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Abstract
Graph neural networks (GNNs) have emerged
as a powerful paradigm to learn from relational
data mostly through applying the message passing
mechanism. However, this approach may exhibit
suboptimal performance when applied to graphs
possessing various structural issues. In this work,
we focus on understanding and alleviating the
effect of graph structural noise on GNN perfor-
mance. To evaluate the graph structural noise in
real data, we propose edge signal-to-noise ratio
(ESNR), a novel metric evaluating overall edge
noise level with respect to data features or la-
bels based on random matrix theory. We have
found striking concordance between the proposed
ESNR metric and the GNN performance in vari-
ous simulated and real data. To reduce the effect
of the noise, we propose GPS (Graph Propen-
sity Score) graph rewiring, which estimates the
edge likelihood for rewiring data graphs based
on self-supervised link prediction. We provide
a theoretical guarantee for GPS graph rewiring
and demonstrate its efficacy by comprehensive
benchmarks.

1. Introduction
Graph neural networks (GNNs) represent a framework to
learn from relational data by message passing on the pro-
vided data graph (Scarselli et al., 2008; Kipf and Welling,
2016a;b; Gilmer et al., 2017; Hamilton et al., 2017). Despite
the prevalence of the message passing mechanism in GNNs,
recent works pointed out several limitations of message
passing neural networks, including limited power (Xu et al.,
2018; Morris et al., 2019; Maron et al., 2019), oversmooth-
ing (Nt and Maehara, 2019; Oono and Suzuki, 2019), and
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oversquashing (Alon and Yahav, 2020; Topping et al., 2021).
Moreover, GNNs may even be outperformed by traditional
NNs when the graphs exhibit significant heterophily (Zhu
et al., 2021; Yan et al., 2021).

There are two general strategies towards overcoming the lim-
itations of traditional GNNs. One is by designing more dedi-
cated GNN architectures, such as H2GCN (Zhu et al., 2020)
and CPGNN (Zhu et al., 2021) for heterophily, GIN (Xu
et al., 2018) for GNN expressive power, and +FA (Alon and
Yahav, 2020) for oversquashing respectively. In this work,
our focus is on the other strategy named graph rewiring,
which aim to modify the original data graph such that the
new graph has better properties (Bi et al., 2022; Klicpera
et al., 2019; Topping et al., 2021).

Despite existing works targeting various graph properties for
improving GNN performance, the effect of graph structural
noise on GNN training is not yet systematically character-
ized. This is partly due to the lack of structural noise metrics
for the structural noise in real graph-structured data. Further-
more, existing graph denoising methods are based on either
only the graph structure (such as DIGL (Klicpera et al.,
2019)) or joint optimization resulting in task-dependent
rewired graphs (Jin et al., 2020; Yu et al., 2021; Franceschi
et al., 2019; Zheng et al., 2020; Luo et al., 2021; Arnaiz-
Rodríguez et al., 2022; Dai et al., 2022). The potential of a
expressive feature-aware graph rewiring method that learns
a task-independent denoised graph remains to be explored.

Our contributions. In this work, we aim to both understand
and minimize the effect of structural noise level in GNN
training. Our key contributions in the work are two-folds:

• We propose a novel metric, edge signal-to-noise ratio
(ESNR), to estimate the overall graph structural noise
level with respect to either node features or node labels.
We validate the metric in various synthetic and real
data and show it has strikingly high consistency with
GNN learning performance.

• We propose a graph rewiring framework named graph
propensity score (GPS) that denoises graphs in a
feature-aware manner based on self-supervised train-
ing. We provide both theoretical guarantee and exten-
sive benchmarking showing the efficacy of the GPS
framework combining with the ESNR metric.
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2. Related works
Structural noise on GNN training. Numerous studies
have investigated the effects of structural noise on GNN
training, with most falling under the category of "robust
GNNs". Several of these methods propose to rewire graphs
through joint optimization of graph structures and network
parameters with different perspectives, such as imposing no
structural constraints (Yu et al., 2021), maximizing graph
regularity and feature smoothness (Jin et al., 2020), formu-
lating a bilevel program (Franceschi et al., 2019), enforcing
graph sparsification (Zheng et al., 2020; Luo et al., 2021),
and leveraging the lovasz bound (Arnaiz-Rodríguez et al.,
2022). Another recent work (Dai et al., 2022) considers
the setting with both graph structural noise and sparse la-
bel, proposing a MLP-based link predictor for constructing
a denoised densified graph. (Zhang and Pei, 2021) gives
a systematic comparison of different approaches for best
robustness on noisy data based on simulated noise. Apart
from structural noise’s impact on GNN training, its impact
on GNN interpretabilty is discussed in (Li et al., 2022).

Graph rewiring. Graph rewiring aims to decouple the
computational graph from the input graph thus improving
GNN’s ability in task-specific learning. The graph rewiring
framework differs from the aforementioned robust GNN
approaches as they aim to improve GNN performance by
learning the graph structure prior to the task. Various strate-
gies have been proposed for graph rewiring with different
theoretical or practical considerations. GraphSAGE (Hamil-
ton et al., 2017) considers random sampling links from
the graph to control the maximum link number for each
node, thus increasing the efficiency of GNN training. DIGL
(Klicpera et al., 2019) proposes the use of personalized
Pagerank (PPR) (Haveliwala et al., 2003) and heat kernels
on input graphs to locally smooth the graph structure. In
order to resolve the over-squashing issue, SDRF (Topping
et al., 2021) proposes the concept of balanced graph cur-
vature and optimizes the graph structure to eliminate links
with highly negative curvature. DHGR (Bi et al., 2022) aims
to improve the data homophily by maximizing the graph’s
concordance with neighbor distributions of data features
and labels, potentially causing label leakage. Another set of
works (Wang et al., 2019; Fatemi et al., 2021; Kazi et al.,
2022) considered cases where the graph structures are latent
and need to be inferred from data.

3. Edge signal to noise ratio (ESNR)
3.1. Problem statement

Our first focus in this work is to develop an estimation
framework in order to quantify edge noise level for graph-
structured data (X,G), where X ∈ Rn×p denotes the data
feature attributes and G = (V,E) denotes the data graph.

For convenience, we define A ∈ {0, 1}n×n as the graph
adjacency matrix, which is used more often throughout the
text. We start by discussing the considerations in defining
our metric for edge noise level. Ideally, such a metric should
satisfy the following properties:

Statistical characterization of the graph. The probabilis-
tic model of the graph needs to be defined in order to derive
the expression of edge noise in a rigorous manner. The
model should be flexible enough to model real-world graphs
while giving tractable estimators.

Feature / label awareness. Due to the existing data feature
attributes, the edge noise label should not be solely deter-
mined by the graph edge indices. For instance, a graph’s
high-rank behavior may align with its feature attributes, and
therefore, should not be misconstrued as noise.

We address the first desired property by adopting a Bayesian
viewpoint of the graph generation. Specifically, in the di-
rected graph case, we consider the adjacency matrix {Aij}
as i.i.d. sampled from a latent probability matrix {Pij}:

∀ij, P (Aij = 1) = Pij , P (Aij = 0) = 1− Pij . (1)

In the undirected graph case, the adjacency matrix can be
similarly defined as follows, where Aji ≡ Aij :

∀i > j, P (Aij = 1) = Pij , P (Aij = 0) = 1− Pij (2)

By the definition, the adjacency matrix can be decomposed
as the sum of the ground truth probability matrix term and a
noise term with zero expectation E(P ): A = P + E(P ).

For addressing the second property, we define the row aggre-
gated adjacency matrix C with respect to a node partition
defined by a one-hot matrix L ∈ Rm×n. L can be defined
by data label, clustering of data feature attributes, or other
partitions of interest. The matrix C can also be decom-
posed as C ≡ LA = LP + LE(P ) ≡ Cp + Cϵ, where
Cp represent the underlying ground truth signals and Cϵ

represent the contributions of noise. Our proposed task is to
construct meaningful edge noise level indicators from data
by estimating the signal strength Cp with respect to Cϵ.

Interpreting the matrix C. We note even before decompos-
ing the signal and noise terms, C provide meaningful sum-
maries of the graph. For instance, when using the one-hot
embedding of data labels as L, the edge homophily metric
(Pei et al., 2020) can be directly calculated as follows:

Edge homophily =
tr(Ĉ)∑
i,j Ĉij

, where Ĉ ≡ CLT . (3)

Moreover, when L is constructed by data feature clustering
labels, equation 3 can represent "unsupervised homophily"
as an analogy of the original edge homophily.
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The matrix C itself provides a summary of edge statistics
at the single node level as each column of C represents the
label neighborhood distribution of the node. The label neigh-
borhood distribution has direct connections to GNN learning
as discussed in (Ma et al., 2021). Notably, if we consider
the singular value decomposition of C =

∑
i σiuiv

T
i , then

each ui ∈ Rm represents an orthogonal label neighborhood
pattern with strength σi, invoking the need of understanding
the spectral distribution for Cp and Cϵ to distinguish true
signal patterns from noise.

Graph adjacency matrix A Row aggregated matrix C

Biwhitening

Covariance eigenvalues

Figure 1: Illustration of the ESNR computation workflow.
We first aggregate rows of the original graph adjacency
matrix based on a predetermined label and perform the
biwhitening transformation. The resulting matrix’s bulk
singular value spectrum follows the Marchenko-Pastur dis-
tribution (Cϵ), while "outliers" denote meaningful signals
(Cp). The ESNR is defined as the average element-wise
spectrum strength of Cp relative to the MP upper-edge.

