a memory of 10Go, except for models with 32 or
64 layers which require at least a memory of 24Go.
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D ADDITIONAL RESULTS

D.1 COMPARISON OF PREDICTIONS

In this section, we visually inspect to what extent the prediction made by FNO and BFNO is close to
the ground truth. We provide two examples on two different datasets: 1D Burgers (ground truth in
dashed black) and 2D Darcy (ground truth “Output u").
As discussed in the subsequent analysis (see Appendix D.3), BFNO better learn the higher frequencies,
as shown by the sharper edges closer to the ground truth.

FIX

Input a ûmFNO ûmBFNO

(a) 1D Burgers

Input a Output u ûmFNO ûmBFNO

(b) 2D Darcy

Figure 6: Visual Comparison of Prediction.

D.2 EXTENSION TO WNOS AND ANALYSIS UP TO 64 LAYERS

In the following section, we provide additional results comparing models with 32 and 64 layers.

At this point, exploding gradients can be a common issue. To avoid it, we applied gradient clipping
for all 32 and 64-layer models. As seen in Table 3, we observe a decrease in performance of
standard FNOs, confirming our observations with 8 and 16 layers. However, our models show some
improvement when increasing further the number of layers.

We also extended our experiments to Wavelet Neural Operators (WNO). In Table 4 is reported the
comparison between standard WNO and the Bregman version BWNO. We can observe similar
results as Fourier models, where our models outperform the standard models and are able to gain
performance when increasing the number of layers. Furthermore, even with gradient clipping, 32
and 64-layer standard models could not converge during training, leading to 100% relative error rate.
Further analysis shows that this divergence can be linked with the high error rates on low frequencies
and boundary conditions.

Table 3: Relative error of FNO and BFNO models on benchmark PDEs.

1D Burgers 1D NS 2D Darcy
FNO BFNO FNO BFNO FNO BFNO

4 layers 5.5± 0.1% 5.4 ± 0.1% 58.2± 0.6% 57.0 ± 0.6% 34.6± 0.0% 33.4 ± 0.2%
8 layers 5.4± 0.1% 4.1 ± 0.2% 58.2± 0.6% 56.8 ± 0.8% 32.8± 0.2% 31.5 ± 0.4%
16 layers 6.5± 0.1% 3.5 ± 0.2% 59.7± 0.6% 56.5 ± 0.6% 32.9± 0.2% 30.0 ± 0.5%
32 layers 10.2± 0.8% 3.5 ± 0.2% 71.5± 0.6% 55.7 ± 0.5% 35.6± 0.4% 29.6 ± 0.4%
64 layers 11.1± 0.7% 3.4 ± 0.2% 74.7± 1.2% 56.0 ± 0.6% 36.9± 1.0% 29.0 ± 0.2%

Table 4: Relative error of WNO and BWNO models on benchmark PDEs.

1D Advection 1D Burgers 1D NS
WNO BWNO WNO BWNO WNO BWNO

4 layers 3.0± 0.0% 2.8 ± 0.2% 21.5± 0.5% 21.3 ± 0.4% 59.2± 0.6% 58.3 ± 0.6%
8 layers 2.5± 0.1% 2.1 ± 0.1% 19.1± 0.6% 17.9 ± 0.6% 59.0± 0.6% 58.0 ± 0.6%
16 layers 3.9± 0.8% 2.0 ± 0.2% 19.7± 0.5% 16.4 ± 0.3% 61.1± 0.6% 57.6 ± 0.7%
32 layers 100± 0% 1.9 ± 0.1% 100± 0% 16.4 ± 0.5% 100± 0% 57.2 ± 0.6%
64 layers 100± 0% 1.8 ± 0.2% 100± 0% 16.1 ± 0.4% 100± 0% 57.5 ± 0.6%
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D.3 DETAILED ANALYSIS OF THE PREDICTION PERFORMANCE

In the same spirit of Takamoto et al. (2022), we include several metrics providing a deeper under-
standing of the models’ behavior, including relative mean squared error on the boundary (rMSE) as
well as in the low, mid, and high frequency bands (fRMSE low, fRMSE mid, fRMSE high). Results
are provided in Table 5.

FIX
Table 5: Additional comparison of the performance in terms of relative ℓ2 error (rL2), relative mean
squared error on the boundary (rMSE) as well as in the low, mid and high frequency bands (fRMSE
low, fRMSE mid, fRMSE high). Note that here 2D NS corresponds to ν=10−3.

