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Abstract

Language models (LMs) have achieved significant success in centralized settings, but
their utility in localized, real-time applications on edge devices remains constrained. These
environments—where direct interaction between users and devices occurs—lack the vast
training resources available to general-purpose cloud-based models. The typical develop-
ment pipeline for LMs involves (1) large-scale unsupervised pretraining to develop generalist
behaviors before (2) supervised fine-tuning on small, task-specific datasets. The second step
remains a bottleneck for edge deployment, as it requires labeled data, which is rarely avail-
able or easily collected in situ. We address this challenge by introducing a neuro-symbolic
framework for data collection and learning on edge devices. At the core of our approach
is a finite-state machine (FSM), called a Data Collection Automaton (DCA), that su-
pervises an LM through interaction with the environment. This FSM enables automatic
labeling of user inputs by tracking conversational and physical interactions, transforming
them into usable training data. Our implementation focuses on a voice-controlled smart
lamp that learns from its user without external data—only through spoken commands and
switch toggles. The DCA operates as an FSM: M = (S, I, δ, s0) defined by the states
S = {Empty,Full,Lit,Dark}, input alphabet I = {x,+,−, ∅, τ}, and transition function
δ : S× I → S. Text (x) is labeled with <lit> or <dar> depending on whether it is followed
by a lamp-On (+) or lamp-Off (−) interaction. The FSM is a minimal supervision interface
that transforms natural user behavior into a training signal.

Training proceeds asynchronously, driven by user interaction. Whenever sufficient data
are collected, a new model is trained using a four-stage pipeline: (0) build a byte-pair en-
coding tokenizer that learns character-merge rules and defines a vocabulary Sennrich et al.
(2016), (1) assign vocabulary embeddings via a bit-cipher extending one- to multi-hot en-
codings for low-dimensional vectors Zhao and Williams (2023), (2) apply a data-dependent
weight initialization based on differential analysis of feed-forward layers Williams and Zhao
(2023b), (3) optimize with Adam while freezing embeddings, and (4) fine-tune with un-
frozen embeddings and a reduced learning rate. This procedure allows for continual model
updates with increasing intervals, determined by the rate at which user interaction gener-
ates data. Two sizes of precision LM (PLM) were developed around small vocabulary sizes
N and embedding and hidden dimensions (dE and dh), and based on a decoder-only archi-
tecture using self-attention and three distinct token-context types: fixed-length blocks of
size b, local neighborhoods of radius r, and the distribution across D documents Williams
and Zhao (2023a); whose hidden states (hb, hr, and hD) are combined into a unified repre-
sentation h = [hb, hr, hD] with hidden dimension is set as: dh = 1.25dE , and connected to
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an output matrix O that projects to a given vocabulary size: N . Specific model hyperpa-
rameters used in this abstract’s experiments are: (b, r,N, dE , dh) = (64, 8, 2048, 128, 160),
and these define a PLM with fewer than one million parameters.

Wav2Vec 2.0 is used for audio transcription Baevski et al. (2020), followed by byte-pair
encoding, ensuring robustness to linguistic variability and phonetic ambiguity. Extensive
pilot experiments were conducted to evaluate whether PLMs can be trained from scratch
in real-time through natural lamp usage. Each trial began with a fully untrained system.
Users, given only a microphone and button interface, trained the lamp by speaking com-
mands and pressing the lamp switch. No technical expertise was assumed. Over multiple
sessions, users successfully trained the lamp to respond to custom commands. In Fig. 1,
re-labeled and -trained models for six distinct from-scratch training sessions demonstrated
average performance improvements in precision and robustness (gray/pink curves), indi-
cating that an optimized configuration for the user interface—with better aligned timing
between speeches and switches—would greatly increase the speed at which a command is
learned. A live demo was also conducted by an advanced user, and highlights the gener-
alizability and consistency of the presented learning process. This demo is also presented
as the red/black curves in Fig. 1, and a video the demo’s training session is available at
https://youtu.be/IxBu7VbeIbI.

In summary, we demonstrate the feasibility of an entirely user-driven, zero-shot learning
framework for language models deployed on low-resource devices. By integrating symbolic
control, phonetic transcription, and lightweight neural architectures, our approach opens
new frontiers in adaptive, private, and context-aware AI. This neuro-symbolic model proves
capable of building semantic mappings from unstructured interaction alone—providing a
template for autonomous edge learning systems beyond static deployment models.

Figure 1: Performance of a live demo (red/black) and the average of 6 sessions (grey/pink).
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