3.2. Spectrum separation via biwhitening

Intuitively, the spectral distribution of the matrix Cϵ may
be derived from either classical statistical theory or random
matrix theory assuming each entry of Cϵ is i.i.d. distributed.
However, in our case, the distribution for each entry of Cϵ

is determined by different blocks of P thus not identically
distributed, leading to heteroskedastic noise. A number
of methods have been proposed to identify the number of
matrix signals (ranks) or other spectrum statistics in the
heteroskedastic noise setting (Bigot et al., 2017; Hong et al.,
2020; Landa et al., 2022). In this work, we choose the
biwhitening approach (Landa et al., 2022) as it requires little
prior information except for the distribution form, which we
do have for the graph as assumed by equation (1) and (2).

While it has been noted that the original biwhitening ap-
proach cannot apply to Bernoulli heteroskedastic noise in
the original work (Landa et al., 2022), such an issue is
avoided in our approach as we consider the matrix C in-
stead of the original adjacency matrix. In fact, when the
graph size is large and each Pij is "uniformly" small, Cϵ

ij

can be approximated by independent or weakly dependent
Poisson r.v.s, as stated by the following proposition:

Proposition 3.1. Assuming equation (1) or (2), and
limn→∞

∑
j P

2
ij = 0 for any i. Then for any column one-

hot matrix L ∈ Rm×n such that ∀i, j, Cp
ij > 0, we have

∀i, j, Cij
d−→ Poisson(Cp

ij). (4)

Furthermore, in the case of eq (1) (directed graph), each
entry Cij is independently sampled. In the case of eq (2)
(undirected graph), Cijs are asymptotically uncorrelated.

The proof of Proposition 3.1 is provided in Appendix A.1.
We note that although the original theoretical guarantee for
biwhitening approach is established for matrix with inde-
pendent entries (corresponding to the directed graph case),
the dependence across entries is also weak in the undirected
graph case. Therefore we anticipate the performance of
biwhitening will remain unharmed for undirected graphs, as
also illustrated in the next section.

The scheme of applying Sinkhorn-Knopp (Sinkhorn, 1964;
Cuturi, 2013) based biwhitening method for the aggregated
adjacency matrix C is summarized in Algorithm 1.

Algorithm 1 Biwhitening for matrix C ∈ Rm×n.

1: Initialize: x = 1m,y = 1n, tolerance δ > 0.
2: while max |x⊙ (Cy)− n · 1m| > δ or

max |y ⊙ (CTx)−m · 1n| > δ do
3: y ← m ·1n⊙ (1/Cx) {1/x: element-wise division}
4: x← n · 1m ⊙ (1/Cy)
5: end while
6: Return C ′ = diag(

√
x)Cdiag(

√
y).

After applying biwhitening for matrix C in the directed case,
under additional assumptions specifying the upper and lower
bounds for entries of C, we show that (Appendix B) in the
random matrix theory (RMT) regime where limn→∞

m
n →

β ∈ (0, 1), the empirical covariance eigenvalue distribution
of the noise component Cϵ in the biwhitened matrix C ′

converges to the Marchenko-Pastur distribution:

µ(x) =
1

2πβx

√
(β+ − x)(x− β−),

where β ≡ m

n
∈ (0, 1), β± = (1±

√
β)2.

(5)

Our proof (Appendix B) extends the original theory de-
veloped for biwhitening (Landa et al., 2022) to Poisson
binomial distributions, taking advantage of its asymptotic
equivalence with Poisson distributions (Proposition 3.1).

In order to separate the noise and signal terms for matrix C ′,
we consider the singular value decomposition of C ′:

C ′ ≡ Udiag(Σ)V

= U [diag(Σ− α)+ + (Σ− (Σ− α)+)]V.
(6)

Here the first term (Σ− α)+ is obtained by truncating the
total singular values with the threshold α that filters out the
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Figure 2: Comparisons of empirical covariance eigenvalue distributions of the original matrix (SVD) and the biwhitened
matrix (ESNR) against MP distribution in high edge noise (edge ratio = 1.5) and low edge noise (edge ratio = 2) settings.

null distribution. A natural choice of α is the right boundary
of the MP distribution: α =

√
nβ+ =

√
m+

√
n.

Our derivation primarily focuses on the RMT regime where
we have limn→∞

m
n → β ∈ (0, 1). However, another

"classical statistics" regime exists where limn→∞
m
n = 0.

While we cannot distinguish the two regimes from finite
sized data, we note here that the MP distribution converges
to the point mass at 1 in distribution when β → 0, in which
case the upper boundary β+ also tends to 1. As a result, the
MP threshold α =

√
nβ+ =

√
m +

√
n can cover both

regimes and serve as an effective measure.

Finally, we define the edge signal to noise ratio (ESNR) by
the average normalized value of matrix C ′’s spectrum. Dif-
ferent from the original definition of SNR, here we consider
the ratio of the signal relative to the sum of signal and noise,
rescaling the metric to the interval [0, 1]. The workflow of
ESNR computation is summarized in Figure 1.
Definition 3.2. (ESNR) Denote the singular values of C ′

after substracting its mean value as {Σi}i∈{1,...,m}, then

ESNR :=
1

m

m∑
i=1

max(Σi − (
√
m+

√
n), 0)

Σi
(7)

3.3. Validation of ESNR

Here we first evaluate the proposed ESNR framework in the
contextual stochastic block model, which is an extension of
stochastic block model (SBM) and widely used in theoreti-
cal analysis for graph neural networks (Keriven et al., 2020;
2021; Ruiz et al., 2020; Wei et al., 2022):
Definition 3.3. (Contextual stochastic block model,
CSBM): Suppose G(V,E) is a graph with n nodes and
k communities. Z ∈ Rn×k is a one-hot matrix encoding
each node’s membership. Each node’s feature attribute
Xi is independently sampled from PZi

. The expectation
µh for each Ph∈{1,2,...,k} exists and is different for each h.
Suppose C ∈ Rk×k is a symmetric matrix, with entry Cab

defining the probability of community a connecting with
community b. Then the probabilistic edge matrix is defined
by P = ZCZT , with each edge of the graph Aij sampled
with probability Pij .

When C = (p − q)I + q11T , and all communities are
of equal sizes, we name the model as simplified CSBM.
Note here p and q represent within-community and across-
community edge probability respectively. In this case, the
edge signal level should be qualitatively indicated by the
probability gap |p− q|, meaning it can be both high in the
p ≫ q regime (strong homophily) and the q ≫ p regime
(strong heterophily), as in both cases the feature embed-
dings after message passing are separable. The intuition is
rigorously stated as follows (Proposition 3.4, with a proof
in Appendix A.2) by defining edge signal level as mutual
information between edges and ground truth probabilities:

Proposition 3.4. (Mean edge mutual information of the
original graph in simplified CSBM): Assume the data is
generated according to definition 3.3. Then we have

1

n2

∑
ij

I(Aij , Pij) = h(
p+ (k − 1)q

k
)−1

k
h(p)−k − 1

k
h(q).

Here h denotes the entropy function:

h(x) = x log 1
x + (1− x) log 1

1−x , x ∈ (0, 1).

By Jensen inequality, when the probability sum p+(k−1)q
k is

fixed, the larger the gap |p− q|, the higher the edge signal
level. To see this property is also captured by the ESNR
metric, we consider the asymptotic setting (n → ∞), in
which case under several technical assumptions (Theorem
B.4 in Appendix B), due to the scaling factor convergence,
a straightforward calculation reveals that the signal compo-
nent Cp of the processed matrix C ′ satisfies:

σi(C
p) =

{
n|p−q|√

(p+(k−1)q)k
(i ≤ k − 1),

0 (i = k).
(8)

Meanwhile, the covariance spectrum of the noise component
Cϵ converges to the MP distribution determined only by the
ratio β = k/n (Theorem B.2 in Appendix B). Therefore,
the singular value Σi of C ′ is determined by eq (8) up to
a constant fluctuation, meaning the ESNR (Definition 3.2),
an increasing function of Σi, is also an increasing function
of |p − q| when k, n and p+(k−1)q

k are fixed. Also, eq (8)
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Figure 3: Comparisons of edge homophily, edge relative rank, and ESNR with 1 & 2 layer GCN performance in simulated
CSBM data of different node number / average degree settings as functions of the edge ratio (p/q).

reveals that increasing p in the homophily scheme is more
effective than increasing q in the heterophily scheme for
improving ESNR, consistent with observed positive correla-
tions between GNN performance and data homophily level
(Zhu et al., 2021; 2020; Lim et al., 2021).

Before validating the relevance between ESNR and GNN
performance, we aim to show qualitatively how the aggre-
gated matrix of simulated CSBM is characterized by MP
law before / after biwhitening for high (edge ratio = 1.5)
and low structural noise (edge ratio = 2) respectively. In
our simulation, the matrix L is defined from the hierarchical
clustering of data feature attributes. Further experimental
details can be seen in the Appendix D.1.

The simulation results are shown in Figure 2. For both
low and high structural noise, the eigenvalue distribution
of the original covariance matrix matches poorly with the
Marchenko-Pastur distribution (indicated by the orange
curve) due to the heteroskedastic noise. In contrast, after
biwhitening scaling, the bulk covariance eigenvalue distri-
butions show strong concordance with the MP distribution
in both cases. Moreover, we observe the signal number
(the number of eigenvalues that pass the right boundary of
the MP distribution) show dramatic differences in the two
settings (Figure 2), consistent with our theoretical analysis.

To further determine the validity of the proposed ESNR
metric as a proxy for GNN performance, we conducted a
comprehensive analysis of different metrics in simulated
undirected CSBM datasets across various settings of graph
sizes, average degrees, and edge ratios (Figure 3). Specifi-
cally, we compared our proposed ESNR metric against the
edge homophily metric, the edge relative rank (ERR) de-
fined by the ratio of the number of eigenvalues larger than
MP upper bound and the total label number (Figure 3), and
a vanilla entry-wise SNR metric (Appendix C). In this anal-
ysis, the matrix L is defined from the data label, with further
experimental details available in the Appendix D.2.