T = 4 T = 8 T = 16

PDE Metric BFNO FNO BFNO FNO BFNO FNO

1D
ad

ve
ct

io
n rL2 1.03 · 10−2 6.82 · 10−3 6.43 · 10−3 1.36 · 10−2 6.43 · 10−3 1.81 · 10−2

bRMSE 1.14 · 10−1 1.62 · 100 1.16 · 10−1 3.87 · 100 1.12 · 10−1 1.58 · 101

fRMSE low 7.10 · 10−6 7.37 · 10−5 7.59 · 10−6 2.33 · 10−4 7.62 · 10−6 1.36 · 10−3

fRMSE mid 5.41 · 10−6 1.77 · 10−5 5.07 · 10−6 3.78 · 10−5 4.65 · 10−6 1.08 · 10−4

fRMSE high 4.20 · 10−7 2.03 · 10−6 3.60 · 10−7 3.20 · 10−6 3.60 · 10−7 5.18 · 10−6

1D
B

ur
ge

rs

rL2 5.37 · 10−2 5.48 · 10−2 4.14 · 10−2 5.42 · 10−2 3.51 · 10−2 6.45 · 10−2

bRMSE 4.31 · 10−1 4.38 · 10−1 2.97 · 10−1 3.80 · 10−1 2.39 · 10−1 4.79 · 10−1

fRMSE low 5.67 · 10−5 5.70 · 10−5 3.63 · 10−5 5.08 · 10−5 3.08 · 10−5 5.31 · 10−5

fRMSE mid 3.49 · 10−5 3.44 · 10−5 2.70 · 10−5 3.58 · 10−5 2.38 · 10−5 3.79 · 10−5

fRMSE high 1.17 · 10−6 1.20 · 10−6 1.07 · 10−6 1.24 · 10−6 9.80 · 10−7 1.23 · 10−6

2D
N

S

rL2 4.27 · 10−2 4.61 · 10−2 4.01 · 10−2 4.14 · 10−2 3.98 · 10−2 3.90 · 10−2

bRMSE 3.87 · 10−2 4.16 · 10−2 3.63 · 10−2 3.76 · 10−2 3.61 · 10−2 3.54 · 10−2

fRMSE low 4.05 · 10−4 4.33 · 10−4 3.72 · 10−4 3.82 · 10−4 3.80 · 10−4 3.63 · 10−4

fRMSE mid 9.59 · 10−5 9.03 · 10−5 6.53 · 10−5 7.73 · 10−5 6.22 · 10−5 6.15 · 10−5

fRMSE high 9.85 · 10−6 6.95 · 10−6 5.95 · 10−6 5.98 · 10−6 5.40 · 10−6 9.18 · 10−6

D.4 COMPARISON WITH OTHER FNO BASELINES

In this section, we provide comparisons with other FNO improvements on the 2D Navier-Stokes
dataset with ν=10−4. In particular, we consider F-FNO (Tran et al., 2023) which is a particularly
relevant baseline for comparison, as it i) incorporates skip-like connections that share similarities with
our additional σ−1 term and ii) also seeks to enable the development of deeper FNO architectures.

We consider the best-performing F-FNO model (as identified by its authors), trained using our
optimization strategy and adapted to our specific learning task. It is important to note that F-FNO
was originally designed for predicting mappings between multiple consecutive time steps (e.g., from
t to t+ 1) and it offers the option to rely on techniques such as the Markov assumption and teacher
forcing. Since our task involves predicting the final state directly from the initial conditions, those
techniques are not appropriate, and thus we did not include them in the implementation. Additionally,
beyond the optimization strategy proposed by the F-FNO authors (AdamW with cosine annealing,
noise injection and input normalization), we also employed the optimization strategy detailed in
Appendix C.6. In the following, we name them F-FNObase and F-FNO, respectively.
Results reported in Table 6 show that the original training procedure of the F-FNO does not transfer
well to our learning task, as evidenced by the poor performance of F-FNObase across all layers, com-
pared to the other models. On the contrary, with our training strategy and adapted hyperparameters,
F-FNO shows strong performance, especially with few layers.

Moreover, to isolate the impact of residual connections from the broader structural modifications
introduced by F-FNO, we have also implemented and compared a ResNet-inspired variant of FNO,
referred to as ResFNO. We did this to better understand the role of the residual connection.
As shown in Table 6, ResFNO consistently achieves lower training error than FNO, which aligns
with the behavior typically observed in ResNet-like architectures. However, it falls short in terms of
generalization to unseen data, as reflected in the test error.
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In conclusion, BFNO demonstrates superior scalability than its competitors (see for 16 layers),
evidencing that the additional σ−1 term, inherent to our Bregman model, better facilitates the training
and generalization of deeper architectures.