In this setting, our experiments indicate that our proposed
ESNR is the only measure that provides consistent trends
with the true GNN performance, as it not only reveals the
non-monotonic GCN performance along the edge ratio axis

but correctly reflects the higher performance similarity ob-
served in data with the same average degrees. Notably,
neither the non-motonotic trend nor the relative GCN per-
formance is reflected through the edge homophily metric
(Figure 3) or the vanilla SNR (Appendix Figure 9), while
the edge relative rank reveals only the non-motonotic pat-
tern but not relative GCN performance (Figure 3). Finally,
we observe that the ESNR is smaller in heterophily data
compared with homophily data of the same absolute log
edge ratio, consistent with the GNN training performance.
This observation may suggest previous observations about
the effect of homophily level on GNN performance may be
partly spurious due to the difference in edge noise level.

Finally, we evaluated if ESNR can correctly reveal the im-
pact of structural noise level on real data. These evaluations
can be conducted on two fronts: either based on a single
dataset or across multiple datasets. For the former evalua-
tion, we here consider the effect of random edge dropout,
which intuitively increases the edge noise level regardless
of ground truth. Mathematically, the random edge dropout
can be represented by a binary mask M ∈ Rn×n with each
entry Mij i.i.d sampled from a Bernoulli distribution with
parameter α. The parameter α indicates the preservation
ratio of edges in the original graph (1−α stands for the edge
dropout ratio). In this case, ESNR converges to a increasing
function of α, as after biwhitening, the signal component
Cp is proportional to α

1
2 , while the noise component spec-

trum is asymptotically independent of α by the MP law. In
the simplified CSBM case, this scaling relationship can also
be directly verified from eq (8).

We performed random edge dropout on the commonly used
Planetoid datasets (Cora, Citeseer, and Pubmed). Our results
in Figure 4 reveal a clear trend of continuous decreasing
ESNR as the edge dropout ratio increases across all three
datasets, consistent with the observed 1 / 2 layer GNN per-
formance. Notably, the trend is neither revealed by edge
homophily metric (constant across edge dropout ratio) nor
ERR (does not show continuous dropping performance).
Moreover, ESNR is even able to reproduce the higher sensi-
tivity of edge dropout ratio to GNN performance in the Cora
dataset compared to Citeseer and Pubmed datasets, which
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Figure 4: Comparisons of edge homophily, edge relative rank, and ESNR with 1 & 2 layer GCN performance in Planeoid
datasets as functions of the edge dropout ratio (1− α).

Figure 5: Comparisons of edge homophily and ESNR in
terms of indicating GCN / MLP accuracy difference.

Table 1: Comparisons of homophily-based metrics and
ESNR in terms of correlation with GCN / SOTA GNN
minus MLP performance. EH: Edge homophily; NH: Node
homophily; AH: Aggregated homophily.

Pearson
r

Pearson
p-value

Spearman
r

Spearman
p-value

EH vs GCN 0.58 0.02 0.57 0.02
NH vs GCN 0.53 0.03 0.39 0.13
AH vs GCN -0.06 0.83 -0.07 0.80
ESNR vs GCN 0.85 0.00004 0.86 0.00002

EH vs GNN 0.46 0.08 0.53 0.03
NH vs GNN 0.42 0.11 0.36 0.17
AH vs GNN -0.28 0.30 -0.11 0.68
ESNR vs GNN 0.81 0.0001 0.84 0.00005

is not revealed by the other metrics (Figure 4).

For the evaluation across datasets, comparing GNN perfor-
mance alone may be unfair due to feature quality differ-
ence across datasets. Therefore, we referred to previous
benchmarking results of node classification accuracy differ-
ence between GCNs / state-of-the-art GNNs and multilayer
perceptrons (MLPs, which does not use the graph infor-
mation) in 14 datasets (Cora, Citeseer, Pubmed, Cornell,
Texas, Wisconsin, Chameleon, Squirrel, Actor, Comput-
ers, Photo, Amazon-ratings, WikiCS, Cora_Full) (Ma et al.,
2021; Shchur et al., 2018; Platonov et al., 2023; Dwivedi
et al., 2020). For Chameleon and Squirrel datasets, we in-
cluded both the raw datasets and the preprocessed datasets
suggested by (Platonov et al., 2023), yielding 16 data points.
For both GCN and SOTA-GNN, we observe that ESNR

exhibits strikingly high concordance with the accuracy dif-
ference with MLP across all datasets, compared with al-
ternative homophily-based metrics, including edge / node
homophily and aggregated homophily (Figure 5, Table 1)
(Pei et al., 2020; Luan et al., 2022). Further experimen-
tal details for both evaluations in real data can be seen in
Appendix D.3 and D.4 respectively.

In summary, our evaluations in both synthetic and real data
demonstrate the power of ESNR in interpreting GNN perfor-
mance both within and across datasets. The code of ESNR
is available at https://github.com/MingzeDong/ESNR.

4. Graph denoising via propensity score (GPS)
4.1. Graph propensity score

Next, we consider how to alleviate the negative effect of
the graph structural noise on GNN training. In this work,
we focus on a specific strategy - graph rewiring, which
aims to revise the structure of original graph prior to GNN
training for better performance, inspired from the concept
of propensity score in causal inference.

Propensity score is a well addressed concept in the field of
causal inference (Rosenbaum and Rubin, 1983; Imbens and
Rubin, 2015). It aims to model the dependency between the
treatment indicator (here we denote as z) and confounding
factors (here we denote as X):

Definition 4.1. (Propensity score) The propensity score is
defined as the probability of receiving a treatment z given
pre-treatment covariates X: e(X) ≡ P (z = 1|X).

In practice, the propensity score is obtained from data via
prediction models such as logistic regression. As an anal-
ogy for propensity score, we propose the concept of graph
propensity score, fitting the original definition into the GNN
self-supervised edge prediction framework:

Definition 4.2. (Graph propensity score, GPS) The graph
propensity score is defined as the conditional probability of
a link Aij given a feature embedding X and an arbitrary
non-overlapping link set AS\(i,j):

eSij(X,AS\(i,j)) ≡ P (Aij = 1|X,AS\(i,j)) (9)
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We note our defined graph propensity score can be estimated
from data similar to the original propensity score. For in-
stance, we may randomly separate the edge into S1 and S2,
using edges in S1 as message passing edges to predict edges
in S2 and vice versa.

Intuitively, an ideal GNN model obtained by self-supervised
training is able to assign higher uncertainty level (small eij)
to edges with high noise, and assign low uncertainty level
(large eij) to edges with low noise. Globally, the number of
selected edges should exhibit a negative correlation with the
dataset’s noise level, thereby resulting in a positive correla-
tion with the ESNR. A visual illustration of the GPS graph
rewiring framework is shown in Figure 6.

Original data

GPS encoder

Data embedding

GPS decoder

Sufficient training

GPS rewired graph

Class 0
Class 1
Message passing edge
Training edge

Figure 6: Illustration of the graph propensity score (GPS)
graph rewiring framework. We separate the edge sets in
the original data into training edges and message passing
edges. We formulate a link prediction task based on the
edge partition and use the trained model to generate weights
for each node pair to impute edges.

4.2. Theoretical analysis of GPS in contextual stochastic
block model

Here we provide preliminary theoretical analysis of Graph
Convolution Network (GCN (Kipf and Welling, 2016a))
trained GPS in the simplified CSBM (Definition 3.3) in an
asymptotic setting (n→∞, k fixed). We assume the data
generated from the described CSBM is trained on a graph
autoencoder with 1-layer GCN mean aggregation encoder
and a continuous decoder. The edge set Amessage used for
message passing and Atrain for training are i.i.d. sampled
from the separate edge sets in graph G. Further we use
the cross entropy between the training edge set and the
predicted values as the loss function used in training. Then
we give the following theoretical guarantee of the rewired
graph constructed from GPS, with the edges defined by

êij = Decoderij(Encoder(X,Amessage)). (10)

Theorem 4.3. (Mean edge mutual information of GPS
rewired graph in simplified CSBM): Suppose the graph
propensity score êij is generated as equation (10). Then as
n→∞, with probability 1 we have ∀i, j, êij = Pij , and

∑
ij

I(êij , Pij)

n2
= h(

p+ (k − 1)q

k
) >

∑
ij

I(Aij , Pij)

n2
.

The proof for theorem 4.3 can be seen at Appendix A.3.

Implications of our theory. By our theoretical analysis, we
show that by minimizing the cross entropy, the graph neural
network automatically estimates the probability parameters
of simplified CSBM data based on both feature information
and the message passing edge information. Moreover, in this
setting, as each node has the same edge degree distribution
and the feature attributes are noisy, the perfect estimation
stated by theorem 4.3 cannot be achieved with either the
feature information or the graph information alone. This
result suggests the optimality of the GPS approach among
self-supervised training schemes in this setting.

Is the probabilistic graph itself sufficient? However, even
if we reveal the correct underlying probabilistic graph, it
may still be a challenge for a GNN to learn from "ill-posed"
graph-structured data due to other factors such as over-
squashing (Alon and Yahav, 2020; Topping et al., 2021).
In this work, our main contribution is towards overcoming
the structural noise in the graph. The potential combination
of the GPS approach with other graph rewiring methods
remains a future direction to explore.

GPS vs DIGL. Finally, we note that DIGL (Klicpera et al.,
2019) is also proposed as a graph rewiring approach for
denoising through graph diffusion. However, DIGL is not
feature-aware, and may fail for highly heterophilic datasets,
where diffusion on the graphs blurs their structures signifi-
cantly, as also discussed by (Topping et al., 2021). In con-
trast, GPS can work with both homophilic and heterophilic
data, making it highly favorable in heterophilic data where
alternative methods may fail. Additionally, combining GPS
and DIGL by formulating a self-supervised graph distance
prediction task may result in improved performance in ho-
mophilic data, which we propose as a potential future work.

4.3. From propensity score to graph rewiring

We may need additional transformation to turn graph propen-
sity score (GPS) matrix into link indices usable for GNN
training. Here we discuss several practical considerations.

Sparsification. As the output of link prediction task is a
dense probability matrix E, we need to sparsify the matrix
prior to graph neural network training. Different sparsity
threshold selection can lead to dramatically different graphs.
In this work, we use the k-NN thresholding scheme, pre-
serving top k entries for each row of E to enforce uniform
node connectivity. We note that other thresholding schemes
can also be potentially used. For instance, we may select
the optimal threshold for each row such that the expectation
total number of links in the new graph is preserved.

Scalable GPS. GPS graph rewiring scheme formulates a
self-supervised link prediction task. In practice, full com-
putation of the edge likelihood requires high computational
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Table 2: Node classification accuracy for different graph rewiring methods (Upper panel); ESNR of the original graphs and
the GPS rewired graphs (Lower panel). ∗: Additional preprocessing according to (Platonov et al., 2023) was performed.

Methods Cornell Texas Wisconsin Chameleon∗ Squirrel∗ Actor Cora Citeseer Pubmed

Baseline 43.5±3.1 66.2±3.5 52.9±3.0 39.4±1.0 42.0±0.4 28.9±0.6 81.7±0.4 71.8±0.4 78.9±0.4
k-NN 68.6±1.8 74.1±2.8 74.1±0.8 48.4±1.3 38.3±0.9 33.4±0.9 48.0±0.6 64.0±0.3 76.5±0.4
DIGL 38.9±3.0 62.7±5.0 52.9±0.0 38.0±1.7 40.4±0.8 26.9±0.4 78.0±0.3 70.6±1.0 77.2±0.2
SDRF 43.8±5.5 62.7±1.6 56.9±4.2 41.6±1.7 41.7±1.2 29.0±0.6 80.9±0.8 71.6±0.6 78.0±0.4
RS-GNN 42.4±9.8 64.8±3.6 57.3±6.1 45.3±1.2 40.4±1.1 36.1±1.6 78.1±0.3 67.2±1.3 71.1±1.9
GPS (Ours) 74.6±3.0 80.0±1.8 77.3±4.4 41.5±3.6 43.0±0.9 38.3±0.7 80.5±0.8 71.5±0.6 77.7±0.5
GPS-PE (Ours) 68.6±4.7 75.1±4.3 78.8±1.5 37.6±1.6 34.9±1.3 36.3±0.8 79.5±0.8 71.5±0.4 77.7±0.3

Graph ESNR 0.014 0.004 0.037 0.249 0.244 0.055 0.293 0.197 0.270

cost and is usually replaced by negative sampling, which
may induce additional variance in the learned model. There-
fore, apart from the vanilla GPS setting, we also consider a
variant of GPS (GPS-PE) that formulates an self-supervised
node regression task for predicting the graph’s position en-
coding. After training, the graph is obtained by projecting
back the full prediction into the graph space and perform
the same sparsification procedure as described.

Ensemble graph rewiring. The optimization of GPS may
yield high variance that leads to sub-optimal performance.
In particular, when the original graph has high ESNR, it
may serve as a better graph than the GPS rewired graph. As
a result, in our implementation, we additively combine GPS-
rewired graph adjacency matrices (E) and original graph
adjacency matrices (A) to generate the final output graph:

Efinal = wA+ (1− w)E (11)

The weight w is set as a hyperparameter which can be ob-
tained via random search. The ensemble design ensures the
rewired graph to have a reasonable performance compared
with the original graph in all settings.

5. Experimental results for GPS
5.1. Experimental setup

We performed extensive benchmarking of the GPS-based
graph rewiring methods against a subset of alternative meth-
ods, including the GCN baseline (Kipf and Welling, 2016a),
the k-NN graph as a representative of node similarity based
graph rewiring, DIGL (Klicpera et al., 2019), SDRF (Top-
ping et al., 2021), and a MLP-based link predictor proposed
in RS-GNN (Dai et al., 2022). For the node classification
task, we used a fixed GCN architecture across all bench-
marked methods to make the results comparable. Moreover,
we excluded edge dropout in the benchmarking for elimi-
nating its potential effect on graph rewiring.

We evaluated the listed methods on nine datasets, including
WebKB datasets Cornell, Texas, Wisconsin; WikipediaNet-
work datasets Chameleon and Squirrel; Actor dataset and

the Planetoid datasets Cora, Citeseer, and Pubmed. We-
bKB datasets are small datasets with significant heterophily
/ noise, Chameleon, Squirrel, and Actor datasets are het-
erophilic datasets with intermediate sizes; Planeoid datasets
are homophilic datasets with intermediate sizes. Notably,
for the Chameleon and Squirrel datasets, a recent work
(Platonov et al., 2023) pointed out that there exists a large
number of "duplicate nodes", which may harm the bench-
marking validity. We followed the suggestion in the work
to filter out these nodes as a preprocessing step. Statistics
of the datasets used can be seen in Appendix Table 3.

For each dataset, we used the train/validation/test data split
provided by pytorch_geometric. The hyperparameters were
optimized by random search through RayTune, selecting
the model with highest accuracy on the validation set. After
selecting the hyperparameters, we tested the model perfor-
mance over 10 independent runs to report the average test
accuracy± the standard deviation and the mean ESNR± its
standard deviation respectively. More experimental details
and the hyperparameters can be seen in the Appendix D.5.

5.2. Node classification results

Our experimental results are summarized in Table 2. Both
GPS and GPS-PE show substantial improvements over the
baseline in most heterophilic datasets, with leading median
node classification performance compared with alternative
methods. However, the GCN baseline performed best in the
homophilic datasets compared with all alternative methods,
indicating that rewiring methods may not offer a distinct
advantage in these cases. Taking the Cornell dataset as an
example of heterophilic datasets, the superior performance
of GPS rewired graphs is supported by the most distinct
separation of node classes in the latent embedding (defined
by the concatenation of original node features and neighbor-
hood aggregated features), as visualized in UMAP (McInnes
et al., 2018) in comparison to other approaches (Figure 7).

By additional evaluations of the ESNR metric for rewired
graphs, we have found that ESNR no longer has a strong
indicative role in explaining rewired graphs’ GNN perfor-
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Figure 7: UMAP visualizations of the embeddings generated by each method’s rewired graphs for the Cornell dataset. The
embedding is defined by the concatenation of original node features and neighborhood aggregated features.

Figure 8: Scatter plots of ESNR versus average degrees of
rewired graphs / performance gap. R: Spearman correlation.

mance (Appendix Table 11). For example, in the WebKB
datasets and the Actor dataset, k-NN rewired graphs show
the most substantial increase in ESNR, but not with compa-
rable classification accuracy gain. This phenomenon is also
observed in DIGL for the Planeoid datasets. These observa-
tions may be explained by that the graph rewiring process
breaks edge independence in assumption 1 and 2. In par-
ticular, feature-aware graph rewiring methods may induce
feature-level noise affecting all neighbors for each node. For
DIGL, the edge noise may propagate in the rewired graphs
due to the incorporation of higher-order neighbors.

To further understand the mechanism of performance im-
provements for the GPS based methods, we have compared
the average degree and the accuracy gain of GPS rewired
graphs with the ESNR of the original graph. Our compari-
son result reveals a positive correlation between the average
degree of the rewired graph and the original graph ESNR.
On the other hand, a negative correlation is observed be-
tween the performance gap and the original graph ESNR
(Figure 8). The result suggests that GPS rewires graph in
a global manner, influenced by the level of structural noise
present in the graph. In a highly noisy dataset, GPS tends to
"prune" the noisy edges, while primarily introducing new
edges in datasets with high ESNR.

In summary, our proposed GPS based graph rewiring pro-
vides performance improvement for the heterophilic datasets
but no improvement for homophilic datasets. The accuracy
gains as well as global connectivities of GPS rewired graphs
exhibit correlations with the graph ESNR. The code of GPS
can be accessed at https://github.com/MingzeDong/GPS.

6. Conclusions
In this work, we aim to both understand and alleviate the
effect of graph structural noise in GNN training by propos-
ing a novel ESNR metric and a graph rewiring framework
based on self-supervised GNN learning (GPS). We employ
ESNR to demonstrate the significance of graph structural
noise as a factor in determining GNN performances in vari-
ous synthetic and real datasets. Furthermore, we show that
the GPS-based graph rewiring schemes achieve superior
performance in the node classification task for a number of
datasets, which may be explained in terms of ESNR.

Limitations of ESNR. The relation between the ESNR and
GNN with more complex architectures remains to be ex-
plored. Additionally, ESNR may work less effectively in
rewired graphs which may induce redundancy or undermine
the validity of graph generating assumptions 1 or 2. An im-
proved ESNR metric that can filter the redundancy between
data features and the graph remains to be explored.

Limitations of GPS. GPS is a method designed to improve
GNN training by denoising the graph, therefore it may only
show marginal impact on data with graphs of high SNR.
Moreover, GPS is not designed for addressing the GNN
training issues caused by ill-posed graph structure, therefore
a combination of different methods with GPS is preferred
for such data. Implementations of GPS based on more
dedicated design may lead to improved rewired graphs for
both heterophilic and homophilic datasets.

Broader impact. We anticipate wide use of ESNR as a
universal metric for graph-structured data. Conceptually,
ESNR highlights the fundamental role of graph structural
noise on the GNN performance, which may enlighten future
works. Further we anticipate GPS as a general framework
to be adopted for rewiring noisy graph-structured data.
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Appendix

A. Proofs of results in the main text
A.1. Proof of proposition 3.1

Proposition 3.1. Assuming equation (1) or (2), and limn→∞
∑

i P
2
ij = 0 for any j. Then for any column one-hot matrix

L ∈ Rm×n such that ∀i, j, Cp
ij > 0, we have

∀i, j, Cij
d−→ Poisson(Cp

ij). (12)

Furthermore, in the case of eq (1) (directed graph), each entry Cij is independently sampled. In the case of eq (2) (undirected
graph), each entry Cij is asymptotically uncorrelated.