NEW
Table 6: Comparison of train and test relative ℓ2 error across different architectures and number of
layers.

Metric Model 4 layers 8 layers 16 layers

Test ℓ2 (%)

FNO 13.5± 0.1 13.0± 0.2 12.6± 0.1
ResFNO 13.5± 0.1 12.8± 0.1 13.0± 0.1

F-FNObase 15.4± 0.3 14.9± 0.4 15.1± 0.2
F-FNO 13.0± 0.1 12.4± 0.1 12.7± 0.2
BFNO 13.7± 0.1 12.6± 0.1 12.2± 0.1

Train ℓ2 (%)

FNO 4.6± 0.2 3.6± 0.1 4.0± 0.1
ResFNO 3.7± 0.2 2.9± 0.1 2.8± 0.1

F-FNObase 10.4± 0.3 8.7± 0.3 7.3± 0.1
F-FNO 4.1± 0.0 3.3± 0.5 4.0± 0.4
BFNO 4.4± 0.3 3.7± 0.3 3.4± 0.2

D.5 IMPACT OF THE ACTIVATION FUNCTION

A limitation of our framework is the fact that it requires Bregman variants (such as BFNO) to have a
strictly monotonic activation function, which excludes a few functions such as ReLU. This justifies
why in our experiments we used Softplus as a surrogate of ReLU. On the contrary, for classical neural
operators within our framework, the activation function only needs to be monotonic, not strictly
monotonic. Therefore, ReLU is still valid and can be used.
As a thought experiment, we also implemented BFNO with ReLU and evaluated it on the 2D Navier-
Stokes dataset (ν=10−4). Table 7 shows that BFNO with ReLU achieves comparable or better
performance than Softplus for the same number of layers. However, the best results are the same (i.e.,
12.2% for 16 layers).

NEW
Table 7: Comparison BFNO with Softplus or ReLU.

Architecture 4 layers 8 layers 16 layers
FNO (ReLU) 13.5 ± 0.1 13.0 ± 0.1 12.6 ± 0.1
BFNO (Softplus) 13.7 ± 0.1 12.6 ± 0.1 12.2 ± 0.1
BFNO (ReLU) 13.4 ± 0.2 12.2 ± 0.2 12.2 ± 0.1

D.6 IMPACT OF BATCH NORMALIZATION

For all the experiments presented in the previous sections, we relied on the latest available version
of the FNO implementation, which does not include Batch Normalization (BN), while it was used
in the original FNO paper Li et al. (2021a). We note that the original FNO code was removed from
the GitHub repository by its author (i.e., the ’master’ branch was deleted). While we retrieved an
earlier version of the code, we observed that BN was implemented in the initial commit but was
subsequently removed in a later commit titled "remove unnecessary batchnorm", suggesting that
adding BN layers does not lead to better prediction performance.
To complement our results, we have conducted an experiment with BN for both FNO and BFNO
architectures on the 2D Navier-Stokes dataset (ν=10−4). Results, reported in Table 8, show marginal
improvements for 8-layer models (FNO: 13.0% → 12.8%, BFNO: 12.6% → 12.4%) but no consistent
benefits for other configurations. This aligns with the conclusion of the recent FNO implementations
that removed BN.

NEW
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Table 8: Impact of BatchNormalization (BN) with FNO and BFNO

Architecture 4 layers 8 layers 16 layers
FNO 13.5 ± 0.1 13.0 ± 0.1 12.6 ± 0.1
FNO + BN 13.5 ± 0.1 12.8 ± 0.2 12.6 ± 0.1
BFNO 13.7 ± 0.1 12.6 ± 0.1 12.2 ± 0.1
BFNO + BN 13.5 ± 0.1 12.4 ± 0.0 12.3 ± 0.1

D.7 WEIGHT DISTRIBUTION

We now present an analysis of the probability density function (PDF) of the weights for FNO and
BFNO, trained on the Burgers dataset. The results, shown in Figure 7, reveal distinct behaviors
between the two models. While the FNO PDF follows a Gaussian distribution, the BFNO PDF is
more sharply peaked around 0, resembling a Laplacian distribution.
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Figure 7: Illustration of the weights probability density function for FNO and BFNO models.
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