Proof. Here we use Le Cam’s theorem as a lemma:

Lemma A.1. (Le Cam’s theorem (Le Cam, 1960; 1965; Steele, 1994)) Suppose Xi(i = 1, 2, 3, ...) are independent Bernoulli
variables with parameters pi(i = 1, 2, 3, ...). Further suppose λn =

∑n
i=1 pi, and Sn =

∑n
i=1 Xi. Then

∞∑
i=0

|Pr(Sn = k)− λk
ne

−λn

k!
| < 2

n∑
i=1

p2i . (13)

This can also be written in terms of total variation distance:

TV(Sn,Poisson(λn)) < 2

n∑
i=1

p2i . (14)

Note Cij =
∑

Lk=1 Akj is the sum of independent Bernoulli variables Akj with parameters Pkj . Further noting∑
Lk=1 Pkj = Cp

ij , Applying Lemma A.1, we have

TV(Cij ,Poisson(C
p
ij)) < 2

n∑
k:Lk=i

P 2
kj . (15)

As limn→∞
∑

k P
2
kj = 0 implies ∀i, limn→∞

∑
Lk=i P

2
kj = 0, as n→∞, we have

∀i, lim
n→∞

TV(Cij ,Poisson(C
p
ij)) = 0. (16)

Finally, because convergence in total variation implies weak convergence, we have equation (12) holds.

Next we consider the independence of entries Cij . In the case of directed graphs, we have each entry of Cij sums over
non-overlapping Akjs due to L is row one-hot. Therefore we have the independence for all entries Cij holds.

We note in the case of undirected graph, two different entries (Cij , Ckl) at most have one shared edge. In the case of no
shared edge across the two entries, the two entries are independent thus asympotically uncorrelated; in the case of one
shared edge, denote the edge as a, then we have

ρ(Cij , Ckl) =
E(Cij − ECij)(Ckl − ECkl)√

VarCij

√
VarCkl

=
E(a− Ea)(a− Ea)√

VarCij

√
VarCkl

=
Vara√

VarCij

√
VarCkl

(17)

As n→∞, because ∀i, j, Cp
ij > 0 and limn→∞

∑
i P

2
ij = 0 leading to ∀i, j, limn→∞ Pij = 0, denote the probability of a

as Pa, then we have

lim
n→∞

ρ(Cij , Ckl) = lim
n→∞

Pa(1− Pa)√
Cp

ij

√
Cp

kl

= 0. (18)

Hence (Cij , Ckl) are asymptotically uncorrelated and the proof is complete.
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A.2. Proof of proposition 3.4

Proposition 3.4. (Mean edge mutual information of the original graph in simplified CSBM): Assume the data is
generated as definition 3.3. Then we have

1

n2

∑
ij

I(Aij ;Pij) = h(
p+ (k − 1)q

k
)− 1

k
h(p)− k − 1

k
h(q).

Here h denotes the entropy function: h(x) = x log 1
x + (1− x) log 1

1−x , x ∈ (0, 1).

Proof. We have

1

n2

∑
ij

I(Aij ;Pij) =
1

n2

∑
ij

H(Aij)−H(Aij |Pij)

=
1

n2

∑
i

[
∑
j

h(
p+ (k − 1)q

k
)−

∑
j

H(Aij |Pij)]

=
1

n2

∑
i

[
∑
j

h(
p+ (k − 1)q

k
)−

∑
Zj=Zi

H(Aij |Pij)−
∑

Zj ̸=Zi

H(Aij |Pij)]

=
1

n2

∑
i

[
∑
j

h(
p+ (k − 1)q

k
)− n

k
h(p)− n(k − 1)

k
h(q)]

= h(
p+ (k − 1)q

k
)− 1

k
h(p)− k − 1

k
h(q).

(19)

A.3. Proof of theorem 4.3

Theorem 4.3. (Mean edge mutual information of GPS rewired graph in simplified CSBM): Assume the graph propensity
score êij is generated as equation (10). Then as n→∞, with probability 1 we have ∀i, j, êij = Pij , and

IGPS ≡
1

n2

∑
ij

I(êij , Pij) = h(
p+ (k − 1)q

k
) >

1

n2

∑
ij

I(Aij , Pij). (20)

Proof. Denote the edges used for training as Amessage are i.i.d. sampled from the true edge set with rate α. We define the
mapping learnt by the GNN link prediction task as:

(Yi, Yj) = fi,j(X,Amessage), êij = g(Yi, Yj) = g ◦ fi,j(X,Amessage).

Here we define the encoder f as GCN mean aggregation:

fi(X,Amessage) =
1

N(i) + 1

∑
j∈N(i)∪i

Xj .

Using the definition of CSBM, we have

fi(X,Amessage) =
Xi +

∑
l

∑
j:yj=l 1Aij

Xj

1 +
∑

j Aij
=

Xi +
∑

l
n
k (

k
n

∑
j:yj=l 1Aij

Xj)

1 +
∑

j Aij
.

Because 1Aij
Xj are i.i.d. for Xj in one label, using strong law of large numbers we have

(
k

n

∑
j:yj=l

1Aij
Xj)

a.s.−−−−→
n→∞

E1Aij
Xj = [1l=yi

(p− q) + q]αµl.
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Note strong law of large number on
∑

j Aij gives

k

n

∑
j:yj=l

Aij
a.s.−−−−→

n→∞
1l=yi

α(p− q) + αq.

Therefore with probability 1 we have

lim
n→∞

fi(X,Amessage) =
k
nαXi +

∑
l[1l=yi

(p− q) + q]µl

k
nα +

∑
l 1l=yi

(p− q) + q
=

k
nαXi + q

∑
l ̸=i µl + pµyi

k
nα + q(k − 1) + p

=
q
∑

l ̸=i µl + pµyi

q(k − 1) + p
(21)

Now we define Zi :=
q
∑

l ̸=i µl+pµyi

q(k−1)+p . As µl is different for each l, when n → ∞, we have Zi converge to a different
constant for each possible label yi.

Then due to the continuity of the decoder, we are able to write the decoder output as a matrix Γ ∈ Rk×k, whose entry Γmn

is determined by the output of the decoder g(Zi, Zj) given yi = m, yj = n. In this case the cross entropy loss function can
be formulated as:

L =
−1

|Trainset|
∑
l1,l2

(
∑

yi=l1,yj=l2,(i,j)∈Trainset

Aij log Γl1l2 + (1−Aij) log(1− Γl1l2)) (22)

Because the edges training set is also independently sampled and does not overlap with the edges used in message passing,
with probability 1 above converges to

−1
k2

∑
i

p log Γii + (1− p) log(1− Γii) +
−1
k2

∑
ij:i ̸=j

q log Γij + (1− q) log(1− Γij).

Thus it is easy to verify the minimizer Γ∗ of the above loss function is of value

Γ∗
ii = p, Γ∗

ij(j ̸=i) = q.

Finally, when the training is complete, for each possible index pair (no matter whether it is in the training set) (i, j), with
probability 1 we have

êij = g(Zi, Zj) = Γyiyj = 1yi=yj (p− q) + q = Pij .

Furthermore, in this case,

IGPS ≡
1

n2

∑
ij

I(êij ;Pij) =
1

n2

∑
ij

H(Pij) = h(
p+ (k − 1)q

k
).

Hence the proof is complete.

B. Extending the biwhitening theoretical guarantee to Poisson binomial distributions
Here we aim to extend the theoretical guarantee derived for Poisson matrices in (Landa et al., 2022) to the Poisson binomial
case. The proposition 3.1 cannot be directly used for the theoretical guarantee of the biwhitening scheme. The main
reason is that the convergence is an asymptotic result and cannot be directly used for finite ns. However, by a more careful
integration of the proposition and the proof strategy in (Landa et al., 2022), the validity of biwhitening in aggregated
adjacency matrices can be revealed with mild assumptions. Specifically, proposition 3.1 reveals that Var(Cϵ) → Cp as
n→∞. Denoting Cp′ := Var(Cϵ), we have the following proposition holds, showing the uniqueness of the scaling factors
upon a multiplicative scalar for future convenience:

Proposition B.1. Suppose the assumptions made in proposition 3.1 holds. Then ∃N > 0, such that ∀n > N , there exists a
pair (u, v) of positive vectors that satisfies

∀i, 1
n

∑
j

u2
iC

p
ij

′
v2j = 1; ∀j, 1

m

∑
i

u2
iC

p
ij

′
v2j = 1. (23)

Furthermore, (u, v) is unique up to a positive scalar in the sense that it can only be replaced with (au, a−1v) for any a > 0.
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Proof. The proof of the proposition follows immediately from theorem 1 in (Sinkhorn, 1967) as noted by (Landa et al.,
2022). The only additional step needed is proving all entries of Cp′ is strictly positive. For this, note the assumption that
limn→∞

∑
j P

2
ij = 0 for any i implies ∃N, such that ∀n > N,

∑
j P

2
ij < 1. Therefore, there cannot be 1s in the adjacency

matrix A for n > N . Combining with the assumption that ∀n, Cp
ij > 0, we have the variance for each entry of Cϵ is

strictly larger than 0. In this case, by taking A = Cp′, ri = n, cj = m, xi = u2
i , yj = v2j , taking advantage of the fact that∑m

i=1 ri = mn =
∑n

j=1 cj , we have the proposition holds by theorem 1 in (Sinkhorn, 1967).

Now, the theorem 2.2 in (Landa et al., 2022) can be adopted and extended as the first step of the route:

Theorem B.2. Suppose that there exist universal constants l, L > 0 such that l ≤ maxi,j C
p
ij ≤ Lmini,j C

p
ij ,∀i, j, n.

Then as n → ∞, the empirical distribution of Σ̃ := n−1Cϵ(Cϵ)T converges a.s. to the MP distribution with parameter
γ = limn→∞

m
n ∈ (0, 1] and noise variance σ2 = 1, i.e., Fγ,1. Furthermore, λ1{Σ̃}

a.s.−−→ β+ = (1 +
√
γ)2., meaning the

largest eigenvalue λ1 a.s. converges to the upper edge of the MP distribution.

Proof. From the proposition 4.1 in (Landa et al., 2022), it suffices to verify the moment of Cϵ is bounded through the
relationship for any i, j, n, k:

E|Cϵ
ij |2k ≤ Lk(VarCij)

k (24)

To verify equation (24) indeed holds for large enough n, we note that the Poisson case is already covered in the proof of
theorem 2.2 in (Landa et al., 2022)). Due to the convergence in distribution for Cϵ

ij to a centered Poisson distribution, it
suffices to prove that Cϵ

ij converges to centered Poisson distributions in terms of arbitrary kth moment. Therefore, we only
need to verify the uniform integrability of Cϵ

ij . To do this, here we show

∀k, E|Cϵ
ij |2k+2 <∞ (25)

holds for finite n. This can be proven in a number of ways. Here we consider the moment generating function of uncentered
Cij/C

p
ij . Here the denominator Cp

ij is introduced to ensure the limit distribution exists as n→∞. Note

MCij/C
p
ij
(t) =

∏
k:Lik=1

(1− Pkj + Pkje
t/Cp

ij )

≤ (1−
Cp

ij

|S(k) : Lkj = 1|
+

Cp
ij

|S(k) : Lkj = 1|
et/C

p
ij )|S(k):Lkj=1|(Jensen Ineq)

(26)

Due to our assumption we must have each entry Pkj approaches zero and |S(k)| → ∞. This leads to

MCij/C
p
ij
(t) ≤ (1 +

Cp
ij(e

t/Cp
ij − 1)

|S(k)|
)|S(k)|

< eC
p
ij(e

t/C
p
ij−1) = MPoisson(Cp

ij)/C
p
ij
(t).

(27)

Therefore the existence of arbitrary kth moment of Cij/C
p
ij is revealed as Cij/C

p
ij and Poisson(Cp

ij)/C
p
ij are both strictly

positive and any order of moment for Poisson(Cp
ij)/C

p
ij exists. Furthermore the existence of the raw moment leads to

existence of the centered moment for Cij/C
p
ij .

Note the Cp
ij denominator term is cancelled in eq (24). With the convergence of moments, we immediately have

E|Cϵ
ij |2k = (1 + on(1))E|Poisson(Cp

ij)− Cp
ij |

2k

≤ (1 + on(1))L
Poisson
k (Cp

ij)
k(from proof of theorem 2.2 in (Landa et al., 2022))

= (1 + on(1))L
Poisson
k (VarCij +

∑
i:Lij=1

P 2
ij)

k

= (1 + on(1))L
Poisson
k (VarCij + on(1))

k

= (1 + on(1))L
Poisson
k (VarCij)

k.

(28)

Therefore the equation (24) holds for the model and the proof is complete.
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Next, we aim to finish the second and third step of the proof by extending lemma 2.5 in (Landa et al., 2022). Our main result
here is theorem B.4, whose proof is huge simplified with lemma B.3 established in (Landa, 2022).

Lemma B.3. Let Ã ∈ Rm×n be a positive random matrix with independent entries, A = EÃ, and (u, v) be the pair of
positive factors that satisfy ||u||1 = ||v||1 and scales A to row sums r and column sums c. Suppose that Ãij ∈ (aij , bij) a.s.
for all i, j. Then there exists a pair of positive random vectors (ũ, ṽ) that scales Ã to row sums r and columns c s.t. for any
δ ∈ (0, 1], with probability at least

1− 2m exp(− δ2s2

c21||c||2
)− 2n exp(− δ2s2

c21||r||2
), (29)

we have that ∀i, j,
|ũi − ui|

ui
≤ c2δs

mmini ri
,
|ṽj − vj |

vj
≤ c2δs

nminj cj
, (30)

where c1 =
√
2( bda2 ), c2 = 1 + 2( ba )

7/2.

Theorem B.4. Suppose that there exist universal constants K, k, δ > 0, such that k(log n)1+δ ≤ maxij C
p
ij ≤ Kminij C

p
ij

for all i, j, n. Then with probability tending to 1, there is a pair of positive scaling factors (û, v̂) and a scalar an > 0 that
satisfy

∀i, j, lim
n→∞

| û
(n)
i

u
(n)
i

− 1| = 0, lim
n→∞

|
v̂
(n)
j

v
(n)
j

− 1| = 0. (31)

Proof. Here our strategy is to apply lemma B.3 for matrix C. However, lemma B.3 requires the matrix entries to be strictly
positive and upper bounded, which does not hold in our case. Therefore similar with the approach in (Landa et al., 2022),
we construct a truncated random matrix Ĉ with its entries both upper and lower bounded:

Ĉij =


Cp

ij/α (Cij < Cp
ij/α)

Cij (Cij ∈ [Cp
ij/α,C

p
ij ∗ β))

Cp
ij ∗ β (Cij ≥ Cp

ij ∗ β)
(32)

Here α, β > 1 are constants. Now with the assumption on Cp
ij , we are able to apply the lemma B.3 to Ĉij as it is both upper

and lower bounded. Now it suffices to verify Ĉ = C with probability 1 as n→∞.

We note the (relaxed) Chernoff inequality can be perfectly adopted here to generate exponential decay bounds for tails of
Cij :

Lemma B.5. (Relaxed Chernoff inequality) Let {Xi} be a sequence of independent Bernoulli random variables with mean
{pi}. Denote Sn =

∑n
i=1 Xi and µ =

∑n
i=1 pi, then for any δ ∈ (0, 1), we have

P(Sn ≥ (1 + δ)µ) ≤ exp(− δ2µ

2 + δ
), P(Sn ≤ (1− δ)µ) ≤ exp(−δ2µ

2
). (33)

Using the lemma on Cij , we immediately have

P(Ĉij ̸= Cij) ≤ exp(−
(β − 1)2Cp

ij

1 + β
) + exp(−

(α− 1)2Cp
ij

2α2
)

= exp(−Cp
ij)

(β−1)2

1+β + exp(−Cp
ij)

(α−1)2

2α2 .

(34)
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As a result, we have

P(Ĉ ̸= C) ≤
∑
ij

P(Ĉij ̸= Cij)

=
∑
ij

exp(−
(β − 1)2Cp

ij

1 + β
) + exp(−

(α− 1)2Cp
ij

2α2
)

≤ mn exp(−min
ij

Cp
ij)

(β−1)2

1+β +mn exp(−min
ij

Cp
ij)

(α−1)2

2α2

≤ n2 exp(−min
ij

Cp
ij)

(β−1)2

1+β + n2 exp(−min
ij

Cp
ij)

(α−1)2

2α2

≤ n2 exp(−k(log n)1+δ/K)
(β−1)2

1+β + n2 exp(−k(log n)1+δ/K)
(α−1)2

2α2
n→∞−−−−→ 0.

(35)

Therefore, applying the lemma B.3, for any δ ∈ (0, 1), with probability at least

1− 2m exp(− δ2s2

c21||c||2
)− 2n exp(− δ2s2

c21||r||2
)− P(Ĉ ̸= C), (36)

we have ∀i, j,
|ũi(C)− ui(Cp)|

ui(Cp)
≤ c2δs

mmini ri(Cp)
,
|ṽj(C)− vj(Cp)|

vj(Cp)
≤ c2δs

nminj cj(Cp)
. (37)

Finally, we note here we still have a gap, as we are discussing in this theorem the scaling of the random matrix C is
asymptotically identical to the scaling of deterministic Cp, but the MP law (theorem B.2) is established with the ground
truth variance Var(Cϵ) . Therefore, we need to verify the convergence of scaling factors of Var(Cϵ) to those of Cp. Luckily
this is simple given the entry-wise convergence of Var(Cϵ) to Cp as n→∞. Specifically, for the scaling factors (u, v) of
the matrix Cp, we have

1

cj

∑
i

uiVar(C
ϵ)vj =

∑
i

ui(C
p
ij −

∑
k:Lik=1

P 2
kj)vj

=
1

cj

∑
i

ui(C
p
ij −

∑
k:Lik=1

P 2
kj)vj

=
1

cj

∑
i

(1−
∑

k:Lik=1 P
2
kj

Cij
p

)uiC
p
ijvj

=
1

cj

∑
i

(1− on(1))uiC
p
ijvj

n→∞−−−−−−−−−−−→
1
cj

∑
i uiC

p
ijvj=1

∑
i

uiC
p
ijvj .

(38)

Similarly we have
1

ri

∑
j

uiVar(C
ϵ)vj

n→∞−−−−→ 1

ri

∑
j

uiC
p
ijvj . (39)

As a result, the lemma 9 in (Landa, 2022) can be used to establish the scaling factor consistency (stated below):

Lemma B.6. Let Ã ∈ Rm×n be a positive matrix and denote a = minij Ãij , b = maxij Ãij , Suppose there exists ϵ ∈ (0, 1)
and positive vectors (u, v) such that

∀i, j, | 1
cj

∑
i

uiÃijvj − 1| ≤ ϵ; | 1
ri

∑
j

uiÃijvj − 1| ≤ ϵ. (40)

Then Ã can be scaled to row sums r and column sums c by a pair (ũ, ṽ) that for all i, j satisfies:

|ũi − ui|
ui

≤ ϵ

1− ϵ
+

4ϵs
√
b

a2C
3/2
1 C

3/2
2 mmini ri

≤ ϵ(2 +
4s

mmini ri
(
b

a
)7/2), (41)
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|ṽj − vj |
vj

≤ ϵ

1− ϵ
+

4ϵs
√
b

a2C
3/2
1 C

3/2
2 nminj cj

≤ ϵ(2 +
4s

nminj cj
(
b

a
)7/2), (42)

where s = ||r||1 = ||c||1, C1 = mini ui/r̄ and C2 = minj vj/c̄.

The proof of the lemma can be seen in (Landa, 2022). In our case, we have ri = n, cj = m, therefore the upper bound is
ϵ(2+4( ba )

7/2) for both |ũi−ui|
ui

and |ṽj−vj |
vj

. Note here the argument holds with probability 1 as the convergence of Var(Cϵ
ij)

to Cp
ij is deterministic. However, now we do not have the convergence speed as it is not specified in our assumptions. In

summary, as n→∞, we have now

|ũi(V ar(Cϵ))− ui(Cp)|
ui(Cp)

→ 0,
|ṽj(V ar(Cϵ))− vj(Cp)|

vj(Cp)
→ 0. (43)

Combining eqs (37) and (43) by triangular inequality and picking consistent δ with (Landa et al., 2022), we finally have that
below holds with probability tending to 1:

|ũi(C)− ui(V ar(Cϵ))|
ui(V ar(Cϵ))

→ 0,
|ṽj(C)− vj(V ar(Cϵ))|

vj(V ar(Cϵ))
→ 0. (44)

Thus the proof is complete.

C. Vanilla ESNR
C.1. Definition of vanilla entry-based SNR

In the section 3.1 of the main text, we propose the task of constructing indicators of signal to noise ratio by separating
the signal component Cp and the noise component Cϵ the matrix C. We note that rather than our approach (which can
be deciphered as evaluating the nuclear norm of the signal component Cp), another possible approach is to construct
an estimator of the Frobenius norm, yielding the objective ||Cp||F

||Cϵ||F . We note that each entry of C approximates Poisson
distribution as discussed by Proposition 3.1. In this case, a straightforward entry-wise estimation of both ||Cp||F and
||Cϵ||F , by noting:

ECij = VarCij ; (45)

EC2
ij = (ECij)

2 +VarCij . (46)

Therefore, we have

||Cp||2F =
∑
ij

Cp2
ij =

∑
ij

(ECij)
2 =

∑
ij

EC2
ij − ECij ∼

∑
ij

C2
ij − Cij ;

||Cϵ||2F =
∑
ij

Cϵ2
ij =

∑
ij

E(Cij − ECij)
2 =

∑
ij

VarCij =
∑
ij

ECij ∼
∑
ij

Cij .
(47)

Therefore an indicator of the entry-wise signal to noise ratio can be defined as:

Vanilla ESNR :=

∑
ij C

2
ij − Cij∑
ij Cij

. (48)

C.2. Potential issues of the vanilla entry-wise SNR

The vanilla entry-wise SNR seems to be a simpler and theoretically guaranteed estimator of the desired signal to noise ratio.
However, we note several issues of the vanilla entry-wise SNR compared with our proposed ESNR:

1. The entry-wise SNR is dramatically biased by the total number of edges, which affects the magnitude of |Cij |.
Particularly, in the case of edge ratio = 1 for the CSBM data, the entry-wise SNR is still affected by the average degree.
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2. The entry-wise SNR is heavily influenced by extreme values in matrix C. Notably, the issue is alleviated in our
proposed ESNR as we normalize each singular value to the range (0, 1).

A result of using the vanilla ESNR in simulated CSBM data of different node number / average degree settings as functions
of the edge ratio (same setting as main figure 3) is shown in Appendix Figure 9. We can see it indeed exhibits significant
issue of biased by the average degree, even in the setting of edge ratio = 1, where the true GCN performance is not affected
by average degree in the setting. As a result, the vanilla SNR does not reveal the correct trend of either 1 or 2 layer GCN
performance (Figure 3).

Figure 9: Vanilla entry-wise SNR in simulated CSBM data of different node number / average degree settings as functions
of the edge ratio. All settings are consistent with the settings in Figure 3.

D. Experimental details
D.1. Evaluation of empirical covariance eigenvalue distributions with MP law

In this experiment, we simulated CSBM data with n = 8000, k = 8 with identical community sizes (1000). The average
degree was set to be 10. The feature distributions for the communities were set to be Gaussian mixtures with identical
noise σ = 1 with dimension 300. The expectations of the 8 communities were defined by the binary encoding of the
community number, e.g.(010), (110). Each digit of the encoding was further duplicated 100 times, yielding 8 vectors of form

(

100︷ ︸︸ ︷
000...0

100︷ ︸︸ ︷
111...1

100︷ ︸︸ ︷
000...0). We first multiplied a constant to each of the vector and set the scaled vector to be the expectation

for the Gaussian mixture. In this experiment the constant is set to be 1. Finally, CSBM data were simulated in two settings
of edge ratio (1.5 and 2) respectively.

For ESNR, we here implemented the data feature label based version, which is by hierarchical clustering the data feature first
(via sklearn.cluster.AgglomerativeClustering) into round(

√
n) = 89 clusters. Then the Sinkhorn-Knopp

based biwhitening was performed on the matrix plus 1e-9 with default parameters (max_iter = 1000, epsilon
=1e-3). After biwhitening scaling, we subtracted the matrix with the mean value of the matrix and perform singular value
decomposition. Then the singular values were squared and normalized with sample number to compute the empirical
covariance eigenvalue distribution. We compare our approach with the squared normalized version of the original singular
values (denoted as SVD in the figure).

D.2. Evaluation of ESNR for simulated CSBM data

Our simulation approach was consistent as described in Appendix D.1, with the only difference of setting a different gap
(0.75). In this experiment, we chose different settings of n(4000,8000,16000) and different average degree (5,10,20). The
edge ratio was set to be 2 ** np.arange(-2,2.2,0.2). We generated data for all possible combinations. Also as
we needed to train GCNs on these data, we splitted each simulated data into train/val/test tests with ratio 0.6/0.2/0.2.

Our implementation of edge homophily was from torch_geometric.utils.homophily. Our computation of the
singular values of biwhitened matrices was consistent as previously described in Appendix D.1. In practice, we added
a small threshold (0.01) to α which corresponds to the right boundary of the MP distribution. After that, the ERR was
computed as the signal number that passes the new boundary α + 0.01 and the ESNR was computed according to our
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definition 3.2 with parameter α+ 0.01.

For both 1 layer GCN and 2 layer GCN, we use fixed architectures:

• 1 layer GCN:

Layer 1: GCNConv(in_channels=data.x.shape[1], out_channels=8);

Activation function: nn.ReLU();

• 2 layer GCN:

Layer 1: GCNConv(in_channels=data.x.shape[1], out_channels=100);

Activation function: nn.ReLU();

Layer 2: GCNConv(in_channels=100, out_channels=8).

In both cases, we used cross entropy as the loss function and trained the network by Adam algorithm. The rest hyperparame-
ters (learning rate, weight decay) were obtained by random search through RayTune over 20 models for each simulated data.
Finally we chose the model with best validation accuracy and run 10 rounds to get the mean and standard deviation of test
accuracy. We ran 200 epochs for each model and decide where to stop by picking the test accuracy with maximal validation
accuracy.

D.3. Evaluation of ESNR for Planetoid data with edge dropout

In this experiment, we used three Planeoid datasets (Cora, Citeseer, Pubmed), with data statistics available in Table 3. We
used different masking ratio on the data edge indices: (0,0.1,0.2,...,0.9). After subsampling, we evaluate the edge homophily,
ERR and ESNR as described in the previous section. Here we used the same 1/2 layer GCN architectures as previously
described, except that we changed the output dimension to adapt to the class number of each dataset. The hyperparameters
were obtained by random search through RayTune over 25 models for each simulated data. Finally we used the same
procedure as described above to output the test accuracy. The result is shown in Figure 4.

D.4. Evaluation of ESNR across datasets for predicting GCN / GNN performance

Here we evaluated if ESNR can indicate the performance difference between GCN / SOTA-GNN and MLP
by using the experimental results from (Ma et al., 2021; Shchur et al., 2018; Platonov et al., 2023; Dwivedi
et al., 2020) of 14 datasets. The dataset statistics are provided in Table 3. The WebKB datasets
are from http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb, and the refer-
ences for other datasets are provided below. We compared edge homophily, node homophily (both from
torch_geometric.utils.homophily), and aggregated homophily (from the implementation in (Luan et al., 2022))
with our ESNR on consistency with the reported accuracy difference and performed Pearson and Spearman correlation
analysis. The implementation of ESNR here was same as described in Appendix D.2 and Appendix D.3.

D.5. Node classification task for GPS

Here we compared different graph rewiring methods performance on the node classification task. We included baseline
(original graph), kNN graph of data features, DIGL(Klicpera et al., 2019), SDRF(Topping et al., 2021), RS-GNN (Dai et al.,
2022) and our methods in the benchmarking. We compared their performance on the same nine datasets shown in Table 3.

Our implementation k-NN was based on torch_geometric.nn.knn_graph on first 10 truncated SVD components
of data. We adopted the DIGL and SDRF implementation as provided in their original work. The architectures we used for
GPS and GPS-PE are as follows:

• GPS:

Layer 1: GCNConv(in_channels=data.x.shape[1], out_channels=512);

Activation function: nn.ReLU();

Layer 2: GCNConv(in_channels=512, out_channels=128);
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Table 3: Datasets used in the work.

Datasets Nodes Edges Features Classes Homophily score
(Pei et al., 2020)

Cornell 140 219 1703 5 0.11
Texas 135 251 1703 5 0.06
Wisconsin 184 362 1703 5 0.16
Chameleon (Rozemberczki et al., 2021) 2277 36101 2325 5 0.25
Squirrel (Rozemberczki et al., 2021) 5201 217073 2089 5 0.22
Chameleon(filtered) (Platonov et al., 2023) 890 13584 2325 5 0.25
Squirrel(filtered) (Platonov et al., 2023) 2223 65718 2089 5 0.22
Actor (Tang et al., 2009) 4388 21907 931 5 0.24
Cora (McCallum et al., 2000) 2485 5069 1433 7 0.83
Citeseer (Sen et al., 2008) 2120 3679 3703 6 0.72
Pubmed (Namata et al., 2012) 19717 44324 500 3 0.79
Computer (McAuley et al., 2015) 13752 491722 767 10 0.78
Photo (McAuley et al., 2015) 7650 238162 745 8 0.83
Amazon-ratings (Platonov et al., 2023) 24498 90350 300 5 0.38
WikiCS (Mernyei and Cangea, 2020) 11701 431726 300 10 0.65
Cora_Full (Bojchevski and Günnemann, 2017) 19793 126842 8710 70 0.57

Activation function: nn.Sigmoid();

Decoder: ATDecoder(128,32);

• GPS-PE:

Layer 1: GCNConv(in_channels=data.x.shape[1], out_channels=512);

Activation function: nn.ReLU();

Layer 2: GCNConv(in_channels=512, out_channels=10);

Activation function: nn.Sigmoid().

The ATDecoder coincides with the design of gatv2conv (Brody et al., 2021) as discussed in the main text. Additionally,
to compute the positional encoding for GPS-PE, we used first 10 data diffusion map coordinates (Coifman and Lafon, 2006)
obtained by truncated SVD on the transformed graph adjacency matrix.

To train both GPS and GPS-PE, we separated the data edge index as two sets of equal size S1 and S2. we trained the networks
such that it minimizes the sum of two loss function (negative sampling recon_loss for GPS, MSE loss for GPS-PE) obtained
by using S1 to train S2 and using S2 to train S1 respectively. After the training was finished through the Adam algorithm
(500 epoches), the new graph was combined with the original graph with a learnable weight and is kNN thresholded as the
rewired graph output.

Finally, for the RS-GNN, as the original work includes downstream modification of the network architecture, we have
implemented a version of RS-GNN graph rewiring by modifying the GPS architecture, using a 2 layer MLP as the encoder
and an inner product decoder. The MLP is obtained by substituting the GCNConv layer in GPS with MLP, with equal latent
dimension sizes.

For all methods, we used cross entropy as the loss function and trained the network by Adam algorithm. The hyperparameters
were obtained by random search through RayTune over 100 models (50 for the baseline graph) for each dataset. Finally we
chose the model with best validation accuracy and ran 10 rounds to get the mean and standard deviation of test accuracy. We
ran 200 epochs for each model and decide where to stop by picking the test accuracy with maximal validation accuracy. The
ESNR was obtained by another 10 independent runs using the optimized hyperparameters.

For the UMAP visualization, we simulated rewired graphs with optimal hyperparameters for each method to generate the
rewired graphs. The embedding is defined by concatenating the PCA embedding of the original features and the mean
aggregated features by each rewired graph. The UMAP visualization is implemented by the function scanpy.tl.umap
with default settings (Wolf et al., 2018; McInnes et al., 2018).
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D.5.1. HYPERPARAMETER SETTING

Here lists all the hyperparameters selected by random search and used in our study. ∗: Additional preprocessing according
to (Platonov et al., 2023) was performed.

Table 4: Optimized hyperparameters used in GCN training.

Methods Learning rate Weight decay

Cornell 0.00732 0.000155
Texas 0.0552 0.263
Wisconsin 0.000148 0.261
Chameleon∗ 0.00987 0.0176
Squirrel∗ 0.000260 0.000215
Actor 0.0753 0.0100
Cora 0.0511 0.0597
Citeseer 0.00364 0.0304
Pubmed 0.00613 0.00548

Table 5: Optimized hyperparameters used in kNN-GCN training.

Methods Learning rate Weight decay Neighbor
number

Cornell 0.000225 0.130 14
Texas 0.0799 0.00922 16
Wisconsin 0.0253 0.0889 17
Chameleon∗ 0.000334 0.000410 18
Squirrel∗ 0.000260 0.000215 17
Actor 0.000279 0.000322 7
Cora 0.000191 0.000961 3
Citeseer 0.000671 0.0485 18
Pubmed 0.0142 0.00253 5

Table 6: Optimized hyperparameters used in DIGL-GCN training.

Methods Learning rate Weight decay α ϵ

Cornell 0.000300 0.00144 0.00490 0.00527
Texas 0.0142 0.0354 0.000207 0.00192
Wisconsin 0.00213 0.343 0.0842 0.00152
Chameleon∗ 0.0196 0.000377 0.677 0.000169
Squirrel∗ 0.0206 0.0115 0.772 0.000595
Actor 0.000998 0.0141 0.350 0.00131
Cora 0.000643 0.000396 0.451 0.000258
Citeseer 0.000178 0.242 0.325 0.000982
Pubmed 0.00176 0.00125 0.830 0.000185
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Table 7: Optimized hyperparameters used in SDRF-GCN training.

Methods Learning rate Weight decay Loops τ Removal bound

Cornell 0.0825 0.0974 25 122 0.519
Texas 0.00346 0.0122 70 19 0.498
Wisconsin 0.0713 0.245 145 102 0.610
Chameleon∗ 0.0456 0.0136 115 40 0.539
Squirrel∗ 0.0173 0.00775 10 98 13.3
Actor 0.0779 0.00714 1625 177 0.153
Cora 0.000434 0.00689 140 6 0.116
Citeseer 0.000369 0.120 145 72 0.755
Pubmed 0.00178 0.00836 55 119 0.611

Table 8: Optimized hyperparameters used in RS-GCN training.

Methods Learning rate Weight decay Edge learning
rate

Edge weight
decay

Neighbor
number

Cornell 0.000296 0.000536 0.0174 0.0256 10
Texas 0.0139 0.00136 0.0176 0.00303 13
Wisconsin 0.000196 0.205 0.0215 0.00545 3
Chameleon∗ 0.00226 0.0270 0.0238 0.000351 26
Squirrel∗ 0.00358 0.0498 0.00106 0.000209 9
Actor 0.00830 0.0140 0.00899 0.00435 10
Cora 0.000270 0.0160 0.000471 0.0000114 26
Citeseer 0.000586 0.0725 0.00141 0.000314 21
Pubmed 0.00134 0.0977 0.000200 0.0000236 10

Table 9: Optimized hyperparameters used in GPS-GCN training.

Methods Learning rate Weight decay Edge learning
rate

Edge weight
decay Weight Neighbor

number

Cornell 0.02553 0.0398 0.0604 0.000446 0 3
Texas 0.0157 0.129 0.000336 0.00573 0 4
Wisconsin 0.00245 0.104 0.00617 0.00752 0 7
Chameleon∗ 0.00254 0.0332 0.0302 0.0147 0.776 49
Squirrel∗ 0.0696 0.0187 0.0516 0.0875 0.794 46
Actor 0.0583 0.00688 0.000952 0.00115 0 24
Cora 0.00905 0.0175 0.00435 0.0166 0.944 44
Citeseer 0.0269 0.0878 0.00272 0.00185 0.849 6
Pubmed 0.00428 0.0103 0.000248 0.0613 0.175 45

Table 10: Optimized hyperparameters used in GPSPE-GCN training.

Methods Learning rate Weight decay Edge learning
rate

Edge weight
decay Weight Neighbor

number

Cornell 0.00858 0.167 0.00260 0.000687 0 6
Texas 0.000864 0.0101 0.000108 0.00785 0 7
Wisconsin 0.000129 0.100 0.00593 0.00185 0 4
Chameleon∗ 0.00389 0.0120 0.00351 0.0195 0.761 23
Squirrel∗ 0.0294 0.00492 0.0294 0.0494 0.454 41
Actor 0.0179 0.00426 0.00343 0.0802 0 36
Cora 0.0562 0.00608 0.00132 0.0973 0.260 26
Citeseer 0.0230 0.0500 0.000865 0.0243 0.903 11
Pubmed 0.0215 0.0107 0.0252 0.000830 0.526 47

D.5.2. FULL ESNR TABLE

Here shows the full table of ESNR evaluation.
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Table 11: ESNR for different graph rewiring methods.

Methods Cornell Texas Wisconsin Chameleon∗ Squirrel∗ Actor Cora Citeseer Pubmed

Baseline ESNR .014±.000 .004±.000 .037±.000 .249±.000 .244±.000 .055±.000 .293±.000 .197±.000 .270±.000
k-NN .268±.003 .318±.003 .326±.002 .195±.018 .118±.004 .098±.003 .145±.003 .459±.001 .297±.000
DIGL .017±.000 .038±.000 .100±.000 .351±.000 .250±.000 .160±.000 .758±.000 .618±.000 .598±.000
SDRF .011±.002 .004±.002 .034±.005 .248±.000 .244±.000 .058±.000 .292±.001 .195±.000 .270±.000
RS-GNN .142±.010 .180±.026 .116±.029 .311±.017 .194±.005 .139±.000 .677±.002 .603±.002 .480±.006
GPS (Ours) .077±.026 .113±.000 .130±.000 .205±.000 .096±.000 .159±.000 .290±.015 .225±.008 .467±.006
GPS-PE (Ours) .116±.000 .132±.000 .108±.000 .248±.000 .230±.000 .166±.000 .339±.000 .252±.000 .473±.000
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